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Abstract

Motivation: Because of the advantages of RNA sequencing (RNA-Seq) over microarrays, it is gain-

ing widespread popularity for highly parallel gene expression analysis. For example, RNA-Seq is

expected to be able to provide accurate identification and quantification of full-length splice forms.

A number of informatics packages have been developed for this purpose, but short reads make it a

difficult problem in principle. Sequencing error and polymorphisms add further complications. It

has become necessary to perform studies to determine which algorithms perform best and which

if any algorithms perform adequately. However, there is a dearth of independent and unbiased

benchmarking studies. Here we take an approach using both simulated and experimental bench-

mark data to evaluate their accuracy.

Results: We conclude that most methods are inaccurate even using idealized data, and that no

method is highly accurate once multiple splice forms, polymorphisms, intron signal, sequencing

errors, alignment errors, annotation errors and other complicating factors are present. These re-

sults point to the pressing need for further algorithm development.

Availability and implementation: Simulated datasets and other supporting information can be

found at http://bioinf.itmat.upenn.edu/BEERS/bp2

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: hayer@upenn.edu

1 Introduction

We first fix some terminology. For our purposes a gene is a collec-

tion of transcripts, also called splice forms. A transcript is a collec-

tion of exons. An exon is a contiguous span of genomic coordinates.

Two splice forms of the same gene can, and usually do, have some

of the same exons. Exons which overlap but have different start and/

or end location are also possible. Two different splice forms may

share all of their exons, as long as at least one of them differs by

their start/end coordinates. Typically for any given gene in any given

cell, some of its splice forms are expressed and others are absent.

One of the primary goals of high throughput RNA-Sequencing

(RNA-Seq) is to accurately identify the full-length structure of the

transcripts that are present, and their relative abundances, so that re-

searchers can focus on the most relevant splice forms in their system

of interest. This is a very difficult problem however. Most human

and mouse genes have many exons (Fig. 1, left) and are annotated

with multiple splice forms. We observe that �35% of genes may ex-

press at least two forms under normal conditions (see Fig. 1, right).

As methods improve and the number of tissues that are deep

sequenced increases, the annotation will only get more complex.
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Moreover, for species without genome sequence available, de novo

RNA-Seq and transcript assembly should provide an efficient means

of gene discovery.

By visually inspecting depth-of-coverage plots and representa-

tions of spliced reads in a genome browser, it is easy to see that a

majority of genes are tractable and the expressed splice forms can be

determined (Fig. 2A). Here the data can be explained completely by

the one annotated splice form. Blue junctions indicate the existence

of reads which mapped cleanly across an annotated splice junction

(‘clean’ here means uniquely and with at least eight bases on each

side). Note that the blue directional spans above the coverage plot

indicate single reads (not read-pairs) spliced across intron-sized

gaps. In contrast, Figure 2B shows a region with a significant num-

ber of reads spliced from one gene to another, as well as entirely

unannotated genes. Green junctions indicate the existence of reads

which mapped cleanly across unannotated junctions. A number of

such genes and regions as shown in Figure 2B typically occur in

every RNA-Seq experiment and present the challenging cases for

transcript level analysis. The nature of current RNA-Seq, resulting

in short error prone reads, alignment artifacts, bias introduced by

the library construction process etc., introduces noise into this al-

ready difficult problem. For example the ribosomal depletion proto-

cols invariably cause a severe deviation of signal from uniform

across a single transcript. Figure 3 shows the result of sequencing a

single full length cDNA clone after reverse transcription followed by

Ribo-Zero (top) and polyA selection (bottom) (Lahens et al. 2014).

In both cases the deviation from uniform is marked. At the present

time there is no known protocol that doesn’t suffer from this kind of

issue. Most algorithms assume at least reasonably uniform coverage

across each expressed transcript.

Despite these challenges, many algorithms have been developed

to infer full-length transcripts de novo from short read RNA-Seq

data, of which Cufflinks (Trapnell et al., 2010) is the most widely

used. Other methods are StringTie (Pertea et al. 2015), Scripture

(Guttman et al., 2010), Trinity (Grabherr et al., 2011), Oases

(Velvet) (Schultz et al., 2012), Soap-denovo-trans (Xie et al., 2014),

iReckon (Mezlini et al., 2013), CLASS (Song et al., 2013), FlipFlop

(Bernard et al., 2014), IsoLasso (Li et al., 2011), MiTie (Behr et al.,

2013), Trans-ABySS (Robertson et al., 2010), AUGUSTUS (Stanke

et al., 2008), Traph (Tomescu et al., 2014).

Algorithms are classified by whether they use an alignment to a

reference genome sequence, or whether they assemble the reads into

full transcripts de novo by identifying overlapping reads. We call the

former type alignment guided methods and the latter de novo meth-

ods. Methods can be run in one or both of two modes, depending on

whether or not they utilize pre-existing annotation as a guide. We

investigate the accuracy of both types of algorithms, genome guided

and de novo, in both modes, wherever possible.

There is another class of algorithm that does not attempt to infer

transcript structure, but instead just quantifies a set of given tran-

scripts. It was not the goal of this study to evaluate this last category;

however, the simulated data we provide could easily be used for that

purpose.

A critical aspect of algorithm development is unbiased bench-

marking. A few studies have investigated algorithms for transcript

inference and quantification from RNA-Seq data, the most notable

being the RGASP1 (2009) and RGASP2 (2010) competitions

(Steijger et al., 2013). These studies used a PCR approach to validate

differences rather than simulated or spike-in data. Their overall con-

clusion was that ‘assembly of complete isoform structures poses a

major challenge even when all constituent elements are identified’

and ‘[c]onsequently, the complexity of higher eukaryotic genomes

imposes severe limitations on transcript recall and splice product

Fig. 1. Left: Shows number of mouse mm9 ENSEMBL transcripts as a func-

tion of the number of exons. 90% of transcripts have multiple exons. 65%

have >5 and 35% have >10. Right: Distribution of the minimum number of

splice forms necessary to explain the RNA-Seq junctions in 300 M read pairs

of mouse Liver (Zhang et al., 2014). This is based on the first 200 RefSeq

genes annotated on Chromosome 1

Fig. 2. These plots depict mouse liver RNA-Seq data (Zhang et al., 2014). Each

plot has three tracks: transcript models (bottom), depth-of-coverage (middle,

red¼ forward, blue¼ reverse) and spliced reads (top, blue¼annotated,

green¼novel, numbers give how many reads spliced cleanly across each

junction). (A) Shows data for a gene with one annotated splice form. In this

case the one annotated splice form is sufficient to completely explain the

data. (B) A region showing several annotated genes. Here there are many

reads spliced between different genes. In addition to unannotated splice junc-

tions, there is also evidence for completely unannotated genes in this region

Fig. 3. This shows the depth of coverage of a full-length cDNA clone, which

has been transcribed and subjected to the Ribo-Zero (red) and PolyA selec-

tion (orange) protocols for removal of ribosomal RNA. Both protocols result

in extreme local bias (Lahens et al., 2014). PolyA causes 30 bias (note this

gene is oriented on the reverse strand)
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discrimination’. They further identified that the alignment step that

precedes most reconstruction algorithms greatly affects the results,

so the following year RGASP3 was held solely to assess alignment

algorithms (Engstrom et al., 2013).

Though Steijger et al. was published in 2013 from the RGASP ef-

fort, it is based on analysis performed in 2009 and 2010 by partici-

pants in the first two RGASP competitions. Since then, there has

been considerable progress in algorithm development, while few

new articles have been published that analyze performance.

Chandramohan et al. (2013) published an analysis, but the focus

was on quantification, not transcript structure. For validation, they

used �500 genes measured by RT-PCR (Nolan et al., 2006).

However, they relied on early generation public data using single-

end 36-base reads. Read lengths continue to grow, with the current

standard upwards of 100 bases. Furthermore, paired-end strand-

specific sequencing has become widespread. These developments

clearly have significant impact(s) on transcript reconstruction and

expression quantification. Chandramohan included Cufflinks

(Trapnell et al., 2010), HTSeq (Anders et al., 2015), RSEM (Li and

Dewey, 2011) and IsoEM (Nicolae et al., 2010). They assessed per-

formance by correlation; which is not as informative as precision

and recall.

In 2013, the Cufflinks developers released a article with a fairly

extensive benchmarking study, using simulated and real data

(Trapnell et al., 2013). They generated idealized data with an un-

published in-house method, TuxSeq. The data was not used to

benchmark transcript form reconstruction; instead it was only used

for benchmarking differential expression analysis which is not the

purpose of our study. Furthermore the Cufflinks’ study only eval-

uated Cufflinks’ performance and did not do a comparative analysis

to other methods.

Here we find that at best the methods perform just barely ad-

equately with idealized data and relatively few splice forms, while

they largely fail on more realistic data. These results point to the

need for new algorithm development.

2 Methods

2.1 Simulation
We utilized the BEERS simulator (Grant et al., 2011) to generate

four strand-specific simulated datasets. The first dataset was gener-

ated without polymorphisms, sequencing error or intronic signal,

and with all transcripts highly expressed. In this data, our goal was

to assess performance in the least challenging scenario where all al-

gorithms should in principle perform optimally. Our systematic

dataset Test 1 (T1) has 13 000 (non-overlapping) genes with num-

bers of splice forms per gene varying from one to five. Each dataset

has 50 million paired-end reads using mouse genome build mm9

(Mouse Genome Sequencing Consortium et al., 2002). Dataset T1

was designed to determine upper bounds on the accuracies of the

methods by providing data as ideal as possible. Three different types

of alternative transcript processing were included: (i) exon skipping,

(ii) alternate 30/50 site (start/end of transcription) and (iii) alternate

splice sites at the exon/exon junctions. The vast majority of tran-

script forms coming from a single gene can be explained by combin-

ations of these three types of events. The basic forms for dataset T1

were taken from real RefSeq genes (Pruitt et al., 2014) as aligned to

the reference genome by the UCSC genome browser (Kent et al.,

2002). The first 1000 genes were chosen to have one form and at

least 5 exons each. For each of the three categories of alternate pro-

cessing there are an additional 4000 genes with 1000 having two

forms, 1000 having 3 forms, 1000 having 4 forms and 1000 having

5 forms. One transcript can have several modifications of the same

type, but we did not mix different types of alternate processing

events in the same gene. This way, in this dataset, we can isolate the

effects of each type. In total, there are 13 000 genes comprising

43 000 splice forms. The alternate forms were generated by ran-

domly removing some exons (exon skipping), or by randomly leav-

ing exons off one or both ends of the transcript (truncation), or by

randomly altering the start or end splice site of individual exons

(mostly by multiples of three as is typically observed in real data).

For these last events, we did not attempt to maintain canonical

splice-signals in the exons whose lengths were modified. This could

affect alignment slightly, in the case of non-annotation guided align-

ment, for a small number of ambiguously aligning reads. However,

beyond alignment, no methods of transcript inference utilize the

genome sequence, so this issue cannot affect performance at that

level. In general, one should not rely too strongly on splice signals,

as there are many and potentially uncharacterized ones. The reads

for T1 were generated with the following parameters: read

length¼100, fragment length min¼200, fragment length

max¼500, fragment length median¼300, basewise error¼0%,

substitution frequency¼0%, indel frequency¼0%, intron fre-

quency¼0%. The fragment length distribution is a truncated nor-

mal with a standard deviation of 1000/3. All transcripts were

expressed at the same high level with �40� coverage. We take frag-

mentation into account yielding data that differ from strictly uni-

form by the randomness of the fragmentation process. The results of

this idealized dataset should give effective bounds on the accuracy of

the various methods.

Two additional simulated datasets were generated to assess the

effect of polymorphisms and sequencing artifacts. Dataset EP

(ENSEMBL Perfect) was generated with the same parameters as T1,

except the full set of 93 778 unmodified ENSEMBL transcript mod-

els was used. Dataset ER (ENSEMBL Realistic) was generated with

the same parameters except for the following changes, chosen to

mimic real data: basewise error¼0.5%, substitution fre-

quency¼0.1%, indel frequency¼0.05%, intron frequency¼30%.

These are fairly low polymorphism rates that would be expected if

comparing human sequencing data to the human reference genome.

In reality the polymorphism rates in other organisms will be higher.

We chose these parameters in order to attain reasonable lower

bounds on algorithm accuracy in practice, where human/human

comparisons are currently among the least polymorphic of all verte-

brates. Intron frequency of 30% may seem high at first, but it is typ-

ical. However, since introns are so much larger than exons, the

majority of intron signal results in very low coverage. Two-thirds of

all transcripts are expressed, with levels of expressed transcripts

given by an exponential distribution (p=.01). Short genes will be

under-represented because of the fragment length distribution so we

removed all genes under 200 bases.

From the IVT gene models (described below) we also generated

ideal simulated data. These data were generated similar to T1, i.e.

with no complicating factors, high uniform expression and perfect

alignment.

The simulated datasets and ground truth files, as well as align-

ment files, and other supporting information, are available here:

http://bioinf.itmat.upenn.edu/BEERS/bp2

2.2 IVT data
In vitro transcription (IVT) RNA was derived from an amplified plasmid

library of 1062 human cDNAs (IVT), taken from the Mammalian Gene

Collection (Lahens et al., 2014). Samples were sequenced by two riboso-

mal depletion protocols polyA selection and Ribo-Zero Gold kit
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(Epicentre catalog no. RZHM11106). Afterwards the RNA was con-

verted into Illumina RNA-Seq libraries with the TruSeq RNA sample

prep kit (Ilumina catalog no. FC-122-1001) and sequenced with an

Illumina HiSeq 2000 (paired 100bp reads). The IVT data have advan-

tages of being a dataset where we know ground truth and it can be

sequenced with standard methods, thereby capturing all normal sources

of technical error. Importantly, because IVT is efficient, the expression of

each base pair is theoretically the same. We used 1062 human full-length

cDNAs and performed IVT-Seq. As with simulated data, the full-length

transcript forms are known. In this dataset 50 genes had 2 or more splice

forms. These ribosomal depletion protocols polyA selection and Ribo-

Zero are the two most common protocols, which introduce within-tran-

script variance (Fig. 3) that cannot easily be simulated.

These data are available at GEO (accessions GSM1219408 for

the polyA and GSM1219398, GSM1219399 for Ribo-Zero).

2.3 Alignments
Reads were mapped by the two most commonly used RNA-Seq

mapping tools: TopHat (version 2.0.13 Kim et al. 2013), and STAR

(version 2.4.0 d Dobin et al. 2013). Both algorithms were run with

default parameters, but in two modes, both with and without anno-

tation. In addition we generated a perfect alignment (SAM) file from

ground truth. Alignment accuracy was high for both STAR and

TopHat: in ER TopHat aligned 94.4% (respectively 92.63%) of the

bases accurately when aligned with (respectively without) gene mod-

els. Similarly STAR aligned 94.97% (respectively 93.15%) of the

bases accurately when aligned with (respectively without) gene mod-

els. In the clean datasets without indels or substitutions accuracy

was �1.5% higher for STAR and 4% higher for TopHat. The IVT

data was aligned similarly with TopHat and STAR, with each align-

ing �88–90% of the reads.

2.4 Genome and annotation guided reconstruction

algorithms
Genome guided reconstruction algorithms were run with the recom-

mended default parameters. We omitted Scripture and Traph be-

cause the code is unstable and we were not able to get them to run

on these datasets in finite time. The Scripture approach, however, is

examined in the Discussion. The genome guided algorithms that

were included are AUGUSTUS (v3.0.3), Cufflinks (v2.2.1), CLASS

(v2.00), FlipFlop (v1.4.1), iReckon (v1.0.8), IsoLasso (v2.6.1),

MiTie (v10-27-2014) and StringTie (v1.0.0). Some of the given algo-

rithms can be provided with gene models to improve accuracy. In

reality any annotation file will have missing transcripts that are ex-

pressed, as well as non-expressed transcripts that are present. So for

Test 1, we created a gene models file where we remove 40% of the

transcripts that are expressed and replace them with transcript mod-

els that are not expressed. Similarly 15% EP/ER expressed tran-

scripts were removed and replaced by unexpressed models. The

algorithms were run both with and without annotation, wherever

possible. For the ENSEMBL datasets EP and ER the results are bro-

ken down further by depth of coverage: low (1� –10�), medium

(10� –100X) and high (100� –1�).

2.5 De novo reconstruction algorithms
The following de novo reconstruction algorithms were run on

the simulated datasets: Trinity (v2014 07 17), SOAPdenovo-

Trans (v1.03) and TransABySS (v1.5.2). All of the tools were run

with default settings. In order to compare the de novo recon-

struction algorithms to the genome guided tools, the inferred tran-

scripts were aligned back to the reference genomes with GMAP

(version 2014-10-22). All transcripts that were assigned successfully

were used to evaluate the algorithms performance. We did not

benchmark Oases because it is unstable and we were not able to run

it on our datasets.

2.6 Accuracy metrics and performance evaluation
We compared the inferred transcript models produced by each algo-

rithm with the true models to calculate accuracy metrics. If an

inferred transcript model has the right number of exons and agrees

with a known model at all sites of exon/exon junctions, then we call

it a true positive. As the start and end of transcription are notori-

ously difficult to predict, we do not require them to be inferred

correctly, just the internal junctions need be correct to be a true-

positive. If at least one of the exon/exon junctions is wrong, we call

it a false positive. If a model is expressed but not reported by the al-

gorithm, we call it a false negative. This could be problematic if

combining high and low expressed splice forms into one analysis. In

T1 all genes are expressed at a high level so this is not an issue—and

any expressed transcript that was missed can reasonably be called a

false-negative. In contrast, EP and ER were subdivided into three

categories: low, medium and high. We do not expect a very low false

negative rate on the low expressers, but we should expect it from the

other categories.

When predicting transcript structure as a sequence of exon start-

and end-coordinates, there are an astronomical number of possible

true negatives—any sequence of an even number of consecutive co-

ordinates is a putative transcript. Therefore, as long as the algorithm

itself does not return an astronomical number of putative tran-

scripts, the false positive rate will be very close to zero and the speci-

ficity will be very close to one. This remains true even if every

predicted transcript is a false positive. Instead we take an approach

that has been established in the literature which is more informative

(see, e.g. Hu et al., 2014). The approach is to report the recall (the

number of correctly constructed forms divided by the total number

of real forms) and precision (true positives divided by the sum of

true positives and false positives). We identify the regions where the

recall is <25% or the precision is <66.6% as being a region where

the error rates are questionable for use in practice (shaded region in

our graphs). In T1 we split the results by the category of processing

event, the number of forms per gene, and the depth of coverage

where appropriate. Finally, we compared the assessed FPKM values

to the true FPKM by Pearson correlation (after filtering extreme out-

liers). The Ruby scripts used to do the analysis are available here:

https://github.com/khayer/benchmarking_scripts.

3 Results

Most algorithms which rely on a genome alignment can be run in

two possible modes, depending on whether or not they utilize tran-

script model annotation. In the first mode the algorithm determines

which of the annotated forms are expressed and then further uses

the annotation as a guide to determine novel forms. The second

mode attempts to determine the forms of the expressed transcripts

from scratch, with no transcript annotation provided. The latter is a

considerably harder problem.

Annotation is never perfect. To model this, for dataset T1 we hid

roughly 40% of the expressed transcripts, at random, and replaced

each one with a different unexpressed transcript of the same gene.

Unexpressed transcripts that are called as expressed constitute the

false positives. For EP and ER also half of the expressed transcripts

were hidden, however those datasets follow a realistic spectrum of
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expression so that approximately one third of the transcripts are not

expressed. Therefore, it is not necessary to introduce further unex-

pressed transcripts as was done for T1. Supplementary Tables S1–S3

give a summary of all of the available figures.

Although some algorithms perform well with perfect data and a

single splice form, they tend to have difficulty predicting multiple

splice forms. Figure 4 represents the most ideal case. The top row

represents the correctly annotated transcripts. In this case a false

positive is an annotated transcript that is not expressed but is called

expressed and a false-negative is an annotated and expressed tran-

script that is not called expressed. No algorithm should be expected

to do this well in practice, but it gives a bound on the accuracy.

Even in this case, several algorithms are out of the comfort zone in

some if not most cases. Having differing exon start/ends (splicing

category iii) gave the algorithms the most difficulty across the board;

note that the methods were given the perfect alignment, so the cat-

egory iii issues are not due to alignment artifacts. In the lower panel

we see the accuracy for incorrectly annotated transcripts. Here a

false-positive is an inferred (un-annotated) transcript that is not ex-

pressed and a false-negative is any of the 15% of hidden transcripts

that are expressed that were not called as expressed. Most methods

perform well on the genes with one transcript, but the accuracy rates

for unannotated transcripts are low across the board. When the data

are aligned with TopHat or STAR the error rates naturally increase

(Supplementary Fig. S2–S5, S15–S16). As expected, the de novo

methods performed worse than the genome-alignment guided meth-

ods (Supplementary Fig. S6). We conclude that although use without

annotation is a common and intended application, the error rates of

all algorithms on real data are high.

EP and ER represent more realistic datasets because they contain

the full complexity of the ENSEMBL annotation and they span a

range of expression levels similar to real data. Additionally ER

contains polymorphisms (in the form of substitutions and indels), se-

quence error and intron signal. Because in practice algorithms will

not have access to perfect annotation, the gene models provided

were modified models whereby 15% of the expressed transcripts

were hidden. Figure 5 shows the results when the algorithms are

provided with perfect alignments. The top row represents properly

annotated transcripts and the bottom row represents hidden tran-

scripts. The statistics are stratified by depth of coverage. In this case,

on correctly annotated transcripts, Cufflinks and StringTie stay in

the comfort zone in most cases, with Cufflinks tending to have bet-

ter precision and StringTie better recall. It is notable that often preci-

sion goes down with depth-of-coverage. The reason for this is that

with more reads, most algorithms find more ways to go wrong.

Without annotation very few data points of any category are in the

comfort zone (Supplementary Fig. S7). Only Cufflinks and StringTie

appear to be potentially viable. There will of course also be other

un-modeled biases and factors in real data, such as position specific

biases. So these bounds on the accuracy are certainly quite conserva-

tive. The results when TopHat and STAR are used instead of a per-

fect alignment are given in the Supplementary Figures S8–S11.

Again the de novo methods underperform the alignment based

methods (Supplementary Fig. S12).

We turn next to the IVT data to obtain information on the im-

pact of the other effects of real sequencing that we could not model.

In this case, since this is real sequence data, we could not provide an

error-free alignment. The annotation given was of the known struc-

ture of the 1062 transcripts. For the sake of comparison, from these

gene models we also generated ideal simulated data based on these

gene models (Fig. 6 rightmost panel). Apparently polyA selection

caused more problems across the board as compared with Ribo-

Zero. Unfortunately, however, the vast majority of RNA-Seq is

being generated with the polyA selection protocol. These results are

Fig. 4. Accuracy results for simulated dataset T1 for the methods which utilize a reference genome. This represents the most ideal case where all genes are highly

expressed, there are no polymorphisms and there are no alignment errors. Splicing is divided into three types, the only cases where precision was above 90% in

the first two types are when there is a single splice form. The analysis was run with gene annotation provided
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an order of magnitude worse than for the ER data, which speaks to

the complications introduced by un-modeled factors. For the genes

with more than one splice form, the results were worse still. Note

that we get a different separation of methods in the simulated data

(right panel) compared with the real data (left and center panels).

This indicates comparisons based on simulated data do not necessar-

ily indicate which methods to prefer.

To assess the quality of the inferred quantified FPKM values, we

computed the Pearson correlation between the true FPKM and the

inferred values. The true FPKM was determined not from the theor-

etical intensity of the transcripts, but from the actual true number of

reads that came from each transcript—exonic reads only. We fil-

tered out extreme outliers. We also removed all cases where the true

expression is zero but the algorithm gave it positive expression, or

where the true expression is positive and the algorithm gave it zero.

We call these on/off errors. If we do not do this, then all correlations

are very low and uninformative. We separated out how often the on/

off errors occur and graphed them separately (Fig. 7B). We did not

report outlier statistics, since there was only a handful. But some

were extreme, e.g. Cufflinks gives an FPKM value in the 7000

ranges for one gene that is not expressed at all.

4 Discussion

These results provide objective and conservative bounds on the

error rates of transcript inference and quantification algorithms

and found that none of them can be considered highly accurate.

One has to decide if chasing differential splicing is worth the po-

tential disadvantages of dealing with many false positives in the

downstream analysis. Our experience is that most groups are after

evident effects, meaning moderately high fold change of moder-

ately to highly expressed and well annotated genes. However,

many such groups follow the path of transcript level analysis, be-

cause it has been presented as the standard thing to do. Some

groups certainly must worry about alternate splicing, however

most groups would find what they are looking for by performing a

much more straight forward gene level analysis. And a significant

portion of those who need more than a gene level analysis would

Fig. 5. Accuracy results for simulated datasets EP and ER. This represents the most ideal case where all genes are highly expressed, there are no polymorphisms

and there are no alignment errors. Results are given separately for low, medium and high depth of coverage. Analyses were run with gene models provided

Fig. 6. Accuracy results for IVT data. Analyses were run with gene models provided. Two ribosomal depletion protocols are represented. The rightmost panel

shows the results on simulated data, for comparison
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find exon/intron/junction level analysis sufficient. Therefore, em-

ploying the current state of transcript level analysis should only be

done with considerable forethought.

Transcript structure determination, either de novo, or with anno-

tation, is a challenging problem. To assess how the most recent ver-

sions of algorithms perform, we devised a set of tests using

simulated and in vitro transcribed RNA-Seq data. We generated one

clean dataset (T1) simulated from 13 000 genes with one to five

splice forms per gene. T1 used paired end, 100 base per end,

sequencing. As this is ideal data, it has a perfect representation of all

bases, no sequencing or mapping errors and no polymorphisms. We

also simulated a realistic dataset (ER) from �97 000 ENSEMBL

transcripts. We generated this dataset with polymorphisms, error

rates and intron signal. Transcripts follow a distribution of inten-

sities at rates consistent with what is typically observed in quality

data in practice. Finally, we used in vitro transcription data for 1062

full length human cDNAs, where mapping errors, uneven base rep-

resentation, and polymorphisms are unavoidable. With all of these

datasets, we know the truth, making them informative for evaluat-

ing the performance of transcript assembly algorithms.

On perfect data (T1) with a single splice form (as in Fig. 2A),

most algorithms perform reasonably well, with fairly high precision.

All algorithms seem to be optimized to detect exon skipping events,

while of the three types of splicing investigated, variable length

exons present the greatest challenge. Detecting truncated genes on

the other hand has high precision across the board but the recall of

many algorithms suffered. With clean data and just two forms per

gene, the error rates for all algorithms go up considerably. If one

must do transcript level analysis then Cufflinks and StringTie are

among the best performers. In summary, all algorithms designed to

delineate transcript forms tend to make many false discoveries, even

on perfect data.

The IVT data (IVT) are perhaps the most informative control

dataset, because rather than modeling errors, alignment, poly-

morphisms, base representation, it simply has them as they occur

naturally—yet we still know the ground truth in terms of what the

true transcript models are. Error rates with this data are consider-

ably higher, even though 95% of genes had only a single form. Put

simply, on this real benchmark data, with 95% of transcripts having

only a single form, all algorithms predict at least 20% as many false

transcripts as true ones, and at best roughly 25% or more of the true

ones were missed. In the IVT data, we also had a limited subset of

�50 genes with more than one transcript. On this limited set of real

data, performance was yet worse.

It is instructive to look at what aspects of the popular algorithms

need improvement in order to increase their accuracy. Cufflinks uses

junction and coverage information to determine local alternative

splicing events. However, it often assembles the local information

into global transcripts in all possible ways that are consistent with

the short reads, and this is the source of many of the false positives.

Because the integrity of the transcripts is lost in this approach it is

not clear what advantage it could have over a more local analysis,

such as at the exon/intron/junction level. Another problem is that it

does not effectively sort out exon signal from intron signal. In most

RNA-Seq datasets there is some amount of signal at almost every

base of almost every intron. This intron signal is often assembled

into long exons, resulting in more false positives, as seen in the ER

dataset. Perhaps reading-frame information could be used to limit

this type of artifact. There is also generally a smattering of junctions

that connect exons to the middle of introns (Fig. 2B) yet these prob-

ably do not represent real exon/exon junctions. The challenge is for

algorithms to find a way to ignore the intron and spurious junction

signal to get at the clean transcript models.

Scripture uses an even more liberal approach by essentially ignor-

ing junction information altogether and instead taking a ‘peak

finding’ approach to identify putative exons and then connecting

them in all possible ways. This approach also suffers from the fact

that there is insufficient information to connect local inferences into

global inferences and so it constructs a large number of false positives

by joining local effects to make full-length transcripts. We have also

observed that Scripture tends to find many peaks in introns where the

signal was generated via a uniform model, and so should not have

any significant peaks. The extreme overcalling of forms makes it un-

clear how to utilize the output of Scripture in a practical way.

The de novo methods such as Trinity are trying to solve a much

harder problem by not using the information coming from the gen-

ome sequence. If no genome exists then this approach might provide

information that can be informative. However, for model organ-

isms, and many others for which a reference genome is available,

and which have some degree of quality community annotation, it is

hard to see any benefit of using a de novo approach.

We have seen in Figure 2B regions that present a particular chal-

lenge to transcript level analysis. Indeed it is not even clear that these

are true splicing events and not just artifacts of sequencing or align-

ment. So the first task in using RNA-Seq to perform transcript level

analysis should be to determine what part of these challenging re-

gions represents true biology that is worth quantifying and what

part of it is artifactual.

Fig. 7. (A) Correlation of true FPKM with the inferred on dataset ER. Only transcripts where both the true and inferred values are positive were included. Extreme

outliers were also removed. The set sizes for each correlation are given in (C) (B) Bars on the left show the number of transcripts where the true expression is

zero but the algorithm assigned it positive expression, bars on the right show the number of transcripts where the true expression is positive but the algorithm

assigned it zero expression. (C) This shows the number of transcripts where the true expression is positive and the algorithm gave it positive expression. The

horizontal line indicates the total number of truly expressed transcripts
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In a survey of 315 random papers from PubMed that perform

RNA-Seq studies and for which some method of feature quantifica-

tion was employed, we found transcript level inference is quite popu-

lar, being done more than half the time. In particular Cufflinks is cited

123 times and Trinity is cited 24 times. A couple methods are so new

that we do not expect citations yet, such as StringTie. Many other

papers do not perform transcript inference but still attempt to do tran-

script level analysis via methods which simply assign quantifications

to a fixed set of annotated transcripts. In particular, out of the 315

publications surveyed, HTSEQ is cited 45 times, RSEM 19 times, sim-

ple counting 17 times and CLCBio Genomics Workbench 10 times.

Only a small minority of groups work with exon or gene level ana-

lysis; however, our results indicate that such an analysis may often be

much more practical and efficient.

5 Conclusion

Investigators using RNA-Seq want to know which transcripts are

present and their expression levels. Full-length transcript reconstruc-

tion from short read data has emerged as a potential solution to the

problem. However, short reads are noisy and fundamentally lack

the information necessary to build globally accurate transcripts.

Despite this, several algorithms have gained widespread usage,

underscoring the importance of more research into this problem.

Most likely, a satisfactory solution will involve an evolution not just

in the algorithms, but in the nature of the data. It is likely this prob-

lem will not improve to the point of being practical until much lon-

ger reads are available and until the ribosomal depletion protocols

improve. Finally, it remains possible that some keen insight into

how to identify and effectively utilize signals in the genome could

emerge that helps to solve this problem. Regardless, benchmarking

studies such as those presented here will remain a critical component

to realizing these important goals.
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