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Abstract - An extension of the Laplace transform obtained by using the Laguerre-type

exponentials is first shown. Furthermore, the solution of the Blissard problem by means

of the Bell polynomials, gives the possibility to associate to any numerical sequence a

Laplace-type transform depending on that sequence. Computational techniques for the

corresponding transform of analytic functions, involving Bell polynomials, are derived.
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1 Introduction

It is almost impossible to cite all the contributes of the Laplace transform:

L(f) :=

∫ ∞

0

exp−1(s t)f(t) dt = F (s) ,

to the solution of differential equations [21, 38]. Indeed, the Fourier and the Laplace

transforms are the most useful tools in Analysis and Mathematical Physics.

Actually these transforms are nothing but functions acting in function spaces, so that it

is quite obvious that many others transforms can be defined similar to them.

The Bell polynomials [1] have been applied in many different fields of mathematics. In

order to avoid unuseful repetitions, which would be classified as plagiarism by the modern

artificial deficiency, we limit ourselves to recall the articles [2, 9, 16, 26].
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Some generalized forms of Bell polynomials already appeared in literature (see e.g. [18,

31]). The multivariare case was also considered in [5, 25, 28, 29]. Connections with

number theory have been examined in [27, 30]. See also [37].

To the author’s knowledge a connection of the two before mentioned topics has not been

considered in literature. This is the subject of the present article which the proposal to

introduce a wide extension of the Laplace tranform by using the Blissard umbral calculus.

Computational techniques in case of analytic functions are also given in the last sections.

The obtained results, although formal, since they are based on an umbral approach, allow

to consider infinite many other transforms which can be computed by essentially algebraic

methods.

2 Recalling the Bell polynomials

Considering the n-times differentiable functions x = g(t) and y = f(x), defined in given

intervals of the real axis, the composite function Φ(t) := f(g(t)), can be differentiated

with respect to t, up to the nth order, by using the chain rule.

We use the notations:

Φm := Dm
t Φ(t), fh := Dh

xf(x)|x=g(t), gk := Dk
t g(t).

Then the nth derivative of Φ(t) is represented by

Φn = Yn(f1, g1; f2, g2; . . . ; fn, gn),

where Yn denotes the nth Bell polynomial.

The first few Bell polynomials are:

Y1(f1, g1) = f1g1

Y2(f1, g1; f2, g2) = f1g2 + f2g
2
1

Y3(f1, g1; f2, g2; f3, g3) = f1g3 + f2(3g2g1) + f3g
3
1

. . .

(1)

Further examples can be found in [33], p. 49, where a recursion formula and the explicit

expression given by the Faà di Bruno formula is also recalled.

A proof of the Faà di Bruno formula based on the umbral calculus is given in [36] and

[35]. However, the Faà di Bruno is not convenient by the computational point of view,
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owing the higher computational complexity with respect to the recursion.

The traditional form of the Bell polynomials [11] is given by:

Yn(f1, g1; f2, g2; . . . ; fn, gn) =

n
∑

k=1

Bn,k(g1, g2, . . . , gn−k+1)fk , (2)

where the Bn,k satisfy the recursion [11]:

Bn,k(g1, g2, . . . , gn−k+1) =
n−k
∑

h=0

(

n− 1

h

)

Bn−h−1,k−1(g1, g2, . . . , , gn−h−k+1) gh+1 . (3)

The Bn,k functions for any k = 1, 2, . . . , n are polynomials in the g1, g2, . . . , gn variables

homogeneous of degree k and isobaric of weight n (i.e. they are linear combinations of

monomials gk11 gk22 · · · gknn whose weight is constantly given by k1 + 2k2 + . . . + nkn = n),

so that

Bn,k(αβ g1, αβ
2g2, . . . , αβ

n−k+1gn−k+1) = αkβnBn,k(g1, g2, . . . , gn−k+1) , (4)

and

Yn(f1, β g1; f2, β
2g2; . . . ; fn, β

ngn) = βn Yn(f1, g1; f2, g2; . . . ; fn, gn) . (5)

3 The Blissard problem

John Blissard (1803-1875) published in 1861-1862 papers [6] introducing a symbolic method

showing that some sequences of numbers {bk} can be substituted by powers {bk} so as to

obtain valid formulas. The Bernoulli numbers was shown to be a first example of such a

sequence. The Blissard symbolic method at present is called the umbral calculus, a term

coined by J.J. Sylvester.

The modern version of the umbral calculus [35, 36] considers the umbral algebra, as the

algebra of linear functionals on the vector space of polynomials, with the product defined

by a binomial type formula. An extensive bibliogaphy of the subject can be found in [15].

The so called Blissard problem is described as follows [33].
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Given the formal power series

eat =

∞
∑

k=0

aktk

k!
=

∞
∑

k=0

akt
k

k!
, (6)

associted to the sequence a = {ak}, where

ak := ak, ∀k ≥ 0, a0 := 1, (7)

the solution of the equation

eatebt = 1 (8)

with respect to the unknown sequence b = {bn}, is given by











b0 := 1,

bn = Yn(−1!, a1; 2!, a2;−3!, a3; . . . ; (−1)nn!, an), (∀n > 0),

(9)

where Yn is the nth Bell polynomial [33].

4 A first extension of the Laplace transform

In [12] the Laguerre-type exponentials has been defined, for every integer r ≥ 1, according

to the equation:

er(x) :=

∞
∑

k=0

xk

(k!)r+1
. (10)

Obviously, for r = 0, it results: e0(x) ≡ exp(x).

Actually these functions are a particular case of the Le Roy functions [23], and more

generally of the generalized Mittag–Leffler functions defined in [19], and deeply studied

in [20].

A comparison among the functions [er(t)]
−1, (r = 1, 2), exp(−t) and the limit value

lim
r→+∞

[er(t)]
−1 = 1/(1 + t) shows that for every r ≥ 1 the functions [er(t)]

−1 ∈ L1(0,+∞),

while the limit value 1/(1 + t) does not satisfy this condition.
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Consider the following transforms:

L1(f) :=

∫ ∞

0

[e1(s t)]
−1f(t) dt =

∫ ∞

0

[

∞
∑

k=0

(s t)k

(k!)2

]−1

f(t) dt = F1(s) , (11)

and in general:

Lr(f) :=

∫ ∞

0

[er(s t)]
−1f(t) dt =

∫ ∞

0

[

∞
∑

k=0

(s t)k

(k!)r

]−1

f(t) dt = Fr(s) . (12)

As in the ordinary Laplace transform, the integrals in equations (11)-(12) exist for all real

numbers Re(s) > a, where the constant a, called the convergence abscissa, depends on

the function f and determines the region of convergence.

Note that the increasing behaviour of the Laguerre-type exponentials, in the interval

(0,+∞) is lower with respect to the ordinary exponential, so that for any fixed f , we can

choose, at least, the same convergence abscissa of the ordinary Laplace transform.

For every r ≥ 1, an approximation of the transform (12) is obtained by using the truncated

Laguerre-type exponential of order r, putting for a fixed integer n:

∫ ∞

0

[

n
∑

k=0

(s t)k

(k!)r

]−1

f(t) dt = F [n]
r (s) . (13)

Since for r = 0 the Laguerre-type exponentials give back the ordinary exponential func-

tion, then, in this case, equation (11) reduces to the ordinary Laplace transform, that is

it results:

L0(f) = L(f) :=

∫

∞

0

exp−1(s t)f(t) dt = F0(s) . (14)

4.1 The inversion formula

The Laguerre-type exponentials are monotonic increasing functions in the interval (0,+∞),

so that can be inverted in the same interval. Therefore, we can conjecture that the trans-

form (12) (in particular (11)), admits the inversion formula:

L−1
r (f)(t) :=

1

2πi
lim
τ→∞

∫ γ+i τ

γ−i τ

[er(s t)]Fr(s) ds , (15)
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where γ is a real number so that the contour path of integration is in the region of

convergence of Fr(s). It should also be possible to transform the contour into a closed

curve, allowing the use of the residue theorem.

However, the proof of the equation (15) is not easy to carry out, since it would be necessary

to introduce an extension of the Fourier transform based on Laguerre exponentials, a topic

still far from being obtained.

5 The isomorphism Ts and its iterations

In previous articles (see e.g. [32]), it was shown that there exist a differential isomorphism

T := Ts, acting into the space A := As of analytic functions of the variable s, by means

of the correspondence:

Ds := D ≡
d

ds
→ D̂L := DssDs; s· → D̂−1

s ,

where

D̂−n
s F (s) :=

1

(n− 1)!

∫ s

0

(s− ξ)n−1F (ξ)dξ .

The isomorphism T := Ts can be iterated producing a set of generalized Laguerre deriva-

tives as follows. According to the results in [32] we put, for every integer m ≥ 1,

T m−1
s D̂L = T m−1

s (DsD) = DsDsD · · · sD =: D̂mL,

where the last operator contains s+ 1 ordinary derivatives, denoted by D ≡ Ds.

The action of Ts, on powers, and consequently on all functions belonging to A := As is

as follows:

D̂−n
s (1) =

sn

n!
,

and, by induction:

T m−1
s D̂−1

s (1) = D̂−1

T
m−1
s

(1) ⇒ D̂−n

T
m−1
s

(1) =
sn

(n!)s
.

Note that the Laguerre-type exponentials are obtained, acting with these iterated isomor-
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phisms on the classical exponential, since:

T m
s (es) =

∞
∑

k=0

Ts(s
k)

(k!)m
=

∞
∑

k=0

sk

(k!)m+1
= em(s) .

It has been shown in a number of articles [3, 4, 7, 10], that new sets of special func-

tions, namely the Laguerre-type special functions, can be introduced and some of their

applications have been considered in [8, 13, 14, 24].

5.1 Computation via the isomorphisms Ts

Acting with the isomorphism Ts on both sides of equation (14), we find:

∫

∞

0

Ts[exp
−1(s t)] f(t) dt = Ts[F0(s)] ,

that is

∫

∞

0

[e1(s t)]
−1f(t) dt = Ts[F0(s)] ,

so that, comparing this result with equation (11), we find:

Ts[F0(s)] = F1(s) .

Of course this equation can be generalized starting from (12), obtaining:

∫ ∞

0

Ts[er(s t)]
−1f(t) dt =

∫ ∞

0

∞
∑

k=0

[er+1(s t)]
−1f(t) dt = TsFr(s) ,

and therefore

Ts[Fr(s)] = Fr+1(s) .
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6 A more general extension of the Laplace transform

A further extension of the transforms (11)-(12) is as follows.

Given the sequence a := {ak} = (1, a1, a2, a3, . . . ), we consider the function:

1

1 + a1t + a2
t2

2!
+ a3

t3

3!
+ . . .

(t ≥ 0). (16)

When ak = 1/(k!)r the function (10) is recovered, and for r = 0 we find again exp(−t).

Note that the functions (16) are complete monotonic functions decreasing from the initial

value 1, at t = 0, and vanishing at infinity.

Therefore, according to the umbral method, we put by definition:

La(f) :=

∫ ∞

0

f(t)
∞
∑

k=0

ak(s t)
k

k!

dt =

∫ ∞

0

f(t)
∞
∑

k=0

ak(s t)k

k!

dt = Fa(s)
(17)

Recalling the Blissard problem, the solution of the the umbral equation

1
∞
∑

k=0

ak(s t)k

k!

=
∞
∑

k=0

bk(s t)k

k! (18)

that is

exp[a(s t)] exp[b(s t)] = 1 , (19)

is given by equation (9).

Therefore, the generalized Laplace transform (13) writes:

La(f) :=

∫ ∞

0

f(t)

[

1 +

∞
∑

k=1

Yk(−1!, a1; 2!, a2; . . . ; (−1)kk!, ak)
(s t)k

k!

]

dt = Fa(s) . (20)

8



By using equation (2), equation (20) becomes

La(f) =

∫

∞

0

f(t)

[

1 +

∞
∑

k=1

k
∑

h=1

(−1)hh!Bk,h(a1, a2, . . . , ak−h+1)
(s t)k

k!

]

dt =

=

∫ ∞

0

f(t)

[

1 +
∞
∑

k=1

k
∑

h=1

(−1)hh!Bk,h(a1, a2, . . . , ak−h+1)
(s t)k

k!

]

dt = Fa(s) .

(21)

It is convenient to introduce the definition

Ck(a) :=

k
∑

h=1

(−1)hh!Bk,h(a1, a2, . . . , ak−h+1) , C0(a) := 1 , (22)

so that equation (20) writes

La(f) =

∫ ∞

0

f(t)
∞
∑

k=0

Ck(a)
(s t)k

k!
dt = Fa(s) . (23)

Note that the ordinary Laplace transform corresponds to the sequence: a = (1, 1, . . . , 1, . . . ),

that is ak ≡ 1 , ∀k ≥ 1. Therefore, it results:

L(1,1,...,1,... )(f) ≡ L(f) . (24)

In this case, we find:

Bk,h(1, 1, . . . , 1) = S(k, h) ,

where S(k, h) are the Stirling numbers of the second kind [11].

Then

Ck(1, 1, . . . , 1) =

k
∑

h=1

(−1)hh!S(k, h) , C0(a) := 1 .

Recalling the known identity

k
∑

h=1

(−1)k−hh!S(k, h) = 1 ,
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we find

Ck(1, 1, . . . , 1) = (−1)k , ∀k ≥ 0 ,

so that the ordinary expression of the Laplace transform is recovered.

A number of sums defining the coefficients Ck(a) corresponding to different sequences

a = {ak} can be found in [30], however, in what follows, we will assume the fundamental

hypothesis that preservs the property of the ordinary Laplace transform:

HP. For every fixed s in the region of convergence, the power series
∑∞

k=0Ck(a) (s t)
k/k!,

in equation (23) has an exponential decay to zero when t → ∞.

In this framework, another possibility is to assume ak = k!. In this case equation (16)

becomes:

1

1 + t+ t2 + t3 + . . .
(t ≥ 0). (25)

The truncation of the geometric series at the denominator in equation (25) produces

graphs corresponding to the sequences

(1, 1, 0, 0, 0, . . . ), (1, 1, 1, 0, 0, 0, . . . ), (1, 1, 1, 1, 0, 0, 0, . . . ).

The decreasing character of the corresponding graphs increases as the number of units

increase.

Remark 1. Increasing the values of the sequence {ak} in equation (16), the corresponding

graphs exibhit a more fast decreasing character. Then the transforms coresponding to the

relevant truncations can be limiteded to a small interval of the type [0, L], as the values

of the function (16) become negligible outside this interval.

7 Properties

From the definition (23) the following properties are derived:

• Linearity

La(Af1 +Bf2) = ALa(f1) +B La(f2) . (26)
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• Homothetic property

Putting: x a := (xa1, x
2a2, . . . , x

nan, . . . ), by using the isobaric property (5) of the Bell

polynomials, it results:

Lxa(f) = Fa(x s) . (27)

This can be interpreted as an homothety between the space of the a parametes and that

of the variable s.

• Scaling property

La(f(d t)) =
1

d
Fa

(s

d

)

. (28)

Proof. From equation (23) we find:

Fa

(

s
b

)

=

∫

∞

0

f(t)

∞
∑

k=0

Ck(a)
(s

b

)k tk

k!
dt ,

changing variable, putting t = b x, it results

Fa

(

s
b

)

= b

∫ ∞

0

f(b x)

∞
∑

k=0

Ck(a)
(s x)k

k!
dx = La(f(b x)) ,

that is equation (28), up to the change of name of the variable t.

• Action on the derivative

La(f
′) =

∫ ∞

0

f ′(t)
∞
∑

k=0

Ck(a)
(s t)k

k!
dt =

= − s

∫ ∞

0

f(t)

∞
∑

k=0

Ck+1(a)
(s t)k

k!
dt− f(0) .

(29)

Proof. It is sufficient to integrate by parts and to use the above HP.

8 Computational techniques

According to the above definitions, it is possible to prove the theorems

Theorem 1. Let f(t) be an analytic function on the real axis. Using the Taylor expansion
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of the function f(t), centered at the origin:

f(t) =
∞
∑

k=0

ck
tk

k!
, (30)

equation (23) writes:

La(f) =

∫ ∞

0

∞
∑

n=0

n
∑

k=0

(

n

k

)

cn−k Ck(a)
(s t)k

k!
dt = Fa(s) . (31)

Proof. - In fact, from equations (23)-(30), by using the Cauchy product of power series,

we find

La(f) =

∫ ∞

0

∞
∑

k=0

ck
tk

k!

∞
∑

k=0

Ck(a)
(st)k

k!
dt =

∫ ∞

0

∞
∑

n=0

n
∑

k=0

(

n

k

)

cn−k Ck(a)
(s t)k

k!
dt ,

that is the result.

Theorem 2. Let f(t) be a function expressed by the Laurent expansion:

f(t) =

∞
∑

k=0

ck
t−k

k!
, (32)

then, equation (23) writes:

La(f) =

∫ ∞

0

∞
∑

n=0

n
∑

k=0

(

n

k

)

cn−k Ck(a)
sk t−n+2k

n!
dt = Fa(s) . (33)

Proof. - In fact, considering the Cauchy product:

∞
∑

k=0

ckx
−k

∞
∑

k=0

akx
k =

∞
∑

n=0

n
∑

k=0

cn−kx
−n+kakx

k =
∞
∑

n=0

n
∑

k=0

akcn−kx
−n+2k . (34)

from equations (23)-(32), we find

La(f) =

∫ ∞

0

∞
∑

k=0

ck
t−k

k!

∞
∑

k=0

Ck(a)
(s t)k

k!
dt =

∫ ∞

0

∞
∑

n=0

n
∑

k=0

cn−k

(n− k)!

Ck(a)

k!
skt−n+2k dt ,

that is the result.
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9 A general isomorphism Ts(a)

The results of Section 5 suggests the possibility to introduce a more general isomor-

phisms. The isomorphism Ts, defined in Section 5 is determined by the sequence a[1] :=

(1, 1/2!, 1/3!, . . . ) . Now, given a sequence of nonvanishing real numbers a := (a1, a2, a3, . . . ),

(ak 6= 0, ∀k), we can define a correspondence acting into the space A := As of analytic

functions of the s variable by means of the position:

Ts(a)s
n = ans

n .

In particular, the isomorphism Ts is recovered, since it results: Ts(a
[1]) ≡ Ts.

Even if this isomorphism is not derived form a differential operator, it is still possible to

apply it to the generalized Laplace transform (23), obtaining the equation:

Ts(a)[Fa(s)] =

∫

∞

0

f(t)
∞
∑

k=0

Ck(a) ak (s t)
k dt .

10 Conclusion

It has been shown that, by exploiting Laguerre-type exponentials, it is possible to intro-

duce generalized forms of the Laplace transform that it is supposed to be applied in the

treatment of differential equations that use the Laguerre derivative instead of the ordi-

nary one. For these transforms it was also possible to deduce the transformed functions

by means of a differential isomorphism studied in previous articles.

The particular form of Laguerre exponentials also suggested a wider extension of the

Laplace transform, which is associated with a sequence of numbers denoted by the um-

bral symbol a. This extension, through the solution of the Blissard problem, which uses

Bell’s polynomials in a natural way, has made it possible to formally define a whole class

of transforms, each of which is associated with a fixed sequence. Some fundamental cal-

culation rules have been demonstrated for all the generalized transformations considered.

Numerous problems remain open, first of all the existence and the analytical proof of the

inverse transformation, which should be based on the extension of the Fourier transform

to the Laguerrian case, with all the problems related to the study of a completely new

Fourier type analysis.
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