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Abstract In this review, we tried to present Fusarium oxysporum in an ecological

context rather than to confine it in the too classic double play of the nonpathogenic

fungus that protects the plant against the corresponding forma specialis. Moreover,

F. oxysporum is sometimes one, sometimes the other, and only the fungus can

reveal its hidden face, according to it is or not in front of the target plant. Despite the

quality and richness of the studies conducted to date, molecular approaches high-

light some of the evolutionary mechanisms that explain the polyphyletic nature of

this species, but still they do not identify a nonpathogenic F. oxysporum.
This soilborne fungus has primarily an intense saprophytic life, and it finds its

place in the functioning of the ecosystem of which it actively occupies all com-

partments, thanks to an impressive metabolic flexibility and a high enzyme poten-

tial. This adaptability is exploited by F. oxysporum first to get carbon from different

organic sources and energy through variable strategies including nitrate dissimila-

tion under severe anaerobic conditions and also to colonize extreme environments,

some of which being dramatically anthropized. This adaptability is also exploited

by man for bioremediation of polluted sites, for detoxification of xenobiotic com-

pounds including pesticides, and furthermore for industrial and biotechnological

processes. The presence of the fungus in water distribution networks of city stresses

again the adaptable nature of the fungus, but more precisely, this highlights the

presence of clonal populations worldwide and raises the question of the role of man

in the transfer of biological resources.

We conclude in a provocative manner by asking if nonpathogenic F. oxysporum
would not be the all-purpose fungal tool needed to ensure a good soil functioning.
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1 Introduction

If there are microorganisms, especially soilborne fungi, that fascinate mycologists,

plant pathologists, doctors, and microbial ecologists, without forgetting evolution-

ists, geneticists and taxonomists, Fusarium or more precisely Fusarium oxysporum
is one of those. We should probably also mention in the list that growers and

horticulturists are equally concerned with survival, evolution, and activities of

F. oxysporum Schlecht, but maybe they do not feel the same fascination as the

aforementioned corporations. Indeed, F. oxysporum is primarily known for its

ability to cause disease on a large number of host plants, while the predominant

role of this fungus in soils is essentially determined by its saprophytic activity in

raw and rhizospheric soils whether they are cultivated or not, by its biochemical

activity in anthropic environments, and by its long survival in various environments

(Burgess 1981; Bao et al. 2004; Christakopoulos et al. 1991; Holker et al. 1999).

2 To Be or Not to Be a Nonpathogenic F. oxysporum?

F. oxysporum is an ascomycete, belonging to the family of Nectriaceae and the

order of Hypocreale. This is an asexual fungus whose teleomorph is unknown.

Actually, the F. oxysporum species complex includes both pathogenic and non-

pathogenic populations, the former being split into more than 100 formae speciales,
each of them being specific of a plant species (Armstrong and Armstrong 1981;

Correll 1991; Baayen et al. 2000). This morphological species is now recognized as

a species complex because of its high level of phylogenetic diversity (O’Donnell
et al. 2009). Phylogenetic analyses also revealed how diverse is the origin of the

pathogenicity of most of the various formae speciales. Only a few of them such as

F. oxysporum f. sp. albedinis, ciceri, and loti are monophyletic (Tantaoui

et al. 1996; Wunsch et al. 2009; Demers et al. 2014). Therefore, a great effort of

research is devoted to characterize the diversity of formae speciales of peculiar

interest in agriculture (Elias and Schneider 1992; Kistler 1997; Abo et al. 2005;

Lievens et al. 2008; Edel-Hermann et al. 2012) and in horticulture (Loffler and

Rumine 1991; Lori et al. 2012; Canizares et al. 2015; Lecomte et al. 2016), in order

to identify some specific molecular markers allowing to detect and monitor both

pathogenic and nonpathogenic populations in the rhizosphere of host plants

(Recorbet et al. 2003; Edel-Hermann et al. 2011). However, to date and despite

these efforts, it is still not possible to generally discriminate nonpathogenic

populations from pathogenic populations except by the fact that a strain is said to

be nonpathogenic if it does not cause any symptom on the plant on which it has been

inoculated, but even so it is not possible to say whether this strain is definitively

nonpathogenic regardless of the plant species. Thus, the very definition of

nonpathogen is blurred because it relies on the absence of a trait that can only be

expressed by a pathogenic strain in the presence of the host plant on which it is
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specifically subservient; we talk about compatibility. So, while highlighting that the

polyphyletic nature of the origins of the pathogen status has been acquired in the

course of evolution by a fungus that originally is not pathogenic, doubt always

exists that a strain incapable of causing symptoms on a given plant is not pathogen

of a plant species with which the compatibility was not tested. Nevertheless, the

notion of risk associated to this doubt is limited and should not be considered as a

foil to the positive role that F. oxysporum plays in the biological functioning of the

soil and can also play in the protection of plants as a biocontrol agent. Indeed, the

already mentioned polyphyletic nature of the origin of pathogenicity in most of the

formae speciales can be explained especially by the presence and mobility of a

large number of transposable or repetitive elements, responsible for timely and

random mutations in the genomes of pathogenic strains, and by horizontal transfers

of chromosomal regions (Daboussi and Langin 1994; Daviere et al. 2001; Ma

et al. 2010; Inami et al. 2012; Schmidt et al. 2013). The presence of many

transposable elements in F. oxysporum, as in other Deuteromycetes, is probably a

consequence of the asexual lifestyle of these fungi and the resulting absence of the

meiosis process that normally eliminates repetitive elements (Daboussi 1996). In

the case of formae speciales, it can be assumed that the ongoing compatible

interaction of the pathogen with the plant is an additional selection pressure that

strengthens the interest for the phytopathogenic fungus to have generators of

diversity and adaptation mechanisms to overcome the defense reactions opposed

by the plant. In the case of the few nonpathogenic populations that have been

studied so far on that point, it seems they harbor much less transposable elements

than pathogenic strains (Migheli et al. 1999). Therefore, one could assume a greater

genetic stability from a nonpathogenic population than from a pathogenic popula-

tion. However, this putative genetic stability for a given population is probably

compensated by an incredible diversity within the species giving F. oxysporum the

ability to colonize a huge variety of environments (Edel et al. 2001; Lori et al. 2004;

O’Donnell et al. 2004; Sautour et al. 2012). In addition, the host pathogen-plant

compatibility is a mark enabling to appreciate the diversity and evolutionary history

of a given forma specialis. This kind of reference is not available for the nonpatho-
genic populations, and although nonpathogenic strains are generally used as a

control in the analyses of diversity of pathogenic populations, rare phylogenetic

studies are dedicated to the evolutionary history of nonpathogenic populations;

therefore, it is difficult to comment on their genetic stability (Inami et al. 2014).

3 Is F. oxysporum Only a Soilborne Fungus?

The geographic distribution of formae speciales is probably affected by that of host

plants and by anthropogenic activities; however, all the various data in the literature

for many years issuing from local surveys have shown that F. oxysporum occurs

primarily in soils in most parts of the world without recourse to pathogenesis (Park

1963; McKenzie and Taylor 1983; Backhouse et al. 2001). Anyway, the
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terminology “nonpathogenic” is a default appellation regarding the very likely

initial saprotrophic status of this species complex, and studies on the ecology of

F. oxysporum do not discriminate between pathogenic and nonpathogenic

populations. So we will do the same. The places over the world where

F. oxysporum can be found include natural extreme conditions such as saline soil

habitats of the hot arid desert environment (Mandeel 2006), tropical dry forests

(Bezerra et al. 2013), Arctic circle (Kommedahl et al. 1988), and environments

affected by human activities such as industrially polluted sediments (Massaccesi

et al. 2002), metal mine wastes (Ortega-Larrocea et al. 2010), biofilms in household

appliances such as washing machines (Babic et al. 2015), and water system of

hospitals (Anaissie et al. 2001; Steinberg et al. 2015). It is likely that the diversity

hosted by F. oxysporum explains the adaptation of the fungi to various niches under

various soil and climatic conditions, as well as in water and in the air. Their

concentration was estimated to vary between 102 and 104 propagules per gram of

soil (Park 1963; Alabouvette et al. 1984; Larkin et al. 1993,) while it is much less

(a few propagules per liter) in seawater or springwater (Palmero et al. 2009). It can

reach up to 103 propagules per mL when accidentally colonizing water pipes

(Sautour et al. 2012). Spores of F. oxysporum have been found associated with

rain dust (0.1–45 propagules per gram of dust) and transported over long distances

including overseas (Palmero et al. 2011). Spores of F. oxysporum are also found in

the air outdoor as well as in air-conditioned indoor environments (Debasmita

et al. 2014; Khan et al. 2009). So clearly F. oxysporum is a ubiquitous fungus

that is able to adapt to many types of environments, although it is more frequently

encountered in the soil where its density is important both in cultivated and

noncultivated ecosystems. Focus is generally made on the diversity of pathogenic

populations to understand the origins of this particular trait (Baayen et al. 2000;

Groenewald et al. 2006; Luongo et al. 2015; O’Donnell et al. 1998, 2004). How-
ever, many studies have revealed an incredible intraspecific diversity within

F. oxysporum (Demers et al. 2015; Edel et al. 2001; Edel-Hermann et al. 2015;

Laurence et al. 2012; Lori et al. 2004). It is not forbidden to think that this diversity,

although it is often assessed by the analysis of noncoding DNA regions, could

explain the ability of F. oxysporum to colonize such different environments, among

which is the rhizosphere of putative host plants. Abundant and more or less specific

exudates released by plant roots in the rhizosphere are a main food source for

microorganisms and a driving force of their population density and activities.

F. oxysporum populations are particularly affected by this privileged habitat, and

they are actively involved in the colonization of the rhizospheric soil, the rhizo-

plane, and also root tissues (Fravel et al. 2003; Landa et al. 2001; Ling et al. 2012;

Toyota and Kimura 1992). The selective nature of root exudates linked to the

genotype of the host plant determines the composition of the populations of

F. oxysporum associated with the plant (Edel et al. 1997; Demers et al. 2015).

Actually, all the strains do not respond in the same way to released exudates, what

explains that the abundance ratios between strains of the same population are

different from one to another rhizosphere. This difference in ability to use root

exudates of a given plant depends on the own characteristics of each strain but is not
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linked to the pathogenicity or nonpathogenicity of the strains (Steinberg

et al. 1999a, b). Consequently, the ability in using efficiently the root exudates

determines the issue of the competition for trophic sources between pathogenic and

nonpathogenic F. oxysporum and therefore the selection for efficient biocontrol

agents (Eparvier and Alabouvette 1994; Olivain et al. 2006) (see below). Non-

pathogenic strains of F. oxysporum can cross the epidermis cells of the root surface,

but they are unable to cause disease (Olivain and Alabouvette 1997). They colonize

the root cortex of a plant and may establish as endophytes (Belgrove et al. 2011;

Demers et al. 2015), but the main point is that this narrow interaction between

nonpathogenic F. oxysporum and the host-plant results in the so-called priming

effect, i.e., the implementation of defense reactions of the plant that slow down their

progress and prevent any further invasion by a pathogenic strain (Aime et al. 2013;

Benhamou and Garand 2001). Similarly to the absence of preferential selection

between pathogenic and nonpathogenic populations of F. oxysporum at the root

surface of the host plant (Olivain et al. 2006), there is no clear genetic differenti-

ation in the composition of endophyte populations and rhizosphere populations

(Demers et al. 2015).

All these interactions in the rhizosphere of the host plant between pathogenic

and nonpathogenic populations of F. oxysporum reveal protective ability of the

latter against the pathogen and invite to consider the use of nonpathogenic strains in

biocontrol strategy against formae speciales of F. oxysporum or other pests

(Alabouvette et al. 2009; Vos et al. 2014).

4 Would There Be a New Robin Hood in the Rhizosphere

of Plants to Be Protected?

Evidence of a possible role of nonpathogenic Fusarium spp. in controlling patho-

gens resulted from the observation that soils suppressive to Fusarium wilt harbored

high populations of nonpathogenic F. oxysporum and F. solani whose involvement

in the mechanism of soil suppressiveness was confirmed experimentally (Rouxel

et al. 1979). Strains of F. oxysporum were much more efficient in establishing

suppressiveness in soil than other species of Fusarium (Tamietti and Alabouvette

1986). Moreover, there is a great variability among soilborne nonpathogenic strains

of F. oxysporum for their capacity to protect plants against their specific pathogens

(Forsyth et al. 2006; Nel et al. 2006), and some effective strains have not been

isolated from soil but from the stem of healthy plants (Ogawa and Komada 1984;

Postma and Rattink 1992). In addition, it is well established that a pathogenic strain

applied to a non-host plant is able to protect this plant against further infection by its

specific forma specialis. A review was recently published by Alabouvette

et al. (2009) describing the main modes of action of biological control agents in

soil and listing a large number of situations in which selected strains of nonpatho-

genic F. oxysporum succeeded or not in protecting the plant against pathogenic
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formae speciales. Since the publication of this review, many other examples of the

protective potential of nonpathogenic F. oxysporum were also published (Belgrove

et al. 2011; Morocko-Bicevska et al. 2014), and it would be tedious to list them all.

Actually what is noticeable is the fact that nonpathogenic F. oxysporum have been

shown to control not only pathogenic F. oxysporum but also Verticillium dahliae
causing wilting of eggplant, pepper, and cotton (Gizi et al. 2011; Veloso and Dı́az

2012; Zhang et al. 2015), nematodes causing damage on banana and tomato roots

(Paparu et al. 2009; El-Fattah et al. 2007), and insects such as the sucking Aphis
gossypii and the whitefly Trialeurodes vaporariorum affecting tomato (Martinuz

et al. 2012; Menjivar et al. 2012). While in the case of V. dahliae on eggplant and

cotton, volatile organic compounds produced by the strains of F. oxysporum control

the pathogen; in the case of nematodes, weevils, and insects, the F. oxysporum
strains are endophyte and elicit the plant defense reactions of the host plants.

It must be admitted that most of the examples cited here and in the review

published in 2009 (Alabouvette et al. 2009) correspond to controlled situations that

reveal the potential of nonpathogenic strains, but a very limited number of the most

powerful strains are licensed, registered, and available in the market with a bio-

control allegation. The protective capacity in F. oxysporum is not a simple trait and

many genes are likely to be involved. Identifying some traits linked to the protec-

tive capacity would help in differentiating pathogenic from protective strains and in

screening among soilborne strains to identify potential protective strains. Success of

microbiological control requires a sufficient understanding of the modes of action

of the antagonist and also of its interactions with the plant, the pathogen, and the

rest of the microbiota. All these studies take time, and most of the biocontrol agents

other than F. oxysporum and already on the market have been studied for more than

20 years before registration. The work already done and the results obtained with

nonpathogenic strains of F. oxysporum augur an imminent placing on the market of

representatives of this species to control pathogens. It is however necessary to be

wary of the too rapid interpretation found in recent papers (Schmidt et al. 2013)

concerning the results of Ma et al. (2010). Ma et al. showed that under very special

laboratory conditions, the nonpathogenic strain Fo47, isolated from the suppressive

soil of Châteaurenard (France) and whose protective capability was already proved

(Olivain et al. 2004), was likely to integrate by horizontal transfer, a fragment of

chromosome 14, bearer genes involved in the pathogenicity of a strain of

F. oxysporum f. sp. lycopersici. Actually, the experimental conditions were such

that the likelihood of such a natural realization is zero; the authors simply wanted to

show that the horizontal transfer was possible, which is different from likely. We

can thus consider as reliable the strains of nonpathogenic F. oxysporum to be used

in biological control strategies.
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5 Dormant or Active Actor of the Biological Functioning

of Soils?

5.1 Carbon Utilization

The distribution of F. oxysporum in numerous, complex, and varied environments

is explained by the enzymatic machinery at its disposal and its ability to modify its

metabolism within the constraints of these environments including microaerobic

and very-low-oxygen conditions, which gives it this remarkable adaptability and an

important role in the biodegradation of the organic matter. F. oxysporum produces

indeed a large spectrum of extracellular oxidative enzymes of various types includ-

ing cellulases, laccases, xylanases, lignin-degrading enzymes, and manganese

peroxidases (Falcon et al. 1995; Rodriguez et al. 1996; Silva et al. 2009; Zhou

et al. 2010; Xiros et al. 2011; Huang et al. 2015). Apart from study cases dedicated

to the ability of F. oxysporum to metabolize a given C source or to denitrify a

nitrogen-containing substrate (Rodriguez et al. 1996; Takaya and Shoun 2000; Ali

et al. 2014), there is no global data to quantify the relative importance of the role of

F. oxysporum, within the fungal community, in the decomposition, reorganization,

and mineralization of organic matter in soils and litter. However, its ubiquitous

presence and its high abundance mean that the contribution of this fungus in the

carbon and nitrogen cycles must be significant. Beyond its ecological role in the

saprophytic phase of F. oxysporum, this important enzymatic potential is usable in

processes for bioproduction and/or biodegradation of natural resources under solid-

state fermentation but also in bioremediation process and phytoextraction of heavy-

metal under field conditions. For instance, F. oxysporum is used to produce ethanol

from agricultural sources such as cereal straw, thanks to its ability to combine both

the cellulose and hemicellulose degradation system and the capability to ferment

hexoses and pentoses to ethanol (Christakopoulos et al. 1989; Ruiz et al. 2007;

Anasontzis et al. 2011; Xiros et al. 2011; Ali et al. 2012). Similarly, F. oxysporum
appears as an efficient biotechnological partner. It is grown in solid-state fermen-

tation process to degrade by-products of the olive oil production or the citrus-

processing industry (Sampedro et al. 2007; Mamma et al. 2008).

5.2 Nitrogen Utilization

Nitrogen sources in the environment including soil are variable in nature (organic

and mineral) as in structural complexity. It is often difficult to separate the use of

nitrogen from that of carbon, but it nevertheless appears that biomass production

and secretion of hydrolytic enzymes to use carbon by F. oxysporum is strongly

impacted by the nitrogen source at its disposal (Da Silva et al. 2001; Escobosa

et al. 2009). This phenomenon has been mainly shown in biotechnology processes

to solicit the enzyme potential of F. oxysporum to degrade a carbon substrate such
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as lignin or agriculture by-products or to obtain a product of interest (Cheilas

et al. 2000; Panagiotou et al. 2003, 2005; Lee et al. 2011). It is also noticeable

that, thanks to the incredible flexibility of its metabolism, F. oxysporum adapts to

moderately up to severe anaerobic conditions by replacing the energy-producing

mechanism of O2 respiration with the reduction of NO3
� and NO2

� to

N2O. Denitrification is a dissimilating metabolic mechanism for nitrate and was

described in F. oxysporum not so long ago (Shoun and Tanimoto 1991). This

dissimilatory nitrate reduction allows F. oxysporum to regenerate the cofactor

NAD(þ) during the denitrification process to then efficiently hydrolyze xylose to

achieve its anaerobic growth (Panagiotou et al. 2006). F. oxysporum could not only

denitrify nitrate through the classical sequential reactions of nitrate and nitrite

reductases but it can also reduce nitrate to ammonium through ammonia fermen-

tation (Takaya 2002; Takasaki et al. 2004; Zhou et al. 2010). A deep focus has been

given to the specific pathways used by this fungus to denitrify nitrate and nitrite to

gain energy. It was shown that F. oxysporum denitrification activities are localized

in the mitochondria and are coupled to the synthesis of ATP (Kobayashi et al. 1996)

and that cytochrome P-450, designated as P450nor, was involved in the respiratory

nitrite reduction of F. oxysporum, while the equivalent NO reductase (NOR) system

in bacteria is derived from cytochrome c-oxidase (Shoun and Tanimoto 1991;

Takaya and Shoun 2000; Dalber et al. 2005). Recent studies related to the use of

nitrogen by F. oxysporum help at explaining the role of soilborne fungi in the

nitrogen cycle and more specifically in soils (Long et al. 2013; Mothapo

et al. 2015). For instance, fungal denitrifiers including F. oxysporum generally do

not have the gene encoding N2O reductase (NosZ) as bacteria have and thus are

incapable of reducing N2O to N2 (Shoun et al. 2012). Many studies dedicated to the

fungal release of N2O as a powerful greenhouse gas contributing both to global

warming and ozone depletion underlined the contribution of F. oxysporum to this

phenomenon (Shoun et al. 2012; Jirout et al. 2013; Chen et al. 2014; Maeda

et al. 2015). An equivalent strategy allows F. oxysporum to reduce sulfur in anoxic

condition to recover energy (still via NADH cofactor) and ensure efficient oxida-

tion of the carbon source and subsequent fungal growth. As for nitrate dissimilation,

the anaerobic sulfur reduction by F. oxysporum results in the release of a gas, the

hydrogen sulfide (H2S), but in amounts that are less than those noted for N2O (Abe

et al. 2007; Sato et al. 2011). This reveals how the fungus adapts to anaerobic

conditions and replaces the energy-producing mechanism of O2 respiration by a

dissimilative strategy. This ability to reduce sulfide in anoxic conditions can confer

a competitive advantage to populations of F. oxysporum when Brassica, rich in

sulfur, are ground and incorporated into the soil to reduce densities of primary

inoculums of plant pathogenic fungi (Larkin and Griffin 2007).
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5.3 Bioremediation

As mentioned above, F. oxysporum has also attracted interest for bioremediation of

soil and purification of water due to its capability to detoxify and colonize polluted

environments. For instance, F. oxysporum excretes alkaline substances that

increase the pH of the medium around its mycelium, which affects the status of

certain minerals. Thus, by issuing chelators produced during its growth in the

presence of glutamate, F. oxysporum hydrolyzes coal without producing specific

enzymes. On the other side, Trichoderma viride produces enzymes attacking coal

under alkaline conditions; therefore, these fungi combine solubilization of coal and

ligninolyse of humic acids, which enables them to colonize mineral soils (Holker

et al. 1999). In an iron ore area in Brazil, F. oxysporum associated with mycorrhizal

fungi facilitates the solubilization of phosphorus, thus facilitating the installation of

legumes to ensure revegetation of the soil (Matias et al. 2009). F. oxysporum was

isolated from industrially polluted effluents highly contaminated with cadmium

alone or cadmium and lead. Thanks to its ability to grow in the presence of heavy

metals and its associated metabolic activity, F. oxysporum may, in aqueous

medium, either sequester cadmium in its mycelial biomass (Massaccesi

et al. 2002) or turn Pb2+ and Cd2+ metal ions into the corresponding carbonates

that can then be recovered. Besides the removal of toxic heavy-metal ions from

water, the crystals thus created have a specific morphology making them exploit-

able as biominerals for biological and materials sciences (Sanyal et al. 2005).

Moreover, the capability of F. oxysporum to reduce extracellularly metal ions and

in particular silver ions into silver nanoparticles which have an antibacterial effect

has been proposed for the production of sterile clothing for hospitals to prevent

infection with pathogenic bacteria such as Staphylococcus aureus. In this case, the

bioremediation of water is ensured by the cyanogenic bacterium Chromobacterium
violaceum (Duran et al. 2007). It may be admitted that despite the anthropogenic

character of mining and the presence of heavy metals at industrial sites, pollutants,

although toxic, are natural constituents of the environment that man has concen-

trated, certainly, but that F. oxysporum particularly ubiquitous fungus was

confronted to and was able to adapt to their presence, tolerate them, and even

exploit them. By cons, it is notable that the enzymatic equipment of F. oxysporum
makes it capable of degrading synthetic molecules. So F. oxysporum was used to

degrade and to detoxify a new chemical class of textile dyes called glycoconjugate

azo dye and is proposed in the frame of remediation strategies of textile effluents

(Porri et al. 2011). The ability of F. oxysporum to grow in the presence of arsenic

and to volatilize this element present in polluted environments allows considering

its exploitation for the bioremediation of As-contaminated soils, sediments, and

effluents (Zeng et al. 2010; Feng et al. 2015). As well, the efficiency with which

F. oxysporum is capable of extracting the iron from asbestos fibers due to a change

of its metabolism and thereby reduce its toxicity makes the fungus a potential

candidate for the bioremediation of contaminated sites. First, the internalization of

asbestos fibers is prevented in F. oxysporum, thanks to its rigid cell wall. Then a
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proteomic analysis revealed an upregulation of two proteins, homologous of

already known proteins in F. graminearum and Coccidioides immitis, and a

rerouting of F. oxysporum metabolism to the pentose-phosphate pathway to coun-

teract the deleterious consequences of oxidative stress (Chiapello et al. 2010).

Indirectly, F. oxysporum also contributes to the bioremediation of soils contami-

nated with zinc and cadmium or mining soils by facilitating the phytoextraction of

heavy metals from the soils by plants introduced for that purpose in the areas

concerned (Ortega-Larrocea et al. 2010; Zhang et al. 2012).

6 Adaptation to Human Activities

6.1 A Ticket for the Degradation of Xenobiotics?

With a stated goal of protecting crops, chemical control against pests, either weeds,

insects, or plant pathogenic microorganisms, results in a spill of more or less

complex molecules, most of which being xenobiotic compounds. The accumulation

of these molecules can negatively impact human, animal, plant, and microbial

populations under increasing pressure. The enzymatic equipment of F. oxysporum
allows the fungus to degrade pesticides, including organophosphates such as

malathion and fenitrothion which are neurotoxic insecticides (Hasan 1999; Peter

et al. 2015). According to the initial concentration (400–1000 ppm) and to the

availability of additional nutrients (carbon, nitrogen, phosphate), F. oxysporum was

capable of degrading malathion in less than 8 days up to 3 weeks of incubation. The

insecticide chlordecone is a contaminant found in most of the banana plantations in

the French West Indies. Microbial communities were severely negatively affected

by this organochlorine, but F. oxysporum was able to tolerate the presence of the

toxic molecules in soil as well as some few other fungal genera belonging to the

Ascomycota phylum (Merlin et al. 2013). However, F. oxysporum was the only

species able to grow on chlordecone as only carbon source in controlled conditions

and to dissipate up to 40% of chlordecone. So also there, the enzyme potential

confers to the fungus a ubiquitous adaptability leading to exploit those skills to

address the presence of xenobiotic pesticides in soil and water (Pinto et al. 2012).

6.2 A Ticket for the Hospital?

Nosocomial infections are more and more frequently attributed to the presence of

Fusarium in hospital settings (Girmenia et al. 2000; Anaissie et al. 2001; Dignani

and Anaissie 2004; Sautour et al. 2012). The diseases often affect dramatically

immunocompromised patients (Nucci and Anaissie 2007) but can also target more

specifically and less dramatically contact-lens wearers and patients with infectious
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keratitis (Jureen et al. 2008). F. oxysporum and F. solani are the most dominant

species involved among the various Fusarium species that have been detected so far

(Anaissie et al. 2001; O’Donnell et al. 2007; Short et al. 2011; Scheel et al. 2013).
An epidemiological investigation conducted over 2 years in hospital and

nonhospital buildings in France revealed the existence of homogeneous populations

of F. oxysporum and F. dimerum common to all contaminated hospital sites

(Steinberg et al. 2015). The waterborne isolates tolerated higher concentrations of

chlorine dioxide used to disinfect the hospital water distribution systems and of

copper sulfate released by copper pipes and higher temperatures than did soilborne

isolates but did not show any specific resistance to fungicides. These populations

are present at very low densities in natural waters, making them difficult to detect,

but they are adapted to the specific conditions offered by the complex water systems

of public hospitals in France and probably other localities in the world (Steinberg

et al. 2015). Molecular analyses on the genetic diversity of populations of

F. oxysporum in hospitals brought evidence for the recent release of a clonal lineage

geographically widespread (O’Donnell et al. 2004).
These studies conducted by doctors, mycologists, taxonomists, and ecologists

led the different hospital departments to take measures to reduce the risk of spread

of the fungus in the premises, including minimizing the effects of aerosolization to

prevent nosocomial infections, what is quite good of course. They especially

highlight the impact of man on the evolution of microorganisms and their distribu-

tion throughout the world because here are clonal populations of F. oxysporum
adapted to urban water supply systems that are found in countries from different

continents.

7 Conclusion

There is no doubt that nonpathogenic F. oxysporum interact firstly with pathogenic

formae speciales of F. oxysporum or other pathogenic fungal species for the use of

trophic resources and space in the rhizosphere of host plants and also with the plant,

and they elicit defense reactions. These are the reasons why many strains of

nonpathogenic F. oxysporum are proposed as biocontrol agents to control the

infectious activity of pathogens or pests and reduce the severity of the disease

even if not so many strains are actually registered and available on the market.

Although this biocontrol activity is particularly important, it would be a shame to

reduce F. oxysporum to a simple role-playing in the rhizosphere of a plant that

distributes the game depending on its compatibility with one or the other of the

strains. Indeed, only the interaction with the plant discriminates pathogenic strains

from nonpathogenic ones. Molecular markers exist for a few number of formae
speciales, but for most of the others, these markers, if any, are difficult to identify.

The reasons are the very high genetic diversity within this species and the poly-

phyletic origin of the pathogenicity. In return, this diversity is a major asset for

F. oxysporum that can colonize and exploit all the compartments of the terrestrial
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ecosystem, even the most unexpected, whether they are extreme in nature or a result

of excessive anthropization. Thanks to a diverse enzymatic equipment and a

flexible metabolism, F. oxysporum is able to adapt to many environmental condi-

tions and above all to actively contribute to the biochemical processes governing

the functioning of the niches used by the fungus, whatever they are.

Beyond the biocontrol activity of F. oxysporum, the mechanisms of which are

beginning to be elucidated, at least partially, the bioremediation of contaminated

soils and the detoxification of harmful xenobiotics used in agriculture become

particularly attractive, as well as the potential its enzymatic equipment offers for

biotechnological processes including food processing. Finally, its ability to reduce

nitrates makes F. oxysporum the preferred study model to understand the role of

fungi in the denitrification process and particularly in their contribution to the

production of N2O and the resulting greenhouse gas. F. oxysporum, whether it is
pathogenic or nonpathogenic F. oxysporum, deserves its qualification as a ubiqui-

tous fungus because actually it is everywhere and it is active throughout. It appears

as the multipurpose fungal toolbox that pathologists sometimes ignore but which

nevertheless actively contributes to the global functioning of soil.
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