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Abstract 

This paper deals with the fluid-structure interaction analysis of a shell partially 

filled with a liquid. The shell is considered to be thin and the Kirghoff-Lave 

linear theory hypotheses are applied. The liquid is ideal and incompressible. The 

problem of analysing the dynamics of shells of revolution partially filled with an 

ideal incompressible liquid was reduced to solving the system of singular 

integral equations. The solution was obtained by using a coupled BEM and FEM 

in-house solver. The tank structure is modelled by the FEM and the liquid 

sloshing in the fluid domain is described by the BEM. The shell vibrations 

coupled with liquid sloshing under the force of gravity were considered. The 

shell and sloshing modes were analysed simultaneously. The free vibration 

analysis of the elastic cylindrical shell was carried out using the proposed 

techniques. 

Keywords: fluid-structure interaction, liquid sloshing, free vibrations, boundary 

and finite element methods, systems of singular integral equations. 

1 Introduction 

Sloshing is the low frequency oscillations of the free surface of a liquid in a 

partially filled container. The dynamic response of structures containing the 

liquid can be significantly influenced by these oscillations and their interaction 

with the sloshing liquid may lead to instabilities in different engineering areas 

such as aerospace and chemical industry, power machine building, wind power 

engineering, transport, etc. Usually liquid storage tanks are filled with oil, 

flammable or toxic liquids. Destruction of these tanks by seismic action or 

shockwaves from a nearby explosion can lead to environmental catastrophe. So 
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seismic design of liquid storage tanks requires the knowledge of sloshing 

frequencies and the hydrodynamic pressure on the walls [1]. Complex 

experimental investigation of loading processes is difficult and sometimes 

impossible for various reasons. Hence mathematical modeling of physical 

processes with the help of advanced computer techniques is a basic approach for 

these problems. Numerical methods are especially useful when the geometry of 

the container is complicated and the sloshing in the container cannot be 

analytically investigated. Various approaches have been proposed to research the 

fluid-structure interaction problems, including the finite difference methods [2], 

the finite element methods [3], the boundary element methods (BEM) [5–10]. 

The research findings are summarized in [11]. The dynamic analysis of shell 

structures is usually accomplished by usage of the finite element programs. 

However such 3D finite element analysis including the contained fluid is 

complex and extremely time consuming. In [7–9] authors offer the approach 

based on the boundary element method to the problem of free vibrations of fluid-

filled shell of revolution as well as to the problem of liquid sloshing in rigid 

tanks. 

     In this paper the free vibration analysis of an elastic cylindrical shell coupled 

with the liquid sloshing is carried out. Here we use combination of reduced finite 

and boundary element methods. The analysis consists of several stages, each 

represents a separate task. The frequencies and modes of the empty shell 

vibrations are defined in the first stage. The displacement vector, that is the 

solution of the coupled problem, is sought as a linear combination of natural 

modes of an empty shell. So we define the frequencies and free vibrations modes 

of the fluid-filled elastic shell without including the force of gravity. Then we 

obtain the frequencies and free vibrations modes of the liquid in the rigid shell 

under the force of gravity. Two latter problems are solved using the reduced 

BEM. Then we come to the problem of coupled analysis of liquid sloshing and 

structural vibrations. 

2 Problem statement 

Let us consider the coupled problem for the shell of revolution interacting with a 

liquid (Figure 1). We indicate the wetted part of the shell surface through S1 and 

the free surface of a liquid as S0. Suppose that the shell geometry is defined with 

respect to a global Cartesian coordinate system x,y,z and the free surface located 

in xOy plane in a state of rest. 

     The main objective of this paper is to find out and evaluate modes and 

frequencies of free vibrations of an elastic shell of revolution coupled with liquid 

sloshing. In this study the contained liquid is assumed to be inviscid and 

incompressible one and its flow induced by vibrations of the shell is irrotational. 

     Under these suppositions, there exists a velocity potential Φ satisfying the 

Laplace equation. The equations of motion of the two media (the shell, S1, and 

the fluid with free surface, S0, (see Figure 1)) can be written in the following 

form: 

( ) ( ) L U M U P ,                                             (1) 
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Figure 1: А shell of revolution partially filled with a liquid. 

where U is the vector-function of displacements, P is the fluid pressure on a 

moistened surface of the shell, and L and M are the operators of elastic and mass 

forces. 

     Let us consider the right-hand side of equation (1). Notice that the vector P 

points in the normal direction to the shell wall because an ideal fluid produces 

only a normal pressure on a moistened body. We will denote pP . Assuming 

that the natural velocity of the fluid is zero, the value p, according to the Cauchy-

Lagrange integral, can be represented as follows 

  0l tp gz p      , 

where Φ is the velocity potential, g is the free fall gravity acceleration, z is the 

vertical coordinate of a point in the liquid, 0p  is the atmospheric pressure and 

l  is the fluid density. To obtain the boundary equations on the free surface we 

have formulated dynamic and kinematics boundary conditions. The dynamic 

boundary condition consists in equality of the liquid pressure on the free surface 

to atmospheric one. The kinematics boundary condition requires that liquid 

particles of the free surface remain on it all the time of subsequent motion. So we 

have 

0

0

0; 0
S

S

p p
n t

 
  

 
, 

where an unknown function  , , ,t x y z   describes the form and location of 

the free surface. Thus, we obtain the following boundary value problem to define 

the velocity potential Φ: 

2 0   , 
1

w

S t



 


n

, 
0

0

0; 0
S

S

p p
t

 
  

 n
. 

     Here w indicates the normal component of the shell deflection, n is an 

external unit normal to the shell wetted surface. So we reduce the problem under 

consideration to the following system of differential equations: 
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( ) ( ) p L U M U n ; 0lp gz p
t

       
; 0   

with the next set of boundary conditions relative to Φ  

1

w

S t



 


n

, 

0S t

 


 n
, 

0

0
s

gz
t


 


 

and fixation conditions of the shell relative to U. 

     To define coupled modes of harmonic vibrations we represent the vector U in 

the form U=u exp(it), where  is an own frequency and u is a mode of 

vibration of the considered shell with a fluid. 

3 The mode superposition method for coupled  

dynamic problems 

We will seek modes of the fluid-filled shell vibrations in the form 

1

N

k k

k

c


u u ,                                                   (2) 

where ck are unknown coefficients and uk are the normal modes of vibrations of 

the empty shell. In other words, a mode of vibration of the shell filled with a 

fluid is determined as a linear combination of normal modes of its vibration 

without liquid. 

     Let us note that the following relationships are valid 
2( ) ( ) , ( ( ), )k k k k j kj  L u M u M u u .                           (3) 

     Hence 
2( ( ), )k j k kj L u u ,                                           (4) 

where k is the k-th frequency of the empty shell vibrations. The above relations 

(3), (4) show that the abovementioned shell’s modes of vibration must be 

orthonormalized with respect to the mass matrix. 

     Let us seek Φ as a sum of two potentials 
1 2    as it was proposed in [9]. 

Represent the potential Φ1 as the following series expansion: 

1 1

1

N

k k

k

c 


   .                                                 (5) 

     Here time-dependant coefficients ck are defined in equation (2). 

     To determine 1k we have the following boundary value problems: 

1 0k  , 1

1

k
kw

S





n

, 
0

1 0k S
  .                                (6) 

     Note that the solution of boundary value problem (6) was obtained in [9]. 

     To determine the potential 2 we have to solve the problem of fluid 

vibrations in the rigid vessel taking into account the gravitational force. It leads 

to the following representation of the potential 2: 

2 2

1

M

k k

k

d 


   ,                                                 (7) 
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where functions 2k are natural modes of the liquid sloshing in the rigid tank. To 

obtain these modes we have solved the following sequence of boundary value 

problems: 

2 0k  ; 2

1

0k

S





n

;                                         (8) 

0

2 2; 0k k

S

g
t t

   
  

  n
.                                  (9) 

     We have differentiated the second equation in relationship (9) with respect to 

t and substituted there the expression for t  from the first one of (9). Suppose 

hereinafter that    2 2, , , , ,ki t

k kt x y z e x y z
  . Next, we obtain the sequence of 

eigenvalue problems with following conditions on the free surface for each 2k : 
2

2
2

k k
k

n g

  



.                                              (10) 

     The effective numerical procedure for solution of these eigenvalue problems 

using the boundary element method was introduced in [6]. 

     Finally, we obtain the following expression for the potential :  

1 2

1 1

N M

k k k k

k k

c d 
 

     .                                       (11) 

     It follows from equation (11) that function   can be written as 

1 2

1 1

N M
k k

k k

k k

c d
n n

 
 

 
 

   .                                    (12) 

     So, the total potential  satisfies the Laplace equation and the non-

penetration boundary condition due to validity of relations (6), (8). Noted that  

also satisfies the kinematics boundary condition as a result of representation 

(12). Satisfying the condition 
0

0
t s

gz   on the free surface, one can obtain 

the next equality 

1 2
1 2

1 1 1 1

0
N M N M

k k
k k k k k k

k k k k

c d g c d
z z

  
   

  
      

    .                 (13) 

     When functions 1k and 2k are defined, we substitute them in equation (1) 

and obtain the following relations: 

1 2

1 1 1 1

( ) ( ) ( ) ( )
N N N M

k k k k l k k k k

k k k k

L c t M c t c t d t  
   

     
        

     
   u u   ;       (14) 

21
2 2

1 1 1

0
M N M

k
k k k k k k

k k k

d g c d
n

  
  


  

   . 

     Here we have simplified equation (13) taking into account equations (6), (10). 

The first equation in (14) is valid on the wetted surface of the shell and the 

second one – on the free surface of the liquid. Considering the result of dot 

product of the first equation in (14) by uj and the second one by 2 j , taking into 

account relationships (3), (4) and orthogonality of natural modes of fluid 
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vibrations in the rigid vessel, we come to the next set of n+m second order 

differential equations to determine the unknown coefficients    ,k kc t d t : 

   2

1 2

1 1

( ) ( ) ( ) , ( ) ,
N M

j j j l k k j k k j

k k

c t c t c t w d t w  
 

 
     

 
                 (15) 

     21
2

1

, 0
N

k
j k j j j

k

d t g c t g d t
n

  


     
 . 

     To define coupled modes of harmonic vibrations we represent the time-

dependant unknown coefficients as 

   ;i t i t

k k k kc t C e d t D e   ,                                (16) 

where  is an own frequency, and ,
k k

C D  are unknown constants. 

     Taking into account equations (16), one can obtain that equations (15) can be 

expressed as 

   2 2 2 2

1 2

1 1

, , 0, 1,
N M

j j j l k k j k k j

k k

C C C w D w j N     
 

 
      

 
  ;    (17) 

2 2 1
2

1

, 0, 1, .
m

k
l l l k l

k

D D g C l M
n

  


      
  

     Introducing the following matrixes and vectors 

   ; ;k kC C D D   2

j ijH    ;  2

k kiH    ; 

  1
2; , ; , 1, ; 1,k

jk jk jA a a k i N j M
n

       
; 

   1; , ;ki ki k iP p p w  ,    2; ,jk jk j kB b b w  , 

we come to the next eigenvalue problem: 
2 2 2 0

l l
EC H C PC BD        ; 2 0ED gAC H D    . 

     Introduce also for simplicity vectors and matrixes of doubled dimension 
N M  

C
X

D

 
  
 

; 2 2

0

E P B
H

E

  
  
 

; 
0H

G
gA H





 
  
 

. 

     It brings us to the following eigenvalue problem 

 2 0G H X  .                                            (18) 

     So the free vibration analysis of an elastic shell coupled with liquid sloshing 

is reduced to the solution of eigenvalue problem (18). It would be noted that 

hereinbefore we did not assume that the shell considered was a shell of 

revolution only. Hereinafter we will use the finite element method to define basic 

functions wj, and the boundary element method to define basic functions 1k, 2k. 
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4 Systems of the boundary integral equations and some 

remarks about their numerical implementation 

Now and hereinafter we consider the shells of revolution only. The basic 

procedure is to start with the standard boundary integral equation for the surface 

potential [5], replace the Cartesian co-ordinates (x, y, z) with cylindrical co-

ordinates (r, , z), and integrate with respect to z and . We use furthermore the 

cylindrical coordinate system and represent unknown functions as Fourier series 

by the circumferential coordinate 

       , , , cos ; , , , cos ; 1,2k k ij ijw r z w r z r z r z i        ,      (19) 

where  is a given integer (the number of nodal diameters). 

     We will seek both harmonic functions 1k and 2k. as the sums of potentials of 

single and double layers [5], i.e. we will use the direct boundary element method 

formulation. Hereinafter we will drop indexes ij for simplicity. It is assumed here 

that S = S1  S0 and the points P and P0 belong to the surface S. The value 

0P P  represents the Cartesian distance between the points P and P0. Let  be a 

generator of the surface S1. We obtain the following system of singular integral 

equations for unknown functions  and q: 

                 0 0 0 0 1 0 1

0

2 , , , ;

R

z z Q z z r z d q P P d w z P P r z d P S    
 

          ; 

               0 0 0 1 0 0

0

, , , ; .

R

z Q z z r z d q P P d w z P P r z d P S   
 

          (20) 

     Here 

         
22 2

0 0 0
0

4 1
, ;

2
r z

r r z z z z
Q z z k k n k n

r a b a ba b
  

                 
E F E  

   0

4
, ;P P k

a b
 


F      

/2

2 2 2

0

1 1 4 cos2 1 sink k d




       E ; 

   
/2

2 2
0

cos2
1

1 sin

d
k

k





 


 


F ;  2

2 2 *

0 0 0; 2 ;a z z b       2 2b
k

a b



 

     In doing so, the function , defined on the surface S1, presents the pressure on 

the moistened shell surface and the function q, defined on the surface S0, is the 

flux. To define potentials 2k we use equation (20) and introduce next integral 

operators: 

1

1 1 1 1

0

1
2

( , )
S

A dS
n r P P

   
 

 ; 

0

0 0 0

1
;

S

B dS
r

    

0

0 0 0

1

S

C dS
z r

         ;

1

1 1 1

0

1

S

D dS
n P P

  
 

  ; 

0

0 0 0

1

S

F dS
r

   .    (21) 

     Then the boundary value problem (8), (10) takes the form 

 2

1 0 0/A g B C     ; 0 1P S ;  2

1 0 02 /D E g F      ; 0 0P S . 

     After excluding function 1 from these relations, we will obtain the 
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eigenvalue problem and its solution gives natural modes and frequencies of 

liquid sloshing in the rigid tank 
1 1 2

0 0( ) ( ) 0; /DA C E DA B F g          . 

     Numerical solution of integral equation system (20) and evaluation of integral 

operators (21) were obtained by the BEM with a constant approximation of 

unknowns  and q inside elements. It would be noted that internal integrals in 

(20), (21) are complete elliptic integrals of first and second kinds. As the first 

kind elliptic integrals are non-singular, one can successfully use standard 

Gaussian quadratures for their numerical evaluation. For second kind elliptic 

integrals we have applied here the approach based on the following characteristic 

property of the arithmetic geometric mean AGM(a,b) (see [12]): 

 
/2

2 2 2 2
0

2 ,cos sin

d

AGM a ba b

  
 




 . 

     To define AGM(a,b) there exist the simple Gaussian algorithm, described 

below, 

0 0
0 0 1 1 0 0 1 1; ; ; ;.... ; ;...

2 2

n n
n n n n

a b a b
a a b b a b a b a b a b 

 
       

 , lim lim .n n
n n

AGM a b a b
 

                                       (22) 

     It is a very effective method to evaluate the elliptic integrals of the second 

kind. For instance, convergence 810n na b     was achieved after 6 

iterations. 

     So we have the effective numerical procedures for evaluation of inner 

integrals, but integral equations (22), (23) involve external integrals with 

logarithmic singularities and thus the numerical treatment of these integrals will 

also have to take into account the presence of this integrable singularity. Here 

integrands are distributed strongly non-uniformly over the element and standard 

integration quadratures fail in accuracy. So we treat these integrals numerically 

by special Gauss quadratures [5, 13] and apply the technique proposed in [14]. 

5 Some numerical results 

The study of free vibration characteristics of the elastic cylindrical shell 

interacting with a liquid is presented here. It is supposed that =0,1 in equations 

(19)–(21), i.e. we consider both axisymmetric and non- axisymmetric modes. 

     Three systems of basic functions have been built. The modes of the empty 

shell are the first one. The second system consists of free vibration modes of the 

elastic shell without including the force of gravity, and the third one represents 

modes of liquid sloshing of the rigid tank with the gravity force. 
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     Consider the circular cylindrical shell with a flat bottom and having the 

following parameters: the radius is R = 1 m, the thickness is h = 0.01 m, 

the length L = 2 m, Young’s modulus E = 2·105 MPa, Poisson’s ratio ν = 0.3, the 

material’s density is  = 7800 kg/m3, the fluid density l = 1000 kg/m3. The fluid 

filling level is denoted as H. The shell is assumed to be pin-connected over its 

contour and boundary conditions are following: 0
r z

u u u    to z = 0 and 



r = R. The own modes of the empty shell vibrations were obtained using the 

finite element method (FEM) as it was described in [8]. The second set of basic 

functions was obtained in [7, 8]. To obtain the third set we consider liquid 

sloshing in the rigid cylindrical shell. We use the analytical solution [11] that can 

be expressed in the next form for testifying the proposed numerical algorithm: 

2

tanh , 1,2,..k
k k

H
k

g R

     
 

; 1

2
cosh coshk k k

k
J r z H

R R R


              
     

.   (23) 

     Noted that in (23) values k  are roots of the equation   0J x  , where 

 J x  is Bessel function of the first kind, k, 2k are frequencies and modes of 

liquid sloshing in the rigid cylindrical shell. The numerical solution was obtained 

by using the BEM as it was described beforehand. In present numerical 

simulation we used 60 boundary elements along the bottom, 60 elements along 

wetted cylindrical parts and 100 elements along the radius of free surface. Figure 

2 shows the first three modes of liquid sloshing in the rigid cylindrical shell for 

=0 and =1. 
 

 

  =0:            n=1       n=2    n=3 

 

  

  =1:            n=1       n=2    n=3 

Figure 2: Modes of liquid sloshing in the rigid cylindrical shell. 

     Table 1 below provides the numerical values of the natural frequencies of 

liquid sloshing for nodal diameters =0 and =1. The obtained numerical results 

are compared with those received using formulae (23). 
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Table 1:  Comparison of analytical and numerical results. 

 n=1 n=2 n=3 n=4 n=5 

=0 
BEM 3.815 7.019 10.180 13.333 16.480 

(23) 3.815 7.016 10.173 13.324 16.470 

=1 
BEM 1.657 5.332 8.540 11.711 14.889 

(23) 1.657 5.329 8.536 11.706 14.863 

 

     Figures 3 and 4 also demonstrate good agreement between numerical and 

analytical data. 
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Figure 3: Numerically and analytically obtained modes. 
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Figure 4: Sloshing modes on the vertical wall. 

     In Figure 3 the distributions of first three sloshing modes for  = 0 on the free 

surface are shown. The solid lines denote modes obtained by analytical 

expression (23) at z = H. 

     Figure 4 demonstrates the distributions of the same modes on the rigid 

vertical wall. The lines pointed with circles and squares denote numerical 

solutions. Numbers 1, 2, 3 correspond to the first, second and third modes of 

liquid sloshing. It would be noted that the accuracy 410   has been achieved 

here. 
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     Functions 1k were calculated by the BEM based method developed in [8, 

16]. 

     Table 2 provides the numerical values of natural frequencies of vibration for 

empty and fluid-filled cylindrical tanks. Here coefficients nS, nL indicate numbers 

of modes of the shell and liquid involved in coupled vibrations, n is the number 

of the coupled mode. For numerical simulation we have used here 4 shell modes 

and 5 sloshing modes. 

Table 2:  Frequencies of empty and fluid-filled tanks. 

 = 0  = 1 

n nS nL 

Empty 

elastic 

tank 

Fluid-

filled 

tank 

nS nL 

Empty 

elastic 

tank 

Fluid-

filled 

tank 

1  1  6.11932  1  4.03300 

2 1 1,2 23.233 7.94464  2  7.2328 

3  2  8.29916  3  9.15547 

4  3  9.99588  4  10.7233 

5  4  11.4410  5  12.0857 

6  5  12.7239 1,2  48.5207 21.9555 

7 2,1  91.1011 43.8628 2,1  139.708 79.7191 

8 3,2  205.252 119.627 3,2,1  232.443 178.422 

9 4,3,2  365.795 238.695 4,3  277.303 210.007 

 

     The numerical analysis demonstrates that the lowest frequency corresponds to 

liquid sloshing at  = 1. The frequencies of the fluid-filled shell are essentially 

lower than those of the empty shell. It also would be noted that there exist an 

interaction between both liquid and wall vibrations. It was observed for the first 

shell mode. This does not allow us to consider separately the spectra of 

frequencies of the shell and liquid sloshing. 

6 Conclusions 

The shell vibrations coupled with liquid sloshing under the force of gravity were 

considered. The free vibration analysis of the elastic cylindrical shell was carried 

out using the proposed techniques. We introduce the representation of the 

velocity potential as the sum of two potentials, one of them corresponds to 

problem of the fluid free vibrations in the rigid shell and another one corresponds 

to the problem of fluid-filled elastic shell vibrations without including the 

gravitational component. The spectrum of frequencies for cylindrical tank was 

analysed. The proposed method allows us to carry out numerical simulation for 

different value of gravitational acceleration g. 
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