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1. Introduction

Electrical impedance tomography (EIT) probes a body with low-amplitude electrical currents applied on surface 
electrodes. The surface measurements can then be used as inputs to solve a mathematical inverse problem to 
recover the internal electrical properties (conductivity and permittivity) of the object. As EIT is a low-cost, non-
invasive imaging modality with no ionizing radiation, it has several medical and industrial applications, see 
Cheney et al (1999) and Mueller and Siltanen (2012). The image recovery task in EIT, recovering the internal 
conductivity from the surface electrode measurements, is a severely ill-posed nonlinear inverse problem thus 
requiring carefully designed reconstruction algorithms capable of handling incorrectly known boundary shape, 
electrode locations, and noise in the measured EIT data. The ill-posedness of the inverse problem often results in 
images with low spatial resolution or severe image corruption due to modeling errors in a minimization task. The 
D-bar method (Nachman 1996, Knudsen et al 2009) has been shown to be robust to modeling errors and noise 
(Murphy and Mueller 2009, Hamilton et al 2018).

By viewing these low-resolution, real-time (Dodd and Mueller 2014), D-bar images as convolutions of the 
true images one can develop and train a convolutional neural network (CNN) to learn the blurring inherent in 
the D-bar reconstruction process on data of that type. This idea was introduced in Hamilton and Hauptmann 
(2018) and tested on experimental EIT data for absolute imaging in 2D. There, the training data for the network 
was simulated from the forward EIT model:

∇ · σ(z)∇u(z) = 0, z ∈ Ω ⊂ R
2

σ
∂u
∂ν

= g, z ∈ ∂Ω
 (1)
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Objective: To develop, and demonstrate the feasibility of, a novel image reconstruction method for 
absolute electrical impedance tomography (a-EIT) that pairs deep learning techniques with real-
time robust D-bar methods and examine the influence of prior information on the reconstruction. 
Approach: A D-bar method is paired with a trained convolutional neural network (CNN) as a post-
processing step. Training data is simulated for the network using no knowledge of the boundary 
shape by using an associated nonphysical Beltrami equation rather than simulating the traditional 
current and voltage data specific to a given domain. This allows the training data to be boundary shape 
independent. The method is tested on experimental data from two EIT systems (ACT4 and KIT4) with 
separate training sets of varying prior information. Main results: Post-processing the D-bar images with 
a CNN produces significant improvements in image quality measured by structural SIMilarity indices 
(SSIMs) as well as relative ℓ2 and ℓ1 image errors. Significance: This work demonstrates that more general 
networks can be trained without being specific about boundary shape, a key challenge in EIT image 
reconstruction. The work is promising for future studies involving databases of anatomical atlases.
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using the electrode continuum model (Hyvönen 2009, Hauptmann 2017) based on continuum current/voltage 
data computed from a known circular domain boundary. The trained network was then directly applied to D-bar 
reconstructions from the experimental data with no transfer training required. By contrast, here we simulate 
our training data from the associated, non-physical, Beltrami problem (Astala and Päivärinta 2006a, 2006b) and 
‘Shortcut D-bar Method’ (Astala et al 2014) to remove any knowledge of the boundary (shape and electrodes) 
from the training process. We test the network on EIT data from two different EIT machines (ACT4 (Liu et al 2005) 
and KIT4 (Kourunen et al 2008)) with different boundary shapes. In practice, a network could be constructed 
using a database of CT scans where all that is needed is approximate internal structure boundaries (heart, lungs, 
spine, etc) and reasonable conductivity value windows for each type of inclusion. The CTs could be scaled such 
that the maximum radial component of the thorax boundary is one. Alternatively, one could bypass any direct 
incorporation of organs by instead training using inclusions of ellipses, circles, etc. The patient-specific voltage 
and current EIT data would then be scaled to correspond to a maximum radius of 1 by scaling the associated DN 
(or ND) matrix by the largest radial component of the patient’s approximated boundary shape (see Isaacson et al 
(2004)). In this study we investigate the particular question of how informative the training data needs to be in 
order to perform the desired image enhancement task after an initial reconstruction. That means, we consider 
two different scenarios in this study.

 (i)  Thoracic measurements for a human patient, here a database can be built from anatomical atlases. In 
this setting the imaging task is highly constrained by anatomical features and hence training data can 
be tuned to be specific for this particular task. This constitutes a case of high a priori knowledge. We 
consider tank data with thoracic specific agar targets.

 (ii)  Assessment of more generic training data without any anatomical prior information, with which we 
are able to achieve sufficient reconstruction quality for a vast application area. This can be considered a 
more generic task with low level of a priori information.

Due to the ill-posedness and non-linearity of the EIT problem, the resolution and practical utility of the EIT 
images is basically dependent on the amount of prior information available and how well one is able to transform 
the prior information and related uncertainties into a computationally useful form. The literature contains a 
number of approaches for utilizing prior information, including regularization-based techniques (Vauhkonen 
et al 1998, Kaipio et al 1999, Borsic et al 2002, Kolehmainen et al 2019), Bayesian approaches (Kaipio et al 2000) 
as well as prior informed D-bar methods (Alsaker and Mueller 2016, Alsaker et al 2018), which all produce high 
quality solutions and have different technical benefits and intricacies. For example, considering a case where 
one would have prior information available in form of a set of plausible sample images from an anatomical 
atlas, the problem in the Bayesian setup would be how to transform the set of sample images into a form of a 
prior density model. The purpose of the present study is to propose a new kind of approach for an accurate EIT 
reconstruction. The key ingredient of the proposed approach is to train a CNN for post-processing enhancement 
of a standard EIT reconstruction (which has poor resolution). One feature of the proposed approach is that 
it allows straightforward inclusion of sample-based prior information into the learning process. This can be 
particularly advantageous in the cases where the prior is available only in form of a set of plausible solutions, 
such as set of images from an anatomical atlas, instead of having a parametric model for the prior density. The 
proposed approach allows straightforward utilization of the samples as input to the learning process.

The application of deep learning methods, in particular convolutional neural networks (CNNs), has attracted 
major attention in recent years and shows great promise for improving images in tomographic reconstruction 
tasks. The most prominent approach, which we follow here as well, is given by post-processing of an initial recon-
struction based on an analytic inversion formula, such as filtered back-projection in x-ray CT (Jin et al 2017, 
Kang et al 2017). Other promising clinical applications of this approach are dynamic cardiovascular magnetic 
resonance imaging (Schlemper et al 2018, Hauptmann et al 2019). Recent studies, in addition to Hamilton and 
Hauptmann (2018), have explored the possibility of using deep learning for EIT with artificial neural networks 
(Martin and Choi 2017) and variational autoencoders for lung imaging (Seo et al 2018). Furthermore, several 
studies propose combining iterative variational techniques with deep learning to obtain superior reconstruction 
quality and more flexible generalization by including the forward operator in the network architectures (Adler 
and Öktem 2017, Hammernik et al 2018, Hauptmann et al 2018). In this study we follow the approach discussed 
in Hamilton and Hauptmann (2018), but without the need for boundary shapes in the training data. We proceed 
to compare our results to variational techniques with comparable amount of prior information for both imaging 
scenarios mentioned above.

Section 2 presents the methods used in this work including the proposed new algorithm and how reconstruc-
tion quality will be assessed. Results of the proposed method on experimental EIT tank data from ACT4 and 
KIT4 are presented in section 3 and conclusions drawn in section 4.

Physiol. Meas. 40 (2019) 074002 (18pp)
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2. Methods

Here we consider the 2D real-valued conductivity EIT problem

∇ · σ(z)∇u(z) = 0, z ∈ Ω ⊂ R
2, (2)

where σ = σ(z) is the spatially dependent conductivity and u = u(z) the electric potential. The current and 
voltage measurements take the form of approximate knowledge of the Neumann-to-Dirichlet (ND) map 

Rσ : σ ∂u
∂ν

�→ g  for z ∈ ∂Ω which maps a boundary current to the corresponding boundary voltage, and 

ν = ν(z) denotes the outward unit normal vector to ∂Ω. Here, for simplicity, we assume the conductivity is 
constant σ = σ0 in a neighborhood of the boundary. If σ is not constant near ∂Ω, a padding of the domain can be 
used as in Nachman (1996), Siltanen and Tamminen (2016) reducing the problem back to the case studied here.

The ND map Rσ can be approximated from the measured current and voltage data with the matrix Rσ:

Rσ(m, n) :=
L

∑

ℓ=1

φm
ℓ vn

ℓ

|eℓ|
, 1 � m, n � numLI , (3)

where L denotes the number of electrodes used, numLI is the number of linearly independent current patterns 
applied (maximum is L  −  1), and φm, and vn denote the normalized mth current pattern vector and nth voltage 
vectors (see Isaacson et al (2004) and Hamilton et al (2018) for scaling details). The methods described below 
assume the boundary conductivity σ0 = 1 and that the domain has a maximum radial component of 1. However, 
if this is not the case for the measured data, the ND matrix Rσ can be scaled appropriately, as described in Isaacson 
et al (2004), reducing the problem to the case studied here.

2.1. Intro to D-bar methods for 2D EIT

While various D-bar-based reconstruction algorithms for 2D EIT exist, they all have the same main structure:

[Current & Voltage Data]
1

−→ [Scattering data]
2

−→ [Conductivity].

The scattering data is non-physical, and can be thought of as a nonlinear Fourier transform. The D-bar methods 
differ in the particular formulas used to compute the scattering data and recover the conductivity. D-bar methods 
come from inverse-scattering theory, an area of mathematics that brought the elegant solution to the Korteweg–

de Vries (KdV) equation. D-bar methods for EIT get their name from a ∂̄ (D-bar) equation used to recover the 
conductivity σ in Step 2 above.

Here we simulate our training data using using a variation of the ‘shortcut D-bar method’ (Astala et al 2014) 
which blends the D-bar method from the Schrödinger equation and that of the Beltrami equation. This is done 
to allow us to train the network using L∞ conductivities (Beltrami method) but still reconstruct the conductivity 
from the scattering data using the Schrödinger ∂̄k equation which (Astala et al 2014) suggest is more robust than 
Step 2 of the Beltrami method. A recent paper by Lytle et al (2018) in fact prove that the integral equations in the 
Schrödinger formulation of the D-bar method hold for L∞ conductivities which are one near ∂Ω.

2.1.1. Algorithm for simulating the training data

Let Ω be the unit disc. Given a set of N conductivities {σn}
N
n=1 in L∞(Ω), for each σn compute the associated 

low-pass D-bar reconstruction σDB

n  as follows: (1) generate the Beltrami scattering data τ(k) for |k| � R for some 
chosen radius R  >  0, and (2) solve the Schrödinger ∂̄k equation using the Beltrami scattering data for |k| � r  
where r � R.

Step 1:   Generate the Beltrami scattering data τn(k) for σn(z) for k ∈ C, |k| � R as in Astala et al (2014)

τn(k) :=
1

2π

∫
R2

∂̄z [M+µn
(z, k)− M

−µn
(z, k)] dz1dz2, (4)

where M±µn
(z, k) = e−ikzf±µn

(z, k) are solutions to the Beltrami equation

∂̄zf±µn
(z, k) = ±µn(z)∂zf±µn

(z, k) (5)

satisfying M±µn
(z, k) = 1 +O

(

1
|z|

)

 for large |z| and µn(z) =
1−σn(z)
1+σn(z)  denotes the corresponding Beltrami 

coefficient. Note that −µn(z) =
1− 1

σn(z)

1+ 1
σn(z)

 as in Astala et al (2014).

Physiol. Meas. 40 (2019) 074002 (18pp)
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Step 2: Relate the Beltrami and Schrödinger scattering data via tn(k) = −4πikτn(k), setting tn(k) = 0 for 

all |k| > R. Recover the low-pass D-bar reconstruction σDB

n = [mn(z, 0)]
2 by solving the Schrödinger ∂̄k 

equation (Knudsen et al 2009)

∂̄kmn(z, k) =
1

4πk̄
tn(k)e(z,−k)mn(z, k), (6)

for each z ∈ [−1, 1]2, where e(z, k) := exp{i(kz + k̄z̄)} is a unitary multiplier, using the integral form

mn(z,κ) = 1 +
1

4π2

∫

C

tn(k)e(z,−k)

(κ− k)k̄
mn(z, k)dκ1dκ2, (7)

and the computational method outlined in Mueller et al (2002) and Astala et al (2014).
Note that no electrode or boundary information is used in the training data as µn(z) = 0 near ∂Ω. The choice 

of Ω = D does not include boundary specific information since in the reconstruction step from experimental 
data, we will scale the ND map by the maximum radial component of the experimental domain Ωmeas, shrinking 
the problem to exist within our studied domain Ω = D. Additionally, note that the integral in (7) reduces to an 

integral over |k| � R due to the compact support of tn(k), and from Nachman (1996) tn(k)

k̄
= 0 for k  =  0.

2.1.2. Recovery of conductivity from experimental data

Recover the D-bar reconstruction σDB from the measured current and voltage data via a modification to the 
Schrödinger t ‘exp’ method as follows.

Step 1:  Compute the modified Schrödinger ‘exp’ scattering data

t
exp(k) =

∫

∂Ω1

eīk̄z (Λσ − Λ1) eikzds(z)

=

∫

∂Ω1

eīk̄z
[

Λσ

(

eikz
)

− ikνeikz
]

ds(z),
 (8)

for k ∈ C \ 0, |k| � Rmeas for some chosen radius 0 < Rmeas � R.

Step 2: Recover the D-bar conductivity reconstruction σDB = (mexp(z, 0)) 2 using (6) with texp in place of tn, 

setting t
exp(k)

¯k
= 0 for k  =  0.

The second line (8) comes from computing Λ1eikz
= 1∇

(

eikz
)

· ν = ikνeikz  which uses a continuum 
approximation for the DN map Λ1 where ν = ν(z) is the unit outward facing normal to the scaled boundary ∂Ω1 
which has maximal radial component 1. The DN matrix approximation to Λσ is computed from Lσ = (Rσ)

−1 
via (3). The DN map is also scaled by the radius of the smallest circle containing the imaged domain Ωmeas, and σ0 
the conductivity near the boundary ∂Ωmeas. If σ0 is unknown, the best constant-conductivity fit to the measured 
data can be used as described in Cheney et al (1990). The resulting conductivity at the end of the algorithm is then 
re-scaled by σ0. Here we compute ν  numerically using a parameterization of the approximate boundary shape 
function (see Hamilton et al (2018) for robustness studies of D-bar methods to incorrect boundary shape). Note 
that we only require the measured current and voltage data, approximate boundary shape of the imaged domain 
Ωmeas, and approximate locations of the electrodes for the D-bar reconstruction σDB.

2.1.3. Why choose the Beltrami approach?

Inspired by the success of the ‘Deep D-bar’ approach in Hamilton and Hauptmann (2018), we chose to again 
use a low-pass D-bar image as as starting point due to their real-time capabilities and general blurry but reliable 
reconstructions. By training a CNN with data/reconstructions from the Beltrami equation (5) rather than by 
using a FEM approach on the traditional conductivity equation (2), the trained CNN does not dependent on a 
specified domain boundary making the approach more general and theoretically reducing the need to re-train 
the network for individuals of different domain shapes. This is due to the fact that the conductivity is assigned 

to a constant value outside of the organs. Since µ(z) = 1−σ

1+σ
, and −µ(z) =

1− 1
σ(z)

1+ 1
σ(z)

, and we scale σ such that it has 

a background value of 1 in the Beltrami problem, this makes µ = 0 outside the organs and removes the issue of 

the domain boundary completely from the problem. This has the advantage of, e.g. in thoracic imaging, being 
able to use a more generally trained CNN from an anatomical atlas that does not require the patient to have the 
same domain boundary as what was used to train a FEM-based network. Alternative approaches could of course 

Physiol. Meas. 40 (2019) 074002 (18pp)
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be used where the FEM-based reconstructions are created from various domain boundaries as well, however this 
may increase the size of the training data and is outside the scope of this study.

2.2. Deep learning and image reconstruction

The driving motivation to use deep learning methods in imaging and in particular for image reconstruction 
is motivated by the limitation of hand-crafted priors in variational and statistical reconstruction methods. 
By training a network on data that represents the desired images, we can learn more general data-driven 
representations, also referred to as the learned data manifold. The draw back of learning-based methods is, 
clearly, that these learned priors are only implicit and do not have an analytical representation.

Applications in tomographic image reconstruction can be roughly divided into three categories.

 (a)  Fully learned: a mapping from data to reconstruction is learned without the need of a model (after 
training).

 (b)  Model enforced: direct reconstruction by an analytically known and understood reconstruction 
procedure, ideally a regularization strategy, followed by learned post-processing.

 (c)  Model-based: reconstruction in a cascaded sense, where the model information is used repeatedly. 
Typically these are given as learned iterative reconstruction algorithms.

Even though fully learned reconstruction methods have been studied and demonstrate promising results 
(Martin and Choi 2016, Zhu et al 2018), this approach neglects any model knowledge and hence analytically 
known robustness results. In contrast, using the model in approach (b) and (c) retains known properties and 
stability results. Additionally, for EIT it was shown to improve stability (Martin and Choi 2017), especially 
for reconstructions from measurement data. In this study we chose to use the D-bar algorithm, a known 
regularization strategy for EIT (Knudsen et al 2009), as starting point to have stability in the input to the network. 
For the network architecture we chose the very successful U-net architecture (Ronneberger et al 2015), a 
multiscale convolutional neural network. This particular network architecture has been proposed by Kang et al 
(2017) and Jin et al (2017) for post-processing corrupted reconstructions, and has been shown to be successful 
in the application to a variety of tomographic problems Antholzer et al (2018) and Hauptmann et al (2019), but 
has also been the focus of analytical studies Ye et al (2018). Thus, we follow the incentive to combine a robust 
regularization strategy with a well established, and partially understood, network architecture for reconstruction 
in our application.

2.2.1. Beltrami-net for absolute EIT

In this study we follow the approach of post-processing corrupted reconstructions, which in our case are given 
by the D-bar algorithm described above in section 2.1. This methodology is motivated by the fact that the 
initial reconstruction is of convolutional type, such as the normal operator in CT, or in our case inversion of the 
truncated scattering transform, that can be interpreted as nonlinear Fourier transform. Consequently, we follow 
(Jin et al 2017) where the authors propose that a CNN can be used to remove artefacts and recover resolution loss 
present in the initial reconstruction.

Let us denote the used U-net architecture by GΘ, where Θ are the learnable network parameters consisting 
of convolutional filters and biases, see Goodfellow et al (2016) for an introduction. Then the supervised learn-
ing task is given as the optimization problem to find an optimal set of parameters, such that a loss function is 
minimized with respect to the training set. Specifically, in our case the training set is given by ground truth con-
ductivities σn and corresponding D-bar reconstructions σDB

n  for n ∈ N = {1, . . . , N}, both given on the square 
[−1,1]2. We remind that the D-bar reconstructions for this training set are obtained from the Beltrami scatter-
ing data as outlined in section 2.1.1. Given this training set, the aim is to find network parameters, such that GΘ 
maps from D-bar reconstructions to the correct ground truth conductivity. Thus, we aim to find an optimal set 
of parameters as

Θ = argmin
Θ

N
∑

n=1

‖GΘ(σ
DB

n )− σn‖
2
2. (9)

The optimization is typically performed in subsets (batches) of training pairs {σn,σDB

n }I⊂N , rather than the 
whole training set. Details on the specific training data and the training procedures are given in section 2.4.

The chosen network architectures differ slightly depending on which task, (i) or (ii), of the section 1 is con-
sidered. For scenario (i) the thoracic imaging task, we employ the same network architecture as described in 
Hamilton and Hauptmann (2018) as it has been shown to be specifically suited to reproduce structures in a 
known constrained environment with strong prior information. For task (ii) with minimal a priori knowledge, 
an assessment of network architectures was performed and we found that adding a residual connection as in Jin 
et al (2017) increased robustness in recovering more general shapes that were not present in the training set. In 

Physiol. Meas. 40 (2019) 074002 (18pp)
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both cases we kept the filter size of the convolutional kernels as 5 × 5 and used four max-pool layers, as the origi-
nal U-Net architecture suggests. Networks are implemented with TensorFlow in Python6.

2.3. Evaluation of the method

To evaluate the effectiveness of our proposed Beltrami-net method we tested it on experimental data from two 
different EIT machines, namely, ACT4 from Rensselaer Polytechnic Institute (RPI) (Liu et al 2005) and KIT4 
from the University of Eastern Finland (UEF) (Kourunen et al 2008). We evaluate reconstruction quality using 
structural SIMilarity Indices (SSIMs) and relative ℓ1 and ℓ2 image errors. The ground truth inclusion boundaries 
were extracted from photographs of the experiments. We compare the Beltrami-net reconstructions to the 
classical low-pass D-bar reconstructions as well as (structured) total variation reconstructions.

2.3.1. Comparison to variational methods

To compare the results to regularization-based absolute EIT reconstructions, we include 2D reconstructions 
using a regularized non-linear least squares formulation

σ̂ = argmin
σ>0

{‖V − U(σ)‖2 + αΨ(σ)}, (10)

where Ψ(σ) is a structured total variation (STV) regularization functional (Kolehmainen et al 2019), defined as

Ψ(σ) =

∫

Ω

√

‖∇σ‖2
B( p) + β dr, (11)

where p(r) is an auxiliary reference image and B( p) is a symmetric matrix valued mapping which is used to 
incorporate prior information from the reference image and β is a smoothing parameter. In a nutshell, the idea is 
to choose the mapping B( p) such that the regularization promotes similar alignment of structures (represented 
by the level sets) of the unknown σ and the reference image p . Following (Kolehmainen et al 2019), we define

B(r) = I − (1 − γ(r))ν(r)ν(r)T, (12)

where

ν(r) =

{

0 if ‖∇p(r)‖ = 0

∇p(r)/‖∇p(r)‖ otherwise
 (13)

is a vector field (normal to the level sets of p ) and

γ(r) =

{

0.025 when ‖∇p(r)‖ > 0

1 otherwise
 (14)

is an edge weighting function which is designed to promote a small penalty for changes in σ in locations where 
p  exhibits changes. The discretization of the method (10) is based on the finite element method (FEM) and the 
non-linear optimization is solved by a lagged Gauss–Newton method equipped with a line search algorithm. The 
line search is implemented using bounded minimization such that the non-negativity σ > 0 is enforced. The 
regularization parameter α was tuned manually for the best visual quality of the reconstruction. For more details 
of the method, see Kolehmainen et al (2019).

2.3.2. Experimental data

Archival ACT4 data, taken on a circular tank of radius 15 cm with 32 electrodes (width 2.5 cm), was used. Agar 
targets with added graphite were placed in a saline bath (0.3 S m−1) filled to a height of 2.25 cm. Conductive and 
resistive targets were used to simulate the heart and aorta, as well as the lung and spine, respectively. See figure 1 
for the experimental setups. Table 1 displays the measured conductivities of the targets, using test-cells, computed 
via Impedimed’s SFB-7 bioimpedance meter7. Trigonometric voltage patterns, with maximum amplitude 0.5 V, 
were applied at a frequency of 3 kHz and the resulting currents measured. For consistency with previous studies, 
a change of basis was performed on the measured current and voltage data to synthesize the data that would have 
occurred if current had been applied instead of voltage (see Hamilton and Hauptmann (2018)). The ND and DN 

matrices were then computed as described in section 2, equation (3).
We collected KIT4 data using two different, translationally symmetric tanks to obtain data for two different 

boundary shapes, namely circle and chest-shaped, as shown in figure 2. In each tank, the number of electrodes is 
sixteen. Adjacent (skip-0) current patterns were applied with current frequency at 10 kHz and amplitude 3mA. 
Conductive and resistive agar targets were used across all the KIT4 experiments. The circular tank has a radius of 
14 cm with 16 electrodes of width 2.5 cm. Agar targets of conductivity 67 mS m−1 (large object on the top) and 

6 Codes will be published on github: https://github.com/asHauptmann/BeltramiNet.
7 www.impedimed.com/products/sfb7-for-body-composition/.
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305 mS m−1 (smaller, nearly circular object on the bottom right) were placed in a saline bath of conductivity  
135 mS m−1 filled to a height of 45 mm. The chest shaped tank has a perimeter of 1.02m with 16 electrodes 
of width 2 cm attached. The locations of the electrodes are not exactly equidistant from one another but can 
be seen from the photographs (see figure 2). Agar targets consisting of high conductivity 323 mS m−1 (targets 
with pink ink) and low conductivity 61 mS m−1 (white) were placed in a saline bath (conductivity 135 mS m−1, 
height 47 mm for the chest-healthy and chest-cut targets, and 44 mm for the chest-split target in figure 2). The right 
(DICOM) lung was cut and two simulated injuries explored: (1) the bottom portion was removed completely 
(figure 2: chest-cut) and (2) the bottom portion was replaced with a higher conductivity piece of agar (figure 2: 
chest-split).

2.4. Training data

Two sets of training data were used in this study, tailored to the ACT4 and KIT4 experiments. We introduce the 
notation σ̃ to denote a conductivity that has not yet been scaled to a boundary conductivity of 1, reserving σ 
solely for conductivities with a boundary value of 1.

2.4.1. ACT4 phantoms

Candidate phantoms σ̃n for the ACT4 training were formed by extracting the approximate boundaries of the 
inclusions from the ‘Healthy’ setup shown in figure 3 (first). The approximate boundaries are shown in red ∗ and 
the true boundaries are shown in black dots (figure 3, second). Phantoms ̃σn were generated as follows.

Healthy Injury 1 Injury 2 Injury 3

Figure 1. The experimental setups for the ACT4 data collection. Four scenarios were tested beginning with a ‘Healthy’ setup: 
conductive heart and aorta, resistive lungs and spine. In ‘Injury 1’, the bottom portion of the right (DICOM orientation) lung was 
removed and replaced with a conductive agar target matching the conductivity of the heart/aorta. In ‘Injury 2’, the removed portion 
of the right lung was replaced with three plastic pipes and for ‘Injury 3’ the removed portion is replaced with three copper pipes.

Table 1. Conductivity values for ACT4 targets at 3.3 kHz.

Measured values (S m−1) Simulated values ranges (S m−1)

Heart/aorta 0.677 81 [0.5, 0.8]

Lungs/spine 0.056 714 [0.01, 0.2]

Saline background 0.3 [0.29, 0.31]

Injury 1: agar/graphite 0.677 81 [0.01, 1.5]

Injury 2: plastic tubes 0 [0.01, 1.5]

Injury 3: copper tubes Infinite [0.01, 1.5]

Circle Chest-Healthy Chest-Cut Chest-Split

Figure 2. Experimental setups for the KIT4 data on three different experimental tank setups. Circle: The large object is low 
conductivity and small object is high conductivity. Chest: The agar targets are either high (pink) or low (white) conductivity.

Physiol. Meas. 40 (2019) 074002 (18pp)
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 •  Determine which objects are included. Random numbers were generated from the uniform distribution on 
[0, 1] to determine whether each inclusion (left lung: 90%, right lung: 90%, spine: 100%, heart: 95%, aorta: 
95%) was included in ̃σn.

 •  Determine the conductivities of each target in ̃σn. The conductivities were assigned by drawing random 
numbers from uniform distributions using the respective conductivity windows outlined in table 1.

 •  Determine the locations of each target in ̃σn. The coordinates of the each inclusion were created by 
adding noise, using the awgn command in  MATLAB, to the ‘approximate’ coordinates (red stars) of the 
corresponding inclusion, see figure 3.

As the ACT4 experiments contained ‘injuries’ to the right (DICOM) lung, simple injuries were simulated in the 
training data as follows. For each included lung, do the following.

 •  Determine if the given lung contains an injury. Generate a random number to determine whether or not an 
injury took place in the lung (50% chance).

 •  If yes, divide the lung into two regions.. Create a horizontal dividing line randomly by using the max and min 
vertical x2 coordinates of the lung dividing the lung into two regions.

 •  Assign the injury. Draw a random number to determine which region (top or bottom) the ‘injury’ took place 
(50–50 chance), and another random number drawn from the uniform distribution on the interval [0.01, 1.5] 
to determine the conductivity of the injured region.

More complicated injuries were not considered here to allow for direct comparison to the previous study 
(Hamilton and Hauptmann 2018). Sample phantoms σn can be seen in figure 3, third and fourth images. The 
range in which organ boundaries are sampled for the training data is illustrated in figure 4, not including ‘cuts’. 
Additionally we show weighting function used for the structured TV reconstructions, representing a smiliar 
amount of priort information on where organ boundaries are expected.

2.4.2. KIT4 phantoms

Conductivity phantoms σ̃n for the KIT4 training data were more general as the sizes and locations of the targets 
in the experiments varied greatly. Phantoms consisted of one to three ellipses of varying size (semi-major and 
minor axes chosen from the uniform distribution on [0.2, 0.35]), location ρeiθ for ρ ∈ [0, 0.6] and θ ∈ [0, 2π), 
and angular orientation in [0, 2π). The ellipses were not permitted to overlap, and were all forced to be completely 
contained inside a z-disc of radius 0.95. The background conductivity was chosen from the uniform distribution 
on the interval [0.13, 0.145]. For each inclusion, a random number was drawn to determine whether the inclusion 
was more or less conductive than the background (50–50 chance) and conductivities randomly assigned from 
the corresponding uniform distributions [0.29, 0.34] and [0.05, 0.075]. The chance of a target being split into two 
pieces was 1 in 3. If split, no region could be smaller than 1/4 the size of the whole inclusion, and the split could 
be along any dividing line (horizontal, diagonal, vertical). Divided inclusions were forced to either (1) have one 
part match the conductivity of the background, or (2) be split into a portion that is more conductive than the 
background and a portion that is less conductive than the background. Sample simulated conductivities σ̃n are 
shown in figure 5.
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0.8

0.9

1

ACT4 Healthy
True & Approximate

Boundaries
Sample Healthy Sample Injured

Figure 3. Samples of the simulated conductivities used to generate the ACT4 training data corresponding to the experiments 
shown in figure 1. Starting with a healthy setup (left), the ‘true organ boundaries’ (shown in black dots) were extracted from the 
photograph along with an ‘approximate organ boundaries’ (red stars) which are displayed in the second image. Noise was added 
to these approximate boundary points to generate the organ boundaries used in the simulated conductivities. Samples of such 
conductivities are shown in the third and fourth images with the true organ boundaries outlined in black dots.
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2.4.3. Producing training data

For each conductivity phantom σ̃n, the conductivity was scaled to a boundary value of 1 via σn =
1

σbn
σ̃n where 

σbn
 denotes the constant conductivity near the the boundary, here the constant background value. If using a 

more complicated anatomical atlas, the value for σbn
 would be the constant conductivity for the tissue at the 

patient’s boundary. Then, the conductivity is extended to [−1,1]2 by setting σn = 1 for z ∈ [−1, 1]2 \ Ωn. Then, 
for each scaled conductivity σn, the Beltrami scattering data τn(k) (4) was computed for |k| � RACT4 = 5 or 
|k| � RKIT4 = 5.5, using a 25

× 25 uniformly spaced k  −  grid on [−5,5]2 or [−5.5,5.5]2, respectively, by  

solving (5) with Beltrami coefficients µn(z) =
1−σn(z)
1+σn(z)  and −µn(z) =

1− 1
σn(z)

1+ 1
σn(z)

 as outlined in step 1 of section 2.1.1. 

Next, the blurred D-bar reconstruction σDB

n  was recovered by step 2 of section 2.1.1 as follows. First, the Beltrami 

τn was related to the Schrödinger tn scattering data by tn(k) = −4πikτn(k). Then, a random number Rn was 

generated for the new scattering radius cutoff from the uniform distribution on [3.5, 5] for ACT4, or [4, 5.5] for 
KIT4. Then, the computed scattering data tn was interpolated to a new 26

× 26 k  −  grid with maximum radius 
Rn on [−Rn, Rn]

2. A non-uniform cutoff threshold was enforced by setting tn(k) = 0 if |Re(tn(k)| or |Im(tn(k)| 
exceeded thresh  =  24 or |k|  >  Rn. Then, the ∂̄k equation was solved using the integral form (7) and the D-bar 
conductivity recovered as σDB

n (z) = σbn
(mn(z, 0)) 2, rescaling by the boundary conductivity σbn

, using a 26
× 26 

z  −  grid on [−1,1]2 with gridsize hz ≈ 0.0317.

2.4.4. Training the networks

A total of 4096 (ACT4) and 15 360 (KIT4) pairs {σ̃n,σDB

n } were created for use as training data in the U-net 
architectures described above in section 2.2. Training was performed with the Adam optimizer and an initial 
learning rate of 10−4 to minimize the ℓ2-loss (9) with a batch size of 16 and for a total of 200 000 iterations. 
Training was monitored with a simulated validation set of  ∼5% of the training set size. The long training time, 
in terms of iterations, was mainly necessary to obtain constant areas in the inclusions as well as background. The 
training procedure took roughly three hours for each experiment on a single Nvidia Titan XP GPU.

Then, after the successful training procedure, the effectiveness was evaluated on simulated datasets σDB

n  not 
used in the training or validation data (section 3.1) as well as experimental reconstructions for the ACT4 and 
KIT4 data, applied to the respective ACT4 or KIT4 network (section 3.2).

3. Results and discussion

Here we present the results of the new Beltrami-net method on experimental, as well as simulated, data from the 
ACT4 and KIT4 EIT systems.

3.1. Reconstructions from simulated data

We begin by visually testing the quality of the Beltrami-net approach on simulated data. We explore test cases 
consistent with the training data, as well as phantoms that deviate from the procedure for creating the training 
set.

Figure 6 shows sample low-pass D-bar and Beltrami-net reconstructions from simulated test data for the 
ACT4 scenario. As it can be seen, if the injuries are consistent with the training, at most a single horizontal divid-
ing line in the lung as in Sims 1–2, the network can almost perfectly recover the targets. If the test data deviates 
from this convention, Sims 3–5, it is more difficult to recover the correct location and structure, most notably for 

Structured TV

Boundaries

Beltrami-Net

Boundaries

Figure 4. Comparison of Structured TV (STV) prior organ boundaries and boundaries extracted from Beltrami-net training data. 
Note this excludes the ‘cuts’ simulated for the training data of Beltrami-net. The image on the left is the weighting function γ(r) for 
the STV, equation (14)).
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Figure 5. Samples of the simulated conductivities used to generate the KIT4 training data corresponding to the experiments shown 
in figure 2. One to three ellipses of varying eccentricities were randomly included with the possibility of inclusions being divided into 
two pieces of with no portion smaller than 1/4 of the original inclusion.
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Figure 6. Results for simulated test data with the network trained for the ACT4 data. Note that the training data only included single 
horizontal divisions in the lungs. Each row is plotted on its own scale.
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vertical divisions. Nevertheless, for two dividing lines the network is able locate the conductivity change correctly 
and establishes a sharp division in the reconstruction.

Reconstructions from simulated test data for KIT4 are shown in figure 7. Most notably, if the inclusions are 
isolated and do not include a cut, the network can reconstruct these very well. We note here that the training data 
only included up to three inclusions. Nevertheless, the network seems to have no difficulties to reconstruct four 
inclusions in the image. As can be seen, the cut ellipses are more difficult to reconstruct. In most cases the network 
manages to include a cut in the ellipse, but in a wrong orientation. In some cases, such as simulation five, the net-
work is not able to distinguish between a cut and two separate inclusions.

3.2. Reconstructions from experimental data

We next present reconstructions from the ACT4 and KIT4 experimental data.
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Figure 7. Results for simulated test data with the network trained for KIT4. Note that the training data only included up to three 
inclusions. All images are on the same scale.
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3.2.1. Experimental reconstructions from ACT4

Figure 8 depicts the results of the Beltrami-net approach on four experiments with ACT4 data: HEALTHY and 
INJURIES 1–3 as shown in figure 1. The black dots represent the approximate boundaries of the ‘healthy’ organs, 
extracted from the photograph. SSIMs, as well as relative ℓ1 and ℓ2 errors, were computed for the experimental 
reconstructions with the exception of INJURY 3, which has infinite conductors (copper tubes). The comparisons, 
in table 2, used approximate ‘truth’ images formed by assigning the measured conductivity values (table 1) in the 
respective regions. Note that the coordinates for the bottom portion of the right (DICOM) lung were not specific 
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Figure 8. Results for the experimental ACT4 data comparing the initial low-pass D-bar images to the post-processed Beltrami-net 
images as well as the Structural TV method. Note that Beltrami-net images are displayed here on the circular geometry of the tank, 
for presentation only. The D-bar images on the full square [−1,1]2 were used as inputs to the CNN to produce the Beltrami-net 
images. The structural TV images did use knowledge of the circular domain shape. Each row is plotted on its own scale.

Table 2. Quantitative results for ACT4 experiments: structural SIMilarity indices, as well as relative ℓ1 and ℓ2 images errors.

Low pass D-bar Beltrami-net Structured TV

Experiment SSIM ℓ1-error (%) ℓ2-error (%) SSIM ℓ1-error (%) ℓ2-error (%) SIM ℓ1-error (%) ℓ2-error (%)

Healthy 0.5680 31.43 22.03 0.7296 23.75 13.75 0.6548 30.38 21.27

Agar 0.5176 35.87 24.62 0.6963 27.79 21.01 0.6332 32.56 19.37

Plastic 0.5085 34.91 24.44 0.7053 22.26 13.29 0.5952 37.61 30.08

Physiol. Meas. 40 (2019) 074002 (18pp)
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to each injury, instead the entire region was assigned the same conductivity, even when the injury did not fill up 

the space as in Injury 2, plastic tubes and Injury 1 which is smaller than the original lung.
The a-EIT reconstructions (10) are computed as references for the Beltrami-net in both, the ACT and KIT4, 

experiments. In both cases, we aim to construct the matrix field B( p) such that the amount of prior information 
would be comparable to the Beltrami-net reconstructions. In case of the ACT experiments, the network is trained 
using an ensemble of realistic chest images and therefore we chose to use a piecewise constant reference image 
p(r) which corresponds to the exact boundary configuration in the healthy case, leading to a situation where (11) 
is based on more detailed anatomical prior than the Beltrami-net and is labeled ‘Structural TV’ on figure 8.

The obtained reconstructions for the ACT4 scenario are overall of high quality. Visually, we can identify the 
injuries in the lungs clearly from the Belrami-Net reconstructions as shown in figure 8. Both high conductive 
injuries are very clearly reconstructed and are even clearly visible in the D-Bar reconstructions and the STV 
images. The lower conductive injury is harder to identify, in the D-bar reconstruction this results in a overall 
lower conductivity in the right (DICOM) lung. The Beltrami-net then manages to shift the lower conductivity 
to bottom of the lung, but cannot establish a sharp boundary. The structural TV image does manage to identify 
that something of quite low conductivity is occurring in the lower portion of the right (DICOM) lung, however 
the overall contrast of the image suffers significantly with the heart and aorta reconstructed at values much lower 
than the truth. We note here, that the Beltrami network was only trained on horizontal injuries, nevertheless it 
manages to reproduce diagonal cuts for the high conductive injuries. Additionally, the STV reconstructions did 
not assume injuries in the lungs yet managed to reconstruct them.

Quantitatively, the Beltrami-net reconstructions show clear improvements over the low-pass D-bar recon-
structions by all metrics in table 2. We remind here, that this is a case with strong a priori knowledge and hence 
the results are expected to be of very high quality. However, unlike the previous study, Hamilton and Hauptmann 
(2018), the Beltrami-net method did recover sharp diagonal divisions even when only training on horizontal 
cuts. The STV reconstructions offered slight to moderate improvements in SSIM, ℓ1 and ℓ2 errors over the low-
pass D-bar reconstructions for the ‘Healthy’ and ‘Agar’ phantoms. The results for the ‘Plastic’ case were mixed. 
Overall, the Beltrami-net reconstructions obtained the best SSIMs and lowest ℓ1 and ℓ2 errors.

3.2.2. Experimental reconstructions from KIT4

We next applied the Beltrami-net method to the KIT4 datasets corresponding to figure 2 and compared to total 
variation regularized reconstructions (TV) as outlined in section 2.3. The reconstructed images are shown in 
figure 9 and quantitative measurements (SSIM and relative ℓ1 and ℓ2 images errors) presented in table 3. Note 
that in the case of the KIT4 data, the network was trained using generic piecewise regular conductivities without 
prior knowledge about the locations of the edges. For these cases we selected a constant reference image p(r) = 1 
in structured TV regularization (11), leading to B( p) = I  and the regularization functional (11) becomes 
conventional isotropic TV regularization. For clarity, we call such reconstruction ‘TV’ reconstructions for the 

KIT4 data.
As one can see in figure 9, all three methods produce images where the inclusions are clearly visible. The low-

pass D-bar reconstructions are quite blurry as expected, but the post-processed images with Beltrami-net are of 
very high contrast with sharp edges. In the TV reconstructions, the boundary edges tend to be slightly blurred 
and there is a clear loss of contrast, which is a quite usual side-effect for TV regularized reconstructions. Neither 
of the methods is able to identify the split chest in the fourth phantom, and instead separate the lung into the two 
areas of opposing conductivity with saline between them. We note here that the Beltrami-net was trained with 
generic prior knowledge of only elliptic inclusions. Nevertheless, the Beltrami-net reconstructions show shapes 
that differ from this simple prior. Hence we hypothesize that the network mainly learns a segmentation and cor-
rection of the existing features in the D-bar reconstructions.

The quantitative measures, SSIM, as well as relative ℓ1 and ℓ2 image errors, were computed for each case by 
comparing to approximate ‘truth’ images constructed using the measured conductivity values and photographs 
of the experiments, see table 3. The quantitative improvements of Beltrami-net are rather minor in this case. This 
is as expected due to low prior information. SSIM of D-Bar and Beltrami-net are quite comparable, but gener-
ally high already. Most notably, even though the ℓ2-error is quite constant as well, there is a clear improvement 
in ℓ1-error, most likely due to sharper boundary edges. The TV-LS method provides comparable metrics and 
reconstructions, outperforming both the low-pass D-bar and Beltrami-net methods for the SSIM of the chest 

healthy and chest cut phantoms, but underperforming for the chest split experiment. Most notably, the Beltrami-
net reconstruction are consistently better in ℓ1-error for all provided measures.

3.3. Discussion and generalization

The major concern on learned methods for image reconstruction is with respect to their stability under noisy 
measurement data. This concern is addressed in two ways here. First, the low-pass D-bar algorithm used here 
is a regularization strategy controlled by the cut-off radius in the scattering data t(k), or texp(k), which means 
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that there exists a continuous dependence of noise in the measurement to reconstruction error as outlined in 
Knudsen et al (2009). To allow for different noise levels, we have created the training data with varying cut-off 
radii, that way the network can deal with reconstructions from measurements under different noise. To address 
the robustness of the second part in the reconstruction procedure, namely the trained networks, we performed 
the following empirical tests to illustrate the behavior.
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Figure 9. KIT4 Results for the various test scenarios. The initial D-bar image is compared to the Beltrami-net image. The D-bar 
images, on the full square [−1,1]2 are used as the ‘input’ images for the CNN. Images are displayed here clipped to their respective 
tank geometries for presentation only. Each row is plotted on its own scale.

Table 3. Quantitative results for KIT4 experiments.

Low pass D-Bar Beltrami-net TV

Experiment SSIM ℓ1-error (%) ℓ2-error (%) SSIM ℓ1-error (%) ℓ2-error (%) SSIM ℓ1-error (%) ℓ2-error (%)

Circ agar 0.8831 23.08 14.39 0.8921 19.53 13.11 0.8843 22.09 16.14

Chest healthy 0.8507 26.29 15.73 0.8370 21.03 17.33 0.8709 24.30 17.03

Chest cut 0.8684 22.56 15.55 0.8516 18.67 15.26 0.8939 20.80 16.11

Chest split 0.8244 28.79 14.76 0.8267 21.78 16.90 0.7877 36.28 36.25
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3.3.1. Examining robustness of the networks

An established way to examine robustness of networks are via adversarial attacks, where one aims to find a 
minimal perturbation in the input that leads to a maximal perturbation in the output. Motivated by the study 
in Antun et al (2019), we performed such an adversarial attack on the trained Beltrami-net KIT4 network to 
examine its stability. That is, given the initial D-Bar reconstruction σDB we aim to find a minimal perturbation 
δσ that maximizes the distance in the output, such that

max
δσ

‖GΘ(σ
DB + δσ)− GΘ(σ

DB)‖2
2 − α‖δσ‖2

2. (15)

The results for such a test on the KIT4 network are presented in figure 10 for a small and large perturbation found 
by maximizing (15), where a small perturbation corresponds to an early stage in the maximization of (15) and a 
large perturbation to a later stage. The perturbations found (left column) led to misclassification in some pixels 
that would belong to the inclusions, which then led to a large error in the output but to a very small qualitative 
difference in the image. Even for the large perturbation (bottom row), which in fact produces an input image that 
is not possible as a low-pass filtered output of the D-Bar reconstruction, the reconstruction by Beltrami-net can 
be considered qualitatively stable. This illustrates the fact that the network mainly learns a segmentation of the 
D-bar reconstruction.

Finally, to illustrate the different nature of the two trained networks, figure 11 presents a   
‘Garbage-in\Garbage-out’ test by feeding the network randomly distributed noise. First we tested uniformly 
distributed noise, such that minimal and maximal values were in the range of the low-pass D-bar reconstruc-
tions used to train the respective networks. The result of this experiment, as shown in figure 11, nicely illustrates 
the different nature of the two networks. The KIT4 network with minimal prior knowledge, i.e. trained only on 
ellipses therefore only learning a segmentation of the input images, reconstructs ‘garbage’ with the random 
noise. Whereas the network trained for the ACT4 thoracic reconstructions with strong prior information stands 
in strong contrast. That network in fact learned a projection of the input images to the data manifold of thoracic 
phantoms. Thus, the random noise that was in the range of the learned input values was projected onto the data 
manifold of thoracic phantoms. However, it produced a completely implausible image that can be easily ruled 
out as an error. On the other hand, if the noise is not in the range, i.e. we chose random Gaussian noise with nega-
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Figure 10. Computation of adversarial perturbations to test network stability, for the KIT4 dataset. The orignial D-Bar 
reconstruction and Beltrami-net output is shown in the first row. The second row shows a small perturbation, that causes some 
pixels in the Beltrami-net output to be assigned the background value. The last row shows a very large perturbation, that causes some 
major parts of the large inclusion to be classified wrongly.
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tive values as shown in column 3, the projection onto the data manifold is not successful and produces a highly 
corrupted image which can also be ruled out.

3.3.2. Extensions

Whereas the presented approach utilizes the D-bar methodology, specifically without the need of boundary 
shapes in the training data, the framework can be extended to other reconstruction algorithms. For example, 
results of non-linear optimization or even linearization-based reconstruction like a single step Gauss–Newton 
could be used as inputs of learning. In order to retain boundary insensitivity, we suspect that the training data 
needs to be created with varying boundary shapes.

4. Conclusions

In this work we introduced a novel image reconstruction method for absolute EIT that pairs a convolutional neural 
network with a real-time D-bar method. The training data was computed using the Beltrami equation instead 
of directly solving the conductivity equation (2) to allow for robustness to changes and uncertainty in domain 
boundary shape. To demonstrate feasibility, we considered two conceptually different settings: (i) a constrained 
case of thoracic imaging with the ACT4 measurements, where high a priori knowledge is available, and (ii) a very 
general setting with the KIT4 experiments on varying tank boundary and inclusion shapes with minimal prior 
knowledge in the training data. Consequently, the obtained results are slightly different in their nature. Whereas 
the ACT4 reconstructions are of very high quality and close to the target/image prior, the KIT4 reconstructions are 
more general and it is harder to obtain the exact shapes of the targets, in particular for the ‘chest-cut’ and ‘chest-
split’ examples where the sharp divisions in the right (DICOM) lung are smoothed into ellipses. Compared the 
the reference method of total variation constrained least square reconstructions, the reconstruction quality of 
Beltrami-net is quite similar with a slight advantage in contrast and hence ℓ1-error measures.

We believe that this comparison provides good insight of what is possible in EIT in combination with deep 
learning-based post-processing, in particular for D-bar-based methods. We remind here, that EIT is a highly ill-
posed inverse problem and hence it is not surprising that strong prior knowledge is needed to obtain high-quality 
images. Thus, we believe that the presented approach will be most useful in constrained imaging settings, where 
boundary shapes might vary, such as thoracic imaging for the identification of lung volumes or injuries. Addi-
tionally, process monitoring and non-destructive testing, where knowledge of possible composition and defects 
is known, may be areas of interest for this approach.
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