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Bench-to-bedside strategies for osteoporotic fracture: From

osteoimmunology to mechanosensation
Yong Xie1, Licheng Zhang1, Qi Xiong2, Yanpan Gao3, Wei Ge3 and Peifu Tang1

Osteoporosis is characterized by a decrease in bone mass and strength, rendering people prone to osteoporotic fractures caused by

low-energy forces. The primary treatment strategy for osteoporotic fractures is surgery; however, the compromised and

comminuted bones in osteoporotic fracture sites are not conducive to optimum reduction and rigid fixation. In addition, these

patients always exhibit accompanying aging-related disorders, including high inflammatory status, decreased mechanical loading

and abnormal skeletal metabolism, which are disadvantages for fracture healing around sites that have undergone orthopedic

procedures. Since the incidence of osteoporosis is expected to increase worldwide, orthopedic surgeons should pay more attention

to comprehensive strategies for improving the poor prognosis of osteoporotic fractures. Herein, we highlight the molecular basis of

osteoimmunology and bone mechanosensation in different healing phases of elderly osteoporotic fractures, guiding perioperative

management to alleviate the unfavorable effects of insufficient mechanical loading, high inflammatory levels and pathogen

infection. The well-informed pharmacologic and surgical intervention, including treatment with anti-inflammatory drugs and

sufficient application of antibiotics, as well as bench-to-bedside strategies for bone augmentation and hardware selection, should

be made according to a comprehensive understanding of bone biomechanical properties in addition to the remodeling status of

osteoporotic bones, which is necessary for creating proper biological and mechanical environments for bone union and

remodeling. Multidisciplinary collaboration will facilitate the improvement of overall osteoporotic care and reduction of secondary

fracture incidence.
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INTRODUCTION
The major characteristic of osteoporosis is a decrease in bone
mass and quality,1 rendering people prone to osteoporotic
fracture (fragility fracture) caused by low-energy trauma.2

Osteoporosis is a prevailing skeletal disease of the elderly; nearly
200 million osteoporotic patients are diagnosed annually, and
almost 9 million osteoporotic fractures occur worldwide.3 Surgery
is the primary treatment strategy for osteoporotic fracture;
however, poor prognoses are presented due to the combination
of biological and surgical factors.4 The common sites of
osteoporotic bones are usually compromised and comminuted,
which makes it hard to achieve an optimum reduction and stable
fixation.3,5 Osteoporotic fractures occur mostly in elderly patients,
who exhibit underlying, unfavorable systemic conditions that are
prone to complications.6 The abnormal remodeling status of bone
with osteoporosis would deteriorate after bed braking, which
poses a disadvantage with respect to fracture healing and bone
callus strength; furthermore, the refracture risk following surgery
increases significantly.7 In terms of the complexity of treatment
and poor prognosis, the annual facility-related hospital cost of
osteoporotic fractures is the highest (up to $5.1 billion), followed
by that of myocardial infarction and stroke.8

Although the results of the clinical studies remain controversial,
the majority have demonstrated that decreased callus area

(20%–40%) and bone mineral density (BMD) occur in the fracture
sites of elderly osteoporotic patients4. Studies have indicated that
the delayed or nonunion of osteoporotic fractures is implicated in
the scarce capacity of bone regeneration with aging.9,10 Addi-
tionally, the bone properties of such patients are quite different
from those of normal individuals and are manifested in the
decrease of bone mechanics and mechanosensation, as well as
the abnormal bone metabolism caused by immune disorders.11 To
improve the current unsatisfactory status of osteoporotic fracture
treatment, we must first gain an in-depth understanding of the
mechanism of fracture healing in elderly patients with osteoporo-
sis. Herein, we highlight the pivotal roles of mechanical loading
and osteoimmunology in aging-related osteoporotic fractures,
guiding the intervention in osteoporotic fracture patients
combined with an optimal treatment strategy for improving the
overall standard of care and reducing the incidence of secondary
fracture.

STATIC AND DYNAMIC CHANGES IN OSTEOPOROTIC BONE
Bone is a unique tissue due to its elasticity and strength
that permits deformation under a certain level of loading
stress before failing.12 The strength of bone is mainly dependent
on the distribution and density of the inorganic matrix
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mineralization.13 Cortical bone consisting of dense and well-
organized lamellae has higher strength but a lower capacity to
withstand a load that exceeds the elastic deformation range
compared with that of trabecular bone, which is composed of
unparallel lamellar units with variable porosity (50%–90%).14 The
mechanical competence of cancellous bone is based largely on
the BMD, while the stiffness of cortical bone is highly dependent
on its porosity.3,15 In contrast to calcified matrix mineralization,
the organic matrix (e.g., collagen and noncollagenous proteins)
is thought to control bone ductility and its capacity to withstand
an impact without cracking.16 A large proportion (90%) of the
organic matrix is composed of type I collagen, which undergoes
numerous posttranslational modifications.17Among them, enzy-
matic modifications positively affect the biomechanical stability
of bone, while nonenzymatic crosslinking is associated with a
deterioration in these properties.16 Noncollagenous proteins,
including osteopontin (OPN) and osteocalcin (OCN), account for
10% of the organic matrix and limit crack energy through the
control of hydroxyapatite size and orientation.18 Whereas bone
material properties provide only a static snapshot of bone
quality, the abilities of self-regeneration and remodeling provide
a dynamic profile of bone health.19 The cortical and trabecular
bone both undergo lifelong remodeling coupled with bone
resorption, which is mediated by osteoclasts following osteo-
blastic bone formation.20 Osteoclasts are of hematopoietic stem
cell (HSC) origin and share precursors with macrophages.21 In
the presence of macrophage colony-stimulating factor (M-CSF),
osteoclast precursors differentiate to preosteoclasts by the
binding of receptor activator of nuclear factor kappa-B ligand
(RANKL) to its cognate receptor, receptor activator of nuclear
factor kappa-B (RANK). These mononuclear preosteoclasts then
fuse to form multinuclear bone-resorbing osteoclasts.21 In
contrast, osteoblasts are derived from mesenchymal stem cells
(MSCs),22 and osteoblastic bone formation is separated from
resorption by a reversal phase for several weeks.23 Mature

osteoblasts then differentiate into osteocytes, which reside in
small lacunae inside the calcified bone matrix.24 The long
dendritic extensions of osteocytes together with the cell bodies
form the lacuno-canalicular network (LCN), which allows direct
signal transduction. The speed of mineral accumulation in the
bone remodeling cycle is also affected by numerous endocrine
factors, such as parathyroid hormone (PTH) and estrogen, which
are supplied by the bone vascular systems.25,26 However, the
normal regulation of bone remodeling could be interrupted as a
consequence of skeletal senescence,27,28 which impact the
integrity and biomechanical properties of both cortical and
cancellous bones.29 The abnormal bone remodeling shifts
toward bone resorption, which is either due to excessive
activation of osteoclasts or to a low capacity of bone
regeneration.30 In addition, age-related loss of proteostasis
and increased levels of oxidants result in the overaccumulation
of inorganic pyrophosphate (PPi) or advanced glycation end-
products (AGEs). During the development of osteoporosis,
osteocyte numbers per unit of bone area are gradually
reduced,31 resulting in decreased trabecular thickness and more
intracortical porosity.32 These considerable changes in the
matrix composition and structure cause deterioration of bone
quality and compromise its resistance to mechanical loading.33

Thus, osteoporotic fractures are the macroscopic result of
microstructural alterations that increase the susceptibility of
bone to the applied load34 (Fig. 1).

OSTEOIMMUNOLOGY IN HEMATOMA AND INFLAMMATORY
PHASES
Secondary fracture healing occurs after a fracture without rigid
fixation. Under the influence of active loading, an external callus is
initiated to bridge the fracture gap35 in a three-stage process
consisting of inflammation, repair, and remodeling.36 The first two
of these partially overlapping phases restore bone structure and
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Fig. 1 Static and dynamic changes in osteoporotic bone. An osteoporotic fracture is the macroscopic result of microstructural alterations that
change the response of bone to the applied load. The aging process in osteoporotic bone would lead to overaccumulation of PPi, AGEs, and
nonenzymatic crosslinking of collagen, which disturb the normal organization of bone material. With the increase of bone resorption and low
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continuity over a period of 3 months to allow full weight bearing.
The last phase involves gradual remodeling of bone to withstand
the usual strains of daily life.37 In contrast, primary fracture healing
without formation of a periosteal callus usually requires direct
contact of compact bone or rigid surgical intervention that makes
the fracture gap <200 μm. However, elderly osteoporotic bones,
such as metaphyseal sites, which are highly susceptible to bone
degradation, make it difficult to maintain anatomical reduction
and rigid fixation using traditional screws due to inadequate
insertional torque.38 In this situation, the healing process will be
more like indirect bony union with the response of loading and
inflammation, forming a periosteal callus bridging the fracture
gap. The specific osteoimmunology and mechanosensation status
of patients with osteoporotic fractures affect these healing phases
in different manners.39

Bone fracture induces immediate inflammation and bleeding
around bone extremities and within the medulla, where a
template is formed for callus formation, called a hematoma.40

Around the hematoma sites, inflammatory cells, such as macro-
phages/monocytes or B/T cells, are activated to release inflam-
matory cytokines, including tumor necrosis factor alpha (TNF-α),
interleukin-1 (IL-1), and interleukin-6 (IL-6) into the systemic
circulation.41 These cytokines are responsible for the initiation of
immune and inflammatory responses,42 including enhancement
of blood flow and vessel permeability, as well as the recruitment
of immune cells for pathogen clearance.43 The limited inflamma-
tory response is required to initiate the repair cascade and
mobilize all the required factors involved in the early bridging of
the fracture gap, especially in indirect bony unions without rigid
fixation.44 The interactions between the skeletal system and
immune function, comprising osteoimmunology, in osteoporotic
fractures are altered with age.45 It has been reported that an age-
associated decline in the absolute numbers of human B cell
precursors in bone marrow46 leads to a significant decrease in the
number of mature human B cells.47,48 Compared with young
adults, the B cell repertoire is less diverse in elderly individuals.49

As to T cells, studies exhibit reductions of proliferation and helper
function in CD4+ T cells that recruit neutrophils and macrophages
to infected sites of elderly individuals.50 Consistent with this
finding, the impaired neutrophil51/monocytes52-mediated phago-
cytosis also showed an age-dependent reduction.53 In contrast,
the expression of Toll-like receptors (TLRs), a group of pattern
recognition receptors (PRRs) that trigger pro-inflammatory
responses,54 is increased in monocytes and dendritic cells in
elderly people, accompanied by increased production of IL-1 and
TNF-α.55 In vitro and in vivo studies have shown that persistent
tumor necrosis factor (TNF) expression impairs cell-mediated
immune responses and Th2 differentiation from naïve T cells.56–58

Moreover, constant stimulation by TNF-α elevates the threshold
for T cell activation via the T-cell receptor (TCR), attenuating T cell
responses to antigen59 and negatively affecting angiogenesis
during fracture healing.60 Thus, the early immune responses and
pathogen clearance of aged patients with osteoporotic fractures
would be impaired or delayed due to the insufficient acquired
immunity and dysfunction of the innate immune system.61

Furthermore, pathogen infections induce host inflammation and
contribute to local bone loss. The most frequent pathogen
identified in bone infection is Staphylococcus.62 Staphylococcus
aureus protein A induces the production of inflammatory
cytokines, such as TNF-α,63 IL-6, interleukin-1 alpha (IL-1α),64

interleukin-1 beta (IL-1β),64 and neutrophil-attracting chemokines
in local tissues. On the one hand, short-term (24 h) upregulated
cytokines, such as TNF-α are essential for local recruitment of
neutrophils,41 macrophages, and T cells for pathogen clear-
ance.65,66 However, the long-term presence of these cytokines,
especially TNF-α, IL-1, and IL-6, activates CD4+ T cells, promoting
RANKL expression by osteoblasts67 and synergizing directly with
RANK to amplify osteoclastogenesis68 and bone resorption.69

In general, high levels of pro-inflammatory cytokines, either in
the circulation or local tissues, are found in the aged
population.70 Serum IL-1, IL-6, and/or TNF-α levels have been
shown to be upregulated in elderly patients with bone loss,70

supporting the hypothesis of increased inflammation with
aging.71 In fact, TNF-α promotes bone resorption by both
directly inducing osteoclast differentiation72 and inhibiting
osteoblast differentiation and function.73,74 IL-1 drives osteo-
clast differentiation via a RANKL/RANK-independent mechan-
ism.75 IL-6 indirectly plays a positive role in osteoclast
differentiation by binding IL-6 receptors expressed on osteo-
blastic cells to induce RANKL expression.76 Neutrophils stimulate
osteoclastogenesis by upregulating cell surface RANKL expres-
sion under TLR stimulation77 or by inducing osteoblast retrac-
tion.78 Interferon gamma (IFN-γ), secreted by anti-inflammatory
macrophages (M2), inhibits osteoclast differentiation via rapid
degradation of TRAF6.79 However, macrophage polarization
shows a shift toward macrophages (M1) that promote inflam-
matory cytokines as a consequence of aging.80 In contrast,
mature B cells are important regulators of a decoy receptor for
RANKL, osteoprotegerin (OPG). In total, 40% of the OPG in bone
marrow is produced by mature B cells alone.81 The increased
bone resorption and low levels of bone marrow OPG were
demonstrated in B cell-deficient mice; this defect can be
normalized by the transplantation of B cells. As a result of the
decreased number of mature human B cells, the supply of OPG
is low in patients with osteoporosis. Thus, current evidence
supports that the high RANKL/OPG ratio caused by aging-
related inflammation and the lack of mature B cells is associated
with the hyperactivation of osteoclastogenesis and aggravation
of bone resorption in elderly patients with bone loss, which
increases the incidence of further intraoperative or postopera-
tive fractures (Fig. 2). Moreover, Nagae et al. concluded that
overactivation of osteoclasts plays an important role in chronic
pain after osteoporotic fracture by creating acidosis.82 Hyper
osteoclast activity may lead to pathological modifications of
bone sensory nerve fibers, with an overexpression of acid-
sensitive pain receptors, which contributes to generating and
maintaining pain in osteoporosis.83

MOLECULAR BASIS OF BONE MECHANOSENSATION
Primary fracture healing occurs when the fracture site achieves
rigid anatomical and mechanical fixation. Under these conditions,
a soft callus enveloping the bone extremities subsequently
calcifies to a peripheral solid callus by intramembranous ossifica-
tion.35 However, in elderly osteoporotic bones, the healing process
will be more like indirect bony union by forming a periosteal callus
bridging the fracture gap, since it is usually difficult for the
compromised bones to maintain enough stress stimulation.84

Among the bone multicellular units (BMUs), which consist of
various cells involved in bone remodeling, the osteocytes
embedded in the matrix function as major mechanosensitive
cells.85 Substantial evidence indicates that the mechanosensation
of osteocytes is mediated by signaling molecules, such as Wnts,
bone morphogenetic proteins (BMPs), nitric oxide (NO), and
prostaglandin E2 (PGE2) in response to mechanical stimulation.86

Furthermore, altered enzyme activity and RNA synthesis have
been reported in osteoclasts after mechanical loading of intact
bone, which further supports the mechanosensory role of
osteocytes in bone.87 Thus, adequate mechanical loading and
mechanotransduction are pivotal factors in the repair and
remodeling phase of fracture healing.
Mechanical forces, including fluid flow as well as compressive/

tensile forces in the LCN,13 induce cell-level physical signals of
shear stress, electric/streaming potentials, and substrate strain by
acting on cell surface sensors and within the signaling pathways.88

To date, evidence strongly suggests that integrins on the surface
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of bone cells are ubiquitous sensors of mechanical forces capable
of detecting alterations in the mechanical environment in the
extracellular milieu.89 Shear strain is detected by primary cilia via
polycystin 1 (PC1) and transient receptor potential cation channel
subfamily V member 4 (TRPV4), which activate signal transducer
and activator of transcription (STAT) signals to induce ion flux.90

Wnt signaling is also activated by cilia via the noncanonical
pathway, resulting in β-catenin degradation.91,92 The role of
canonical Wnt in the suppression of the SOST gene (sclerostin) has
also been demonstrated.93 Furthermore, fluid shear stress can
activate voltage-sensitive calcium channels on the plasma
membrane, leading to influx of Ca2+, which induces
PGE2 synthesis via ATP and inhibits NO generation as a second
messenger.94,95 PGE2 and ATP are released via connexin hemi-
chanels formed following extracellular signal-regulated kinase1/2
(ERK1/2)-induced transcription of connexin-43 (Cx43).96,97 Com-
pressive/tensile forces impose hydraulic pressure in the lacunar-
canalicular system,89 which increases cellular deformation of
osteocytes98. The substrate strain at the membrane can be sensed
by integrins that transmit force to the cell cytoskeleton via ERK,
proto-oncogene tyrosine-protein kinase Src (SRC) and replication
origin activator (ROA) to induce stress fiber polymerization.98 The
cell nucleus plays crucial roles in response to cellular mechan-
otransduction. Transcriptional regulation in the cell nucleus
converts incoming mechanoresponsive signals into biological
signaling and even directly responds to cellular deformation.99

These intracellular signaling pathways converge to modulate
osteogenic transcription factors in addition to regulators of
growth factors and matrix proteins required for osteogenesis.
Evidence suggests that mechanical signals induce OPG and
suppress RANKL to inhibit osteoclast differentiation.100

The morphological changes of osteocytes with aging have been
reported to influence their mechanosensitivity and the response
to loads.101 Changes in LCN volume due to the increased rate of
osteocytic osteolysis with aging or trauma have been shown to
affect local bone mechanosensation.102 Additionally, age-related
changes in periosteal modeling arise from cell function/signaling
deficits combined with increased marrow adiposity leading to a

reduced pool of osteoblast progenitors.103,104 Furthermore,
periosteal lining cell numbers and osteoblast life-span are reduced
by an increased rate of apoptosis.105 There is an age-related switch
in macrophage differentiation from the anti-inflammatory (M2)
phenotype that mediates tissue repair to the inflammatory (M1)
phenotype.53 As a consequence of the decline in the secretion of
anti-inflammatory and osteogenic cytokines, the bone regenera-
tion capability could be impaired in the process of remodeling
osteoporotic fractures.7 In osteoporotic fractures, the inevitable
immobilization and stress shielding achieved by orthopedic
surgery reduce the mechanical loading compared with that at
normal sites.106 The deficiency of stress loading on surface sensors
of bone cells is accompanied by NF-κB activation of osteoblasts
and neighboring immune cells that promotes RANKL production
to trigger osteoclastogenesis and bone resorption.107,108 This
process results in the excess removal of bone mass,93 which
therefore leads to a coarse trabecular pattern and thinning of
cortical bone. Estrogen controls the adaptation of osteoblasts and
osteocytes to mechanical loads via binding to the estrogen
receptor (ER) or activation of TGF1 receptors.109 Delayed ER
expression was shown to be correlated with impaired callus
formation capacity in the healing process.110 A study in humans
suggested that mechanical interventions enhance periosteal
modeling and bone strength in the young skeleton,111 while the
effects are markedly diminished in the elderly skeleton.111,112 In
vitro studies indicate that the age-related increase in osteocyte
degradation and reduction in the basal level of mechanosensation
significantly affect second messenger signaling to modulate bone
regeneration111 (Fig. 3). An optimal strategy for improving the
treatment of osteoporotic fractures must address both biological
and mechanical issues based on the molecular mechanisms of
mechanical loading in fracture healing.93

ANTI-INFLAMMATORY EFFECTS OF MECHANICAL LOADING
After the fracture gap has been bridged by a callus, the woven
bone is slowly replaced with lamellar bone structures. Balanced
resorption and formation of new bone require a normal
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environment without excessive inflammation.37 In these long-
term phases, mechanics play a pivotal role, not only as the forces
driving remodeling but also as the regulators that function to
inhibit inflammation and abrogate the associated repression of
growth factors and matrix synthesis.113 The traumatic signals
caused by fracture and surgery initiate pro-inflammatory signaling
cascades via activation of NF-κB transcription factors.114,115 NF-κB
activation leads to the production of high levels of NO and
superoxide that mediate both bone damage and matrix degrada-
tion.116 Mediators such as TNF-α, IL-1β, and matrix metalloprotei-
nases (MMPs) play key roles in the pathogenesis of inflammatory
bone diseases and injuries.117 In IL-1β-treated osteoblast-like cells,
mechanical signals have been shown to rapidly (within 10 min)
and dramatically inhibit NF-κB nuclear translocation.118 The
mechanism involves the inhibition of TNF receptor-associated
factor 6 (TRAF6) phosphorylation and subsequent activation of the
inhibitor of NF-κB kinase (IKK) complex.119 This process prevents
the proteosomal degradation of NF-κB inhibitor alpha (IκBα) and
NF-κB inhibitor beta (IκBβ) phosphorylation, which in turn inhibits
nuclear translocation of NF-κB and subsequent pro-inflammatory
gene transcription.120 In fact, mechanotransduction at low
magnitudes is a potent anti-inflammatory signal121 that counters
the NF-κB signaling cascade.122 In vitro studies in osteoblasts have
shown that the pro-inflammatory mediators suppressed by
mechanical signals (tensile, compressive, and shear) include IL-
1β-induced NO, COX-2, PGE2, cytokines (IL-1β and TNF-α), and

MMPs.123 Simultaneously, mechanical signals upregulate the
expression of growth factors, such as BMPs, OCN, and alkaline
phosphatase (ALKP), which are inhibited during inflammation.124

Several anti-inflammatory cytokines (IL-10) and tissue inhibitors of
metalloproteinases (TIMPs) that are inhibited during inflammation
are upregulated by mechanical signals. For instance, IL-10 and
TIMP-II synthesized by low magnitudes of mechanical signals can
suppress inflammation and matrix breakdown in osteoblast and
osteoblast-like cells.125 In contrast, exogenous PGE2 was demon-
strated to function as an intercellular messenger for enhancement
of the mechanosensitivity of bone to loading forces both in vitro
and in vivo.126 Furthermore, in the presence of PGE2 signaling,
osteocytes release NO in response to mechanical stimulation via
cytoskeletal adaptation and mitogen-activated protein kinase
(MAPK) pathways.127 Additionally, mechanical loading increases
ER-α expression at the fracture callus, which is beneficial for
mechanical signal transduction and fracture repair.128,129 These
data indicate that rigid fixation and adequate mechanical loading
are a means of improving the immune environment that benefits
bone healing130 (Fig. 4).

MANAGEMENT OF HEMATOMA AND PERIOPERATIVE
INFECTION
The most satisfactory bone healing depends on a good biological
environment and appropriate mechanical loading for bone repair
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and remodeling. Orthopedic surgeons are encouraged to famil-
iarize themselves with the molecular basis of skeletal senescence,
mechanical loading and osteoimmunology in osteoporotic frac-
tures, which is critical for determining an appropriate surgical
technique or nonsurgical intervention3. In terms of the decrease in
early immune responses and pathogen clearance in aged patients
with osteoporotic fractures, special preoperative management is
required to achieve a better local healing environment. Previous
studies have revealed the osteoimmunological role of hematoma
in fracture healing, especially in the inflammatory phase.42,131

However, there is still no consensus on hematoma management
among surgeons. Grundnes and Reikeras reported that early
removal of the hematoma (2–7 days) after fracture greatly
prohibited bone healing in an animal fracture model.132 Other
researchers, however, found that hematoma without normal
fibrinolysis was an obstacle to cellular trafficking, which subse-
quently inhibited fracture healing by impeding macrophage
accumulation.133 Thus, in clinical practice, early hematoma in the
fracture site should be preserved and induced to “mature”. Indeed,
the use of fibrin biomaterials, including platelet-rich plasma (PRPs),
platelet-rich fibrin (PRFs) and other treatments,134 mimicking the
structure of the natural hematoma, has demonstrated promising
effects on the improvement of fracture healing. In addition, early-
stage treatment with recombinant human platelet-derived growth
factor-BB (rhPDGF-BB) could be beneficial for vascularization and
angiogenesis in local sites,135 which would promote the recruit-
ment of progenitors and accelerate bone remodeling in fracture
healing of the elderly.136 In short, hematoma is a natural factor
that enhances fracture healing and should be preserved in
fracture sites, although thorough mechanisms are needed to be
well investigated. Due to the decline of immune responses and
pathogen clearance dysfunction in elderly patients with osteo-
porotic fractures, the prevention of perioperative infection
through the use of adequate doses of antibiotics is important
for maintaining a normal environment for initiating fracture

healing (Fig. 5). Consequently, in orthopedic surgery, antibiotics,
such as antibiotic-augmented acrylic cements/beads are increas-
ingly used in topical form.137 However, the enhanced antibiotic
treatment doses are thousands of times higher than those
required to inhibit bacterial growth.137 Current evidence suggests
that this concentration is detrimental to abnormal bone remodel-
ing as a result of negative effects on mitochondrial physiology.137

Thus, local antibiotic vehicles must be designed to deliver
sufficiently high concentrations to inhibit bacterial growth without
affecting bone cell metabolism.138

ANTI-INFLAMMATION AND REGULATION OF BONE
REMODELING
Increased RANKL/OPG ratios caused by aging-related inflamma-
tion are associated with hyperactivation of osteoclastogenesis and
exacerbation of bone resorption in elderly patients, leading to
subsequent impairment of bone healing and inflammatory pain.
Anti-inflammation therapy is a potential strategy that may benefit
aging-related osteoporotic fracture by reducing inflammation and
providing protection against bone loss. Studies have shown that
healthy transgenic mice injected with anti-TNF-α repeatedly
promote T cell responses to cognate peptide antigen.139 In the
clinical setting, anti-TNF-α (infliximab, Remicade) rapidly and
remarkably restores the responses of T cells from rheumatoid
arthritis (RA) patients.56 Treatment with infliximab protects against
bone loss and improves the formation/resorption marker ratio in
this population, suggesting beneficial systemic and local bone
effects.140,141 Although anti-inflammatory therapies have not been
used clinically to treat osteoporosis, they have shown good
promise in mouse models. Indeed, pharmacological or genetic
ablation of TNF142 and IL-1143 by somatic gene therapy144 has
been used effectively to prevent ovariectomy-induced bone loss
in mice. Thus, anti-inflammation therapy is a potential strategy
that may benefit osteoporosis patients because of reduced
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Fig. 4 Anti-inflammatory effects of mechanical loading. The mechanotransduction at low magnitudes is a potent signal to counter
inflammation activated by the NF-κB signaling cascade. IL-1 interleukin-1, LPS lipopolysaccharide, TRAF2 TNF receptor-associated factor 2,
TRAF6 TNF receptor-associated factor 6, PGE2 prostaglandin E2, NO nitric oxide, COX-2 cyclooxygenase-2, TNF-α tumor necrosis factor alpha,
IKK inhibitor of NF-κB kinase, IκBα NF-κB inhibitor alpha, IκBβ NF-κB inhibitor beta, BMPs bone morphogenetic proteins; OCN osteocalcin;
ALKP alkaline phosphatase; RANKL receptor activator of nuclear factor kappa-B ligand, MAPK mitogen-activated protein kinase, MMPs matrix
metalloproteinases. “Red” refers to upregulation; “Green” refers to downregulation
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inflammation in addition to protection against bone loss.
However, the risk of infection is increased in patients undergoing
anti-inflammation treatment, suggesting that anti-inflammatory
drugs should be discontinued for a period of time before
surgery.145 Because chronic inflammation affects bone healing,
the anti-inflammatory drug should be reused in osteoporotic
fracture after an acute immune response to alleviate
inflammation-induced bone loss.
The recent development of antiresorptive agents (e.g., bispho-

sphonates, RANKL inhibitor) represents a significant advance in
therapeutic options for improving bone quality and metabo-
lism.146 Bisphosphonates are commonly used in osteoporosis to
prevent and reduce pain by modifying osteoclast activity.147

Following an osteoporotic fracture, early intervention with anti-
resorptive drugs after surgery would not affect fracture union.148

However, bisphosphonate-dependent repair processes become
progressively dominant in the late phases, suggesting that
continuous administration of alendronate causes delayed healing
in mechanically compromised situations.149 Denosumab, a RANKL
inhibitor, can significantly reduce the high RANKL/OPG ratio in the
inflammatory and repair phases of fracture healing with aging-
related osteoporosis150 and has been identified as an efficacious
osteoporosis treatment option with low rates of adverse events.151

Calcitonin effectively relieves bone pain and can reduce bone loss
in osteoporotic fractures, although short-term (3 months) use is
recommended.152,153 In summary, reducing the frequency of
postoperative syndromes in patients with osteoporosis requires
not only regulation of the immune response but also balanced
bone resorption and osteogenesis (Fig. 5). Studies have demon-
strated that anti-inflammation therapy combined with a bone
resorption blocking drug154 reverses systemic bone loss,155 while
the timing and extent of immune intervention require further
clinical exploration.

STRATEGIES FOR MECHANICAL LOADING ENHANCEMENT AND
RIGID FIXATION
The biochemical responses of osteocytes to mechanical loads are
mediated by signals induced via a variety of mechanosensitive
proteins, such as primary cilia, integrins, and activated ion
channels.156 However, it is as yet unclear how osteocytes perceive
and differentiate responses to two drastically opposite magni-
tudes of mechanical signals, that is, those of physiological
magnitudes that initiate regenerative responses and of traumatic
signals that initiate bone damage and resorption.87 Appropriate
use of bone formation promoters (e.g., calcium/vitamin D), mainly
for osteoblasts and osteocytes, helps to further enhance the
mechanical induction and repair of bone structure. Patients over
65 years old with BMD less than −2.5SD or postmenopausal
women with multiple osteoporotic vertebral fractures or hip
fractures who have not responded to bisphosphonate therapy
should be switched to the available anabolic agents,7,131 including
recombinant human parathyroid hormone (rhPTH,[1–34] [1–84])
and parathyroid hormone-related protein (PTHrP).30 Strontium
ranelate is now considered effective in enhancing the biomecha-
nical properties of bone for resistance fragility fractures. Strontium
ranelate increases bone formation and decreases bone resorption,
thereby rebalancing bone remodeling, which is conducive to new
bone formation.157 Numerous studies have shown that strontium
ranelates functions in improvement in all parameters related to
bone quality and strength.158 The sclerostin monoclonal antibody,
such as romosozumab, has been shown to lead to gains in hip
BMD.159 In addition, BMPs, which belong to transforming growth
factor-beta (TGF-β) family members,160 lead to synergistic induc-
tion of downstream TGFβ signaling for osteogenesis combined
with physical microenvironment.161 Tricalcium phosphate and
polymethylmethacrylate (PMMA) are usually employed to aug-
ment bone cement and increase the stability of implant fixation in
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osteoporotic bone.162,163 These cements undergo interdigitation
in porous bone38 to increase the surface area of contact and
provide additional resistance against the screw threads. PMMA
has also been used for the delivery of drugs, such as antibiotics,
via bone cements.164 However, PMMA undergoes an exothermic
reaction during the drying process, with the potential to initiate
thermal bone necrosis.165 In addition, PMMA is difficult to remove
in cases of revision or infection without integrating into the bony
architecture.166 In contrast, the integration of tricalcium phos-
phate into the bone provides a potential scaffold for biological
activity and cell growth in a demineralized bone matrix.167

Allograft fibulas are used in bone with low BMD as tools for
reduction as well as the provision of medial calcar support.168 As
mechanical stimulation is a potent anti-inflammatory signal,
sufficient postsurgery mechanical loading interventions, including
physical therapy and rehabilitation, are helpful for building a
supportive mechanical and biological environment around the
local fracture sites for bone healing. Low intensity vibration (LIV)
improves bone quality by activating cells responsible for bone
remodeling and biasing the differentiation of mesenchymal and
HSC progenitors toward osteoblastogenesis.169,170 However,
current evidence is insufficient to support the benefit of

ultrasound and extracorporeal shockwave therapies (ECSW) for
fracture healing in clinical practice171 (Fig. 5).
Mechanical bone strength is vital for the stable anchorage of

hardware required for fracture repair. Due to the impaired bone
strength and complicated immunology environment in elderly
individuals with osteoporosis, more suitable implants with better
mechanical characteristics are required to improve aging-related
osteoporotic fracture healing. Measurement of the thickness and
porosity of cortical bone prior to surgery is important in guiding
hardware selection for the repair of osteoporotic fractures. Thus, it
is of great importance to identify parameters for evaluating bone
quality (Fig. 5). Only 60% of the variation in bone densitometry
was measured by dual-energy X-ray absorptiometry (DXA)
because it is hard to recognize differences in both trabecular
and cortical bone geometrical macrostructure.172 Both trabecular
connectivity and cortical porosity significantly influence bone
strength parameters, including stiffness to resist deformation and
elasticity to absorb energy.173 To determine a better intervention,
state-of-the-art clinical imaging techniques will help in measuring
bone structural parameters, instead of focusing on BMD alone.174

Evaluation of the grayscale intensity map of DXA imaging can
provide more precise information for bone structural parameters

Table 1. Clinical options in osteoporotic fractures

Clinical options Characteristic Index Methods Fracture site and
pattern

Disadvantage in
osteoporotic bone

Ref.

Cortical
bone screws

Narrow outer diameters and
decreased thread pitch compared
to cancellous bone screw

BMD
Thickness
and porosity
of
cortical bone

DXA
QCT

Femoral heads
Femoral neck
fractures

50% reduction of the
holding strength per 1mm
decrease of cortical
thickness

175,194,195

Cancellous
bone screw

Reach the plateau torque level
prior to contact of all the screw
threads

BMD, TBS
SMI
BV/TV

DXA
HR-pQCT
μMRI

Femoral metaphysis
Distal radius
Femoral heads

Reduction of thread-bone
interface that
produces torque

183,184,196,197

Bicortical lag screw Potential improvement of thread
purchase

BMD, TBS
SMI
BV/TV

DXA
HR-pQCT

Medial malleolus
fractures

185,198,199

Traditional plates Compress the fracture fragments
between bone implant interface
to create fixation strength

BMD
Bone
stiffness and
strength

DXA Regular fractures Decrease of the axial and
torsional stiffness

190,200,201

Locking plate Fixed-angle construct between
screw and plate

BMD, TBS
Proximal
cortical
thickness
Failure load

DXA
QCT

Proximal humerus
fractures

Reduction of callus
formation without
micromotion across the
fracture site; Loss of fixation
and screw cut-out

5,187,188,198,202

Intramedullary nail Preserving the soft tissues around
fracture site

BMD
Cortical
thickness

DXA
QCT

Proximal humerus
fractures

A larger-diameter nail is
required to achieve a
diaphyseal fit and stability

191,203

Bone
augmentation

Increase surface area; PMMA
carries osteogenic and antibiotic
drugs; Tricalcium phosphate and
Allograft fibulas act more as a
scaffold

BMD
SMI
BV/TV
BMSi

DXA
QCT

Femoral neck
fractures
Spine fractures
Comminuted
proximal humerus
fractures

Damage surrounding soft
tissues or initiate thermal
bone necrosis; Difficult
to remove

38,162–

164,196,204,205

External fixation Lower fixation failure rates BMD, TBS DXA
HR-pQCT

Comminution of
tibial plateau
fractures

190

Primary
arthroplasty

Early mobilization and weight
bearing

BMD, TBS
Subchondral
bone quality

DXA
HR-pQCT
DensiProbe

Acute acetabular
fractures; Displaced
intra-articular
fractures of the
tibial plateau

193

BMD bone mineral density, DXA dual-energy X-ray absorptiometry, QCT quantitative computed tomography, HR-pQCT high-resolution peripheral QCT, μMRI

micromagnetic resonance imaging, TBS trabecular bone score, BMSi bone material strength index, PMMA polymethylmethacrylate, SMI structure model index,

BV/TV bone volume fraction
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compared with BMD measurement.175 The trabecular bone score
(TBS) correlates positively with trabecular connectivity based on
evaluation of the DXA image.176 Combining TBS and BMD
measurements provides an improved prediction of bone strength
compared with BMD alone.177,178 Evaluations of structural,
material, and mechanical properties based on bone biopsy
specimens provide a reliable assessment of local bone character-
istics, which are vital independent determinants of bone
strength.179 The DensiProbe can be a helpful tool for intraopera-
tive assessment of mechanical peak torque in mechanical testing
setups,180 providing information that can be valuable in choosing
implants. Furthermore, this approach does not increase the risk to
the patient or increase the surgeon’s workload since the central
peg hole can be used for the next procedure.180 Cortical and
cancellous screws are traditional designs, with the former having
relatively narrower outer diameters and decreased thread pitch.181

In both cases, the fixation strength depends on the torque
generated between the bone and thread that resists shear.182

During insertion of a cancellous bone screw into the osteoporotic
bone, the torque reaches the plateau prior to the contact of all the
screw threads.183 The changes in screw geometry that confer an
advantage on cancellous screws are lost below a threshold BMD of
0.4 g·cm–1.184 The plateau torque (T Plateau), which is an efficient
predictor of insertion failure at the femoral head, is significantly
dependent on aspects of the bone microarchitecture, such as the
structure model index (SMI) and bone volume fraction (BV/TV).185

Previous studies suggest that a more plate-like bone structure, a
higher BV/TV, and a higher surface-to-volume ratio provide a
structural environment that favors cutting of the screw threads
into the bone, resulting in an increased T Plateau.186 Unstable and
comminuted fracture patterns as well as early implant-bone
fatigue in osteoporotic bones lead to implant loosening and
fixation failure.3 Locking-plate technology provides a more
advantageous biomechanical environment that facilitates the
formation of a fixed angle between the plate and screw.187

Despite the greater overall stability, locking plates may create an
excessively rigid construct, which is predisposed to peri-implant
fracture.188 In proximal humeral fractures with low BMD,189

computed tomography (CT) assessments suggest that locking
plates do not reduce the rate of mechanical failure. In elderly
patients with low BMD, tibial plateau fracture is associated with
increased comminution and compromised fixation, suggesting
that external fixation might be a more effective option than dual
plating.190 An intramedullary nail (IMN) is a load-sharing device
with the advantage of promoting secondary bone healing while
preserving the surrounding soft tissues and minimizing fracture-
induced hematomas.191 The loss of interlocking screw fixation can
be mitigated through a number of strategies, including the
application of washers and interlocking screws in multiple planes.
However, cortical thinning of osteoporotic bone increases the
intramedullary canal diameter, and a larger-diameter nail is
required to achieve a diaphyseal fit and stability. Therefore, an
early quantitative computed tomography (QCT) assessment of the
cortical thickness is critical in using IMN in osteoporotic fractures.
Intra-articular and complex fractures in patients with osteoporosis
pose unique challenges for surgeons. These patients have
inadequate subchondral bone quality to allow for anatomic
reductions, and the stability of the implant is difficult to maintain
after the reintroduction of weight-bearing and increased range of
motion.192 Primary arthroplasty (total hip/knee/elbow arthro-
plasty) has been adopted to obtain adequate weight-bearing
and early mobilization, which has a superior prognosis compared
to internal fixation in acute acetabular fractures, displaced intra-
articular tibial plateau fractures and complex distal humeral
fractures.193 Despite the advent of locked anatomic plates, a
majority of experts recommend arthroplasty in the context of poor
bone quality and small fracture fragments (Table 1).

CONCLUSION AND PERSPECTIVE
Low bone mass and compromised bone structure in osteoporotic
fractures are undesirable for the reduction and rigid fixation, and
the decreased regeneration and mechanosensation ability of
osteoporotic bone also affect the healing. The initiation of
supportive management, including anti-inflammatory drugs and
sufficient application of antibiotics, is key for creating the proper
environment for bone repair and homeostasis in patients with
osteoporotic fractures. The adverse effects of insufficient mechan-
ical loading in bone healing are critical factors that should be
considered around the orthopedic procedure. Bench-to-bedside
strategies for bone augmentation and hardware selection should
be made according to further elucidation of the biomechanics and
molecular mechanisms involved in bone repair. Multidisciplinary
collaboration will facilitate the improvement of overall osteoporo-
tic care and the reduction of secondary fracture incidence.
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