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Abstract

Self-interference (SI) cancellation (SIC) is the key technology for achieving full-duplex

(FD) communications in underwater acoustic systems. In practice, SI channels are often

fast-varying, e.g., due to reflections from surface waves. Classical adaptive filters, such

as the recursive least squares (RLS) algorithm, predict the channel impulse response

when used for channel estimation. If a tracking delay is acceptable, interpolating esti-

mators capable of providing more accurate estimates of time-varying impulse responses

can be used. Interpolating estimators with good tracking performance are normally of

high complexity. In this paper, we propose low-complexity interpolating adaptive fil-

ters which combine the basis expansion model (BEM) approach with the sliding-window

RLS (SRLS) algorithm. Specifically, we use the Legendre polynomials as the basis func-

tions and solve the system of equations using dichotomous coordinate descent (DCD)

iterations, thus the name the SRLS-L-DCD adaptive filter. A sparse algorithm (HSRLS-

L-DCD) based on homotopy iterations is then proposed to exploit the sparsity in the

expansion coefficients. The identification performance of the adaptive filters is investi-

gated by a simulation which mimics an FD lake experiment. Both the simulation and

lake experiments show that significant improvement in the SIC performance is achieved

with the proposed low-complexity algorithms compared to the classical SRLS algorithm.

Keywords: Adaptive filter, full-duplex, low-complexity, time-varying channel

estimation, underwater acoustic systems
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1. Introduction

Full-duplex (FD) operation allows simultaneous transmission and reception of signals

in the same frequency bandwidth by closely positioned transmit and receive antennas [1,

2]. The FD operation can significantly increase the throughput of underwater acoustic

(UWA) systems. The key problem in FD implementation is to cancel the strong self-

interference (SI) from the near-end transmitter [3, 4]. Digital SI cancellation (SIC) is

considered as a promising practical approach for FD UWA systems due to relatively low

(compared to radio systems) frequencies of acoustic signals. Digital SIC recovers the

near-end SI signal and subtracts it from the received signal. The signal recovery is based

on the SI channel estimates.

In UWA communication systems, for channel estimation, recursive least squares

(RLS) adaptive filters are normally used [5–7]. Classical RLS adaptive filters can effi-

ciently estimate the SI channel in time-invariant environments [8]. However, in practice,

the SI channel can be fast time-varying [4], especially when the transmit and receive an-

tennas are positioned close to the sea/lake surface [9]. The performance of the classical

RLS adaptive filters is limited in fast-varying channels.

Classical adaptive filtering algorithms such as the RLS algorithm, when used in iden-

tification scenarios, predict the channel response for the next time instant based on input

data received at the current and past time instants. In general, for time-varying channels,

predictive estimators are less accurate than interpolating estimators. The later, however,

are non-causal since they require input data not only from the past but also from future

time instants. If an application can accept a tracking delay, the interpolating adaptive

filtering can significantly improve the identification performance.

In communication systems, basis expansion models (BEMs) are widely used for block

(non-adaptive) estimation of time-varying channels, e.g. see [10–19]. The most often

used BEMs are the Karhunen-Loeve functions [11, 12], discrete prolate spheroidal func-

tions [14, 17], generalized complex exponentials [13–15], B-splines [16, 20], and algebraic

polynomials [18, 21] including Legendre polynomials [22, 23]. With a BEM, estimation

of a realization of the random process describing the time-variant channel is transformed

into estimation of a vector of time-invariant expansion coefficients [17].

In [24], a predictive RLS adaptive filter was proposed based on representation of the

time variation with algebraic polynomials. In [25], for the UWA FD application, an

interpolating adaptive filter based on the sliding-window RLS (SRLS) algorithm (SRLS-

P) was proposed. The SRLS-P algorithm exploits a parabolic approximation of the time-

varying SI channel response. It first estimates the channel using the SRLS algorithm and

then computes expansion coefficients by solving a system of equations derived based on

the initial channel estimates. This algorithm has a high complexity. Even if the system of

equations is solved using dichotomous coordinate descent (DCD) iterations, the rest of the
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computation still requires about O(ML2) plus O(L3) MAC (multiply and accumulate)

operations per sample, where L is the filter length and M is the sliding window length.

In [18], a local basis function (LBF) estimator is proposed which combines the BEM and

weighted least squares approaches. The LBF estimator provides an excellent tracking

performance at the expense of high computational complexity. A recursive computation is

proposed to reduce the LBF estimator complexity for real-valued data for specific choices

of basis functions; however, the overall complexity is still high. In [19], a fast version of the

LBF estimator (fLBF) is proposed with two steps, pre-estimation and post-filtering. The

key idea is to find an initial estimate of the system impulse response by the exponentially

weighted RLS (ERLS) algorithm, and then denoise the pre-estimated response by the

LBF estimator. It is indicated in [19] that the fLBF algorithm can provide approximately

the same performance as that of the LBF algorithm with significantly lower complexity

under certain assumptions. This is verified by simulation results for a two-tap system.

We show in Section 5 that the performance of the fLBF estimator in FD scenarios, with

a large number of taps, is not as good as that of the LBF estimator.

In this paper, we propose the SRLS-L adaptive filter exploiting the BEM approach,

which solves the same optimization problem as the LBF estimator, but with a signifi-

cantly lower complexity. The SRLS-L algorithm can use any basis functions, while the

SRLS-P algorithm proposed in [25] is using the second order algebraic polynomial. Al-

though the approach to computation of expansion coefficients in the SRLS-P and SRLS-L

algorithms is different, the latter can be considered as a generalization of the SRLS-P

algorithm. The use of higher orders of basis functions in the SRLS-L algorithm allows

the improvement of the tracking performance in fast-varying channels. Moreover, the

complexity is reduced by using recursive computations for the matrices and vectors,

using fast Fourier transforms (FFTs) for convolution, and further reduced by solving

systems of equations recursively using DCD iterations, which leads to the SRLS-L-DCD

algorithm. The DCD algorithm has been previously used to derive adaptive algorithms

characterized by low complexity, but also they are numerically stable and well suited to

hardware implementation [26–31], e.g., on FPGA design platforms [32].

For fast-varying channels with a large delay spread, the performance of the SRLS-L

adaptive filter could be limited due to the increased number of parameters to be esti-

mated when high orders of basis functions are used. UWA channels normally exhibit a

sparse multipath structure. Therefore, sparse recovery algorithms are normally used for

exploiting the sparsity in the channel impulse response. In this paper, we consider the

SI channel in FD UWA systems. The performance of an FD system is highly dependent

on the SIC, which in turn depends on the accuracy of the SI channel estimation. The

level of sparseness in the SI channel may not be high due to the multiple reflections from

underwater objects in the vicinity of the closely positioned transducer and hydrophone.

However, different multipath components may have different speed of time variations.
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The direct path between the transmitter and receiver and other paths with reflection

from static objects can be slowly varying in time, whereas paths with reflection from a

moving sea/lake surface can be fast-varying [9]. Therefore, in addition to the normal

sparsity of the UWA channel [33], there will be an extra sparsity in the basis expansion

coefficients. This sparsity can be exploited to improve the SIC performance. For sparse

recovery, convex optimization and greedy methods are normally used, the latter meth-

ods are of lower complexity and well-suited for hardware implementation [34–36]. In this

paper, we apply a greedy algorithm, the homotopy algorithm [37], which provides high

performance in sparse recovery and possesses low-complexity, for exploiting the sparsity

in the expansion coefficients and propose the homotopy SRLS-L-DCD (HSRLS-L-DCD)

adaptive filter. We will show in Sections 5 and 6 that the HSRLS-L-DCD algorithm

outperforms the LBF estimator in the tracking performance.

In this paper, we propose the SRLS-L adaptive filter which provides the same tracking

performance as the LBF estimator at significantly lower complexity. To exploit the spar-

sity in the expansion coefficients, the homotopy SRLS-L-DCD (HSRLS-L-DCD) adaptive

filter is proposed, which outperforms the LBF estimator in the tracking performance. The

contributions of this paper are as follows:

1. A computationally efficient SRLS-L adaptive filter based on the SRLS algorithm

and Legendre polynomials is proposed for identification of time-varying systems.

2. The SRLS-L-DCD adaptive algorithm is proposed to further reduce the complexity

by solving the system of equations recursively using the DCD iterations.

3. The HSRLS-L-DCD algorithm is proposed based on the SRLS-L algorithm, ho-

motopy iterations and DCD iterations to exploit the sparsity in the expansion

coefficients.

4. The complexity analysis of the SRLS-L, SRLS-L-DCD and HSRLS-L-DCD adap-

tive filters is presented.

5. The performance of the proposed adaptive filters is evaluated in simulation and lake

experiments. Results indicate that the proposed algorithms significantly improve

the channel estimation performance compared to the classical SRLS algorithm.

The rest of the paper is organized as follows. In Section 2, the general structure of

the digital SI canceller is described. In Section 3, the SRLS-L adaptive filter is derived

and techniques proposed to reduce its complexity are described. Section 4 presents the

proposed HSRLS-L-DCD adaptive filter. Section 5 investigates the channel estimation

performance of the proposed algorithms and known algorithms in an FD scenario. In

Section 6, the SIC performance of the proposed algorithms is investigated in FD lake

experiments. In Section 7, conclusions are drawn. Complexity of the HSRLS-L-DCD

and LBF algorithms is analysed in Appendices A and B, respectively.

Notations : In this paper, we use capital and small bold fonts for matrices and vectors,

respectively; e.g, R and h. The calligraphic bold font R also represents a matrix. We
4



Figure 1: Block diagram of the digital SI canceller. The sample index with sampling rate fs, symbol

rate fd and 2fd are denoted by n, i and j, respectively.

denote the complex conjugate as (·)∗, transpose of h as hT , and the Hermitian transpose

of h as hH . An L × L identity matrix is denoted as IL. The pth column of matrix R

is denoted as [R]:,p. The norm of a vector is denoted as ‖ · ‖ and ‖h‖2 = hHh. The

diagonal of a matrix is denoted as diag{·}. The expectation operation is denoted as E{·}

and the Kronecker product is denoted as ⊗. The cardinality of I is denoted as |I|.

2. General structure of the digital SI canceller

In this section, a general structure of the digital SI canceller is presented.

The block diagram of the digital SI canceller is shown in Fig. 1. Complex-valued

data symbols a(i) are transmitted at a symbol rate fd, pulse-shaped and up-sampled

to high sampling rate fs using a root raised-cosine (RRC) filter, and up-shifted to the

carrier frequency fc. The passband signal s(n) is digital-to-analogue converted (DAC),

amplified in the power amplifier (PA) and emitted by a projector. The received signal

x(t) at the hydrophone contains the SI signal r(t) together with noise n(t) and far-end

signal z(t). At the receiver, the received signal after analog-to-digital conversion (ADC)

is down shifted in frequency, low-pass filtered and down sampled to the symbol rate

fd. These samples are applied to the adaptive filter as the desired signal x(i). The

same operation is performed on the PA output, which is used as the reference signal to

incorporate the PA nonlinearity into the input signal of the adaptive filter to improve

the digital cancellation performance [8].

To avoid the signal distortion caused by the up- and down-sampling effect, the PA out-

put is down-sampled to twice the symbol rate, sPA(j), and interleaved into two branches.
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The interleaved symbol-rate signals s1(i) and s2(i) are then used as the (regressor) input

to the adaptive filter on the two branches. The error signals at the two branches are

combined with weights, u1(i) and u2(i), computed based on the residual signal power in

the branches. More details on the multi-branch combining scheme can be found in [38].

This structure is adopted for digital cancellation when investigating the FD UWA

system performance with lake experimental data in Section 6.

3. Low-complexity SRLS-L adaptive filter

In subsection 3.1, we introduce the signal model. In subsection 3.2, we describes the

BEM based SRLS algorithm in a general form and specify it for Legendre polynomials.

Finally, in subsection 3.3, we propose techniques for reducing the algorithm complexity

by exploiting the time-shifted structure of the regressor.

3.1. Signal model

The desired signal x(i) is given by

x(i) = hH(i)s(i) + n(i), (1)

where s(i) = [s(i), s(i − 1), . . . , s(i − L + 1)]T is an L × 1 regressor vector, s(i) is the

input signal to the system (channel) with a time-varying impulse response h(i) to be

identified, and n(i) is a noise signal. To simplify the notation in the derivation, we use

s(i) to denote the input signals s1(i) and s2(i) on the first and second branch in Fig. 1.

For derivation in this section, we will ignore the noise n(i).

We assume that within a time interval [i −Mo, i +Mo] centred at the time instant

i, the time-varying response can be accurately approximated by (P + 1) basis functions

φp(k) [18]:

h(i+ k) =

P
∑

p=0

cp(i)φp(k), k = −Mo, . . . ,Mo, (2)

where Mo = (M − 1)/2 and M is the sliding window length; here, for convenience of

presentation, we will assume thatM is odd, however the results can be easily extended to

the case of evenM . The L×1 vectors of expansion coefficients cp(i) should be estimated,

where L is the length of the impulse response.

The orthogonal Legendre algebraic polynomials, which we will be using as an example

BEM, are defined as [39]:

Lp(τ) =
1

2pp!

dp

dτp
[

(τ2 − 1)p
]

, −1 < τ < 1, p ≥ 0. (3)

Fig. 2 shows the first four Legendre polynomials. The basis functions φp(k) are then

given by

φp(k) = Lp

(

2k

M − 1

)

. (4)
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Figure 2: Legendre polynomials.

3.2. SRLS-L algorithm

We now consider the following vectors:

bp(i) = ST (i)WΦpx
∗(i), p = 0, . . . , P, (5)

whereΦp = diag{φp(Mo), . . . , φp(−Mo)} is anM×M diagonal matrix, S(i) = [s(i), . . . , s(i−

M + 1)]T is the M × L regressor matrix, x(i) = [x(i), x(i− 1), . . . , x(i−M + 1)]T is an

M × 1 desired signal vector, and W = diag{w(M0), . . . , w(−M0)} is an M × M di-

agonal matrix, where the diagonal elements (weights) form a non-negative symmetric

bell-shaped window. The weights are applied to put more emphasis on the data close

to the middle of the time window [18, 19]. The vector bp(i) can be considered as a

generalized cross-correlation vector. When we use the zero-order Legendre polynomial

and rectangular weighting, i.e, when both W and Φ0 are identity matrices, the vector

b0(i) is the cross-correlation between the regressor and desired signals, which is exactly

the same as that in the classical SRLS algorithm. Equation (5) can be written as:

bp(i) = ST (i)WΦps
H(i)h(i)

=

2Mo
∑

k=0

w(Mo − k)φp(Mo − k)s(i− k)s
H(i− k)h(i− k)

=

2Mo
∑

k=0

ψp (Mo − k) s(i− k)s
H(i− k)h(i− k)

=
0

∑

k=−2Mo

ψp (Mo + k)R(i+ k)h(i+ k), (6)
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where ψp(k) = w(k)φp(k), and the last equality is obtained by replacing k with −k,

R(i) = s(i)sH(i) and, further replacing i with i+Mo,

bp (i+Mo) =

Mo
∑

k=−Mo

ψp(k)R(i+ k)h(i+ k). (7)

By substituting (2) into (7), we obtain

bp (i+Mo) =

Mo
∑

k=−Mo

ψp(k)R(i+ k)
P
∑

q=0

cq(i)φq(k)

=

P
∑

q=0

Rp,q(i)cq(i), (8)

where

Rp,q(i) =

Mo
∑

k=−Mo

ψp(k)R(i+ k)φq(k)

=

Mo
∑

k=−Mo

w(k)φp(k)R(i+ k)φq(k)

=

Mo
∑

k=−Mo

ϕp(k)R(i+ k)ϕq(k), (9)

and ϕp(k) =
√

w(k)φp(k). By further denoting

R(i) =







R0,0(i) . . . R0,P (i)

. . . . . . . . .

RP,0(i) . . . RP,P (i)






, (10)

b(i) = [bT
0 (i+Mo), . . . ,b

T
P (i+Mo)]

T and c(i) = [cT0 (i), . . . , c
T
P (i)]

T , we obtain a system

of equations with respect to the unknown (P + 1)L× 1 vector c(i):

R(i)c(i) = b(i). (11)

By solving this system, we find an estimate ĉ(i) of the expansion coefficients c(i) for

representation of the time-varying impulse response h(i) in (2). As follows from (2), we

are only interested in the estimate for k = 0. Therefore, the channel estimate at time

instant i is given by

ĥ(i) =

P
∑

p=0

ĉp(i)φp(0). (12)

The SRLS-L algorithm is summarized in Table 1, where ε > 0 is a regularization

parameter used to stabilize the solution of the system in (11). Note that the sliding
8



Table 1: SRLS-L algorithm

Step Equation

for i > 0, repeat:

1 Generate vectors bp(i + Mo) using (5)

2 Compute matrices Rp,q(i) as in (9)

3 Generate the matrix R(i) as in (10) and vector b(i)

4 Find a solution ĉ to the system
[

R(i) + εI(P+1)L

]

c(i) = b(i)

5 Compute the estimate ĥ(i) =
∑

P
p=0 ĉp(i)φp(0)

window length M in the SRLS-L algorithm should satisfy the condition M > (P + 1)L;

otherwise, the matrix R(i) will have a rank less than (P + 1)L and the system (11) will

be ill-conditioned.

In [18], the LBF estimator is proposed under the same concept. However, the LBF

estimator is only applicable for real-valued data and it is of a high complexity. A recursive

computation scheme was proposed in [18] to reduce the complexity of the LBF estimator,

but the complexity is still high (see complexity analysis in Appendix B). In addition, to

allow the recursive computation, there are constraints on the choice of basis functions. On

the other hand, the adaptive filter that we propose here has no constraint on the choice

of basis functions, it is also designed for complex-valued systems and its complexity is

lower than that of the LBF estimator. We show in subsection 3.3 how the complexity of

the SRLS-L adaptive filter can be significantly reduced.

3.3. Complexity of the SRLS-L adaptive filter

In this subsection, the complexity analysis is presented for the complex-valued SRLS-

L algorithm and techniques are proposed to reduce the complexity.

The complexity of the SRLS-L algorithm is mainly determined by the computation

of the matrices Rp,q(i) in (9) and vectors bp(i +Mo) in (5) and solving the system of

equations (11). We first show how the complexity of the matrix and vector computation

can be reduced and then discuss a reduction in complexity by recursively solving the

system of equations.

3.3.1. Matrix Rp,q(i)

The direct computation of the matrix Rp,q(i) would require 4ML2 MAC operations.

We will show that this can be reduced by recursive computations and by using the fast

Fourier transforms (FFTs) of size (L+M). Firstly, we show thatRp,q(i) can be efficiently

computed using elements in Rp,q(i− 1).

Proposition: The following relationship holds for elements [Rp,q(i)]m+1,n+1, m,n =

1, . . . , L− 1, of the matrix Rp,q(i):

[Rp,q(i)]m+1,n+1 = [Rp,q(i− 1)]m,n. (13)

9



Proof: The matrix Rp,q(i) in (9) can be represented as:

Rp,q(i) =

∞
∑

k=−∞
vp,q(k)R(i+ k), (14)

where coefficients vp,q(k) are defined as:

vp,q(k) =

{

w(k)φp(k)φq(k), if −Mo ≤ k ≤Mo

0, otherwise
. (15)

This can also be rewritten as:

Rp,q(i) =

∞
∑

k=−∞
vp,q(k − i)R(k). (16)

The (m+ 1, n+ 1)th element of Rp,q(i) is given by

[Rp,q(i)]m+1,n+1 =

∞
∑

k=−∞
vp,q(k − i)[R(k)]m+1,n+1. (17)

Since [R(k)]m+1,n+1 = s(k −m)s∗(k − n), we have

[Rp,q(i)]m+1,n+1 =

∞
∑

k=−∞
vp,q(k − i)s(k −m)s∗(k − n). (18)

The (m,n)th element of Rp,q(i− 1) is given by

[Rp,q(i− 1)]m,n =

∞
∑

k=−∞
vp,q(k − i+ 1)[R(k)]m,n. (19)

Since [R(k)]m,n = s(k −m+ 1)s∗(k − n+ 1), we obtain

[Rp,q(i− 1)]m,n

=

∞
∑

k=−∞
vp,q(k − i+ 1)s(k −m+ 1)s∗(k − n+ 1)

=

∞
∑

k=−∞
vp,q(k − i)s(k −m)s∗(k − n)

= [Rp,q(i)]m+1,n+1. (20)

This equality holds for m,n = 1, . . . , L− 1.

This proposition shows that (L− 1)2 elements of the matrix Rp,q(i) at time instant i

are the same as elements of the matrix Rp,q(i− 1) at time instant i− 1. Therefore, only

2L − 1 elements of the matrix Rp,q(i) require computation. Since the matrix Rp,q(i) is

10



Hermitian, only one column of length L should be updated. Thus, the complexity of the

computation of Rp,q(i) is reduced from 4ML2 to 4ML MACs.

We now show how the FFT can be used to further reduce the complexity. We only

need to compute the first column of the matrix Rp,q(i). This column can be represented

as

[Rp,q(i)]:,1 =

Mo
∑

k=−Mo

vp,q(k)s(i+ k)s∗(i+ k)

=

Mo
∑

k=−Mo

ṽp,q(k)s
∗(i+ k), (21)

where ṽp,q(k) = vp,q(k)s(i + k). We therefore can think of the column [Rp,q(i)]:,1 as

a result of convolution of sequences [s∗(i − Mo − L + 1), . . . , s∗(i + Mo)] and ṽp,q(k),

k = −Mo, . . . ,Mo. The time-domain convolution can be replaced with frequency-domain

multiplication based on the convolution theorem [40] and the use of FFTs. FFTs of size

(M + L) are used to include the length of the sequence M and the maximum delay L.

One needs to compute FFTs of these two sequences, multiply them (taking one of them

as complex-conjugate), and compute the inverse FFT. Therefore, the complexity of these

computations is about three FFT operations of size (L+M). This is instead of the direct

computation, which would require about 4ML MACs.

Thus, depending on the filter length L and the sliding window length M , the com-

plexity of computing the matrix Rp,q(i) at every time instant i can be either 4MLMACs

or 3 FFTs of size (L+M), whatever is smaller.

As an example, for the case of M = 145 and L = 80, direct computation of the

matrix Rp,q(i) would require 3.7×106 MACs. Instead, direct computation of one column

[Rp,q(i)]:,1 would require 4.6× 104 MACs. The complexity is further reduced to around

5.3× 103 MACs when using the FFTs as described above.

3.3.2. Vector bp(i+Mo)

The direct computation of the vector requires 4ML MAC operations. Note that (5)

can be thought of as convolution of the sequences s(i+ k) of length L+M and x∗p(i) =

WΦpx
∗(i) of length M . This again can be done using the FFT of length (L+M) with

a complexity of 3 FFT operations of size (L+M).

3.3.3. System of equations (11)

A direct solution of the system in (11) would require about 4(P + 1)3L3 MACs.

However, the expansion coefficient vector at time instant i can be updated based on the

estimate ĉ(i− 1) found at the previous time instant:

ĉ(i) = ĉ(i− 1) + ∆c(i). (22)
11



Table 2: Leading DCD algorithm

Input: P , L, H, Mb, Nu, ĉ, R, r Output: ĉ

Step Initialization: δ = H, u = 0

for m = 1, . . . ,Mb

1 δ = δ/2, α = [δ,−δ, jδ,−jδ], Flag = 1

2 While u ≤ Nu and Flag = 1

3 [n, s] = argmaxt=1,...,(P+1)L{|ℜ(rt)|, |ℑ(rt)|}
4 if s = 1, then rtmp = ℜ(rn),
5 else rtmp = ℑ(rn)
6 if rtmp > (α/2)Rn,n

7 ĉn = ĉn + sign(rtmp)sα

8 r = r− sign(rtmp)αR
(n)

9 u = u + 1

10 else, Flag = 0

end

The system of equations at Step 4 of the algorithm in Table 1 is replaced by:

[

R(i) + εI(P+1)L

]

∆c(i) = r(i), (23)

where r(i) is a residual vector computed as:

r(i) = b(i)−R(i)ĉ(i− 1). (24)

The computation of the residual vector requires about 4(P + 1)2L2 MACs. If direct

methods were used for solving the systems of equations in (11) and (23), the complexity

would be the same. However, we find an estimate of the increment ∆c(i) using a few DCD

iterations [27, 32]. The complex-valued DCD algorithm updates elements of the solution

vector in four possible directions (−1, 1, j and −j) with a set of pre-defined step sizes.

The solution vector is only updated in a few elements, which is good enough to achieve a

fast convergence and high estimation accuracy of the adaptive algorithm in the steady-

state. Here we consider the complex-valued leading DCD algorithm presented in Table 2,

where H is an initial step size, Mb is the maximum number of bits used to represent the

solution vector, Nu defines the maximum number of ‘successful’ DCD iterations per time

instant, α is the direction vector, and δ is the step size used for updating the solution

vector. Instead of searching for the update for every element in the solution vector in a

cyclic order, the leading DCD algorithm only updates the leading element corresponding

to the maximum residual. As the initial step size is chosen as a power of two, the

multiplication and division operations are replaced by bit-shift operations, which are

much simpler for practical implementation and allow avoiding the numerical truncation,

thus leading to numerical stable algorithms. Solving the system of equation in (23) would

require at most 4Nu(P + 1)L+Mb additions.

The SRLS-L algorithm directly solves the system of equations, and therefore its overall

complexity is 3(P + 1)2/2 + 3(P + 1) FFT operations of size (L +M) and extra about

4(P + 1)3L3 MACs for solving the system of equations. The overall complexity of the
12



SRLS-L-DCD adaptive filter, which approximately solves the system of equations, is

3(P + 1)2/2 + 3(P + 1) FFT operations of size (L +M), and extra about 4(P + 1)2L2

MACs and 4Nu(P+1)L+Mb additions for DCD iterations. Although solving the system

of equations using DCD iterations only requires additions, they are also counted as MAC

operations for consistency in computing the algorithm complexity. The complexity of

the SRLS-L and SRLS-L-DCD algorithms will be compared with the complexity of other

algorithms in Section 5.

4. Homotopy SRLS-L-DCD adaptive filter

For fast-varying channels with a large delay spread, the minimum sliding window

length required is significantly increased when high orders of the basis functions are

used. In practice, there is sparsity in the expansion coefficients. By exploiting the spar-

sity, the sliding window length can be reduced, which in turn will improve the tracking

performance of the SRLS-L algorithm.

In this section, we modify the SRLS-L algorithm by exploiting the sparsity in the

expansion coefficients and propose a new sparse adaptive filter well suited to estimation

of fast time-varying channels. Specifically, the sparse recovery problem is solved using the

homotopy principle and DCD iterations. The new adaptive filter is named the HSRLS-

L-DCD adaptive filter.

In the SRLS-L and SRLS-L-DCD algorithms, the least squares (LS) criterion is used

(or weighted LS criterion if non-uniform weightings are used) resulting in a system of

equations solved directly or using DCD iterations, respectively. In the HSRLS-L-DCD

algorithm, we find a solution by minimizing the following cost function:

J [c(i)] =
1

2
cH(i)R(i)c(i)−ℜ{cH(i)b(i)}

+ τw̃T (i)

(P+1)L
∑

i=1

|c(i)|,

(25)

where c(i) is an element of the vector c. The first two terms represent the LS cost, the

third term is a penalty function (ℓ1 norm of the solution) that favours sparse solutions, τ

is a positive regularization parameter which controls the balance between the LS fitting

and the penalty and w̃ is a weight vector which is updated in reweighting iterations [42].

The novelty of the proposed homotopy adaptive filter compared to the original ho-

motopy adaptive filter in [37] is in the cost function (25). This cost function allows us

to exploit different speeds of variation of different elements in the vector h(i), and con-

sequently to exploit sparsity in the expansion coefficients c(i) to improve the estimation

accuracy. With such a cost function, instead of directly estimating the unknown time-

varying impulse response h(i) and exploiting the sparsity in elements of the vector h(i),
13



Table 3: Hℓ1-DCD algorithm

Input parameters: M0, P , L, H, Mb, Nu, τ , γ, µd, µc, µw

Output: ĉ, w̃

Step Initialization: I = ∅, R = R(i), c = 0, b = r(i), w̃ = 1L

for i > 0, repeat:

1 τ = maxk|bk|
2 Remove tth element from I (I ← I \ t), if

t = argmink∈I
1
2 |ck|

2Rk,k + ℜ{c∗kbk} − τw̃k|ck|
and 1

2 |ck|
2Rk,k + ℜ{c∗kbk} − τw̃k|ck| < 0

3 If the tth element is removed, then update:

b = b + ctR(t)

4 Include tth element into the support (I ← I ∪ t), if

t = argmaxk∈I

(|bk| − τw̃k)
2

Rk,k

and |bt| > τw̃t

5 Update the regularization parameter: τ = γτ

6 Approximately solve the LS-ℓ1 optimization on the support I

using the leading ℓ1-DCD algorithm [43]

7 Debiasing according to (27)

8 Reweighting according to (28)

the proposed adaptive filter exploits sparsity in the expansion coefficients and provides

local estimates of the expansion coefficients, which are then transformed into an estimate

of h(i) using (12).

If the estimate at the previous time instant ĉ(i− 1) is used as a warm-start as shown

in (22), then (25) can be replaced with:

∆J [∆c(i)] =
1

2
∆cH(i)R(i)∆c(i)−ℜ{∆cH(i)r(i)}

+ τw̃T (i)

(P+1)L
∑

i=1

|c(i)|.

(26)

The LS-ℓ1 optimization problem can be solved by the homotopy ℓ1-DCD (Hℓ1-DCD)

algorithm [37], which is based on homotopy with respect to the regularization param-

eter τ . The key idea is to solve a sequence of optimization problems with different

regularization parameters τ . If τ is high, the third term of (25) dominates the cost func-

tion and forces the cardinality of the support to zero. The parameter τ is initialized to

the highest possible value which guarantees that the algorithm starts with zero support.

This is done to allow us to keep a low dimension of the problem and to reduce the com-

plexity [37]. After each homotopy iteration, the regularization parameter is reduced by

a positive factor γ < 1: τ ← γτ .

The Hℓ1-DCD algorithm is summarized in Table 3. In adaptive filtering, homotopy

iterations are distributed in time to reduce the complexity [43]. Therefore, only one

homotopy iteration is performed at each time instant. In each homotopy iteration, an

element is added or removed from the support I based on the criteria given in Step 2

and Step 4 of Table 3 (see details in [37]). Then, the LS-ℓ1 optimization problem is
14



Table 4: Leading ℓ1-DCD algorithm

Input: H, Mb, Nu, µc, c, R, b Output: ĉ

Step Initialization: δ = H, u = 0

1 Tc = µcmaxk|bk|
for m = 1, . . . ,Mb

2 δ = δ/2, α = [δ,−δ, jδ,−jδ], Flag = 1

3 While u < Nu and Flag = 1, repeat:

4 t = argmaxk∈I |bk|
5 if |bt| < Tc, break

6 for k = 1, . . . , 4,

∆J(k) = −ℜ{α∗

kbt}+ τw̃t(|ct + αk| − |ct|)
7 Find Jmin = mink∆J(k) and q = argmink∆J(k)

8 If Jmin < − 1
2 δ

2Rt,t, do:

9 ct = ct + αq

10 b = b− αqR(t)

11 u = u + 1

12 else, Flag = 0

end

approximately solved on the support by using the leading ℓ1-DCD algorithm [43]. The

leading ℓ1-DCD algorithm used at Step 6 is summarized in Table 4, where the parameter

µc defines the stopping threshold Tc. The algorithm stops when the magnitude of the

maximum residual element is smaller than Tc. The leading ℓ1-DCD algorithm operates

in the same manner as the leading DCD algorithm, the only difference is in the cost

function of the optimization problem.

After the leading ℓ1-DCD algorithm terminates, the support is re-estimated using the

hard thresholding [41]:

I = {k : |ck| > µdmaxk{|ck|}}, (27)

where µd is a predefined parameter between zero and one. Then, the weight vector is

recursively updated as:

w̃(i) = (1− µw)w̃(i− 1) + µww̄, (28)

where µw ∈ (0, 1] is a parameter which defines the update rate. Elements of the weight

vector w̄ are given by:

w̄k =







0, k ∈ I

1, otherwise.

5. Numerical Results

In this section, we investigate by simulation the identification performance of the

SRLS-L algorithm in time-varying channels; we compare it with the LBF estimator [18]

and its fast version, the fLBF estimator [19]. In subsection 5.1, we describe the sim-

ulation scenario. In subsection 5.2, the identification performance of the algorithms is

investigated. In subsection 5.3, we investigate the detection performance of an FD system
15



with different adaptive algorithms used for SI channel estimation. Finally, subsection 5.4

compares the complexity of the algorithms.

5.1. Simulation scenario

The simulation scenario is based on the channel information obtained in an FD lake

experiment. Details of the lake experiment are given in Section 6. The SI channel impulse

response measured in the lake experiment is shown in Fig. 3. This is obtained using the

third-order HSRLS-L-DCD adaptive filter which achieves in this experiment the best SIC

performance among the adaptive algorithms that we considered.

The SI to noise ratio is defined as:

SNRSI =
E{|x(i)|2}

σ2
n

, (29)

where x(i) is the baseband equivalent received signal and σ2
n is the variance of the noise.

In this scenario, the SI to noise ratio is 71 dB. The symbol rate is fd = 1000 symbols per

second, thus the adaptive filter taps are separated by a 1 ms interval. The filter length

is set to L = 80.

The channel is modelled based on the power delay profile and cut-off frequencies of

each multipath component estimated using the lake experimental data. The lth tap

of the time-varying channel response h(i) is modelled as a stationary random process

with a power spectral density Gl
h(2πf), which is uniform within the frequency interval

f ∈ [−f lmax, f
l
max], and independent of random processes describing the other taps. The

variance of each multipath component is estimated by averaging in time the channel

estimates shown in Fig. 3. The power delay profile is shown in Fig. 4. It can be seen that

it is consistent with the channel estimates in Fig. 3 (b) shown in logarithmic scale. Note

that the time-varying multipath components have significantly lower variances compared

to static direct paths, and still their accurate estimation is very important for the overall

performance of SI cancellation.

It can be seen in Fig. 3 that the SI channel contains several strong taps, which are

almost time-invariant; these are the direct path and reflections from stationary parts of

the experimental equipment and lake bottom. The first fast time-varying tap is due to the

reflection from the time-varying lake surface. Further taps are due to more complicated

reflections (bottom-surface, surface-equipment, etc.), which include the surface reflection;

thus, they are also fast varying. Therefore, it is sensible to use different cut-off frequencies

f
(l)
max of random processes describing time variation of different taps.

We identify the cut-off frequency of the lth tap based on the periodogram, which is

computed as:

Gl(k) =

∣

∣

∣

∣

∣

N−1
∑

n=0

ĥl(n)e
−j2πkn/N

∣

∣

∣

∣

∣

2

, k = 0, . . . , N − 1, (30)
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(a) Linear scale

(b) Logarithmic scale

Figure 3: Impulse response variation in the FD lake experiment.
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Figure 4: Power delay profile and cut-off frequencies of the multipath components in the FD lake

experiment. The power of the multipaths are normalized with respect to the path with the maximum

power.

where N is the number of samples of the lth tap over a time period (10 s in our experi-

ment, see Fig. 3), and ĥl(n) is the estimate of the lth tap in the experiment. For the lth

tap, we find the maximum index kmax among k that satisfies,

Gl(k) > ηmaxk,lGl(k), (31)

where η is a threshold parameter; we set η = −75 dB. Then, we have the cut-off frequency

of the lth multipath as f
(l)
max = kmax∆f , where ∆f = fd/N . The cut-off frequencies f

(l)
max

of all multipath components are shown in Fig. 4. It can be seen that the first few taps in

the vicinity of the direct path (at the 16th tap) have f lmax = 0, which means that these

paths are almost time-invariant. Several taps associated with the first surface reflection

are fast-varying with different variation speeds, and the maximum variation speed is close

to 3 Hz. This is consistent with time-varying channel estimates observed in Fig. 3.

5.2. MSD performance

In this subsection, we investigate the identification performance of the classical SRLS,

SRLS-L and HSRLS-L-DCD adaptive filters. The performance of the LBF [18] and fLBF

estimators [19] are also investigated based on the MATLAB codes provided in [44] for

comparison. Note that the MATLAB codes in [44] were converted into the complex-

valued versions before using them in our simulations.

The mean squared deviation (MSD) used for evaluating the identification performance

18



Figure 5: MSD performance of the adaptive algorithms in the simulation similar to the lake experiment.

is defined as:

MSD(i) =
‖h(i)− ĥ(i)‖22
‖h(i)‖22

. (32)

The MSD performance in (32) is then averaged over an interval of 10 s after convergence.

The MSD performance of the adaptive filters from P = 0 to P = 3 are shown in Fig. 5.

For each adaptive filter, we consider two cases, e.g., for the ‘SRLS-L’ adaptive filter, the

uniform weighting is used, and for ‘SRLS-L, weighted’, a non-negative symmetric bell-

shaped window (such as the Hanning window) is applied. The parameters of the adaptive

filters are chosen to provide their best MSD performance. The optimal sliding window

length M for every adaptive filter is shown in Table 5.

We first consider the adaptive algorithms without weighting (solid curves). As can be

seen, an MSD performance of around −49 dB is achieved by the classical SRLS algorithm.

As expected, the SRLS-L adaptive filters achieve identical performance as that of the LBF

estimator. On the other hand, the fLBF estimator shows an inferior performance, which

does not change much over P . It is seen that the MSD performance can be significantly

improved by using the SRLS-L adaptive filters. The higher order of polynomial P is,

the better the MSD performance. The third-order SRLS-L adaptive filter outperforms

the classical SRLS adaptive filter by 13.5 dB. Note that the fLBF estimator is no longer

considered for SIC in FD lake experiments due to its inferior performance.

It is obvious that the shorter time window M is used, the better the tracking per-

formance can be achieved. However, for the identifiability, M should be longer than

the number of estimated parameters, i.e., it should satisfy M > (P + 1)L. The number

of parameters to be estimated is reduced if the channel is sparse. This in turn allows
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Table 5: Optimal M for the adaptive filters

Adaptive filter M

SRLS 105

SRLS-L, SRLS-L-DCD and LBF, P = 0 145

SRLS-L, SRLS-L-DCD and LBF, P = 1 185

SRLS-L, SRLS-L-DCD and LBF, P = 2 305

SRLS-L, SRLS-L-DCD and LBF, P = 3 385

SRLS-L, SRLS-L-DCD and LBF, weighted, P = 0 185

SRLS-L, SRLS-L-DCD and LBF, weighted, P = 1 205

SRLS-L, SRLS-L-DCD and LBF, weighted, P = 2 325

SRLS-L, SRLS-L-DCD and LBF, weighted, P = 3 405

fLBF, P = 0 and P = 1 165

fLBF, P = 2 and P = 3 385

fLBF, weighted, P = 0 and P = 1 205

fLBF, weighted, P = 0 and P = 1 545

HSRLS-L-DCD, P = 0 105

HSRLS-L-DCD, P = 1 105

HSRLS-L-DCD, P = 2 185

HSRLS-L-DCD, P = 3 265

HSRLS-L-DCD, weighted, P = 0 125

HSRLS-L-DCD, weighted, P = 1 125

HSRLS-L-DCD, weighted, P = 2 265

HSRLS-L-DCD, weighted, P = 3 345

Table 6: Parameters used for the HSRLS-L-DCD algorithm

γ µd µw

P = 0 0.85 1.5× 10−4 0.9

P = 1 0.7 6× 10−4 0.8

P = 2 0.75 4× 10−5 0.8

P = 3 0.7 1× 10−5 0.85

reducing the window length M . This can be done using the HSRLS-L-DCD algorithm.

In Fig. 6, we show estimates of the expansion coefficients obtained using the HSRLS-

L-DCD algorithm. It can be seen that the expansion coefficients for the first-order,

second-order and third-order basis functions exhibit a clear sparse structure. There are

several strong taps corresponding to the time-varying paths and the rest of them have

magnitudes close to zero. Such a channel allows us to use a shorter estimation window

as the number of non-zero elements required to be estimated is smaller.

Detailed parameters used for the HSRLS-L-DCD algorithm are given in Table 6. As

shown in Table 5, the optimal M for the HSRLS-L-DCD algorithms (from P = 1 to

P = 3) are significantly reduced compared to the SRLS-L algorithms. Meanwhile, the

MSD performance is further improved. With M = 265, the third-order HSRLS-L-DCD

algorithm outperforms the classical SRLS algorithm by 19.1 dB.

Then, we consider the case when the bell-shaped weightings are applied to the basis

functions (dashed line curves). It is clear that the weighting improves the MSD perfor-

mance for most of the adaptive algorithms, especially for non-sparse algorithms. The

symmetric bell-shaped windowing helps to put emphasis on the data around the middle
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Figure 6: Estimates of expansion coefficients when using the HSRLS-L-DCD algorithm.

Table 7: Number of DCD updates Nu used for the adaptive filters with

DCD iterations, H = 1 and Mb = 24.

Adaptive filter Nu Adaptive filter Nu

SRLS-L-DCD, P = 0 12 HSRLS-L-DCD, P = 0 4

SRLS-L-DCD, P = 1 16 HSRLS-L-DCD, P = 1 64

SRLS-L-DCD, P = 2 64 HSRLS-L-DCD,P = 2 64

SRLS-L-DCD, P = 3 80 HSRLS-L-DCD, P = 3 64

SRLS-L-DCD, weighted, P = 0 4 HSRLS-L-DCD, weighted, P = 0 1

SRLS-L-DCD, weighted, P = 1 8 HSRLS-L-DCD, weighted, P = 1 32

SRLS-L-DCD, weighted, P = 2 8 HSRLS-L-DCD, weighted, P = 2 32

SRLS-L-DCD, weighted, P = 3 8 HSRLS-L-DCD, weighted, P = 3 32

of the estimation time window. It can be seen from Table 5 that a slightly longer slid-

ing window length is required for the weighted SRLS-L adaptive filters, which indicates

that the overall complexity of the weighted SRLS-L adaptive filters is slightly increased.

However, as shown in Table 7, fewer DCD iterations are required for the weighted SRLS-

L-DCD algorithm. Similar conclusions can be drawn for the HSRLS-L-DCD adaptive

filters.

5.3. BER performance

In this subsection, we investigate the detection performance of the far-end transmis-

sion in the FD system. The detection performance is evaluated by computing the bit

error rate (BER).

We use the same channel model as described in subsection 5.1 to simulate the time-

varying near-end SI channel. The far-end channel is modelled as a single path channel.

The BER performance is averaged over 500 simulation trials. In each simulation trial,
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Figure 7: BER performance of the FD communication system with SI cancellation using different

adaptive algorithm.

new realizations of the near-end SI channel, noise and transmitted signal are generated.

The received signal x(i) is generated by adding the far-end signal z(i) and noise n(i) to

the SI channel output r(i). Complex-valued Gaussian independent zero-mean random

variables are used as noise samples. The BPSK direct sequence spread spectrum signals

are used as the far-end signal z(i). The chip rate is 1 kHz, and the spreading factor

is 250. The SI to noise ratio is 71 dB (the same as that in the lake experiment). The

far-end signal level is defined by the far-end SNR as: σ2
z/σ

2
n, where σ

2
z is the variance of

the far-end signal.

Fig. 7 shows the BER performance for the classical SRLS, SRLS-L (P = 2 and P

= 3) and HSRLS-L-DCD (P = 2 and P = 3) algorithms. The BER performance for

the transmission without near-end SI is given as a benchmark. For the classical SRLS

algorithm, we show the BER performance in two scenarios: with static and time-varying

SI channels. It can be seen that the classical SRLS is capable of providing a BER

performance very close to the benchmark when the SI channel is time-invariant. When

the SI channel is time-invariant, the classical SRLS algorithm can reduce the SI to a level

lower than the receiver’s noise floor, which explains the excellent detection performance.

However, the performance of the classical SRLS algorithm degrades significantly in time-

varying channels. By comparing the BER curves of the classical SRLS algorithm in time-

invariant and time-varying channels, we observe a far-end SNR loss of around 27 dB. This

gap is reduced by using the second-order and third-order SRLS-L adaptive filters and

it is further reduced when second-order and third-order HSRLS-L-DCD algorithms are
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Table 8: Overall complexity of the adaptive filters per sample (analytical expressions)

Adaptive filter MACs ÷ and
√

LBF 18(P + 1)3L3 + 6(P + 1)2L2 + 4L2 0

SRLS-L 4(P + 1)3L3 + [1.5(P + 1)2 + 3(P + 1)](L + M) log2(L + M) 0

SRLS-L-DCD
4(P + 1)2L2 + [1.5(P + 1)2 + 3(P + 1)](L + M) log2(L + M)

0
+4Nu(P + 1)L + Mb

HSRLS-L-DCD
4(P + 1)2L2 + [1.5(P + 1)2 + 3(P + 1)](L + M) log2(L + M)

3(P + 1)L− |I|
+(15 + Nu)(P + 1)L + 2|I|(Nu + Mb)

Table 9: Overall complexity of the adaptive filters per sample (quantitative analysis)

MACs ÷ and
√

LBF (weighted), P = 0 9.6× 106

LBF (weighted), P = 1 7.5× 107

LBF (weighted), P = 2 2.5× 108

LBF (weighted), P = 3 5.9× 108

SRLS-L and SRLS-L, weighted, P = 0 2.1× 106

SRLS-L and SRLS-L, weighted, P = 1 1.6× 107

SRLS-L and SRLS-L, weighted, P = 2 5.5× 107

SRLS-L and SRLS-L, weighted, P = 3 1.3× 108

SRLS-L-DCD, P = 0 3.7× 104

SRLS-L-DCD, P = 1 1.4× 105

SRLS-L-DCD, P = 2 3.7× 105

SRLS-L-DCD, P = 3 6.6× 105

SRLS-L-DCD, weighted, P = 0 3.7× 104

SRLS-L-DCD, weighted, P = 1 1.4× 105

SRLS-L-DCD, weighted, P = 2 3.2× 105

SRLS-L-DCD, weighted, P = 3 5.8× 105

HSRLS-L-DCD, P = 0 3.5× 104 206

HSRLS-L-DCD, P = 1 1.4× 105 422

HSRLS-L-DCD, P = 2 3.1× 105 652

HSRLS-L-DCD, P = 3 5.6× 105 865

HSRLS-L-DCD, weighted, P = 0 3.5× 104 216

HSRLS-L-DCD, weighted, P = 1 1.4× 105 418

HSRLS-L-DCD, weighted, P = 2 3.2× 105 643

HSRLS-L-DCD, weighted, P = 3 5.7× 105 851

used.

5.4. Complexity comparison

In this subsection, we compare the complexity of the SRLS-L, SRLS-L-DCD, and

HSRLS-L-DCD adaptive filters at a time instant in terms of number of MACs, divisions

and square-roots. We also compare them with the complexity of the LBF estimator

which provides the same MSD performance as the SRLS-L adaptive filter.

The complexity analysis of the SRLS-L, SRLS-L-DCD, HSRLS-L-DCD and LBF al-

gorithms is given in subsections 3.2, Appendix A and Appendix B. The overall complexity

of all the algorithms at every sample is summarized in Table 8. We compute the com-

plexity of the FFT of size (L+M) as (L+M) log2(L+M) MAC operations. Based on

that, the overall complexities of the adaptive algorithms at every time instant are given

in Table 9 for the window lengths M in Table 5 and the filter length L = 80.
23



Figure 8: Transducer (Tx) and hydrophone (Rx) used in the lake experiment. Note that the other

hydrophone with the green label is not used in this experiment.

Combined with the simulation results shown in Fig. 5, several conclusions can be

drawn from Table 9. First, the SRLS-L adaptive filters implemented using the proposed

techniques achieve the same performance, but require only about one-fifth of the overall

complexity compared to that of the LBF estimators. Further, the complexity of the

SRLS-L adaptive filters is significantly reduced by using the DCD iterations, especially

for higher-order SRLS-L-DCD algorithms; the overall complexity can be reduced by

about hundreds of times. The complexity of the HSRLS-L-DCD algorithm is almost the

same as that of the SRLS-L-DCD algorithm, however, the MSD performance is improved

by an extra 2 to 3 dB when using the HSRLS-L-DCD algorithm.

Although by applying the Hanning window allows a reduction in the number of DCD

iterations, at the same time, the required sliding window length M is increased, thus the

overall complexity is about the same in all cases.

6. Experimental results in lake experiments

In this section, the adaptive filters are used for the SI channel estimation with the

scheme in Fig. 1 in the FD lake experiments. In the lake experiment, the true channel

response is unknown, and therefore the MSD performance cannot be measured. Instead

we measure the SIC factor which is the ratio of signal to interference ratios for the far-end

signal before and after the SI cancellation. A detailed description of the measurement

procedure can be found in [25].

6.1. Experimental setup and transmitted signals

The lake experiment is conducted in the Kelk Lake in East Yorkshire (UK) on the

15th of May, 2019. As shown in Fig. 8, the transducer and hydrophone are fixed on an

metallic pipe. The distance between the transducer (Tx) and hydrophone (Rx) is 7 cm.
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Table 10: SIC factor (in dB) in the lake experiment and

in simulation (Sim), fc = 32 kHz, fd = 1000 symbols per second; L = 80.

Adaptive filter M SIC (Lake) SIC (Sim)

SRLS 105 51.2 48.4

SRLS-L, P = 0 185 55.5 52

SRLS-L, P = 1 225 57.7 56

SRLS-L, P = 2 325 58.9 59.5

SRLS-L, P = 3 385 59.7 61.9

SRLS-L, weighted, P = 0 225 56.7 53.5

SRLS-L, weighted, P = 1 245 58.8 57.8

SRLS-L, weighted, P = 2 385 60.1 61

SRLS-L, weighted, P = 3 445 60.7 62.7

HSRLS-L-DCD, P = 0 105 57.3 54.7

HSRLS-L-DCD, P = 1 105 60.9 60.5

HSRLS-L-DCD, P = 2 165 62.3 63.3

HSRLS-L-DCD, P = 3 225 63.4 65.5

HSRLS-L-DCD, weighted, P = 0 165 56.9 56

HSRLS-L-DCD, weighted, P = 1 165 60.5 60.9

HSRLS-L-DCD, weighted, P = 2 285 62.6 64.5

HSRLS-L-DCD, weighted, P = 3 285 63.6 65.9

During the experiment, the pipe is placed horizontally at a depth of 4 m. The maximum

depth of the experimental site is around 8 m. Based on our observation, during the

experiment, the amplitude of the lake surface waves varies from 5 cm to 10 cm.

In the experiment, BPSK signals are transmitted; an RRC filter with a roll-off factor

of 0.2 is used for the pulse shaping. The transmitted signal length is 20 s, which includes

5 s of zero-padding at the start of the transmission to measure the background noise level

and 15 s of the BPSK signal. The BPSK signals are transmitted at one of the three carrier

frequencies fc = 12, 32 or 80 kHz with 1.2 kHz bandwidth. For the transmitted signal

with 80 kHz carrier frequency, a wider frequency bandwidth of 4.8 kHz is also considered.

Note that the purpose of using transmitted signals at different carrier frequencies is to

investigate if consistent cancellation performance can be achieved regardless of the carrier

frequency. For the 80 kHz signal, we consider a wider frequency bandwidth to investigate

if the estimation performance can be improved by exploiting the higher delay resolution

of the channel. For all the experimental data, we use the same FD system design as

shown in Fig. 1.

6.2. Experimental vs simulation results

We first consider the FD experiment at the carrier frequency 32 kHz. The symbol rate

is fd = 1000 symbols per second. In this experiment, the SI to noise ratio is around 71 dB.

The SIC factor is computed over a 10 s interval after the convergence of the adaptive filter.

Table 10 shows the SIC factor and the optimal value ofM providing the best cancellation

for each of the adaptive algorithms. With P = 3, the SRLS-L algorithm improves the

SIC factor by 8.5 dB compared to the classical SRLS algorithm. On top of that, the
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third-order HSRLS-L-DCD algorithm improves the SIC factor by an extra 3.7 dB, thus

outperforming the classical SRLS algorithm by 12.2 dB. The SIC performance is slightly

improved (around 1 dB) when weightings are applied for the SRLS-L algorithms. For

the HSRLS-L-DCD algorithms, no noticeable difference is observed.

In Section 5, we considered a simulation scenario which is based on the SI channel

estimates obtained using the HSRLS-L-DCD algorithm in this experiment. To ensure a

fair comparison, we use the same parameters for the adaptive filters in both the simulation

and the lake experiment. We can see that the SIC factors in the simulation match

very well to that in the experiment. This result further demonstrates that the channel

modelling process we used in subsection 5.1 works well.

Another conclusion from Table 10 and Fig. 7 is that the SIC factor provides the same

indication of the system performance as the BER. As can be seen in Table 10, the SIC

factor is 65.5 dB when the third-order HSRLS-L-DCD algorithm is used, which means

the residual SI level is 5.5 dB above the receiver’s noise floor. It can be seen in Fig. 7 that

the gap in BER performance between the benchmark curve and that of the third-order

HSRLS-L-DCD algorithm is also about 5 dB for a BER level of 10−3. Similar conclusions

can be drawn for the rest of the algorithms. This further validates the use of the SIC

factor for the performance evaluation instead of analyzing the detection performance of

specific communication systems.

6.3. Experiments with different carrier frequencies and bandwidths

We now consider three experimental data sets with different carrier frequencies and

bandwidths. This is done to investigate how consistent is the improvement in the SIC

performance achieved with the proposed adaptive filters in practical scenarios. The

experimental results are shown in Tables 11 and 12.

In the first experiment, the BPSK signal is transmitted at the carrier frequency fc =

12 kHz at the symbol rate fd = 1000 symbols per second. The SI to noise ratio is around

65 dB. In this experiment, the channel delay spread is longer compared to the fc = 32 kHz

channel. Therefore, we use a filter length of L = 100. The parameters of every algorithm

are chosen to provide the best SIC performance. It can be seen in Table 11 that the SIC

factor can be improved by using higher order basis functions. With P = 3, the SRLS-L

algorithm outperforms the classical SRLS algorithm by 8.7 dB. Additional 3.9 dB of SIC

is achieved with the third-order HSRLS-L-DCD algorithm by exploiting the sparsity in

the expansion coefficients. Again, the SIC performance is slightly improved by applying

weightings when using the SRLS-L adaptive algorithm. However, the improvement in

the performance of the HSRLS-L-DCD algorithm, especially for the higher-order cases,

is almost negligible (within 0.5 dB). Therefore, we only apply weighting to the SRLS-L

adaptive filter for the rest of the data.
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Table 11: SIC factor (in dB) in the lake experiment,

fc = 12 kHz, fd = 1000 symbols per second and L = 100.

Adaptive filter M SIC factor

SRLS 145 43.4

SRLS-L, P = 0 165 46.7

SRLS-L, P = 1 225 49.6

SRLS-L, P = 2 385 51.4

SRLS-L, P = 3 525 52.1

SRLS-L, weighted, P = 0 285 48.6

SRLS-L, weighted, P = 1 285 50.8

SRLS-L, weighted, P = 2 465 52.7

SRLS-L, weighted, P = 3 545 53.1

HSRLS-L-DCD, P = 0 165 49

HSRLS-L-DCD, P = 1 165 52.7

HSRLS-L-DCD, P = 2 265 55.3

HSRLS-L-DCD, P = 3 285 56

HSRLS-L-DCD, weighted, P = 0 225 50.1

HSRLS-L-DCD, weighted, P = 1 225 52.7

HSRLS-L-DCD, weighted, P = 2 325 55.7

HSRLS-L-DCD, weighted, P = 3 345 56.3

In Tables 12, we show the SIC performance of the 80 kHz signal with 1 kHz and

4 kHz frequency bandwidth. For the 4 kHz signal, the symbol rate is fd = 4000 symbols

per second. The SI to noise ratio in both experiments is around 65 dB. Due to the high

attenuation at higher frequencies, the SI channel delay spread is reduced. The adaptive

filter length is L = 60 for the signal with 1 kHz bandwidth, and L = 240 for the 4 kHz

bandwidth.

The SIC performance in both cases is very close. The SIC factor is slightly better with

the 4 kHz bandwidth. This could be attributed to the clearer multipath structure due to

the higher delay resolution. Another observation is that the best estimation time window

length for the HSRLS-L-DCD algorithms is significantly smaller compared to the SRLS-

L algorithm. With P = 3, the estimation time window of the HSRLS-L-DCD algorithm

is about twice shorter compared to that of the SRLS-L algorithm. This explains the

improvement in the SIC performance.

7. Conclusions

In this paper, low complexity interpolating adaptive filters which combine the SRLS

adaptive filter and BEM approach (specifically, the Legendre polynomials) are proposed

for identification of time-varying systems (channels). Techniques are proposed to reduce

the complexity of the adaptive filters using the FFT and DCD algorithms. This paper

focuses on a specific application, SIC in FD UWA systems. To exploit the sparsity in

the expansion coefficients, a novel sparse adaptive filter, the HSRLS-L-DCD algorithm

is proposed. The MSD performance of the proposed adaptive filters is investigated and

compared with that of the LBF estimator in a simulation which mimics an FD lake
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Table 12: SIC factor (in dB) in the lake experiment, fc = 80 kHz.

Adaptive filter fd = 1000 symbols per second fd = 4000 symbols per second

L = 60 L = 240

M SIC factor M SIC factor

SRLS 85 47.1 505 47.4

SRLS-L, P = 0 135 49.9 465 49.7

SRLS-L, P = 1 165 49.6 685 50.6

SRLS-L, P = 2 265 50.6 965 50.4

SRLS-L, P = 3 345 50.4 1325 50.8

SRLS-L, weighted, P = 0 185 50.8 685 50.8

SRLS-L, weighted, P = 1 205 51.3 805 51.6

SRLS-L, weighted, P = 2 325 51.3 1205 51.4

SRLS-L, weighted, P = 3 345 51.4 1385 51.6

HSRLS-L-DCD, P = 0 65 52.4 265 52.7

HSRLS-L-DCD, P = 1 65 54 265 55.7

HSRLS-L-DCD, P = 2 105 55.8 425 57

HSRLS-L-DCD, P = 3 115 56.5 445 57.4

experiment. Complexity analysis is presented for all the algorithms used in the simula-

tion. Lake experiments are conducted to evaluate the SIC performance of the proposed

adaptive filters within an FD UWA system. Results show that the proposed adaptive

filtering algorithms significantly improve the SIC performance compared to classical RLS

algorithm. Moreover, the proposed algorithms are of comparatively low complexity, and

due to the use of DCD iterations, are well suited to hardware (such as FPGA) imple-

mentation, which makes them good candidates for practical implementation.

Appendix A: Complexity analysis of the HSRLS-L-DCD algorithm

The HSRLS-L-DCD algorithm solves the system of equations using the Hℓ1-DCD

algorithm. The complexity of the main steps of the Hℓ1-DCD algorithm is summarized

as follows:

• The residual vector r(i) in (24) can be computed with 4(P+1)2L2 MAC operations;

• The regularization parameter τ (at Step 1 in Hℓ1-DCD algorithm) can be computed

with 2(P + 1)L MAC operations;

• Removing an element from the support I and updating the residual vector involve

4(P +1)L+7|I| multiplications and 2(P +1)L+4|I| additions and |I| square-root

operations;

• Adding an element into the support I takes 4((P + 1)L − |I|) multiplications,

2((P +1)L− |I|) additions, (P +1)L− |I| divisions and (P +1)L− |I| square-root

operations;

• Solving the optimization problem on the support I using the leading ℓ1-DCD al-

gorithm:

– Computing the threshold Tc requires 2(P + 1)L MACs;
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– Finding the maximum element of the residual vector requires 2|I| MAC oper-

ations, this could be repeated for Nu +Mb times;
– Computing the increment of the cost function (∆J(k)) and finding the direc-

tion of update which minimizes the cost function can be done with 6 multi-

plications and 15 additions, this is repeated for at most Nu +Mb times;
– Updating the residual vector requires 2(P +1)L MAC operations, this can be

done at most Nu times;

• Obtaining the final support according to (27) requires 2(P + 1)L MAC operations

and (P + 1)L square-root operations;

• Reweighting according to (28) involves (P + 1)L MACs.

In total, the Hℓ1-DCD algorithm minimizes the cost function with 4(P + 1)2L2 + (15 +

2Nu)(P +1)L+2|I|(Nu +Mb) MAC operations, (P +1)L− |I| divisions and 2(P +1)L

square-root operations.

Thus, the overall complexity of the HSRLS-L-DCD algorithm is 4(P +1)2L2 + (15+

2Nu)(P +1)L+2|I|(Nu+Mb) MAC operations, 3(P +1)2/2+3(P +1) FFT operations

of size (L+M), (P + 1)L− |I| divisions and 2(P + 1)L square-root operations.

Appendix B: Complexity analysis of the LBF estimator

Recursive computation methods are proposed in [18] to reduce the complexity of the

LBF estimator (see [18] and MATLAB in [44]). The main steps of the LBF estimator

are summarized as follows:

• A(i) = ξ(i)ξH(i), where ξ(i) is an L× 1 complex-valued vector. This involves 4L2

real-valued MACs.

• rm(i)← βΓrm(i), where β is a scalar, rm(i) is a (P+1)L×1 complex-valued vector

and Γ is a real-valued (P +1)L× (P +1)L matrix. This would require 2(P +1)2L2

MACs.

• Rm(i) ← Rm(i) − v1A(i) ⊗ B, where Rm(i) is a (P + 1)L × (P + 1)L complex-

valued matrix, A(i) is an L×L complex-valued matrix and B is a (P +1)× (P +1)

real-valued matrix. This requires 2(P + 1)2L2 MACs.

• Rm(i)← β(ΓRm(i)ΓT ), which requires 2(P + 1)3L3 MACs.

• Rm(i)← Rm(i) + vMA(i)⊗B, which requires 2(P + 1)2L2 MACs.

• Solve the system of equations: Rm(i)a(i) = rm(i). This would require about

4(P + 1)3L3 MACs.

The overall complexity of the main steps of the LBF estimator is about 6(P + 1)3L3 +

6(P + 1)2L2 + 4L2 MACs.
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