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BEM-FEM COMBINED ANALYSIS OF NONLINEAR 
INTERACTION BETWEEN WAVE AND 

SUBMERGED BREAKWATER 
N.Mizutani1, W.G. McDougal2, A.M. Mostafa3 

ABSTRACT: 
A combined BEM-FEM model has been developed to study the nonlinear dynamic 
interaction between a submerged breakwater and waves. The resistance 
coefficients in the equations of motion inside the porous media have been 
experimentally determined based on measured values of the wave forces on 
spherical armor units in a submerged breakwater. Comparisons of the numerical 
model results with the experimental measurements indicate that this modification 
has improved the model accuracy in simulating the wave deformation and the 
energy dissipation due to a submerged breakwater. Results also show that the 
model gives good estimates for the wave kinematics inside and around the 
breakwater which are necessary to compute the stable armor stone weight. 

INTRODUCTION: 
Submerged breakwaters have several advantages over the conventional surface 
piercing structures including aesthetics, less impact on the near shore water quality 
and ability to trigger early wave breaking. Their use is also recommended on 
recreational beaches to ensure safe conditions. They are usually constructed from 
rubble and may be protected by an armor layer of large stones or concrete blocks. 

Earlier researchers focused on wave deformation and energy dissipation due to 
submerged breakwaters, but less interest was given to their internal properties and 
shape. Driscoll et al. (1992) studied the harmonic generation and transmission past 
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a submerged impermeable rectangular obstacle. They conducted laboratory 
experiments and compared the results with a linear scattering model and a fully 
nonlinear model. Cruz et al (1992) derived a set of nonlinear vertically integrated 
equations similar to that of Boussinesq to estimate the wave transformations past a 
submerged permeable breakwater. They found that their equations work well in the 
region of cnoidal waves, but the transmitted and the broken wave characteristics 
could not be well predicted. Gu and Wang (1992) linearized the porous flow 
equations inside the submerged breakwater using the equivalent energy principle 
and developed a model based on the Boundary Equation Method (BEM). They 
found that maximum wave energy dissipation can be achieved at practical 
permeability levels. 

Based on modified Navier-Stokes equations, McCorquodale and Hannoura (1978) 
developed the flow equations inside the porous media and applied them to the case 
of rubble mound breakwaters. A mixed numerical model was also developed to 
simulate the wave motion inside rubble mound breakwaters and, hence, check the 
stability of the seaward slope (Hannoura and McCorquodale, 1985). Ohyama and 
Nadaoka (1991) developed an idealized numerical wave tank consisting of sponge 
layer(s) and the non-reflective wave source developed by Brorsen and Larsen 
(1987). They used the BEM and proved that their proposed wave tank is 
applicable for use with irregular and nonlinear wave fields. 

Sakakiyama et al. (1991) developed a porous body model analysis of nonlinear 
wave transformations to study the velocity, pressure fields and free surface 
displacement in and near rubble mound and composite breakwaters. They 
considered the flow to be rotational inside and outside the porous media, but their 
numerical model required a very long CPU run-time. Moreover, in a comparison 
between permeable and impermeable submerged breakwaters, it has been found 
that the wave reduction is slightly affected by the porosity of the breakwater 
(Sakakiyama, 1992). 

For wide crown submerged breakwaters, the flow velocities and the wave field 
behind the breakwater are small and assuming irrotationality of the flow in the 
wave field may be reasonable. This will reduce the computation time and cost. 
Therefore, a hybrid-type numerical model has been developed and used to simulate 
the non-linear dynamic interaction between waves and rectangular permeable 
submerged breakwater considering irrotational flow in the wave field, but 
rotational flow inside the porous media (Mizutani et al., 1995). 

This study has been conducted to develop an accurate numerical model for the 
simulation of the nonlinear dynamic interaction between waves and submerged 
breakwater with irregular cross section. An idealized wave tank, similar to that of 
Ohyama and Nadaoka (1991), has been used to simulate the nonlinear wave field. 
Modified Navier-Stokes equations have been employed to simulate the flow inside 
the porous media (McCorquodale and Hannoura, 1978). The Boundary Element 
Method (BEM) has been used to develop a numerical model for the wave field. 
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The Finite Element Method (FEM), based on the weighted residual technique, has 
been used to solve the flow problem inside the submerged breakwater. The link 
between the two models has been maintained through boundary conditions on the 
interface between the wave and porous media fields. The BEM-FEM model 
computes the wave deformations and the flow inside the submerged breakwater 
simultaneously at each time step in a time marching scheme. 

The resistance coefficients in Navier-Stokes equations have been modified through 
comparison with a Morison type equation for evaluating the wave forces on a 
spherical armor unit. The measured values of the wave forces and velocities in the 
experiments (Mizutani et al., 1994) have been used to estimated the drag and 
inertia coefficients. 

GOVERNING EQUATIONS AND MODEL DEVELOPMENT 

Wave Field 
The flow in the wave field has been assumed to be irrotational and the water is 
considered inviscid and incompressible. The idealised wave tank used in this study 
is shown in Fig. 1 and it is governed by the following Poisson equation (Brorsen 
andLarsen, 1987). 

d2<j)     d24>      , 
dx2 + dz2 ~q 

q*=U*(Z,t)5(X-Xs) 

(1) 

(2) 

where § is the velocity potential; X and Z are the horizontal and vertical 
coordinates, respectively; q* corresponds to the flux density at the wave-making 
source and is zero elsewhere; U* is the flux density at the wave-making source; 8 
is Dirac's delta function and Xs is the X-position of the wave-making source. Eq.l 
is subjected to the following boundary conditions (see Fig.l): 

Ml 

Fig. 1 Wave tank for wave-submerged breakwater dynamic interaction 
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to=n^T (onSf) (3) 

3n~ = 0 (onSB) (4) 

to=Vn (°nSs) (5) 

—+ i(V(|))2+gTi + ^-/^^(t)dX = 0 (onSf) (6) 

^7^(*+N,+/x^dx) (°nS
L)  ^ /gh 

jty L^x..^. fX4^Mu 

/gh 
aX--/MT"(¥ + ^~^^dX) (onSR)    (8) 

Umax = (0.25-0.50) Jf 
"V h 

(9) 

where nz is the directional cosine of the normal outward from the boundary with 
the Z axis; t is time; Vn/m is the porewater velocity normal to the boundary; m is 
the porosity; h is the water depth; and i\ is the water surface elevation above SWL. 
|x is a damping factor which varies linearly inside the sponge layer from zero at the 
beginning of the layer to nmax at the open boundary (see Fig. 1). 

Ohyama and Nadaoka (1991) have found that if the value of the coefficient in Eq.9 
ranges from 0.25 to 0.50 and the sponge layer width is more than one wave length, 
the coefficient of reflection from the sponge layer will be less than 2%. Eq.6 can 
represent the free surface inside and outside the sponge layer since \i - d[\JdX = 0 
outside the layer and, hence, the equation is reduced to the original dynamic 
boundary condition. 

Applying Green's theorem, the integral form of Eq. 1 can be written as follows 
(Brebbia and Walker, 1980): 

«(q)<t>(q) +/.«>§* " f£o)ds +//0 q * G d£2 = 0 (10) 

where a(q)and <)>(q) are the internal boundary angle and velocity potential at point 
(q), respectively; s represents the outer boundary; and G is the Green's function 
defined as: 

G-ln(l/r) + ln(l/R) (11) 

where r is the distance between the point of interest (q) and other domain points 
and R is the distance between the point (q) and the image of other domain points 
considering the seabed as a mirror line. 
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The weighted residual method has been applied to integrate the dynamic boundary 
condition on the free surface using linear elements and weighting factor TU resulting 
in the following integral equation. 

Further details about this method are given in Ohyama and Nadaoka (1991). 

Initial condition: 
The water surface elevation above the SWL, the velocity potential and their time 
derivatives are set to zero at the initial time step of the program (cold start). The 
model ramps up from this condition. Iterations for the location of the nonlinear 
water surface are made at each time step in a time marching scheme. 

Porous Media 
The flow in the porous media is considered to be rotational and the porewater is 
assumed to be incompressible but viscous. The continuity equation and the 
equations of motion (McCorquodale and Hannoura, 1978) for the flow inside the 
porous media are as follows: 

iU + M = 0 03) 
ax   az 
A^+BU^+CW^U   D^J>      U + FUVU2+W2 _Q (]4) 

ot 3X dZ dX 

AM+BU^+CW^+D^ + EW+FWVU
2
+W

2
 =0        (15) 

at 3X dZ dZ 

where 

( 1+- 
A = ^ r_ L      B_c_4_      ry   i    *    4.6i> 

mg ' m2g> Y' gmD
2 

0.79 
gm1/2D ' 

P=p + yZ 

and U,W,P are the horizontal and vertical water particle velocities and the 
porewater pressure, respectively; p is the dynamic porewater pressure; C^ is the 
added mass coefficient; g is the acceleration of gravity; v is the kinematic viscosity 
of water; y is the unit weight of water; and D is the mean particle diameter. 

The porous media equations are subjected to the following boundary conditions: 

P=Ji_!J(£)\v?}-Yz «»s>> <"> 
Vn=(Wcos9±Usin0) (on Ss)    (17) 
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Vs = ^ (°»SS)    (18) 
as 

V„=0 (onSb)    (19) 

where Vs is the water particle velocity in the tangential direction to the boundary 
and 0 is the inclination of the permeable boundary on the X axis. 

The continuity of the normal velocity component (Vn) and the porewater pressure 
have been considered along the surface boundary of the submerged breakwater. 
The tangential component of the water velocity along the breakwater surface has 
been solved using the Finite Difference Method (FDM). 

The FEM in the porous media is based on the weighted residual method. A special 
isoparametric trapezoidal element has been considered for discretization of the 
FEM domain. A four node element for the velocity (u and w) and eight node 
element for the pressure (p) have been employed to solve the problem. Linear 
interpolation and weight functions have been used for the continuity equation but a 
special technique has been applied to the equations of motion (Mizutani et al., 
1995). 

Initial conditions: 
The velocity, pressure and their derivatives have been set to zero at the initial time 
step of the program (cold start) and a time marching scheme has been used to 
compute the flow inside the porous media at subsequent steps. 

BEM-FEM Model Development 
The BEM model for the simulation of the wave motion and the FEM model for 
porous flow have been linked together into one model that computes 
simultaneously the wave deformations outside the breakwater and the porous 
media flow inside the breakwater. The time derivative of any variable aj) at any time 
step (n) in the porous media or the wave field equations is solved using Taylor 
series expansion as follows: 

/fhp\ "    2M) _ /dm 
\dt) At    \dt) 

n-l (20) 

The nodes along the surface boundary of the breakwater and the water surface are 
located at spacing less than L/20 (where L is the wave length). The location of the 
FEM nodes are selected to be the same as that of the BEM along the interface 
between the breakwater and the wave domain. The time step of the model is 
initially selected to be T/24 and then the results are compared to the experimental 
results. If the difference between the numerical and experimental results is more 
than an accepted tolerance, smaller time steps are selected. It has been found that 
time increments less than T/24 may be needed for steep waves. 
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PHYSICAL MODEL 
Submerged breakwater experiments were conducted in the coastal engineering 
laboratory at Nagoya University. These experiments measured the wave forces on 
spherical armor units (Fx and Fz), wave deformations and the water velocity 
around the surface of the breakwater. The submerged breakwater was constructed 
of spherical glass balls 3.0 cm in diameter and placed in a wave tank of 25.0 m long 
and 0.70 m wide. The breakwater had a crown width of 220 cm, height of 21 cm, 
and the seaward face had a slope of 3.2 (horizontal) : 1 (vertical). The balls were 
arranged to produce the maximum densely packed arrangement and their 
computed corresponding porosity was 26%. Two possible positions were 
considered for the spheres, namely, embedded and non-embedded positions 
(Mizutani et al., 1992). The experiments were conducted in a water depth of 28.0 
cm so that the still water depth over the crown was 7.0 cm. Wave heights (Ff) of 
3.0, 5.0, 7.0 and 10.0 cm and wave periods (T) of 1.0, 1.40 and 1.80 sec were 
examined. Records were sampled for one minute at a rate of 50 hz. 

It was observed that the waves pass over the breakwater without breaking for 
wave heights 3.0 and 5.0 cm, but break for larger heights. Studies were formerly 
conducted to estimate the wave forces on armor units over a submerged 
breakwater and proved that the dimensionless non-breaking wave force, 
normalised by the wave height, on the armor is higher than the breaking one 
(Mizutani et al., 1992). Therefore, the non-breaking wave conditions will only be 
used for comparison and discussions in this study. 

ESTIMATION OF WAVE FORCES 
Standard Morison type equations have been found to be generally applicable to 
estimate the horizontal wave forces on the spherical armor units of submerged 
breakwaters (Rufin et al., 1996). However, in this study, the wave force has been 
considered to be composed of three components as follows: 

Fx = iCwxpjtD3^ + icDXipJtD2ur7ur
2+wr

2 + 3CDX2pvJtDur <21> 

By applying Eq.21, the horizontal wave force acting on a small element of a 
homogeneous porous submerged breakwater can be written as follows: 

c ,,~      dur     i_ . r-~ Y    /-      3PvS (22) Fx = pVCMX-^- + jCnXl pAxUr Juf + Wj?   + CDX2 ~^~Ur 

where ur and wr are the porewater velocity components in the horizontal and 
vertical directions, respectively; S is the surface area of the armor unit affected by 
friction with the flow; p is the porewater density; C^. is the coefficient of mass; 
and CDX1 and CDX2 are the drag coefficients in the X direction. A^ is the projected 
area of the armor unit in the X direction and V is its volume. This form of the 
Morison equation includes the common inertia and quadratic drag terms but also 
has a linear drag term. This linear term is analogous to Darcy flow in groundwater. 
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To solve the modified Morison equation, the porewater velocities (ur , wr), V, S 
and \ have been expressed as follows and inserted into Eq.22. 

(23) 

(24) 

(25) 

(26) 

where AX, AZ are the horizontal and vertical dimensions of the computational unit, 
respectively. Therefore, Eq.22 can be now expressed in terms of the flow 
parameters inside the porous media and the computational unit size as follows: 

Fx - p^CMxf AXAZ + iCox^liVlFTw^Z + CDX2^U   (27) 

Furthermore, the force per unit weight of the porewater (fx) can be expressed as 
follows: 

fx = ii^CMxf + Cpxi
3

(1-m)uTu^W^AZ + 3C^u (28a) 
gm2 dt       2m3gAX gmdD 

, = mAXAZ (28b) 
S 

By comparing Eq.28 with the horizontal equation of motion in the porous media 
(Eq.14), the coefficients E and F are now modified and can be expressed as 
follows: 

E = 3CDx2V (29a) 
gmdD 

F = Cpxi(l-m) (29b) 
2m3gAX 

The size of the computation unit should be selected such that the side length is not 
less than D and, therefore, the value of AX = AZ = D has been used in Eq.29 to 
compute the resistance coefficients as shown in Eq.30. Consequently, the 
coefficients C,^, CDX1 and CDX2 should be first estimated in order to be able to use 
the modified equations of motion. 

E = 6(l-m)CDX2V (30a) 
gm2D2 

F = Cpxi(l-m) (30b) 
2m3 gD 
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ESTIMATION OF THE RESISTANCE COEFFICIENTS 
Using the experimentally measured values of the wave forces and water velocities, 
the values of the coefficients (C^ , CuX1 and Cp^J have been estimated for the 
previously described wave conditions by means of the least square technique 
applied to Eq.21. The corresponding values of these coefficients for the case of 
non-embedded spheres have been plotted against, the Keulegan-Carpenter number, 
KCX in Figs. 2-4. The KCX number is UmT/D where Um is the maximum horizontal 
porewater velocity. Also shown are the data for the case of isolated spheres by 
Iwata and Mizutani (1989). 
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It is clear in Fig.2 that the value of C^ is almost constant and independent of KCX. 
Also, the values for isolated spheres and armor spheres are very similar. The value 
of C,^ has been estimated to be 0.96 (0^= -0.04) by taking the average over all 
computed values. This value has been used in the numerical model for comparison 
with the experiment. 

The value of CDX1 ranges from 0.20 to 0.60 and is only weakly dependent upon 
KCX as shown in Fig.3. The values of CDX1 for isolated spheres are generally higher 
than that for the armor units of a submerged breakwater. It is worth mentioning 
that the coefficient of drag CDX, , formerly estimated by a standard Morison type 
equation and neglecting the linear friction term, experienced large scatter at small 
values of KCX (Rufrn et'al., 1996). It has been estimated that CDX1 = 0.45 for use in 
the numerical model computations by taking the average over all the computed 
values. 

The experimental results for CDX2 show large scatter, especially at large KCX. The 
range is from a minimum of near zero for low KCX to a maximum near to 200 for 
high KCX. However, it has been found that the relative importance of the linear 
friction term including the drag coefficient CDX2 is very small at values of KCX > 10, 
where flow separation occurs. Its effect is only considerable at low values of KCX. 
Therefore, a value of CDX2=25.0 has been estimated for use in the numerical model 
by considering the average of its computed values for the range of KCX<10.0. 

RESULTS AND DISCUSSIONS 
The BEM-FEM model, employing modified resistance coefficients and their 
experimentally estimated values, has been used to model waves over a submerged 
breakwater. The comparisons with experimental results confirm the importance of 
the modified coefficients. 

A velocity vector diagram and the wave profile along the wave tank at t/T=5.0 are 
shown in Fig. 5. It is obvious that the water flows into the breakwater at the 
locations of the wave crests and flows out of it at locations of the wave trough. 
The areas over the leading edge of the crown and on the offshore slope have higher 
velocities than the other locations inside the breakwater. There is a rapid change in 
the free surface as the waves encounter the structure. 

1CM/S 

Fig.5 Wave deformation around and water velocity inside the breakwater at 
t/T=5.0 (h/gT2 = 0.029,H/h = 0.11) 
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The computed and measured water surface levels over the crown of the 
breakwater at X/L=0.30 and X/L=0.50 for a wave height (H) 3.0 cm and period 
(T) 1.40 sec are plotted in Fig.6. The BEM-FEM model agrees well with the 
measured water levels along the crown of the submerged breakwater. The waves 
are very nonlinear and asymmetric. Computations have also been conducted to 
evaluate the average wave setup (fj) at X/L=0.30 and 0.50 over the crown. It is 
obvious that the differences between the BEM-FEM model results and the 
experiment are small (Fig.6). 

Fig.6a Free surface elevation at X/L=0.30 over the crown 
(h/gT2 =0.015, H/h = 0.11) 

Fig.6b Free surface elevation at X/L=0.50 over the crown 
(h/gT2=0.015,H/h = 0.11) 

The value of rin^ along the wave tank has been used to represent the wave energy 
and comparison has been made between its measured and computed values along 
the wave tank (Fig.7). The measured and computed values are in good agreement. 
A partial standing wave is formed offshore of the breakwater and nonlinear wave 
damping occurs across the crown leading to a small transmitted wave to the lee 
side. 
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Fig .7 water level variation along the wave tank (h/gT2 =0.015, H/h = 0.11) 

The computed and measured values for the maximum water particle velocity 
components (Um and W^ along the crown of the breakwater are shown in Fig.8. 
While Um has been used to denote the maximum horizontal porewater velocity 
over the crown, Wm has been used to express the maximum vertical seepage 
velocity along it. The results are compared for a wave height (H) of 3.0 cm and 
period (T) of 1.0 sec. It can be observed that the numerical model results agree 
qualitatively well with the experimental ones. However, the values computed by 
the numerical model seem to be higher than that in the experiment. The velocities 
have been measured in the experiment at a small distance over the crown but, in 
the BEM-FEM model, the velocities have been computed exactly on the crown 
surface. It has been found that the locations of the maximum horizontal and 
vertical velocities are located at the offshore crown corner of the breakwater. This 
is in agreement with earlier investigations that have also proved experimentally that 
the point of maximum wave force is at the same location (Mizutani et al., 1992). 
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Fig. 8a Maximum horizontal porewater velocity along the crown 
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Fig. 8b Maximum vertical seepage velocity along the crown 
(h/gT2 = 0.029, H/h = 0.11) 

CONCLUSIONS AND PERSPECTIVES 
1) A numerical model is presented which simulates the nonlinear interaction between 

free surface waves and a submerged permeable breakwater. Modified resistance 
coefficients have been developed from experimental measurements and improved 
the results of the BEM-FEM model. 

2) The model accurately predicts the partial standing wave that is formed offshore 
of the breakwater and the damping which occurs along it causing a small wave to 
be transmitted to the lee of the breakwater. The model can accurately estimate 
the transmitted wave height resulting from the combined effects of reflection, 
shoaling and dissipation. 

3) The numerical model has been shown to compute with good accuracy the wave 
kinematics inside and around the submerged breakwater. Therefore, this model 
can be used further for studying the stability of the armor of the breakwater. 

4) The point of maximum velocity along the submerged breakwater is at the 
offshore corner of the crown for all wave conditions tested in this study. As a 
result, the location of the maximum wave forces on the armor units is also at the 
offshore crown corner. 

5) The model may be used to optimize the submerged breakwater shape, size and 
properties for site specific design requirements. 
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