
Journal of Artificial Intelligence Research 70 (2021) 409-472 Submitted 12/2019; published 01/2021

Benchmark and Survey of Automated

Machine Learning Frameworks

Marc-André Zöller marc.zoeller@usu.com

USU Software AG

Rüppurrer Str. 1, Karlsruhe, Germany

Marco F. Huber marco.huber@ieee.org

Institute of Industrial Manufacturing and Management IFF,

University of Stuttgart, Allmandring 25, Stuttgart, Germany &

Fraunhofer Institute for Manufacturing Engineering and Automation IPA

Nobelstr. 12, Stuttgart, Germany

Abstract

Machine learning (ML) has become a vital part in many aspects of our daily life. How-
ever, building well performing machine learning applications requires highly specialized
data scientists and domain experts. Automated machine learning (AutoML) aims to re-
duce the demand for data scientists by enabling domain experts to build machine learning
applications automatically without extensive knowledge of statistics and machine learning.
This paper is a combination of a survey on current AutoML methods and a benchmark of
popular AutoML frameworks on real data sets. Driven by the selected frameworks for eval-
uation, we summarize and review important AutoML techniques and methods concerning
every step in building an ML pipeline. The selected AutoML frameworks are evaluated on
137 data sets from established AutoML benchmark suites.

1. Introduction

In recent years ML is becoming ever more important: automatic speech recognition, self-
driving cars or predictive maintenance in Industry 4.0 are build upon ML. ML is nowadays
able to beat human beings in tasks often described as too complex for computers, e.g.,
AlphaGO (Silver et al., 2017) was able to beat the human champion in GO. Such examples
are powered by extremely specialized and complex ML pipelines.

In order to build such an ML pipeline, a highly trained team of human experts is
necessary: data scientists have profound knowledge of ML algorithms and statistics; domain
experts often have a longstanding experience within a specific domain. Together, those
human experts can build a sensible ML pipeline containing specialized data preprocessing,
domain-driven meaningful feature engineering and fine-tuned models leading to astonishing
predictive power. Usually, this process is a very complex task, performed in an iterative
manner with trial and error. As a consequence, building good ML pipelines is a long and
expensive endeavor and practitioners often use a suboptimal default ML pipeline.

AutoML aims to improve the current way of building ML applications by automation.
ML experts can profit from AutoML by automating tedious tasks like hyperparameter
optimization (HPO) leading to a higher efficiency. Domain experts can be enabled to build
ML pipelines on their own without having to rely on a data scientist.

c©2021 AI Access Foundation. All rights reserved.

Zöller & Huber

It is important to note that AutoML is not a new trend. Starting from the 1990s, com-
mercial solutions offered automatic HPO for selected classification algorithms via grid search
(Dinsmore, 2016). Adaptations of grid search to test possible configurations in a greedy
best-first approach are available since 1995 (Kohavi & John, 1995). In the early 2000s, the
first efficient strategies for HPO have been proposed. For limited settings, e.g., tuning C
and γ of a support-vector machine (SVM) (Momma & Bennett, 2002; Chapelle et al., 2002;
Chen et al., 2004), it was proven that guided search strategies yield better results than
grid search in less time. Also in 2004, the first approaches for automatic feature selection
have been published (Samanta, 2004). Full model selection (Escalante et al., 2009) was the
first attempt to build a complete ML pipeline automatically by selecting a preprocessing,
feature selection and classification algorithm simultaneously while tuning the hyperparam-
eters of each method. Testing this approach on various data sets, the potential of this
domain-agnostic method was proven (Guyon et al., 2008). Starting from 2011, many dif-
ferent methods applying Bayesian optimization for hyperparameter tuning (Bergstra et al.,
2011; Snoek et al., 2012) and model selection (Thornton et al., 2013) have been proposed.
In 2015, the first method for automatic feature engineering without domain knowledge was
proposed (Kanter & Veeramachaneni, 2015). Building variable shaped pipelines is possible
since 2016 (Olson & Moore, 2016). In 2017 and 2018, the topic AutoML received a lot of
attention in the media with the release of commercial AutoML solutions from various global
players (Golovin et al., 2017; Clouder, 2018; Baidu, 2018; Das et al., 2020). Simultaneously,
research in the area of AutoML gained significant traction leading to many performance
improvements. Recent methods are able to reduce the runtime of AutoML procedures from
several hours to mere minutes (Hutter et al., 2018b).

This paper is a combination of a short survey on AutoML and an evaluation of frame-
works for AutoML and HPO on real data. We select 14 different AutoML and HPO frame-
works in total for evaluation. The techniques used by those frameworks are summarized to
provide an overview for the reader. This way, research concerning the automation of any
aspect of an ML pipeline is reviewed: determining the pipeline structure, selecting an ML
algorithm for each stage in a pipeline and tuning each algorithm. The paper focuses on
classic machine learning and does not consider neural network architecture search while still
many of the ideas can be transferred. Most topics discussed in this survey are large enough
to be handled in dedicated surveys. Consequently, this paper does not aim to handle each
topic in exhaustive depth but aims to provide a profound overview. The contributions are:

• We introduce a mathematical formulation covering the complete procedure of auto-
matic ML pipeline synthesis and compare it with existing problem formulations.

• We review open-source frameworks for building ML pipelines automatically.

• An evaluation of eight HPO algorithms on 137 real data sets is conducted. To the
best of our knowledge, this is the first independent benchmark of HPO algorithms.

• An empirical evaluation of six AutoML frameworks on 73 real data sets is performed.
To the best of our knowledge, this is the most extensive evaluation—in terms of tested
frameworks as well as used data sets—of AutoML frameworks.

In doing so, readers will get a comprehensive overview of state-of-the-art AutoML algo-
rithms. All important stages of building an ML pipeline automatically are introduced

410

Benchmark and Survey of Automated Machine Learning Frameworks

and existing approaches are evaluated. This allows revealing the limitations of current
approaches and raising open research questions.

Lately, several surveys regarding AutoML have been published. Elshawi et al. (2019)
and He et al. (2019) focus on automatic neural network architecture search—which is not
covered in this survey—and only briefly introduce methods for classic machine learning.
Quanming et al. (2018) and Hutter et al. (2018a) cover less steps of the pipeline creation
process and do not provide an empirical evaluation of the presented methods. Finally,
Tuggener et al. (2019) provides only a high-level overview.

Two benchmarks of AutoML methods have been published so far. Balaji and Allen
(2018) and Gijsbers et al. (2019) evaluate various AutoML frameworks on real data sets.
Our evaluations exceed those benchmarks in terms of evaluated data sets as well as evaluated
frameworks. Both benchmarks focus only on a performance comparison while we also take
a look at the obtained ML models and pipelines. Furthermore, both benchmarks do not
consider HPO methods.

In Section 2 a mathematical sound formulation of the automatic construction of ML
pipelines is given. Section 3 presents different strategies for determining a pipeline structure.
Various approaches for ML model selection and HPO are theoretically explained in Section 4.
Next, methods for automatic data cleaning (Section 5) and feature engineering (Section 6)
are introduced. Measures for improving the performance of the generated pipelines as well
as decreasing the optimization runtime are explained in Section 7. Section 8 introduces the
evaluated AutoML frameworks. The evaluation is presented in Section 9. Opportunities for
further research are presented in Section 10 followed by a short conclusion in Section 11.

2. Problem Formulation

An ML pipeline h : X → Y is a sequential combination of various algorithms that transforms
a feature vector ~x ∈ X into a target value y ∈ Y, e.g., a class label for a classification
problem. Let a fixed set of basic algorithms, e.g., various classification, imputation and
feature selection algorithms, be given as A =

{

A(1), A(2), . . . , A(n)
}

. Each algorithm A(i) is

configured by a vector of hyperparameters ~λ(i) from the domain ΛA(i) .

Without loss of generality, let a pipeline structure be modeled as a directed acyclic graph
(DAG). Each node represents a basic algorithm. The edges represent the flow of an input
data set through the different algorithms. Often the DAG structure is restricted by implicit
constraints, i.e., a pipeline for a classification problem has to have a classification algorithm
as the last step. Let G denote the set of valid pipeline structures and |g| denote the length
of a pipeline, i.e., the number of nodes in g ∈ G.

Definition 1 (Machine Learning Pipeline) Let a triplet (g, ~A,~λ) define an ML pipeline

with g ∈ G a valid pipeline structure, ~A ∈ A|g| a vector consisting of the selected algorithm

for each node and ~λ a vector comprising the hyperparameters of all selected algorithms. The

pipeline is denoted as P
g, ~A,~λ

.

Following the notation from empirical risk minimization, let P (X,Y) be a joint proba-
bility distribution of the feature space X and target space Y known as a generative model.
We denote a pipeline trained on the generative model P as P

g, ~A,~λ,P
.

411

Zöller & Huber

Definition 2 (True Pipeline Performance) Let a pipeline P
g, ~A,~λ

be given. Given a loss

function L(·, ·) and a generative model P (X,Y), the performance of P
g, ~A,~λ,P

is calculated as

R
(

P
g, ~A,~λ,P

, P
)

= E
(

L(h(X),Y)
)

=

∫

L
(

h(X),Y
)

dP (X,Y), (1)

with h(X) being the predicted output of P
g, ~A,~λ,P

.

Let an ML task be defined by a generative model, loss function and an ML problem type,
e.g., classification or regression. Generating an ML pipeline for a given ML task can be split
into three tasks: first, the structure of the pipeline has to be determined, e.g., selecting how
many preprocessing and feature engineering steps are necessary, how the data flows through
the pipeline and how many models have to be trained. Next, for each step an algorithm has
to be selected. Finally, for each selected algorithm its corresponding hyperparameters have
to be selected. All steps have to be completed to actually evaluate the pipeline performance.

Definition 3 (Pipeline Creation Problem) Let a set of algorithms A with an according

domain of hyperparameters Λ(·), a set of valid pipeline structures G and a generative model

P (X,Y) be given. The pipeline creation problem consists of finding a pipeline structure in

combination with a joint algorithm and hyperparameter selection that minimizes the loss

(g, ~A,~λ)⋆ ∈ argmin
g∈G, ~A∈A|g|,~λ∈Λ

R
(

P
g, ~A,~λ,P

, P
)

. (2)

In general, Equation (2) cannot be computed directly as the distribution P (X,Y) is un-
known. Instead, let a finite set of observations D = {(~x1, y1) , . . . , (~xm, ym)} of m i.i.d
samples drawn from P (X,Y) be given. Equation (1) can be adapted to D to calculate an
empirical pipeline performance as

R̂
(

P
g, ~A,~λ,D

, D
)

=
1

m

m
∑

i=1

L (h(xi), yi) . (3)

To limit the effects of overfitting, Equation (3) is often augmented by cross-validation. Let

the data set D be split into k folds {D
(1)
valid, . . . , D

(k)
valid} and {D

(1)
train, . . . , D

(k)
train} such that

D
(i)
train = D \D

(i)
valid. The final objective function is defined as

(g, ~A,~λ)⋆ ∈ argmin
g∈G, ~A∈A|g|,~λ∈Λ

1

k

k
∑

i=1

R̂
(

P
g, ~A,~λ,D

(i)
train

, D
(i)
valid

)

.

This problem formulation is a generalization of existing problem formulations. Current
problem formulations only consider selecting and tuning a single algorithm (e.g., Escalante
et al., 2009; Bergstra et al., 2011) or a linear sequence of algorithms with (arbitrary but)
fixed length (e.g., Thornton et al., 2013; Zhang et al., 2016; Alaa & Van Der Schaar, 2018;
Hutter et al., 2018a). Salvador et al. (2017) model an ML pipeline with Petri-nets (Petri,
1962) instead of a DAG. Using additional constraints, the Petri-net is enforced to represent
a DAG. Even though this approach is more expressive than DAGs, the additional model
capabilities are currently not utilized in the context of AutoML.

412

Benchmark and Survey of Automated Machine Learning Frameworks

Using Equation (2), the pipeline creation problem is formulated as a black box optimiza-
tion problem. Finding the global optimum in such equations has been the subject of decades
of study (Snyman, 2005). Many different algorithms have been proposed to solve specific
problem instances efficiently, for example convex optimization. To use these methods, the
features and shape of the underlying objective function—in this case the loss L—have to
be known to select applicable solvers. In general, it is not possible to predict any properties
of the loss function or even formulate it as closed-form expression as it depends on the gen-
erative model. Consequently, efficient solvers, like convex or gradient-based optimization,
cannot be used for Equation (2) (Luo, 2016).

Human ML experts usually solve the pipeline creation problem in an iterative manner:
At first a simple pipeline structure with standard algorithms and default hyperparameters
is selected. Next, the pipeline structure is adapted, potentially new algorithms are selected
and hyperparameters are refined. This procedure is repeated until the overall performance
is sufficient. In contrast, most current state-of-the-art algorithms solve the pipeline cre-
ation problem in a single step. Figure 1 shows a schematic representation of the different
optimization problems for the automatic composition of ML pipelines. Solutions for each
subproblem are presented in the following sections.

Pipeline Creation
Problem

Structure
Search CASH

Algorithm
Selection HPO

Figure 1: Subproblems of the pipeline creation problem.

3. Pipeline Structure Creation

The first task for building an ML pipeline is creating the pipeline structure. Common
best practices suggest a basic ML pipeline layout as displayed in Figure 2 (Kégl, 2017;
Ayria, 2018; Zhou, 2018). At first, the input data is cleaned in multiple distinct steps,
like imputation of missing data and one-hot encoding of categorical input. Next, relevant
features are selected and new features created. This stage highly depends on the underlying
domain. Finally, a single model is trained on the previously selected features. In practice
this simple pipeline is usually adapted and extended by experienced data scientists.

Machine Learning Pipeline

Data
Cleaning

Feature
Engineering Model Predictions

Dataset

Figure 2: Prototypical ML pipeline. First, the input data is cleaned and features are
extracted. The transformed input is passed through an ML model to create predictions.

413

Zöller & Huber

3.1 Fixed Structure

Many AutoML frameworks do not solve the structure selection because they are preset to
the fixed pipeline structure displayed in Figure 3 (e.g., Komer et al., 2014; Feurer et al.,
2015a; Swearingen et al., 2017; Parry, 2019; McGushion, 2019). Resembling the best prac-
tice pipeline closely, the pipeline is a linear sequence of multiple data cleaning steps, a
feature selection step, one variable preprocessing step and exactly one modeling step. The
preprocessing step chooses one algorithm from a set of well known algorithms, e.g., various
matrix decomposition algorithms. Regarding data cleaning, the pipeline structure differs.
Yet, often the two steps imputation and scaling are implemented. Often single steps in
this pipeline could be omitted as the data set is not affected by this specific step, e.g., an
imputation without missing values.

Machine Learning Pipeling

Data Cleaning

Imputation Pre-
processingScaling Feature

Selection Model Predictions
Dataset

Text

Figure 3: Fixed ML pipeline used by most AutoML frameworks. Minor differences exist
regarding the implemented data cleaning steps.

By using a pipeline with a fixed structure, the complexity of determining a graph struc-
ture g is eliminated completely and the pipeline creation problem is reduced to selecting
a preprocessing and modeling algorithm. Even though this approach greatly reduces the
complexity of the pipeline creation problem, it may lead to inferior pipeline performances
for complex data sets requiring, for example, multiple preprocessing steps. Yet, for many
problems with high quality training data a simple pipeline structure may still be sufficient.

3.2 Variable Structure

Data science experts usually build highly specialized pipelines for a given ML task to obtain
the best results. Fixed shaped ML pipelines lack this flexibility to adapt to a specific task.
Several approaches for building flexible pipelines automatically exist that are all based on
the same principal ideas: a pipeline consists of a set of ML primitives—namely the basic
algorithms A—, an data set duplicator to clone a data set and a feature union operator
to combine multiple data sets. The data set duplicator is used to create parallel paths in
the pipeline; parallel paths can be joined via a feature union. A pipeline using all these
operators is displayed in Figure 4.

The first method to build flexible ML pipelines automatically was introduced by Olson
and Moore (2016) and is based on genetic programming (Koza, 1992; Banzhaf, Nordin,
Keller, & Francone, 1997). Genetic programming has been used for automatic program
code generation for a long time (Poli et al., 2008). Yet, the application to pipeline structure
synthesis is quite recent. Pipelines are interpreted as tree structures that are generated via
genetic programming. Two individuals are combined by selecting sub-graphs of the pipeline
structures and combining these sub-graphs to a new graph. Mutation is implemented by
random addition or deletion of a node. This way, flexible pipelines can be generated.

414

Benchmark and Survey of Automated Machine Learning Frameworks

Machine Learning Pipeline

Predictions
Dataset

Dataset

Dataset

Imputation PCA

Stacking Estimator
Decision Tree

Fe
at

ur
e

Un
ion

AdaBoost
SVM

Da
ta

se
t D

up
lic

at
or

Figure 4: Specialized ML pipeline for a specific ML task.

Hierarchical task networks (HTNs) (Ghallab et al., 2004) are a method from automated
planning that recursively partition a complex problem into easier subproblems. These
subproblems are again decomposed until only atomic terminal operations are left. This
procedure can be visualized as a graph structure. Each node represents a (potentially
incomplete) pipeline; each edge the decomposition of a complex step into sub-steps. When
all complex problems are replaced by ML primitives, an ML pipeline is obtained. Using
this abstraction, the problem of finding an ML pipeline structure is reduced to finding the
best leaf node in the graph (Mohr et al., 2018).

Monte-Carlo tree search (Kocsis & Szepesvári, 2006; Browne et al., 2012) is a heuristic
best-first tree search algorithm. Similar to hierarchical planning, ML pipeline structure
generation is reduced to finding the best node in the search tree. However, instead of
decomposing complex tasks, pipelines with increasing complexity are created iteratively
(Rakotoarison et al., 2019).

Self-play (Lake et al., 2017) is a reinforcement learning strategy that has received a lot
of attention lately due to the recent successes of AlphaZero (Silver et al., 2017). Instead
of learning from a fixed data set, the algorithm creates new training examples by playing
against itself. Pipeline structure search can also be considered as a game (Drori et al.,
2018): an ML pipeline and the training data set represent the current board state s; for
each step the player can choose between the three actions adding, removing or replacing a
single node in the pipeline; the loss of the pipeline is used as a score ν(s). In an iterative
procedure, a neural network in combination with Monte-Carlo tree search is used to select
a pipeline structure g by predicting its performance and probabilities which action to chose
in this state (Drori et al., 2018).

Methods for variable-shaped pipeline construction often do not consider dependencies
between different pipeline stages and constraints on the complete pipeline. For example,
genetic programming could create a pipeline for a classification task without any classi-
fication algorithm (Olson et al., 2016). To prevent such defective pipelines, the pipeline
creation can be restricted by a grammar (de Sá et al., 2017; Drori et al., 2019). In doing
so, reasonable but still flexible pipelines can be created.

4. Algorithm Selection and Hyperparameter Optimization

Let a structure g ∈ G, a loss function L and a training set D be given. For each node in g an
algorithm has to be selected and configured via hyperparameters. This section introduces
various methods for algorithm selection and configuration.

415

Zöller & Huber

A notion first introduced by Thornton et al. (2013) and since then adopted by many
others is the combined algorithm selection and hyperparameter optimization (CASH) prob-
lem. Instead of selecting an algorithm first and optimizing its hyperparameters later, both
steps are executed simultaneously. This problem is formulated as a black box optimization
problem leading to a minimization problem quite similar to the pipeline creation problem
in Equation (2). For readability, assume |g| = 1. The CASH problem is defined as

(~A,~λ)⋆ ∈ argmin
~A∈A,~λ∈Λ

R
(

P
g, ~A,~λ,D

, D
)

.

Let the choice which algorithm to use be treated as an additional categorical meta-
hyperparameter λr. Then the complete hyperparameter space for a single algorithm can be
defined as

Λ = ΛA(1) × . . .ΛA(n) × λr

referred to as the configuration space. This leads to the final CASH minimization problem

~λ⋆ ∈ argmin
~λ∈Λ

R
(

P
g,~λ,D

, D
)

. (4)

This definition can be easily extended for |g| > 1 by introducing a distinct λr for each node.

For readability, let f(~λ) = R
(

P
g,~λ,D

, D
)

be denoted as the objective function.

It is important to note that Equation (4) is not easily solvable as the search space is quite
large and complex. As hyperparameters can be categorical and real-valued, Equation (4)
is a mixed-integer nonlinear optimization problem (Belotti et al., 2013). Furthermore,
conditional dependencies between different hyperparameters exist. If for example the ith
algorithm is selected, only ΛA(i) is relevant as all other hyperparameters do not influence
the result. Therefore, ΛA(i) depends on λr = i. Following Hutter et al. (2009), Thornton

et al. (2013), Swearingen et al. (2017) the hyperparameters ~λ ∈ ΛA(i) can be aggregated in
two groups: mandatory hyperparameters always have to be present while conditional hy-
perparameters depend on the selected value of another hyperparameter. A hyperparameter
λi is conditional on another hyperparameter λj , if and only if λi is relevant when λj takes
values from a specific set Vi(j) ⊂ Λj .

Using this notation, the configuration space can be interpreted as a tree as visualized
in Figure 5. λr represents the root node with a child node for each algorithm. Each
algorithm has the according mandatory hyperparameters as child nodes, all conditional
hyperparameters are children of another hyperparameter. This tree structure can be used
to significantly reduce the search space.

The rest of this section introduces different optimization strategies to solve Equation (4).

4.1 Grid Search

The first approach to explore the configuration space systematically was grid search. As the
name implies, grid search creates a grid of configurations and evaluates all of them. Even
though grid search is easy to implement and parallelize (Bergstra & Bengio, 2012), it has
two major drawbacks: 1) it does not scale well for large configuration spaces, as the number
of function evaluations grows exponentially with the number of hyperparameters (LaValle

416

Benchmark and Survey of Automated Machine Learning Frameworks

λr

SVM LDA

C Kernel

polynomial

degree

rbf sigmoid

coeff0 coeff0

Gamma

...

svdlsgr

Solver

eigen

shrinkage shrinkage

n_components

Text

Figure 5: Incomplete representation of the structured configuration space for selecting and
tuning a classification algorithm. Rectangle nodes represent the selection of an algorithm.
Ellipse nodes represent tunable hyperparameters. Highlighted in blue is an active configu-
ration to select and configure a SVM with a polynomial kernel.

et al., 2004) and 2) the hierarchical hyperparameter structure is not considered, leading to
many redundant configurations.

In the traditional version, grid search does not exploit knowledge of well performing
regions. This drawback is partially eliminated by contracting grid search (Hsu et al., 2003;
Hesterman et al., 2010). At first, a coarse grid is fitted, next a finer grid is created centered
around the best performing configuration. This iterative procedure is repeated k times
converging to a local minimum.

4.2 Random Search

Another widely-known approach is random search (Anderson, 1953). A candidate configura-
tion is generated by choosing a value for each hyperparameter randomly and independently
of all others. Conditional hyperparameters can be handled implicitly by traversing the hier-
archical dependency graph. Random search is straightforward to implement and parallelize
and well suited for gradient-free functions with many local minima (Solis & Wets, 1981).
Even though the convergence speed is faster than grid search (Bergstra & Bengio, 2012),
still many function evaluations are necessary as no knowledge of well performing regions
is exploited. As function evaluations are very expensive, random search requires a long
optimization period.

4.3 Sequential Model-based Optimization

The CASH problem can be treated as a regression problem: f(~λ) can be approximated
using standard regression methods based on the so-far tested hyperparameter configurations

D1:n =
{(

~λ1, f(~λ1)
)

, . . . ,
(

~λn, f(~λn)
)}

. This concept is captured by sequential model-

based optimization (SMBO) (Bergstra et al., 2011; Hutter et al., 2011; Bergstra et al.,
2013) displayed in Figure 6.

The loss function is complemented by a probabilistic regression model M that acts as a
surrogate for f . The surrogate modelM , build usingD1:n, allows predicting the performance
of an arbitrary configuration ~λ without evaluating the demanding objective function. A new

417

Zöller & Huber

Initialization Samples

Model

New Configuration

Building Generation

Feedback from
Objective Function

EvaluationAddition

Figure 6: Schematic procedure of SMBO.

configuration ~λn+1 ∈ Λ, obtained using a cheap acquisition function, is evaluated on the
objective function f and the result added to D1:n. These steps are repeated until a fixed
budget T—usually either a fixed number of iterations or a time limit—is exhausted. The
initialization is often implemented by selecting a small number of random configurations.

Even though fitting a model and selecting a configuration introduces a computational
overhead, the probability of testing badly performing configurations can be lowered sig-
nificantly. As the actual function evaluation is usually way more expensive than these
additional steps, better performing configurations can be found in a shorter time span in
comparison to random or grid search.

To actually implement the surrogate model fitting and configuration selection, Bayesian
optimization (Brochu et al., 2010; Shahriari et al., 2016; Frazier, 2018) is used. It is an
iterative optimization framework being well suited for expensive objective functions. A
probabilistic model of the objective function f is obtained using Bayes’ theorem

P (f | D1:n) ∝ P (D1:n | f)P (f). (5)

Bayesian optimization is very efficient concerning the number of objective function eval-
uations (Brochu et al., 2010) as the acquisition function handles the trade-off between
exploration and exploitation automatically. New regions with a high uncertainty are ex-
plored, preventing the optimization from being stuck in a local minimum. Well performing
regions with a low uncertainty are exploited converging to a local minimum (Brochu et al.,
2010). The surrogate model M corresponds to the posterior in Equation (5). As the char-
acteristics and shape of the loss function are in general unknown, the posterior has to be a
non-parametric model.

The traditional surrogate models for Bayesian optimization are Gaussian processes (Ras-
mussen & Williams, 2006). The key idea is that any objective function f can be modeled
using an infinite dimensional Gaussian distribution. A common drawback of Gaussian pro-
cesses is the runtime complexity of O(n3) (Rasmussen & Williams, 2006). However, as
long as multi-fidelity methods (see Section 7) are not used, this is not relevant for AutoML
as evaluating a high number of configurations is prohibitively expensive. A more relevant
drawback for CASH is the missing native support of categorical input1 and utilization of
the search space structure.

Random forest regression (Breiman, 2001) is an ensemble method consisting of multiple
regression trees (Breiman et al., 1984). Regression trees use recursive splitting of the training

1. Extensions for treating integer variables in Gaussian processes exist (e.g., Levesque et al., 2017; Garrido-
Merchán & Hernández-Lobato, 2018).

418

Benchmark and Survey of Automated Machine Learning Frameworks

data to create groups of similar observations. Besides the ability to handle categorical
variables natively, random forests are fast to train and even faster on evaluating new data
while obtaining a good predictive power.

In contrast to the two previous surrogate models, a tree-structured Parzen estimator
(TPE) (Bergstra et al., 2011) models the likelihood P (D1:n | f) instead of the posterior.
Using a performance threshold f ′, all observed configurations are split into a well and
badly performing set, respectively. Using kernel density estimation (KDE) (Parzen, 1961),
those sets are transformed into two distributions. Regarding the tree structure, TPEs
handle hierarchical search spaces natively by modeling each hyperparameter individually.
These distributions are connected hierarchically representing the dependencies between the
hyperparameters resulting in a pseudo multidimensional distribution.

4.4 Evolutionary Algorithms

An alternative to SMBO are evolutionary algorithms (Coello et al., 2007). Evolutionary
algorithms are a collection of various population-based optimization algorithms inspired by
biological evolution. In general, evolutionary algorithms are applicable to a wide variety of
optimization problems as no assumptions about the objective function are necessary.

Escalante et al. (2009) and Claesen et al. (2014) perform hyperparameter optimization
using a particle swarm (Reynolds, 1987). Originally developed to simulate simple social be-
havior of individuals in a swarm, particle swarms can also be used as an optimizer (Kennedy
& Eberhart, 1995). Inherently, a particle’s position and velocity are defined by continuous
vectors ~xi, ~vi ∈ R

d. Similar to Gaussian processes, all categorical and integer hyperparam-
eters have to be mapped to continuous variables introducing a mapping error.

4.5 Multi-armed Bandit Learning

Many SMBO methods suffer from the mixed and hierarchical search space. By perform-
ing grid search considering only the categorical hyperparameters, the configuration space
can be split into a finite set of smaller configuration spaces—called a hyperpartition—
containing only continuous hyperparameters. Each hyperpartition can be optimized by
standard Bayesian optimization methods. The selection of a hyperpartition can be mod-
eled as a multi-armed bandit problem (Robbins, 1952). Even though multi-armed bandit
learning can also be applied to continuous optimization (Munos, 2014), in the context of
AutoML it is only used in a finite setting in combination with other optimization techniques
(Hoffman et al., 2014; Efimova et al., 2017; Gustafson, 2018; das Dôres et al., 2018).

4.6 Gradient Descent

A very powerful optimization method is gradient descent, an iterative minimization al-
gorithm. If f is differentiable and its closed-form representation is known, the gradient
∇f is computable. However, for CASH the closed-form representation of f is not known
and therefore gradient descent in general not applicable. By assuming some properties of
f—and therefore limiting the applicability of this approach to specific problem instances—
gradient descent can still be used (Maclaurin et al., 2015; Pedregosa, 2016). Due to the
rigid constraints, gradient descent is not analyzed in more detail.

419

Zöller & Huber

5. Automatic Data Cleaning

Data cleaning is an important aspect of building an ML pipeline. The purpose of data
cleaning is to improve the quality of a data set by removing data errors. Common error
classes are missing values in the input data, redundant entries, invalid values or broken
links between entries of multiple data sets (Rahm & Do, 2000). In general, data cleaning
is split into two tasks: error detection and error repairing (Chu et al., 2016). For over
two decades semi-automatic, interactive systems existed to aid a data scientist in data
cleaning (Galhardas et al., 2000; Raman & Hellerstein, 2001). Yet, most current approaches
still aim to assist a human data scientist instead of fully automated data cleaning, (e.g.,
Krishnan et al., 2015; Khayyaty et al., 2015; Krishnan et al., 2016; Eduardo & Sutton, 2016;
Rekatsinas et al., 2017). Krishnan and Wu (2019) proposed an automatic data cleaning
procedure with minimal human interaction: based on a human defined data quality function,
data cleaning is treated similarly to pipeline structure search. Basic data cleaning operators
are combined iteratively using greedy search to create sophisticated data cleaning.

Most existing AutoML frameworks recognize the importance of data cleaning and in-
clude various data cleaning stages in the ML pipeline (e.g., Feurer et al., 2015a; Swearingen
et al., 2017; Parry, 2019). However, these data cleaning steps are usually hard-coded and
not generated based on some metric during an optimization period. These fixed data clean-
ing steps usually contain imputation of missing values, removing of samples with incorrect
values, like infinity or outliers, and scaling features to a normalized range. In general,
current AutoML frameworks do not consider state-of-the-art data cleaning methods.

Sometimes, high requirements for specific data qualities are introduced by later stages
in an ML pipeline, e.g., SVMs require a numerical encoding of categorical features while
random forests can handle them natively. These additional requirements can be detected
by analyzing a candidate pipeline and matching the prerequisites of every stage with meta-
features of each feature in the data set (Gil et al., 2018; Nguyen et al., 2020).

Incorporating domain knowledge during data cleaning increases the data quality signif-
icantly (Jeffery et al., 2006; Messaoud et al., 2011; Salvador et al., 2016). Using different
representations of expert knowledge, like integrity constraints or first order logic, low quality
data can be detected and corrected automatically (Raman & Hellerstein, 2001; Hellerstein,
2008; Chu et al., 2015, 2016). However, these potentials are not used by current AutoML
frameworks as they aim to be completely data-agnostic to be applicable to a wide range of
data sets. Advanced and domain specific data cleaning is conferred to the user.

6. Automatic Feature Engineering

Feature engineering is the process of generating and selecting features from a given data set
for the subsequent modeling step. This step is crucial for the ML pipeline, as the overall
model performance highly depends on the available features. By building good features,
the performance of an ML pipeline can be increased many times over an identical pipeline
without dedicated feature engineering (Pyle, 1999). Feature engineering can be split into
three sub-tasks: feature extraction, feature construction and feature selection (Motoda &
Liu, 2002). Feature engineering—especially feature construction—is highly domain specific
and difficult to generalize. Even for data scientists assessing the impact of a feature is

420

Benchmark and Survey of Automated Machine Learning Frameworks

difficult, as domain knowledge is necessary. Consequently, feature engineering is a mainly
manual and time-consuming task driven by trial and error. In the context of AutoML,
feature extraction and feature construction are usually aggregated as feature generation.

6.1 Feature Generation

Feature generation creates new features through a functional mapping of the original fea-
tures (feature extraction) or discovering missing relationships between the original features
(feature creation) (Motoda & Liu, 2002). In general, this step requires the most domain
knowledge and is therefore the hardest to automate. Approaches to enhance automatic fea-
ture generation with domain knowledge (e.g., Friedman & Markovitch, 2015; Smith et al.,
2017) are not considered as AutoML aims to be domain-agnostic. Still, some features—like
dates or addresses—can be transformed easily without domain knowledge to extract more
meaningful features (Chen et al., 2018).

Candidate Feature
Generation

Candidate Feature
Ranking

Candidate Feature
Selection

Add new Features

Dataset

Figure 7: Iterative feature generation procedure.

Basically all automatic feature generation approaches follow the iterative schema dis-
played in Figure 7. Based on an initial data set, a set of candidate features is generated and
ranked. Highly ranked features are evaluated and added to the data set potentially. These
three steps are repeated several times.

New features are generated using a predefined set of operators transforming the original
features (Sondhi, 2009):

Unary Unary operators transform a single feature, for example by discretizing or nor-
malizing numerical features, applying rule-based expansions of dates or using unary
mathematical operators like a logarithm.

Binary Binary operators combine two features, e.g., via basic arithmetic operations. Using
correlation tests and regression models, the correlation between two features can be
expressed as a new feature (Kaul et al., 2017).

High-Order High-order operators are usually build around the SQL Group By operator:
all records are grouped by one feature and then aggregated via minimum, maximum,
average or count.

Similar to pipeline structure search, feature generation can be considered as a node selection
problem in a transformation tree: the root node represents the original features; each edge
applies one specific operator leading to a transformed feature set (Khurana et al., 2016;
Lam et al., 2017).

Many approaches augment feature selection with an ML model to actually calculate the
performance of the new feature set. Early approaches combined beam search in combination
with different heuristics to explore the feature space in a best-first way (Markovitch &

421

Zöller & Huber

Rosenstein, 2002). More recently, greedy search (Dor & Reich, 2012; Khurana et al., 2016)
and depth-first search (Lam et al., 2017) in combination with feature selection have been
used to create a sequence of operators. In each iteration, a random operation is applied to
the currently best-performing data set until the performance improvement does converge.
Another popular approach is combining features using genetic programming (Smith & Bull,
2005; Tran et al., 2016).

Instead of exploring the transformation tree iteratively, exhaustive approaches consider
a fully expanded transformation tree up to a predefined depth (Kanter & Veeramachaneni,
2015; Katz et al., 2017). Most of the candidate features do not contain meaningful in-
formation. Consequently, the set of candidate features has to be filtered. Yet, generating
exponentially many features makes this approach prohibitively expensive in combination
with an ML model. Instead, the new features can be filtered without an actual evalua-
tion (see Section 6.2) or ranked based on meta-features (see Section 7.5). Based on the
meta-features of a candidate feature, the expected loss reduction after including this candi-
date can be predicted using a regression model (Katz et al., 2017; Nargesian et al., 2017),
reinforcement learning (Khurana et al., 2018b) or stability selection (Kaul et al., 2017).
The predictive model is created in an offline training phase. Finally, candidate features are
selected by their ranking and the best features are added to the data set.

Some frameworks specialize on feature generation in relational databases (Kanter &
Veeramachaneni, 2015; Lam et al., 2017). Wistuba et al. (2017) and Chen et al. (2018)
propose using stacked estimators. The predicted output is added as an additional feature
such that later estimators can correct wrongly labeled data. Finally, Khurana et al. (2018a)
proposed to create an ensemble of sub-optimal feature sets (see Section 7.4).

Another approach for automatic feature generation is representation learning (Bengio
et al., 2013; Goodfellow et al., 2016). Representation learning aims to transform the input
data into a latent representation space well suited for a—in the context of this survey—
supervised learning task automatically. As this approach is usually used in combination
with neural networks and unstructured data, it is not further evaluated.

6.2 Feature Selection

Feature selection chooses a subset of the feature set to speed up the subsequent ML model
training and to improve its performance by removing redundant or misleading features
(Motoda & Liu, 2002). Furthermore, the interpretability of the trained model is increased.
Simple domain-agnostic filtering approaches for feature selection are based on information
theory and statistics (Pudil et al., 1994; Yang & Pedersen, 1997; Dash & Liu, 1997; Guyon &
Elisseeff, 2003). Algorithms like univariate selection, variance threshold, feature importance,
correlation matrices (Saeys et al., 2007) or stability selection (Meinshausen & Bühlmann,
2010) are already integrated in modern AutoML frameworks (Thornton et al., 2013; Komer
et al., 2014; Feurer et al., 2015a; Olson & Moore, 2016; Swearingen et al., 2017; Parry,
2019) and selected via standard CASH methods. More advanced feature selection methods
are usually implemented in dedicated feature engineering frameworks.

In general, the feature set—and consequently also its power set—is finite. Feature
selection via wrapper functions searches for the best feature subset by testing its performance
on a specific ML algorithm. Simple approaches use random search or test the power set

422

Benchmark and Survey of Automated Machine Learning Frameworks

exhaustively (Dash & Liu, 1997). Heuristic approaches follow an iterative procedure by
adding single features (Kononenko, 1994). Margaritis (2009) used a combination of forward
and backward selection to select a feature-subset while Gaudel and Sebag (2010) proposed
to model the subset selection as a reinforcement problem. Vafaie and De Jong (1992) used
genetic programming in combination with a cheap prediction algorithm to obtain a well
performing feature subset.

Finally, embedded methods incorporate feature selection directly into the training pro-
cess of an ML model. Many ML models provide some sort of feature ranking that can be
utilized, e.g., SVMs (Guyon et al., 2002; Rakotomamonjy, 2003), perceptrons (Mej́ıa-Lavalle
et al., 2006) or random forests (Tuv et al., 2009). Similarly, embedded methods can be used
in combination with feature extraction and feature creation. Tran et al. (2016) used genetic
programming to construct new features. In addition, the information how often each feature
was used during feature construction is re-used to obtain a feature importance. Katz et al.
(2017) proposed to calculate meta-features for each new feature, e.g., diversity of values or
mutual information with the other features. Using a pre-trained classifier, the influence of
a single feature can be predicted to select only promising features.

7. Performance Improvements

In the previous sections, various techniques for building an ML pipeline have been presented.
In this section, different performance improvements are introduced. These improvements
cover multiple techniques to speed up the optimization procedure as well as improving the
overall performance of the generated ML pipeline.

7.1 Multi-fidelity Approximations

The major problem for AutoML and CASH procedures is the extremely high turnaround
time. Depending on the used data set, fitting a single model can take several hours, in
extreme cases even up to several days (Krizhevsky et al., 2012). Consequently, optimization
progress is very slow. A common approach to circumvent this limitation is the usage of
multi-fidelity approximations (Fernández-Godino et al., 2016). Data scientist often use
only a subset of the training data or a subset of the available features (Bottou, 2012).
By testing a configuration on this training subset, badly performing configurations can be
discarded quickly and only well performing configurations have to be tested on the complete
training set. The methods presented in this section aim to mimic this manual procedure to
make it applicable for fully automated ML.

A straight-forward approach to mimic expert behavior is choosing multiple random
subsets of the training data for performance evaluation (Nickson et al., 2014). More so-
phisticated methods augment the black box optimization in Equation (2) by introducing an
additional budget term s ∈ [0, 1] that can be freely selected by the optimization algorithm.

SuccessiveHalving (Jamieson & Talwalkar, 2015) solves the selection of s via ban-
dit learning. The basic idea, as visualized in Figure 8, is simple: SuccessiveHalving

randomly creates m configurations and tests each for the partial budget s0 = 1/m. The
better half is transferred to the next iteration allocating twice the budget to evaluate each
remaining configuration. This procedure is repeated until only one configuration remains
(Hutter et al., 2018b). A crucial problem with SuccessiveHalving is the selection of m

423

Zöller & Huber

0.0 0.2 0.4 0.6 0.8 1.0
Budget

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Figure 8: Schematic representation of SuccessiveHalving with 8 different configurations.

for a fixed budget: is it better to test many different configurations with a low budget or
only a few configurations with a high budget?

Hyperband (Li et al., 2016, 2018) answers this question by selecting an appropriate
number of configurations dynamically. It calculates the number of configurations and budget
size based on some budget constraints. A descending sequence of configuration numbers
m is calculated and passed to SuccessiveHalving. Consequently, no prior knowledge is
required anymore for SuccessiveHalving.

Fabolas (Klein et al., 2016) treats the budget s as an additional input parameter in
the search space that can be freely chosen by the optimization procedure instead of being
deterministically calculated. A Gaussian process is trained on the combined input (~λ, s).
Additionally, the acquisition function is enhanced by entropy search (Hennig & Schuler,
2012). This allows predicting the performance of ~λi, tested with budget si, for the full
budget s = 1.

It is important to note that all presented methods usually generate a budget in a fixed
interval [a, b] and the actual interpretation of this budget is conferred to the user. For
instance, Hyperband and SuccessiveHalving have been used very successfully to select
the number of training epochs in neural networks. Consequently, multi-fidelity approxima-
tions can be used for many problem instances.

7.2 Early Stopping

In contrast to using only a subset of the training data, several methods have been proposed
to terminate the evaluation of unpromising configurations early. Many existing AutoML
frameworks (see Section 8) incorporate k-fold cross-validation to limit the effects of over-
fitting. A quite simple approximation is to abort the fitting after the first fold if the per-
formance is significantly worse than the current incumbent (Maron & Moore, 1993; Hutter
et al., 2011).

The training of an ML model is often an iterative procedure converging to a local mini-
mum. By observing the improvement in each iteration, the learning curve of an ML model
can be predicted (Domhan et al., 2015; Klein et al., 2017b). This allows discarding prob-
ably bad performing configurations without a complete training. By considering multiple

424

Benchmark and Survey of Automated Machine Learning Frameworks

configurations in an iterative procedure simultaneously, the most promising configuration
can be optimized in each step (Swersky et al., 2014).

In non-deterministic scenarios, configurations usually have to be evaluated on multiple
problem instances to obtain reliable performance measures. Some of these problem instances
may be very unfavorable leading to drawn-out optimization periods (Huberman et al.,
1997). By evaluating multiple problem instances in parallel, long running instances can be
discarded early (Weisz et al., 2018; Li et al., 2020).

7.3 Scalability

As previously mentioned, fitting an ML pipeline is a time consuming and computational
expensive task. A common strategy for solving a computational heavy problem is paral-
lelization on multiple cores or within a cluster (e.g., Buyya, 1999; Dean & Ghemawat, 2008).
scikit-learn (Pedregosa et al., 2011), which is used by most evaluated frameworks (see
Section 8), already implements optimizations to distribute workload on multiple cores on
a single machine. As AutoML normally has to fit many ML models, distributing different
fitting instances in a cluster is an obvious idea.

Most of the previously mentioned methods allow easy parallelization of single evalua-
tions. Using grid search and random search, pipeline instances can be sampled indepen-
dently of each other. Evolutionary algorithms allow a simultaneous evaluation of candidates
in the same generation. However, SMBO is—as the name already implies—a sequential pro-
cedure.

SMBO procedures often contain a randomized component. Executing multiple SMBO
instances with different random seeds allows a simple parallelization (Hutter et al., 2012).
However, this simple approach often does not allow sharing knowledge between the different
instances. Alternatively, the surrogate model M can be handled by a single coordinator

while the evaluation of candidates is distributed to several workers. Pending candidate
evaluations can be either ignored—if sampling a new candidate depends on a stochastic
process (Bergstra et al., 2011; Kandasamy et al., 2018)— or imputed with a constant
(Ginsbourger et al., 2010b) or simulated performance (Ginsbourger et al., 2010a; Snoek
et al., 2012; Desautels et al., 2014). This way, new configurations can be sampled from an
approximated posterior while preventing the evaluation of the same configuration twice.

The scaling of AutoML tasks to a cluster also allows the introduction of AutoML ser-
vices. Users can upload their data set and configuration space—called a study—to a persis-
tent storage. Workers in a cluster test different configurations of a study until a budget is
exhausted. This procedure is displayed in Figure 9. As a result, users can obtain optimized
ML pipelines with minimal effort in a short timespan.

Various open-source designs for AutoML services have been proposed (e.g., Sparks et al.,
2015; Chan, 2017; Swearingen et al., 2017; Koch et al., 2018) but also several commercial
solutions exist (e.g., Golovin et al., 2017; Clouder, 2018; H2O.ai, 2018). Some commercial
solutions also focus on providing ML without the need to write own code, enabling domain
experts without programming skills to create optimized ML workflows (USU Software AG,
2018; Baidu, 2018; RapidMiner, 2018).

425

Zöller & Huber

Worker

Worker

...
.Results

...
.

Upload

Register

Figure 9: Components of an AutoML service (Swearingen et al., 2017).

7.4 Ensemble Learning

A well-known concept in ML is ensemble learning (Opitz & Maclin, 1999; Polikar, 2006;
Rokach, 2010). Ensemble methods combine multiple ML models to create predictions. De-
pending on the diversity of the combined models, the overall accuracy of the predictions can
be increased significantly. The cost of evaluating multiple ML models is often neglectable
considering the performance improvements.

During the search of a well performing ML pipeline, AutoML frameworks create a large
number of different pipelines. Instead of only yielding the best performing configuration,
the set of best performing configurations can be used to create an ensemble (Lacoste et al.,
2014; Feurer et al., 2015a; Wistuba et al., 2017). Similarly, automatic feature engineering
often creates several different candidate data sets (Khurana et al., 2016; Katz et al., 2017;
Nargesian et al., 2017). By using multiple data sets, various ML pipelines can be constructed
(Khurana et al., 2018a).

An interesting approach for ensemble learning is stacking (Wolpert, 1992). A stacked
ML pipeline is generated in multiple layers, each layer being a normal ML pipeline. The
predicted output of each previous layer is appended as a new feature to the training data
of subsequent layers. This way, later layers have the chance to correct wrong predictions of
previous layers (Wistuba et al., 2017; Khurana et al., 2018a; Chen et al., 2018).

7.5 Meta-learning

Given a new unknown ML task, AutoML methods usually start from scratch to build an
ML pipeline. However, a human data scientist does not always start all over again but
learns from previous tasks. Meta-learning is the science of learning how ML algorithms
learn. Based on the observation of various configurations on previous ML tasks, meta-
learning builds a model to construct promising configurations for a new unknown ML task
leading to faster convergence with less trial and error. Vanschoren (2019) provides a survey
exclusively on meta-learning.

Meta-learning can be used in multiple stages of building an ML pipeline automatically
to increase the efficiency:

Search Space Refinements All presented CASH methods require an underlying search
space definition. Often these search spaces are chosen arbitrarily without any validation
leading to either bloated spaces or spaces missing well-performing regions. In both cases the

426

Benchmark and Survey of Automated Machine Learning Frameworks

AutoML procedure is unable to find optimal results. Meta-learning can be used to assess
the importance of single hyperparameters allowing to remove unimportant hyperparameters
from the configuration space (Hutter et al., 2014; Wistuba et al., 2015a; van Rijn & Hutter,
2018; Probst et al., 2019) or identify promising regions (Wistuba et al., 2015b). Perrone
et al. (2019) use transfer learning to automatically construct a minimal search space from
the best configurations on related ML tasks.

Candidate Configuration Suggestion Many AutoML procedures generate candidate
configurations by selecting the configuration with the highest expected improvement. Meta-
learning can be used as an additional criterion for selecting promising candidate configura-
tions based on the predicted performance (e.g., Alia & Smith-Miles, 2006; Wistuba et al.,
2015b; Nargesian et al., 2017) or ranking of the models (e.g., Sohn, 1999; Gama & Brazdil,
2000). Consequently, the risk of superfluous configuration evaluations is minimized.

Warm-Starting Basically all presented methods have an initialization phase where ran-
dom configurations are selected. The same methods as for candidate suggestion can be
applied to initialization. Warm-starting can also be used for many aspects of AutoML,
yet most research focuses on model selection and tuning (Gomes et al., 2012; De Miranda
et al., 2012; Reif et al., 2012; Feurer et al., 2015a, 2015b; Wistuba et al., 2015b; Lindauer
& Hutter, 2018).

Pipeline Structure Meta-learning is also applicable for pipeline structure search. Feurer
et al. (2015a) use meta-features to warm-start the pipeline synthesis. Using information on
which preprocessing and model combination performs well, potentially better performing
pipelines can be favored (Post et al., 2016; Bilalli et al., 2017; Schoenfeld et al., 2018).
Gil et al. (2018) uses meta-features in the context of planning to select promising pipeline
structures. Similarly, Drori et al. (2019) and Rakotoarison et al. (2019) use meta-features
of the data set and pipeline candidate to predict the performance of the pipeline.

To actually apply meta-learning for any of these areas, meta-data about a set of prior
evaluations

P =
⋃

tj∈T,~λi∈Λ

R(~λi, tj) ,

with T being the set of all known ML tasks, is necessary. Meta-data usually comprises
properties of the previous task in combination with the used configuration and resulting
model evaluations (Vanschoren, 2019).

A simple task-independent approach for ranking configurations is sorting P by perfor-
mance. Configurations with higher performance are more favorable (Vanschoren, 2019).
For configurations with similar performance, the training time can be used to prefer faster
configurations (van Rijn et al., 2015). Yet, ignoring the task can lead to useless recom-
mendations, for example a configuration performing well for a regression task may not be
applicable to a classification problem.

An ML task tj can be described by a vector ~m(tj) of meta-features. Meta-features
describe the training data set, e.g., number of instances or features, distribution of and
correlation between features or measures from information theory. The actual usage of
~m(tj) highly depends on the meta-learning technique. For example, using the meta-features

427

Zöller & Huber

of a new task ~m(tnew), a subset of P′ ⊂ P with similar tasks can be obtained. P′ is then
used similarly to task-independent meta-learning (Vanschoren, 2019).

8. Selected Frameworks

This section provides an introduction to the evaluated AutoML frameworks. Frameworks
were selected based on their popularity, namely the number of citations and GitHub stars.
Preferably, the frameworks cover a wide range of the methods presented in Section 3–7
without implementing the same approaches multiple times. Finally, all frameworks had to
be open source.

Implementations of CASH algorithms are presented and analyzed in Section 8.1. Frame-
works for creating complete ML pipelines are discussed in Section 8.2. In this section, all
presented implementations are discussed qualitatively; experimental evaluation is provided
in Section 9. A reference to the source code of each framework is provided in Appendix A.

8.1 CASH Algorithms

At first, popular implementations of methods for algorithm selection and HPO are discussed.
The mathematical foundation for all discussed implementations was provided in Section 4
and Section 7. A summary including the most important properties is available in Table 1.

Algorithm Solver Λ Parallel Time Cat.

Dummy – no no no no

Random Forest – no no no no

Grid Search Grid Search no Local no yes

Random Search Random Search no Local no yes

RoBO SMBO with Gaussian process no no no no

BTB Bandit learning and Gaus. process yes no no yes

hyperopt SMBO with TPE yes Cluster no yes

SMAC SMBO with random forest yes Local yes yes

BOHB Bandit learning and TPE yes Cluster yes yes

Optunity Particle Swarm Optimization yes Local no no

Table 1: Comparison of different CASH algorithms. Reported are the used solver, whether
the search space structure is considered (Λ), if parallelization is implemented (Parallel),
whether a timeout for a single evaluation exists (Time) and if categorical variables are
natively supported (Cat.).

Baseline Methods To assess the effectiveness of the different CASH algorithms, two
baseline methods are used: a dummy classifier and a random forest. The dummy classifier
uses stratified sampling to create random predictions. The scikit-learn (Pedregosa et al.,
2011) implementations with default hyperparameters are used for both methods.

428

Benchmark and Survey of Automated Machine Learning Frameworks

Grid Search A custom implementation based on GridSearchCV from scikit-learn

(Pedregosa et al., 2011) is used. GridSearchCV is extended to support algorithm selection
via a distinct GridSearchCV instance for each ML algorithm. To ensure fair results, a
mechanism for stopping the optimization after a fixed number of iterations has been added.

Random Search Similar to grid search, a custom implementation of random search
based on the scikit-learn implementation RandomizedSearchCV is used. Random-

izedSearchCV is extended to support algorithm selection.

RoBO RoBO (Klein et al., 2017a) is a generic framework for general purpose Bayesian
optimization. In the context of this work, RoBO is configured to use SMBO with a Gaussian
process as a surrogate model. The hyperparameters of the Gaussian process are tuned
automatically using Markov chain Monte Carlo sampling. Categorical hyperparameters are
not supported. RoBO is evaluated in version 0.3.1.

BTB BTB (Gustafson, 2018) combines multi-armed bandit learning with Gaussian pro-
cesses. Categorical hyperparameters are selected via bandit learning and the remaining
continuous hyperparameters are selected via Bayesian optimization. In the context of this
work upper confidence bound is used as the policy. BTB is evaluated in version 0.2.5.

Hyperopt hyperopt (Bergstra et al., 2011) is a CASH solver based on SMBO with
TPEs as surrogate models. hyperopt is evaluated in version 0.2.

SMAC SMAC (Hutter et al., 2011) was the first framework explicitly supporting cat-
egorical variables for configuration selection based on SMBO, making it especially suited
for CASH. The performance of all previous configurations is modeled using random forest
regression. SMAC automatically terminates single configuration evaluations after a fixed
timespan. This way, very unfavorable configurations are discarded quickly without slowing
the complete optimization down. SMAC is evaluated in version 0.10.0.

BOHB BOHB (Falkner et al., 2018) combines Bayesian optimization with Hyperband

(Li et al., 2018) for CASH optimization. A limitation of Hyperband is the random gen-
eration of the tested configurations. BOHB replaces this random selection by a SMBO
procedure based on TPEs. For each function evaluation, BOHB passes the current budget
and a configuration instance to the objective function. In the context of this evaluation,
the budget is treated as the fraction of training data used for training. BOHB is evaluated
in version 0.7.4.

Optunity Optunity (Claesen et al., 2014) is a generic framework for CASH with a set
of different solvers. In the context of this paper, only the particle swarm optimization is
used. Based on a heuristic, a suited number of particles and generations is selected for a
given number of evaluations. Optunity is evaluated in version 1.0.0.

8.2 AutoML Frameworks

This section presents the AutoML frameworks capable of building complete ML pipelines
based on the methods provided in Section 3, 5, and 6. For algorithm selection and HPO,
implementations from Section 8.1 are used. A summary is available in Table 2.

429

Zöller & Huber

Framework CASH Solver Structure Ensem. Cat. Parallel Time

Dummy – Fixed no no no no

Random Forest – Fixed no no no no

TPOT Genetic Prog. Variable no no Local yes

hpsklearn hyperopt Fixed no yes no yes

auto-sklearn SMAC Fixed yes Enc. Cluster yes

Random Search Random Search Fixed no Enc. Cluster yes

ATM BTB Fixed no yes Cluster no

H2O AutoML Grid Search Fixed yes yes Cluster yes

Table 2: Comparison of different AutoML frameworks. Reported are the used CASH solver
and pipeline structure. It is listed whether ensemble learning (Ensem.), categorical input
(Cat.), parallel evaluation of pipelines or a timeout for evaluations are supported (Time).

Baseline Methods To assess the effectiveness of the different AutoML algorithms, two
baseline methods are added: 1) a dummy classifier using stratified sampling to create ran-
dom predictions and 2) a simple pipeline consisting of an imputation of missing values and
a random forest. For both baseline methods the scikit-learn (Pedregosa et al., 2011)
implementation is used.

TPOT TPOT (Olson & Moore, 2016; Olson et al., 2016) is a framework for building
and tuning flexible classification and regression pipelines based on genetic programming.
Regarding HPO, TPOT can only handle categorical parameters; similar to grid search
all continuous hyperparameters have to be discretized. TPOT’s ability to create arbitrary
complex pipelines makes it very prone for overfitting. To compensate this, TPOT optimizes
a combination of high performance and low pipeline complexity. Therefore, pipelines are
selected from a Pareto front using a multi-objective selection strategy. TPOT supports
basically all popular scikit-learn preprocessing, classification and regression methods. It
is evaluated in version 0.10.2.

Hyperopt-Sklearn hyperopt-sklearn or hpsklearn (Komer et al., 2014) is a frame-
work for fitting classification and regression pipelines based on hyperopt. The pipeline
structure is fixed to exactly one preprocessor and one classification or regression algorithm;
all algorithms are based on scikit-learn. hpsklearn only provides a thin wrapper around
hyperopt by introducing the fixed pipeline structure and adding a configuration space def-
inition. A parallelization of the configuration evaluation is not available. It supports only
a rudimentary data preprocessing, namely principal component analysis (PCA), standard
or min-max scaling and normalization. Additionally, the most popular scikit-learn clas-
sification and regression methods are supported. hpsklearn is evaluated in version 0.0.3.

Auto-Sklearn auto-sklearn (Feurer et al., 2015a, 2018) is a tool for building classifi-
cation and regression pipelines. All pipeline candidates have a semi-fixed structure: at first,
a fixed set of data cleaning steps—including optional categorical encoding, imputation, re-
moving variables with low variance and optional scaling—is executed. Next, an optional

430

Benchmark and Survey of Automated Machine Learning Frameworks

preprocessing and mandatory modeling algorithm are selected and tuned via SMAC. As
the name already implies, auto-sklearn uses scikit-learn for all ML algorithms. The
sister package Auto-WEKA (Thornton et al., 2013; Kotthoff et al., 2016) provides very
similar functionality for the WEKA library.

In contrast to the other AutoML frameworks presented in this section, auto-sklearn
does incorporate many different performance improvements. Testing pipeline candidates
is improved via parallelization on a single computer or in a cluster and each evaluation is
limited by a time budget. auto-sklearn uses meta-learning to initialize the optimization
procedure. Additionally, ensemble learning is implemented by combining the best pipelines.
auto-sklearn is evaluated in version 0.5.2.

Random Search Random search is added as additional baseline method with tuned
hyperparameters based on auto-sklearn. Instead of using SMAC, configurations are
generated randomly. Additionally, ensemble building and meta-learning are disabled.

ATM ATM (Swearingen et al., 2017) is a collaborative service for building optimized
classification pipelines based on BTB. Currently, ATM uses a simple pipeline structure
with an optional PCA, an optional scaling followed by a tunable classification algorithm. All
algorithms are based on scikit-learn and popular classification algorithms are supported.

An interesting feature of ATM is the so-calledModelHub. This central database stores
information about data sets, tested configurations and their performances. By combining
the performance evaluations with, currently not stored, meta-features of the data sets, a
valuable foundation for meta-learning could be created. This catalog of examples could
grow with every evaluated configuration enabling a continuously improving meta-learning.
Yet, currently this potential is not utilized. ATM is evaluated in version 0.2.2.

H2O AutoML H2O (H2O.ai, 2019) is a distributed ML framework to assist data scien-
tists. In the context of this paper, only the H2O AutoML component is considered. H2O

AutoML is able to select and tune a classification algorithm without preprocessing auto-
matically. Available algorithms are tested in a fixed order with either expert-defined or via
randomized grid-search selected hyperparameters. In the end, the best performing configu-
rations are aggregated to create an ensemble. In contrast to all other evaluated frameworks,
H2O is developed in Java with Python bindings and does not use scikit-learn. H2O is
evaluated in version 3.26.0.8.

9. Experiments

This section provides empirical evaluations of different CASH and pipeline building frame-
works. At first, the comparability of the results is discussed and the methodology of the
benchmarks is explained. Next, the usage of synthetic data sets is shortly discussed. Finally,
all selected frameworks are evaluated empirically on real data.

9.1 Comparability of Results

A reliable and fair comparison of different AutoML algorithms and frameworks is difficult
due to different preconditions. Starting from incompatible interfaces, for example stopping
the optimization after a fixed number of iterations or after a fixed timespan, to implemen-

431

Zöller & Huber

tation details, like refitting a model on the complete data set after cross-validation, many
design decisions can skew the performance comparison heavily. Moreover, the scientific pa-
pers that propose the algorithms often use different data sets for benchmarking purposes.
Using agreed-on data sets with standardized search spaces for benchmarking, like it is done
in other fields of research (e.g., Geiger et al., 2012), would increase the comparability.

To solve some of these problems, the ChaLearn AutoML challenge (Guyon et al., 2015,
2016, 2018) has been introduced. The ChaLearn AutoML challenge is an online compe-
tition for AutoML2 established in 2015. It focuses on solving supervised learning tasks,
namely classification and regression, using data sets from a wide range of domains without
any human interaction. The challenge is designed such that participants upload AutoML
code that is going to be evaluated on a task. A task contains a training and validation data
set, both unknown to the participant. Given a fixed timespan on standardized hardware,
the submitted code trains a model and the performance is measured using the validation
data set and a fixed loss function. The tasks are chosen such that the underlying data sets
cover a wide variety of complications, e.g., skewed data distributions, imbalanced training
data, sparse representations, missing values, categorical input or irrelevant features.

The ChaLearn AutoML challenge provides a good foundation for a fair and repro-
ducible comparison of state-of-the-art AutoML frameworks. However, its focus on compe-
tition between various teams makes this challenge unsuited for initial development of new
algorithm. The black-box evaluation and missing knowledge of the used data sets make
reproducing and debugging failing optimization runs impossible. Even though the competi-
tive concept of this challenge can boost the overall progress of AutoML, additional measures
are necessary for daily usage.

HPOlib (Eggensperger et al., 2013) aims to provide standardized data sets for the
evaluation of CASH algorithms. Therefore, benchmarks using synthetic objective functions
(see Section 9.3) and real data sets (see Section 9.5) have been defined. Each benchmark
defines an objective function, a training and validation data set along with a configuration
space. This way, the benchmark data set is decoupled from the algorithm under development
and can be reused by other researchers leading to more comparable evaluations.

Recently, an open-source AutoML benchmark has been published by Gijsbers et al.
(2019). By integrating AutoML frameworks via simple adapters, a fair comparison under
standardized conditions is possible. Currently only four different AutoML frameworks and
no CASH algorithms at all are integrated. Yet, this approach is very promising to provide
an empirical basis for AutoML in the future.

9.2 Benchmarking Methodology

All experiments are conducted using n1-standard-8 virtual machines from Google Cloud
Platform equipped with Intel Xeon E5 processors with 8 cores and 30 GB memory3. Each
virtual machine uses Ubuntu 18.04.02, Python 3.6.7 and scikit-learn 0.21.3. To elim-
inate the effects of non-determinism, all experiments are repeated ten times with different
random seeds and results are averaged. Three different types of experiments with different
setups are conducted:

2. Available at http://automl.chalearn.org/.
3. For more information see https://cloud.google.com/compute/docs/machine-types.

432

http://automl.chalearn.org/
https://cloud.google.com/compute/docs/machine-types

Benchmark and Survey of Automated Machine Learning Frameworks

1. Synthetic test functions (see Section 9.3) are limited to exactly 250 iterations. The
performance is defined as the minimal absolute distance

min
~λi∈Λ

|f(~λi)− f(~λ⋆)|

between the considered configurations ~λi and the global optimum ~λ⋆.

2. CASH solvers (see Section 9.5.1) are limited to exactly 325 iterations. Preliminary
evaluations have shown that all algorithms basically always converge before hitting
this iteration limit. The model fitting in each iteration is limited to a cut-off time of
ten minutes. Configurations violating this time limit are assigned the worst possible
performance. The performance of each configuration is determined using a 4-fold
cross-validation with three folds passed to the optimizer and using the last fold to
calculate a test-performance. As loss function, the accuracy

LAcc(ŷ, y) =
1

|y|

|y|
∑

i=1

✶(ŷi = yi) (6)

is used, with ✶ being an indicator function.

3. AutoML frameworks (see Section 9.5.2) are limited by a soft-limit of 1 hour and a
hard-limit of 1.25 hours. Fitting of single configurations is aborted after ten minutes
if the framework supports a cut-off time. The performance of each configuration is
determined using a 4-fold cross-validation with three folds passed to the AutoML
framework4 and using the last fold to calculate a test-performance. As loss function,
the accuracy in Equation (6) is used.

The evaluation timeout of ten minutes cancels roughly 1.4% of all evaluations. Conse-
quently, the influence on the final results is negligible while the overall runtime is reduced
by orders of magnitude. Preliminary tests revealed that all algorithms are limited by CPU
power and not available memory. Therefore, the memory consumption is not further con-
sidered. Frameworks supporting parallelization are configured to use eight threads. Fur-
thermore, frameworks supporting memory limits are configured to use at most 4096 MB
memory per thread. The source code used for the benchmarks is available online5.

For the third experiment, we also tested cut-off timeouts of 4 and 8 hours on ten ran-
domly selected data sets. The performance after 4 or even 8 hours did only marginally
improve in comparison to 1 hour and is therefore not further considered.

9.3 Synthetic Test Functions

A common strategy applied for many years is using synthetic test functions for benchmark-
ing (e.g., Snoek et al., 2012; Eggensperger et al., 2015; Klein et al., 2017a). Due to the
closed-form representation, the synthetic loss for a given configuration can be computed in

4. Internally, the AutoML frameworks may implement different methods to prevent overfitting, e.g., a
nested cross-validation or a hold-out data set.

5. Available at https://github.com/Ennosigaeon/automl_benchmark.

433

https://github.com/Ennosigaeon/automl_benchmark

Zöller & Huber

constant time. Synthetic test functions do not allow a simulation of categorical hyperparam-
eters leading to an unrealistic, completely unstructured configuration space. Consequently,
these functions are only suited to simulate HPO without algorithm selection. The circum-
vention of real data also prevents the evaluation of data cleaning and feature engineering
steps. Finally, all synthetic test functions have a continuous and smooth surface. These
properties do not hold for real response surfaces (Eggensperger et al., 2015). This implies
that synthetic test functions are not suited for CASH benchmarking. A short evaluation of
the presented CASH algorithms on selected synthetic test functions is given in Appendix B.

9.4 Empirical Performance Models

In the previous section it was shown that synthetic test functions are not suited for bench-
marking. Using real data sets as an alternative is very inconvenient. Even though they
provide the most realistic way to evaluate an AutoML algorithm, the time for fitting a
single model can become prohibitively large. In order to lower the turnaround time for test-
ing a single configuration significantly, empirical performance models (EPMs) have been
introduced (Eggensperger et al., 2015, 2018).

An EPM is a surrogate for a real data set that models the response surface of a specific
loss function. By sampling the performance of many different configurations, a regression
model of the response surface is created. In general, the training of an EPM is very ex-
pensive as several thousand models with different configurations have to be trained. The
benefit of this computational heavy setup phase is that the turnaround time of testing new
configurations proposed by an AutoML algorithm is reduced significantly. Instead of train-
ing an expensive model, the performance can be retrieved in quasi constant time from the
regression model.

In theory, EPMs can be used for CASH as well as complete pipeline creation. However,
due to the quasi exhaustive analysis of the configuration space, EPMs suffer heavily from
the curse of dimensionality. Consequently, no EPMs are available to test the performance
of a complete ML pipeline. In the context of this work EPMs have not been evaluated.
Instead, real data sets have been used directly.

9.5 Real Data Sets

All previously introduced methods for performance evaluations only consider selecting and
tuning a modeling algorithm. Data cleaning and feature engineering are ignored completely
even though those two steps have a significant impact on the final performance of an ML
pipeline (Chu et al., 2016). The only possibility to capture and evaluate all aspects of Au-
toML algorithms is using real data sets. However, real data sets also introduce a significant
evaluation overhead, as for each pipeline multiple ML models have to be trained. Depend-
ing on the complexity and size of the data set, testing a single pipeline can require several
hours of wall clock time. In total, multiple months of CPU time were necessary to conduct
all evaluations with real data sets presented in this benchmark.

As explained in Section 2, the performance of an AutoML algorithm depends on the
tested data set. Consequently, it is not useful to evaluate the performance on only a few
data sets in detail but instead the performance is evaluated on a wide range of different
data sets. To ensure reproducibility of the results, only publicly available data sets from

434

Benchmark and Survey of Automated Machine Learning Frameworks

OpenML (Vanschoren et al., 2014), a collaborative platform for sharing data sets in a
standardized format, have been selected. More specifically, a combination of the curated
benchmarking suites OpenML1006 (Bischl et al., 2017), OpenML-CC187 (Bischl et al.,
2019) and AutoML Benchmark8 (Gijsbers et al., 2019) is used. The combination of these
benchmarking suits contains 137 classification tasks with high-quality data sets having
between 500 and 600, 000 samples and less than 7, 500 features. High-quality does not
imply that no preprocessing of the data is necessary as, for example, some data sets contain
missing values. A complete list of all data sets with some basic meta-features is provided in
Appendix C. All CASH algorithm and most AutoML frameworks do not support categorical
features. Therefore, categorical features of all data sets are transformed using one hot
encoding. Furthermore, data sets are shuffled to remove potential impacts of ordered data.

9.5.1 CASH Algorithms

All previously mentioned CASH algorithms are tested on all data sets. Therefore, a hierar-
chical configuration space containing 13 classifiers with a total number of 58 hyperparame-
ters is created. This configuration space—listed in Table 3 and Appendix D—is used by all
CASH algorithms. Algorithms not supporting hierarchical configuration spaces use a con-
figuration space without conditional dependencies. Furthermore, if no categorical or integer
hyperparameters are supported, these parameters are transformed to continuous variables.
Some algorithms only support HPO without algorithm selection. For those algorithms,
an optimization instance is created for each ML algorithm. The number of iterations per
estimator is limited to 25 such that the total number of iterations still equals 325.

Algorithm #λ Cat. Con.

Bernoulli näıve Bayes 2 1 1
Multinomial näıve Bayes 2 1 1
Decision Tree 4 1 3
Extra Trees 5 2 3
Gradient Boosting 8 1 5
Random Forest 5 2 4
K Nearest Neighbors 3 2 1
LDA 4 1 3
QDA 1 0 1
Linear SVM 4 2 2
Kernel SVM 7 2 5
Passive Aggressive 4 2 2
Linear Classifier with SGD 10 4 6

Table 3: Configuration space for classification algorithms. In total, 13 different algorithms
with 58 hyperparameters are available. The number of categorical (Cat.), continuous (Con.)
and total number of hyperparameters (#λ) is listed.

6. Available at https://www.openml.org/s/14.
7. Available at https://www.openml.org/s/99.
8. Available at https://www.openml.org/s/218.

435

https://www.openml.org/s/14
https://www.openml.org/s/99
https://www.openml.org/s/218

Zöller & Huber

For grid search, each continuous hyperparameter is split into two distinct values leading
to 6, 206 different configurations. As the number of evaluations is limited to 325 configura-
tions, only the first 10 classifiers are tested completely, Kernel SVM only partially, Passive
Aggressive and SGD not at all.

Table 15 in Appendix E contains the raw results of the evaluation. It reports the average
accuracies over all trials per data set. 23 of the evaluated data sets contain missing values.
As no algorithm in the configuration space is able to handle missing values, all evaluations
on these data sets failed and are not further considered.

In the following, accuracy scores are normalized to an interval between zero and one to
obtain data set independent evaluations. Zero represents the performance of the dummy
classifier and one the performance of the random forest. Algorithms outperforming the
random forest baseline obtain results greater than one.

Figure 10 shows the performance of the best incumbent per iteration averaged over all
data sets. It is important to note that the results for the very first iterations are slightly
skewed due to the parallel evaluation of candidate configurations. Iterations are recorded in
order of finished evaluation timestamps, meaning that 8 configurations started in parallel
are recorded as 8 distinct iterations.

100 101 102

Iteration

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Pe

rfo
rm

an
ce

100 150 200 250 300
1.28

1.30

1.32

1.34

Grid Search
Random Search
SMAC
BOHB
Optunity
hyperopt
RoBO
BTB

Figure 10: Normalized performance of the incumbent per iteration. Results are averaged
over all data sets and 10 repetitions.

Grid Random SMAC BOHB Optunity hyperopt RoBO BTB

Rep. 0.0656 0.0428 0.0395 0.0414 0.0514 0.0483 0.0421 0.0535

Data Set 0.7655 1.1004 1.1420 1.1478 1.0732 1.1206 1.1334 1.1302

Table 4: Standard deviation of the normalized performance of the final incumbent averaged
over ten repetitions (Rep.) and all data sets (Data Set).

It is apparent that all methods except grid search are able to outperform the random
forest baseline within roughly 10 iterations. After 325 iterations, all algorithms converge
to similar performance measures. The individual performances after 325 iterations are also

436

Benchmark and Survey of Automated Machine Learning Frameworks

displayed in Figure 11. Table 4 contains the standard deviation of the normalized perfor-
mance of the final incumbent after the optimization. Values averaged over ten repetitions
and all data sets are shown. It is apparent that the normalized performance heavily depends
on the used data set.

Grid Search Random Search SMAC BOHB Optunity hyperopt RoBO BTB
-2

00.5

1

1.52

4

6

8

10

12

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Performance of CASH Solvers

Figure 11: Normalized performance of the final incumbent per CASH solvers. For better
readability, performances between 0.5 and 1.5 are stretched out.

A pair-wise comparison of the performances of the final incumbent is displayed in Ta-
ble 5. It is apparent that hyperopt outperforms all other optimizers and grid search is
basically always outperformed. Yet, a more detailed comparison of performances, provided
in Figure 20 in Appendix E, reveals that absolute performance differences are small.

Grid Random SMAC BOHB Optunity hyperopt RoBO BTB

Grid – 0.0263 0.0175 0.0175 0.0263 0.0175 0.0175 0.0263

Random 0.9561 — 0.3771 0.6403 0.5175 0.0614 0.5964 0.5614

SMAC 0.9649 0.5614 — 0.8508 0.6228 0.2192 0.7105 0.6403

BOHB 0.9649 0.2807 0.0877 — 0.3596 0.0877 0.4385 0.3859

Optunity 0.9561 0.4385 0.3245 0.5877 — 0.1403 0.5263 0.5087

hyperopt 0.9649 0.8684 0.7368 0.8684 0.8157 — 0.7894 0.8947

RoBO 0.9649 0.3596 0.2456 0.5087 0.4385 0.1491 — 0.3947

BTB 0.9561 0.3859 0.3070 0.5701 0.4385 0.0614 0.5614 —

Avg. Rank 7.7280 3.9210 3.0964 5.0438 4.2192 1.7368 4.6403 4.4122

Table 5: Fraction of data sets on which the CASH solvers in each row performed better
than the framework in each column. As CASH solvers can yield identical performances, the
according fractions do not have to add up to 1. Additionally, the rank of each CASH solver
is given.

437

Zöller & Huber

Figure 12 shows the raw scores for each CASH framework over 10 repetitions for 16 data
sets. Those data sets were selected as they show the highest deviation of the scores over
ten repetitions. The remaining data sets yielded very consistent results. We do not know
which data set properties are responsible for the unstable results.

0.0 0.2 0.4 0.6 0.8 1.0

micro-mass

monks-problems-

one-hundred-pla

one-hundred-pla

kc2

blood-transfusi

robert

ilpd

0.0 0.2 0.4 0.6 0.8 1.0

LED-display-dom

vehicle

artificial-char

CIFAR_10

guillermo

covertype

Devnagari-Scrip

dionis

Grid Search
Random Search

SMAC
BOHB

Optunity
hyperopt

RoBO
BTB

Figure 12: Raw and averaged accuracy of all CASH solvers on selected data sets.

Next, we examine the similarity of the proposed configurations per data set. Therefore,
numerical hyperparameters are normalized by their according search space, categorical hy-
perparameters are not transformed. We decided to only compare configurations having the
same classification algorithm. For each classification algorithm, all configuration vectors
are aggregated using mean shift clustering (Fukunaga & Hostetler, 1975) with a bandwidth
h = 0.25. To account for the mixed-type vector representations, the Gower distance (Gower,
1971) is used as the distance metric between two configurations. To assess the quality of the
resulting clusters—and therefore also the overall configuration similarity—, the silhouette
coefficient (Rousseeuw, 1987) is computed.

Figure 13 shows the silhouette coefficient versus number of instances per cluster. Dis-
played are clusters of all configurations aggregated per CASH algorithm. On average, each
CASH algorithm yields 3.0670±2.3772 different classification algorithms. Most clusters con-
tain only a few configurations with a low silhouette coefficient indicating that the resulting
hyperparameters have a high variance.

We require clusters to contain at least 5 configurations to be considered as similar. In
addition, the silhouette coefficient has to be greater than 0.75. In total, 106 of 114 data sets

438

Benchmark and Survey of Automated Machine Learning Frameworks

0 2 4 6 8 10
Instances per Cluster

0.0

0.2

0.4

0.6

0.8

1.0
Si

lh
ou

et
te

 C
oe

ffi
cie

nt
Grid Search

0 2 4 6 8 10
Instances per Cluster

0.0

0.2

0.4

0.6

0.8

1.0

Si
lh

ou
et

te
 C

oe
ffi

cie
nt

Random Search

0 2 4 6 8 10
Instances per Cluster

0.0

0.2

0.4

0.6

0.8

1.0

Si
lh

ou
et

te
 C

oe
ffi

cie
nt

SMAC

0 2 4 6 8 10
Instances per Cluster

0.0

0.2

0.4

0.6

0.8

1.0

Si
lh

ou
et

te
 C

oe
ffi

cie
nt

BOHB

0 2 4 6 8 10
Instances per Cluster

0.0

0.2

0.4

0.6

0.8

1.0

Si
lh

ou
et

te
 C

oe
ffi

cie
nt

Optunity

0 2 4 6 8 10
Instances per Cluster

0.0

0.2

0.4

0.6

0.8

1.0

Si
lh

ou
et

te
 C

oe
ffi

cie
nt

hyperopt

0 2 4 6 8 10
Instances per Cluster

0.0

0.2

0.4

0.6

0.8

1.0

Si
lh

ou
et

te
 C

oe
ffi

cie
nt

RoBO

0 2 4 6 8 10
Instances per Cluster

0.0

0.2

0.4

0.6

0.8

1.0

Si
lh

ou
et

te
 C

oe
ffi

cie
nt

BTB
Normalized Performance

0.5
1.0
1.5
2.0
2.5
3.0

3.5
4.0
4.5
5.0
5.5
6.0

Figure 13: Similarity of configurations versus number of instances per cluster. Each marker
represents the similarity of configurations for a single data set and single classification algo-
rithm. The marker size indicates the normalized accuracy (larger equals higher accuracy).
Clusters in the highlighted area are considered to contain similar configurations. Each
subplot considers only configurations yielded by the stated CASH algorithm.

contain at least one cluster with similar configurations. However, most of those clusters are
created by grid search which usually yields identical configurations for each trial. 11 data
sets yield configurations with a high similarity for at least half of the CASH algorithms.
However, for most data sets configurations are very dissimilar. It is not apparent which
meta-features are responsible for those results. In summary, most CASH procedures yield
highly different hyperparameters on most data sets depending on the random seed.

Finally, we examine the known tendency of AutoML tools to overfit (Fabris & Freitas,
2019). In Figure 14, an estimate of the overfitting tendency of the different CASH solvers is
given. Displayed are the differences between the accuracy on the training and test data set.
It is apparent that on average, all evaluated methods—except grid search—have a similar
tendency to overfit. For single instances, all CASH methods, again with the exception of
grid search, suffer heavily from overfitting.

439

Zöller & Huber

Grid Search Random Search SMAC BOHB Optunity hyperopt RoBO BTB

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy
 D

iff
er

en
ce

Learning-Test Overfit of CASH Solvers

Figure 14: Overfit estimation between the learning and testing data set. Displayed are the
raw differences between the accuracy scores. Larger values indicate higher overfitting.

9.5.2 AutoML Frameworks

Next, AutoML frameworks capable of building complete ML pipelines are evaluated. There-
fore, all data sets from the AutoML Benchmark suite are used. Additionally, all data
sets from the OpenML100 and OpenML-CC18 suites unable to be processed by CASH
procedures—namely data sets containing missing values—are selected. The final list of all
73 selected data sets is provided in Table 16 in Appendix E.

ATM does not provide the possibility to abort configuration evaluations after a fixed
time and therefore often exceeds the total time budget. To enforce the time budget, all con-
figuration evaluations are manually aborted after 1.25 hours. Random Search uses auto-
sklearn with a random configuration generation. Meta-learning and ensemble support are
deactivated. As hyperopt-sklearn does not support parallelization, only single-threaded
evaluations of configurations are used. Furthermore, hyperopt-sklearn was manually ex-
tended to support a time budget instead of number of iterations. The remaining optimizers
and all unmentioned parameters are used with their default parameters.

Table 16 in Appendix E contains the raw results of the evaluation. The average accuracy
over all trials per data set is reported. In contrast to the CASH algorithms, the AutoML
frameworks struggle with various data sets. ATM drops samples with missing values in the
training set. Data sets 38, 1111, 1112, 1114 and 23380 contain missing values for every single
sample. Consequently, ATM uses an empty training set and crashes. hyperopt-sklearn
is very fragile, especially regarding missing values. If the very first configuration evaluation
of a data set fails, hyperopt-sklearn aborts the optimization. To compensate this issue,
the very first evaluation is repeated upto 100 times. Furthermore, the optimization often
does not stop after the soft-timeout for no apparent reason. TPOT sometimes crashes
with a segmentation fault. For multiple data sets TPOT times out after first generation.
Consequently, only random search without genetic programming is performed. Data sets
40923, 41165 and 41167 time out consistently with no result. auto-sklearn and random

search both violated the memory constraints on the data sets 40927, 41159 and 41167.

440

Benchmark and Survey of Automated Machine Learning Frameworks

Finally, for H2O AutoML the Java server consistently crashes for no apparent reason on
the data sets 40978, 41165, 41167 and 41169. Data set 41167 is the largest evaluated data
set. This could explain why so many frameworks are struggling with this specific data set.
In the following analysis, these failing data sets are ignored.

Random Search auto-sklearn TPOT ATM hyperopt-sklearn H2O AutoML
-4

-2

00.5

1

1.52

4

6

8

10

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Performance of AutoML Frameworks

Figure 15: Normalized performance of the final pipeline per AutoML framework. For better
readability, performances between 0.5 and 1.5 are stretched out.

Figure 15 contains the normalized performances of all AutoML frameworks averaged
over all data sets. It is apparent that all frameworks are able to outperform the random
forest baseline on average. However, single results vary significantly. Table 6 compares
all framework pairs and lists the average rank for each framework. It is apparent that
TPOT outperforms the most frameworks averaged over all data sets. A detailed pair-
wise comparison including the absolute performance differences is provided in Figure 20 in
Appendix E.

TPOT hpsklearn auto-sklearn Random ATM H2O

TPOT — 0.7571 0.6086 0.8529 0.6000 0.5000

hpsklearn 0.2285 — 0.2816 0.5571 0.4117 0.2898

auto-sklearn 0.3623 0.7042 — 0.8000 0.4848 0.5294

Random 0.1323 0.4428 0.2000 — 0.3846 0.3283

ATM 0.3692 0.5735 0.4848 0.6153 — 0.4687

H2O 0.4705 0.7101 0.4558 0.6716 0.5156 —

Avg. Rank 2.6027 4.0410 2.9863 4.4109 3.4931 3.1643

Table 6: Fraction of data sets on which the framework in each row performed better than the
framework in each column. As frameworks can yield identical performances, the according
fractions do not have to add up to 1. Additionally, the rank of each framework averaged
over all frameworks is given.

441

Zöller & Huber

0.0 0.2 0.4 0.6 0.8 1.0

eucalyptus

blood-transfusi

vehicle

profb

Devnagari-Scrip

helena

dresses-sales

Fashion-MNIST

0.0 0.2 0.4 0.6 0.8 1.0

riccardo

cylinder-bands

one-hundred-pla

cylinder-bands

CIFAR_10

robert

guillermo

dionis

Random Search
auto-sklearn

TPOT
ATM

hyperopt-sklearn
H2O AutoML

Figure 16: Raw and averaged accuracy of all AutoML frameworks on selected data sets.

TPOT hpsklearn auto-sklearn Random ATM H2O

Rep. 0.0761 0.1508 0.0843 0.0955 0.0963 0.0993

Data Set 0.7343 0.7004 0.6772 0.6956 0.8938 0.2526

Table 7: Standard deviation of the normalized performance of the final pipeline averaged
over ten repetitions (Rep.) and all data sets (Data Set).

Figure 16 shows raw scores for each AutoML framework over ten trials for 16 data sets.
Those data sets were selected as they show the highest deviation of the scores over the ten
trials. About 50% of all evaluated data sets show a high variance in the obtained results.
The remaining data sets yield very consistent performances. It is not clear which data set
features are responsible for this separation. Table 7 contains the standard deviation of the
normalized performance of the final pipeline after the optimization. Shown are averaged
values over ten repetitions and all data sets. In comparison with the CASH solvers, the
stability within ten iterations has decreased while the stability across data sets has increased.

Figure 17 shows an estimate of the test-training overfit for all evaluated frameworks. In
general, the AutoML frameworks, especially random search and auto-sklearn, appear to
be more prone to overfitting than CASH solvers. All tested frameworks overfit strongly for
single instances.

442

Benchmark and Survey of Automated Machine Learning Frameworks

Random Search auto-sklearn TPOT ATM hyperopt-sklearn H2O AutoML

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy
 D

iff
er

en
ce

Learning-Test Overfit of AutoML Frameworks

Figure 17: Overfit estimation between the learning and testing data set. Displayed are the
raw differences between the accuracy scores. Larger values indicate higher overfitting.

TPOT hpsklearn auto-sklearn Random ATM H2O

TPOT 0.1190 0.1106 0.0379 0.0356 0.0519 0.1165

hpsklearn 0.1106 0.1926 0.0517 0.0461 0.0828 0.1414

auto-sklearn 0.0379 0.0517 0.5996 0.5542 0.0557 0.0202

Rand. Search 0.0356 0.0461 0.5542 0.5307 0.0329 0.0266

ATM 0.0519 0.0828 0.0557 0.0329 0.4591 0.0

H2O 0.1165 0.1414 0.0202 0.0266 0.0 0.3135

Table 8: Averaged pair-wise Levenshtein ratio on original ML pipelines.

Figure 18 provides an overview of often constructed pipelines. For readability, pipelines
were required to be constructed at least thrice to be included in the graph. Ensembles of
pipelines are treated as distinct pipelines. TPOT, ATM, hyperopt-sklearn and H2O

AutoML produce on average pipelines with less than two steps. Consequently, the cluster
of pipelines around the root node is created by those AutoML frameworks. Basically all
pipelines in the left and right sub-graph were created by the two auto-sklearn variants.

To further assess the similarity of the resulting ML pipelines, we transform each pipeline
to a string by mapping each algorithm to a distinct letter. The similarity between two
pipelines is expressed by the Levenshtein ratio (Levenshtein, 1966; Ratcliff & Metzener,
1988). Table 8 shows the averaged pair-wise Levenshtein ratio of all pipelines per AutoML
framework. It is apparent that random search and auto-sklearn have a high similarity
with each other and themselves. This can be explained by the long (semi-)fixed pipeline
structure. All other AutoML frameworks yield very low similarity ratios. This can be
explained partially by the different search spaces, i.e., the AutoML frameworks do not
support identical base algorithms. Therefore, we also consider a generalized representation
of the ML pipelines, e.g., replacing all classification algorithms with an identical symbol.

443

Zöller & Huber

1 2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22 23

2425

26
27

28

29

2

7

8
65

12

7

14

13

23

125

24

2

5

2

14

13
23

12

13

2

5

12

23

14
30 24

13
2 14

12

3024

5
5 2

12

12

14

28

22

22

31
8

18 9

11
32

11

31

18

32

9

8

32

32

32
32

32

33

16

34
3

35

36

37

38

12

5
15

32

32

32

16

34

3

38

36

6 39

37
12

35
5

2 15
40

24

32

32

3

5

38 37

40

36
16 12

24
341535

6

24

15

3

3538

3637

16
34

40

41

2

13

42

24

40

5
34

37

16

3

36

3538 2

15

42

39
38

40

37

34
3

41

12

36

1615

35

16

36
24

12
38

20

5
34

3

392

37

35

15

12

5

24

1

2

23

42
5

2
24

19

33
13

12
42

5

36

39

34

37
40

24
12

153

35
38

23

16

42

13

3

35
5

34
37

12 15

38

4036
41

16

39 6

34 36

33 37

24 38

3

12

5 16

15

42

6
10

35
13

42

12

5

5

24

23

12

5
24

33

13

24 2

12
5

42

24 2
19

5

122
23

24
42

1

12

42

40
34

37

38

36

35

3

16

39

12

15

23

35

3

37

40

36

34
15

24
16

5

2

38
39

2312

1

6

5

24
20

2412 2

5
1224 2

13 42
33

422

12

5

42

2
24

42 2

13

2

12

5

13

42

33

5

224

42

24

5

42
33

42
24

13

2
24

12
5

2
13 33
42

5

5
24

6
2

2 33
42

33

12

42
426 24

3313 20

12

220
3342

2
192

12

24

12

5
2

24
24

5

12

33

42

24

5

12

2

42
12

2

33

5

2

12

42

1
5

13

24

42

33

33

24
12

12 24
5

2
120

5
12

33

24
42 13

33
42

12
2

12
24 5 24

12

512
2

1
33

12
5

12
5 2

5
24

42

2 12 13

2

24 5

12 5
2

42

24

12

12
2

5

6

24 1

5

23

20

2

24

5

23
24

24
2

24

42

12
24

42
12

20

24

13
20

24
20

42
19

33

42
42

23

2

12

5
242

24

33

42

42

5

33

13

24

2

12 12
33

42

5

24

12

5

2

23

13

24

12

42
33

123456789101112131415161718192021222324252627282930313233343536373839404142

1 DecisionTree
2 ExtraTrees
3 PolynomialFeatures
4 MaxAbsScaler
5 GradientBoosting
6 LinearSVC
7 LogisticRegression

8 StandardScaler
9 Normalizer
10 GaussianNB
11 MinMaxScaler
12 RandomForest
13 KNeighbors
14 XGB

15 PCA
16 SelectPercentile
17 SelectFwe
18 RobustScaler
19 BernoulliNB
20 MultinomialNB
21 ZeroCount

22 VarianceThreshold
23 SVC
24 AdaBoost
25 DeepLearning
26 GeneralizedLinear
27 OneHotEncoder
28 Imputation

29 MyDummy
30 SGD
31 QuantileTransformer
32 Balancing
33 QDA
34 FeatureAgglomeration
35 RandomTreesEmbedding

36 FastICA
37 SelectFromModel
38 SelectRates
39 RandomKitchenSinks
40 Nystroem
41 KernelPCA
42 LDA

Figure 18: Overview of constructed ML pipelines. The node size and edge color indicate
the popularity of specific (sub-)pipelines. The red node represents the root node. Pipelines
are created by following the graph from the root to a leaf node.

TPOT hpsklearn auto-sklearn Random ATM H2O

TPOT 0.7784 0.7330 0.3300 0.3674 0.7234 0.8595

hpsklearn 0.7330 0.7995 0.4048 0.4377 0.8208 0.7877

auto-sklearn 0.3300 0.4048 0.9104 0.8790 0.4164 0.2803

Rand. Search 0.3674 0.4377 0.8790 0.8423 0.4490 0.3272

ATM 0.7234 0.8208 0.4164 0.4490 0.8524 0.7769

H2O 0.8595 0.7877 0.2803 0.3272 0.7769 1.0

Table 9: Averaged pair-wise Levenshtein ratio on generalized ML pipelines.

444

Benchmark and Survey of Automated Machine Learning Frameworks

Table 9 shows that TPOT, hyperopt-sklearn, ATM and H2O build similar pipelines.
auto-sklearn and random search build pipelines that differ strongly from the remaining
frameworks but are still very similar to each other.

9.5.3 Comparison with Human Experts

Finally, all AutoML frameworks are compared with human experts. Unfortunately, it is not
possible to reuse the same data sets, as human evaluations for those data sets are not avail-
able. Instead, we decided to use two publicly available data sets from kaggle, namely Otto

Group Product Classification Challenge9 and Santander Customer Satisfaction10. Even
though the evaluation of just two data sets provides only limited generalization, it can still
be used to get a feeling for the competitiveness of AutoML tools with human experts.

The experimental setup from Section 9.5.2 is reused. Only the loss function is adapted
to reflect the loss function used by the two challenges—logarithmic loss for Otto and ROC

AUC for Santander. If any framework does not support the respective loss function, we
continued to use accuracy.

Otto Santander

Validation Test Ranking Validation Test Ranking

Human — 0.38055 — — 0.84532 —

TPOT 0.81066 1.05085 0.7908 0.83279 0.83100 0.6827

hpsklearn 0.81177 0.58701 0.6216 0.66170 0.64493 0.8789

auto-sklearn 0.55469 0.55081 0.5155 0.83547 0.83346 0.6543

Random 0.88702 0.89943 0.7777 0.82806 0.82427 0.7235

ATM 0.74912 2.43115 0.8459 0.68721 0.69043 0.8653

H2O 0.45523 0.49628 0.3774 0.83406 0.83829 0.5329

Table 10: Comparison with human experts for two data sets. Displayed are the validation
and test score. Additionally, the fraction of human submissions that have yielded better
results is given (Ranking). For Otto smaller validation and test values are better while for
Santander higher values are better.

Table 10 compares all AutoML frameworks with the best human performance. For
both data sets, all algorithms are able to achieve mediocre results that are outperformed
by human experts clearly. A detailed look at the leaderboard reveals that human experts
required on average 8.57 hours to refine their initial pipeline to outperform the best AutoML
framework. Obviously, this duration does not incorporate the time spend to craft the
initial solution. Considering that all frameworks spend only one hour, the results are still
remarkable.

9. Available at https://www.kaggle.com/c/otto-group-product-classification-challenge.
10. Available at https://www.kaggle.com/c/santander-customer-satisfaction.

445

https://www.kaggle.com/c/otto-group-product-classification-challenge
https://www.kaggle.com/c/santander-customer-satisfaction

Zöller & Huber

10. Discussion and Opportunities for Future Research

The experiments in Section 9.5.1 revealed that all CASH algorithms, except grid search,
perform on average very similarly. Surprisingly, random search did not perform worse
than the other algorithms. The performance differences of the final configurations are
not significant for most data sets with 67.18% of all configurations not being significantly
worse than the best result. Mean absolute differences are less than 1.9% accuracy per data
set. Consequently, a ranking of CASH algorithms on pure performance measures is not
reasonable. Other aspects like scalability or method overhead should also be considered.

On average, all AutoML frameworks appear to perform quite similarly with a maximum
performance difference of only 2.2% and three frameworks yielding no significantly worse
results than the best framework. Yet, the global average conceals that for each individual
data set the performance differs by 6.7% accuracy averaged over all frameworks. Only
43.61% of the final pipelines are not significantly worse than the best pipeline. In addition,
the CASH algorithms performed better than the AutoML frameworks on 48% of the shared
data sets (see Table 15 and 16 in Appendix E). This is also a surprising result as each
CASH algorithm spends on average only 12 minutes optimizing a single data set in contrast
to the 1 hour of AutoML frameworks. Possible explanations for both observations could be
the significantly larger search spaces of AutoML frameworks, a smaller number of evaluated
configurations due to internal overhead, e.g., cross-validations, or the tendency of AutoML
frameworks to overfit stronger than CASH solvers. Further evaluations are necessary to
explain this behavior.

Currently, AutoML frameworks build pipelines with an average length of less than 2.5
components. This is partly caused by frameworks with a short, fixed pipeline layout. Yet,
also TPOT yields pipelines with less than 1.5 components on average. Consequently, the
potential of specialized pipelines is currently not utilized at all. A benchmarking of other
frameworks capable of building flexible pipelines, e.g., ML-Plan (Mohr et al., 2018; Wever
et al., 2018) or P4ML (Gil et al., 2018), in combination with longer optimization periods
is desirable to understand the capabilities of creating adaptable pipelines better.

Currently, AutoML is completely focused on supervised learning. Even though some
methods may be applicable for unsupervised or reinforcement learning, researchers always
test their proposed approaches for supervised learning. Dedicated research for unsuper-
vised or reinforcement learning could boost the development of AutoML framework for
currently uncovered learning problems. Additionally, specialized methods could improve
the performance for those tasks.

The majority of all publications currently treats the CASH problem either by introduc-
ing new solvers or adding performance improvements to existing approaches. A possible
explanation could be that CASH is completely domain-agnostic and therefore compara-
tively easier to automate. However, CASH is only a small piece of the puzzle to build
an ML pipeline automatically. Data scientists usually spend 60–80% of their time with
cleaning a data set and feature engineering and only 4% with fine tuning of algorithms
(Press, 2016). This distribution is currently not reflected in research efforts. We have not
been able to find any literature covering advanced data cleaning methods in the context
of AutoML. Regarding feature creation, most methods combine predefined operators with
features naively. For building flexible pipelines, currently only a few different approaches

446

Benchmark and Survey of Automated Machine Learning Frameworks

have been proposed. Further research in any of these three areas can improve the overall
performance of an automatically created ML pipeline highly.

So far, researchers have focused on a single point of the pipeline creation process. Com-
bining flexibly structured pipelines with automatic feature engineering and sophisticated
CASH methods has the potential to beat the frameworks currently available. However,
the complexity of the search space is raised to a whole new level, probably requiring new
methods for efficient search. Nevertheless, the long term goal should be to build complete
pipelines with every single component optimized automatically.

AutoML aims to automate the creation of an ML pipeline completely to enable domain
experts to use ML. Except very few publications (e.g., Friedman & Markovitch, 2015; Smith
et al., 2017) current AutoML algorithms are designed as a black-box. Even though this may
be convenient for an inexperienced user, this approach has two major drawbacks:

1. A domain expert has a profound knowledge about the data set. Using this knowledge,
the search space can be reduced significantly.

2. Interpretability of ML has become more important in recent years (Doshi-Velez &
Kim, 2017). Users want to be able to understand how a model has been obtained.
When using hand-crafted ML models, the reasoning of the model is often already
unknown to the user. By automating the creation, the user has basically no chance
to understand why a specific pipeline has been selected.

Even though methods like feature attribution (Google LLC, 2019) or rule-extraction (Alaa &
Van Der Schaar, 2018) have already been used in combination with AutoML, the black-box
problem still prevails. Human-guided ML (Langevin et al., 2018; Gil et al., 2019) aims to
present simple questions to the domain expert to guide the exploration of the search space.
Domain experts would be able to guide model creation by their experience. Further research
in this area may lead to more profound models depicting the real-world dependencies closer.
Simultaneously, the domain expert would have the chance to understand the reasoning of
the ML model better. This could increase the acceptance of the proposed pipeline.

AutoML frameworks usually introduce their own hyperparameters that can be tuned.
Yet, this is basically the same problem that AutoML tried to solve in the first place. Re-
search leading to frameworks with less hyperparameters is desirable (Feurer & Hutter,
2018).

The experiments revealed that some data sets are better suited for AutoML than others.
Currently, we can not explain which data set meta-features are responsible for this behav-
ior. A better understanding of the relation between data set meta-features and AutoML
algorithms may enable AutoML for the failing data sets and boost meta-learning.

Following the CRISP-DM (Shearer, 2000), AutoML currently focuses only the model-
ing stage. However, to conduct an ML project successfully, all stages in the CRISP-DM
should be considered. To make AutoML truly available to novice users, integration of data
acquisition and deployment measures are necessary. In general, AutoML currently does not
consider lifecycle management at all.

447

Zöller & Huber

11. Conclusion

In this paper, we have provided a theoretical and empirical introduction to the current state
of AutoML. We provided the first empirical evaluation of CASH algorithms on 114 publicly
available real-world data sets. Furthermore, we conducted the largest evaluation of AutoML
frameworks in terms of considered frameworks as well as number of data sets. Important
techniques used by those frameworks are introduced and summarized theoretically. This
way, we presented the most important research for automating each step of creating an ML
pipeline. Finally, we extended current problem formulations to cover the complete process
of building ML pipelines.

The topic AutoML has come a long way since its beginnings in the 1990s. Especially
in the last ten years, it has received a lot of attention from research, enterprises and the
media. Current state-of-the-art frameworks enable domain experts to build reasonably
well performing ML pipelines without knowledge about ML or statistics. Seasoned data
scientists can profit from the automation of tedious manual tasks, especially model selection
and HPO. However, automatically generated pipelines are still very basic and are not able
to beat human experts yet (Guyon et al., 2016). It is likely that AutoML will continue to
be a hot research topic leading to even better, holistic AutoML frameworks in the future.

Acknowledgments

This work is partially supported by the Federal Ministry of Transport and Digital Infrastruc-
ture within the mFUND research initiative and the Ministry of Economic Affairs, Labour
and Housing of the state Baden-Württemberg within the KI-Fortschrittszentrum “Lernende
Systeme”, Grant No. 036-170017.

Appendix A. Framework Source Code

Table 11 lists the repositories of all evaluated open-source AutoML tools. Some methods
are still under active development and may differ significantly from the evaluated versions.

Algorithm Type Source Code

Custom Both https://github.com/Ennosigaeon/automl_benchmark
RoBO CASH https://github.com/automl/RoBO
BTB CASH https://github.com/HDI-Project/BTB
hyperopt CASH https://github.com/hyperopt/hyperopt
SMAC CASH https://github.com/automl/SMAC3
BOHB CASH https://github.com/automl/HpBandSter
Optunity CASH https://github.com/claesenm/optunity
TPOT AutoML https://github.com/EpistasisLab/tpot
hpsklearn AutoML https://github.com/hyperopt/hyperopt-sklearn
auto-sklearn AutoML https://github.com/automl/auto-sklearn
ATM AutoML https://github.com/HDI-Project/ATM
H2O AutoML AutoML https://github.com/h2oai/h2o-3

Table 11: Source code repositories for all used CASH and AutoML frameworks.

448

https://github.com/Ennosigaeon/automl_benchmark
https://github.com/automl/RoBO
https://github.com/HDI-Project/BTB
https://github.com/hyperopt/hyperopt
https://github.com/automl/SMAC3
https://github.com/automl/HpBandSter
https://github.com/claesenm/optunity
https://github.com/EpistasisLab/tpot
https://github.com/hyperopt/hyperopt-sklearn
https://github.com/automl/auto-sklearn
https://github.com/HDI-Project/ATM
https://github.com/h2oai/h2o-3

Benchmark and Survey of Automated Machine Learning Frameworks

Appendix B. Synthetic Test Functions

All CASH algorithms from Section 8 are tested on various synthetic test functions. Grid
search and random search are used as base line algorithms. Table 12 contains the perfor-
mance of each algorithm after the completed optimization. Over all benchmarks, RoBO

was able to consistently outperform or yield equivalent results compared to all competitors.

Benchmark Grid Random RoBO BTB hyperopt SMAC BOHB Optunity

Levy 0.00089 0.00102 0.00000 0.19588 0.00010 0.00058 0.02430 0.00013

Branin 0.24665 0.28982 0.00065 0.00077 0.05011 0.10191 0.39143 0.03356

Hartmann6 1.04844 0.66960 0.06575 0.27107 0.44905 0.27262 0.35435 0.22289

Rosenbrock10 9.00000 45.8354 4.43552 19.4919 22.4746 38.1581 34.4457 36.3984

Camelback 0.94443 0.45722 0.02871 0.07745 0.07594 0.18440 0.38247 0.01754

Table 12: Results of all tested CASH solvers after 100 iterations. For each synthetic bench-
mark the mean performance over 10 trials is reported. Bold face represents the best mean
value for each benchmark. Results not significantly worse than the best result—according
to a Wilcoxon signed-rank test—are underlined.

Appendix C. Evaluated Data Sets

D
at
a
Se
t

C
la
ss
es

Sa
m
pl
es

N
um

er
ic
F
ea
t.

C
at
eg
or
ic
al
F
ea
t.

M
is
si
ng

V
al
ue
s

In
co
m
.
Sa
m
pl
es

M
in
or
it
y
%

kr-vs-kp (3) 2 3196 0 37 0 0 47.78
letter (6) 26 20000 16 1 0 0 3.67
balance-scale (11) 3 625 4 1 0 0 7.84
mfeat-factors (12) 10 2000 216 1 0 0 10.00
mfeat-fourier (14) 10 2000 76 1 0 0 10.00
breast-w (15) 2 699 9 1 16 16 34.48
mfeat-karhunen (16) 10 2000 64 1 0 0 10.00
mfeat-morpholog (18) 10 2000 6 1 0 0 10.00
mfeat-pixel (20) 10 2000 0 241 0 0 10.00
car (21) 4 1728 0 7 0 0 3.76
mfeat-zernike (22) 10 2000 47 1 0 0 10.00
cmc (23) 3 1473 2 8 0 0 22.61
mushroom (24) 2 8124 0 23 2480 2480 48.20
optdigits (28) 10 5620 64 1 0 0 9.86
credit-approval (29) 2 690 6 10 67 37 44.49
credit-g (31) 2 1000 7 14 0 0 30.00
pendigits (32) 10 10992 16 1 0 0 9.60
segment (36) 7 2310 19 1 0 0 14.29
diabetes (37) 2 768 8 1 0 0 34.90
sick (38) 2 3772 7 23 6064 3772 6.12
soybean (42) 19 683 0 36 2337 121 1.17
spambase (44) 2 4601 57 1 0 0 39.40
splice (46) 3 3190 0 61 0 0 24.04

449

Zöller & Huber

tic-tac-toe (50) 2 958 0 10 0 0 34.66
vehicle (54) 4 846 18 1 0 0 23.52
waveform-5000 (60) 3 5000 40 1 0 0 33.06
electricity (151) 2 45312 7 2 0 0 42.45
satimage (182) 6 6430 36 1 0 0 9.72
eucalyptus (188) 5 736 14 6 448 95 14.27
isolet (300) 26 7797 617 1 0 0 3.82
vowel (307) 11 990 10 3 0 0 9.09
scene (312) 2 2407 294 6 0 0 17.91
monks-problems- (333) 2 556 0 7 0 0 50.00
monks-problems- (334) 2 601 0 7 0 0 34.28
monks-problems- (335) 2 554 0 7 0 0 48.01
JapaneseVowels (375) 9 9961 14 1 0 0 7.85
synthetic contr (377) 6 600 60 2 0 0 16.67
irish (451) 2 500 2 4 32 32 44.40
analcatdata aut (458) 4 841 70 1 0 0 6.54
analcatdata dmf (469) 6 797 0 5 0 0 15.43
profb (470) 2 672 5 5 1200 666 33.33
collins (478) 15 500 20 4 0 0 1.20
mnist 784 (554) 10 70000 784 1 0 0 9.02
sylva agnostic (1036) 2 14395 216 1 0 0 6.15
gina agnostic (1038) 2 3468 970 1 0 0 49.16
ada agnostic (1043) 2 4562 48 1 0 0 24.81
mozilla4 (1046) 2 15545 5 1 0 0 32.86
pc4 (1049) 2 1458 37 1 0 0 12.21
pc3 (1050) 2 1563 37 1 0 0 10.24
jm1 (1053) 2 10885 21 1 25 5 19.35
kc2 (1063) 2 522 21 1 0 0 20.50
kc1 (1067) 2 2109 21 1 0 0 15.46
pc1 (1068) 2 1109 21 1 0 0 6.94
KDDCup09 appete (1111) 2 50000 192 39 8024152 50000 1.78
KDDCup09 churn (1112) 2 50000 192 39 8024152 50000 7.34
KDDCup09 upsell (1114) 2 50000 192 39 8024152 50000 7.36
MagicTelescope (1120) 2 19020 11 1 0 0 35.16
airlines (1169) 2 539383 3 5 0 0 44.54
artificial-char (1459) 10 10218 7 1 0 0 5.87
bank-marketing (1461) 2 45211 7 10 0 0 11.70
banknote-authen (1462) 2 1372 4 1 0 0 44.46
blood-transfusi (1464) 2 748 4 1 0 0 23.80
cardiotocograph (1466) 10 2126 35 1 0 0 2.49
climate-model-s (1467) 2 540 20 1 0 0 8.52
cnae-9 (1468) 9 1080 856 1 0 0 11.11
eeg-eye-state (1471) 2 14980 14 1 0 0 44.88
first-order-the (1475) 6 6118 51 1 0 0 7.94
gas-drift (1476) 6 13910 128 1 0 0 11.80
har (1478) 6 10299 561 1 0 0 13.65
hill-valley (1479) 2 1212 100 1 0 0 50.00
ilpd (1480) 2 583 9 2 0 0 28.64
madelon (1485) 2 2600 500 1 0 0 50.00
nomao (1486) 2 34465 89 30 0 0 28.56
ozone-level-8hr (1487) 2 2534 72 1 0 0 6.31
phoneme (1489) 2 5404 5 1 0 0 29.35
one-hundred-pla (1491) 100 1600 64 1 0 0 1.00
one-hundred-pla (1492) 100 1600 64 1 0 0 1.00
one-hundred-pla (1493) 100 1599 64 1 0 0 0.94
qsar-biodeg (1494) 2 1055 41 1 0 0 33.74
wall-robot-navi (1497) 4 5456 24 1 0 0 6.01
semeion (1501) 10 1593 256 1 0 0 9.73
steel-plates-fa (1504) 2 1941 33 1 0 0 34.67
tamilnadu-elect (1505) 20 45781 2 2 0 0 3.05
wdbc (1510) 2 569 30 1 0 0 37.26

450

Benchmark and Survey of Automated Machine Learning Frameworks

micro-mass (1515) 20 571 1300 1 0 0 1.93
wilt (1570) 2 4839 5 1 0 0 5.39
adult (1590) 2 48842 6 9 6465 3620 23.93
covertype (1596) 7 581012 10 45 0 0 0.47
Bioresponse (4134) 2 3751 1776 1 0 0 45.77
Bioresponse (4134) 2 3751 1776 1 0 0 45.77
Amazon employee (4135) 2 32769 0 10 0 0 5.79
PhishingWebsite (4534) 2 11055 0 31 0 0 44.31
PhishingWebsite (4534) 2 11055 0 31 0 0 44.31
GesturePhaseSeg (4538) 5 9873 32 1 0 0 10.11
MiceProtein (4550) 8 1080 77 5 1396 528 9.72
cylinder-bands (6332) 2 540 18 22 999 263 42.22
cylinder-bands (6332) 2 540 18 22 999 263 42.22
cjs (23380) 6 2796 32 3 68100 2795 9.80
dresses-sales (23381) 2 500 1 12 835 401 42.00
higgs (23512) 2 98050 28 1 9 1 47.14
numerai28.6 (23517) 2 96320 21 1 0 0 49.48
LED-display-dom (40496) 10 500 7 1 0 0 7.40
texture (40499) 11 5500 40 1 0 0 9.09
Australian (40509) 2 690 14 1 0 0 44.49
SpeedDating (40536) 2 8378 59 64 18372 7330 16.47
connect-4 (40668) 3 67557 0 43 0 0 9.55
dna (40670) 3 3186 0 181 0 0 24.01
shuttle (40685) 7 58000 9 1 0 0 0.02
churn (40701) 2 5000 16 5 0 0 14.14
Devnagari-Scrip (40923) 46 92000 1024 1 0 0 2.17
CIFAR 10 (40927) 10 60000 3072 1 0 0 10.00
MiceProtein (40966) 8 1080 77 5 1396 528 9.72
car (40975) 4 1728 0 7 0 0 3.76
Internet-Advert (40978) 2 3279 3 1556 0 0 14.00
mfeat-pixel (40979) 10 2000 240 1 0 0 10.00
Australian (40981) 2 690 6 9 0 0 44.49
steel-plates-fa (40982) 7 1941 27 1 0 0 2.83
wilt (40983) 2 4839 5 1 0 0 5.39
segment (40984) 7 2310 19 1 0 0 14.29
climate-model-s (40994) 2 540 20 1 0 0 8.52
Fashion-MNIST (40996) 10 70000 784 1 0 0 10.00
jungle chess 2p (41027) 3 44819 6 1 0 0 9.67
APSFailure (41138) 2 76000 170 1 1078695 75244 1.81
christine (41142) 2 5418 1599 38 0 0 50.00
jasmine (41143) 2 2984 8 137 0 0 50.00
sylvine (41146) 2 5124 20 1 0 0 50.00
albert (41147) 2 425240 26 53 2734000 425159 50.00
MiniBooNE (41150) 2 130064 50 1 0 0 28.06
guillermo (41159) 2 20000 4296 1 0 0 40.02
riccardo (41161) 2 20000 4296 1 0 0 25.00
dilbert (41163) 5 10000 2000 1 0 0 19.13
fabert (41164) 7 8237 800 1 0 0 6.09
robert (41165) 10 10000 7200 1 0 0 9.58
volkert (41166) 10 58310 180 1 0 0 2.33
dionis (41167) 355 416188 60 1 0 0 0.21
jannis (41168) 4 83733 54 1 0 0 2.01
helena (41169) 100 65196 27 1 0 0 0.17

Table 13: List of all tested data sets. Listed are the (abbreviated) name and OpenML id
for each data set together with the number of classes, the number of samples, the number of
numeric and categorical features per sample, how many values are missing in total (Missing
values), how many samples contain at least one missing value (Incomp. Samples) and the
percentage of samples belonging to the least frequent class (Minority %).

451

Zöller & Huber

Appendix D. Configuration Space for CASH Solvers

Classifier Hyperparameter Type Values

Bernoulli näıve Bayes alpha con [0.01, 100]
fit prior cat [false, true]

Multinomial näıve Bayes alpha con [0.01, 100]
fit prior cat [false, true]

Decision Tree criterion cat [entropy, gini]
max depth int [1, 10]
min samples leaf int [1, 20]
min samples split int [2, 20]

Extra Trees bootstrap cat [false, true]
criterion cat [entropy, gini]
max features con [0.0, 1.0]
min samples leaf int [1, 20]
min samples split int [2, 20]

Gradient Boosting learning rate con [0.01, 1.0]
criterion cat [friedman mse, mae, mse]
max depth int [1, 10]
min samples split int [2, 20]
min samples leaf int [1, 20]
n estimators int [50, 500]

Random Forest bootstrap cat [false, true]
criterion cat [entropy, gini]
max features con [0.0, 1.0]
min samples split int [2, 20]
min samples leaf int [1, 20]
n estimators int [2, 100]

k Nearest Neighbors n neighbors int [1, 100]
p int [1, 2]
weights cat [distance, uniform]

LDA n components cat [1, 250]
shrinkage con [0.0, 1.0]
solver cat [eigen, lsgr, svd]
tol con [0.00001, 0.1]

QDA reg param con [0.0, 1.0]
Linear SVM C con [0.01, 10000]

loss cat [hinge, squared hinge]
penalty cat [l1, l2]
tol con [0.00001, 0.1]

Kernel SVM C con [0.01, 10000]
coef0 con [-1, 1]
degree int [2, 5]
gamma con [1, 10000]
kernel cat [poly, rbf, sigmoid]
shrinking cat [false, true]
tol con [0.00001, 0.1]

Passive Aggressive average cat [false, true]
C con [0.00001, 10]

452

Benchmark and Survey of Automated Machine Learning Frameworks

loss cat [hinge, squared hinge]
tol con [0.00001, 0.1]

SGD alpha con [0.0000001, 0.1]
average cat [false, true]
epsilon con [0.00001, 0.1]
eta0 con [0.0000001, 0.11]
learning rate cat [constant, invscaling, optimal]
loss cat [hinge, log, modified huber]
l1 ratio con [0.0000001, 1]
penalty cat [elasticnet, l1, l2]
power t con [0.00001, 1]
tol con [0.00001, 0.1]

Table 14: Complete configuration space used for CASH benchmarking. Hyperparameter
names equal the used names in scikit-learn. cat are categorical, con are continuous and
int integer hyperparameters.

Appendix E. Raw Experiment Results

Data Set Dummy RF Grid Random SMAC BOHB Optunity hyperopt RoBO BTB

3+ 0.4991 0.9830 0.8488 0.9985 0.9983 0.9980 0.9979 0.9989 0.9975 0.9979
6 0.0396 0.9315 0.5482 0.9471 0.9613 0.9525 0.9459 0.9609 0.9438 0.9472
11 0.4394 0.8170 0.8718 0.9920 0.9867 0.9473 0.9660 1.0000 0.9862 0.9957
12+ 0.0997 0.9468 0.8542 0.9808 0.9835 0.9818 0.9800 0.9832 0.9833 0.9807
14 0.1065 0.7940 0.7498 0.8613 0.8560 0.8485 0.8625 0.8678 0.8635 0.8612
16 0.0982 0.8955 0.8442 0.9825 0.9815 0.9798 0.9793 0.9827 0.9813 0.9807
18 0.0988 0.7073 0.6788 0.7370 0.7443 0.7470 0.7378 0.7478 0.7303 0.7343
20 0.1023 0.9512 0.9212 0.9838 0.9843 0.9832 0.9823 0.9855 0.9823 0.9783
21 0.5414 0.9536 0.7582 0.9961 0.9940 0.9771 0.9988 0.9965 0.9882 0.9821
22 0.0995 0.7455 0.7050 0.8367 0.8360 0.8272 0.8345 0.8463 0.8503 0.8402
23+ 0.3597 0.5043 0.5063 0.5647 0.5622 0.5656 0.5636 0.5853 0.5695 0.5624
28 0.0992 0.9607 0.9057 0.9898 0.9906 0.9898 0.9897 0.9900 0.9901 0.9902
31+ 0.5837 0.7043 0.7053 0.7690 0.7697 0.7610 0.7743 0.7753 0.7617 0.7593
32 0.1006 0.9847 0.8008 0.9925 0.9938 0.9933 0.9924 0.9939 0.9936 0.9933
36 0.1414 0.9694 0.4338 0.9818 0.9818 0.9746 0.9838 0.9857 0.9788 0.9794
37 0.5403 0.7385 0.6489 0.7762 0.7883 0.7827 0.7823 0.7996 0.7861 0.7840
44 0.5206 0.9411 0.8888 0.9552 0.9542 0.9505 0.9566 0.9581 0.9503 0.9511
46 0.3814 0.9106 0.8361 0.9580 0.9580 0.9529 0.9619 0.9654 0.9479 0.9595
50 0.5354 0.9128 0.6451 1.0000 0.9983 0.9778 0.9972 1.0000 0.9962 0.9979
54+ 0.2492 0.7287 0.4307 0.8413 0.8406 0.8260 0.8362 0.8516 0.8594 0.8094
60 0.3369 0.8136 0.7111 0.8692 0.8709 0.8696 0.8713 0.8701 0.8697 0.8697
151 0.5106 0.8863 0.5935 0.9275 0.9183 0.9125 0.9302 0.9377 0.8852 0.9303
182 0.1923 0.8966 0.7091 0.9138 0.9171 0.9125 0.9186 0.9164 0.9073 0.9136
300 0.0370 0.8979 0.8432 0.9676 0.9683 0.9683 0.9654 0.9718 0.9578 0.9705
307 0.0882 0.9000 0.2633 0.9690 0.9822 0.9737 0.9731 0.9704 0.9902 0.9764
312 0.7105 0.8874 0.9303 0.9881 0.9881 0.9881 0.9876 0.9906 0.9893 0.9905
333 0.4934 0.9641 0.7413 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

334 0.5464 0.8597 0.6497 0.9923 0.9818 0.9193 0.9917 1.0000 0.9934 0.9923
335 0.4976 0.9695 0.7431 0.9874 0.9868 0.9838 0.9868 0.9898 0.9898 0.9850
375 0.1144 0.9472 0.4545 0.9677 0.9849 0.9664 0.9733 0.9791 0.9686 0.9706
377 0.1689 0.9522 0.1706 0.9928 0.9944 0.9928 0.9922 0.9956 0.9967 0.9900
458 0.3229 0.9830 0.9783 0.9976 0.9988 0.9984 0.9984 0.9992 0.9988 0.9988
469− 0.1692 0.1896 0.2325 0.2579 0.2612 0.2650 0.2621 0.2692 0.2596 0.2633
478 0.0893 0.7187 0.6093 0.9987 0.9920 0.9747 0.9867 1.0000 0.9953 0.9920
554 0.1010 0.9442 0.8331 0.9477 0.9445 0.9376 0.9357 0.9578 0.9403 0.9468

453

Zöller & Huber

1036 0.8842 0.9871 0.9911 0.9950 0.9948 0.9944 0.9952 0.9948 0.9945 0.9941
1038 0.5014 0.9065 0.8012 0.9376 0.9375 0.9335 0.9423 0.9516 0.9302 0.9418
1043 0.6270 0.8297 0.7879 0.8521 0.8524 0.8500 0.8517 0.8565 0.8486 0.8568

1046 0.5582 0.9492 0.9353 0.9583 0.9580 0.9533 0.9583 0.9605 0.9538 0.9555
1049 0.7779 0.8975 0.8747 0.9178 0.9185 0.9153 0.9187 0.9235 0.9121 0.9151
1050 0.8158 0.8893 0.8663 0.9053 0.9068 0.9053 0.9053 0.9100 0.8983 0.9051
1063 0.6828 0.8127 0.8299 0.8669 0.8707 0.8650 0.8688 0.8669 0.8643 0.8586
1067+ 0.7409 0.8504 0.8509 0.8649 0.8660 0.8621 0.8640 0.8687 0.8657 0.8727

1068 0.8670 0.9330 0.9261 0.9396 0.9402 0.9363 0.9381 0.9432 0.9438 0.9372
1120 0.5455 0.8664 0.6491 0.8790 0.8797 0.8766 0.8802 0.8819 0.8714 0.8794
1169− 0.5060 0.6144 0.5545 0.6650 0.6655 0.6635 0.6639 0.6655 0.6627 0.6627
1459 0.1017 0.8557 0.2446 0.8834 0.8631 0.8315 0.9303 0.9023 0.8623 0.8973
1461+ 0.7935 0.8991 0.8687 0.9079 0.9078 0.9070 0.9084 0.9071 0.9052 0.9044
1462 0.5056 0.9925 0.8451 1.0000 1.0000 1.0000 0.9995 1.0000 1.0000 0.9995
1464− 0.6418 0.7329 0.7676 0.7978 0.7973 0.7951 0.7938 0.8009 0.8076 0.7991
1466 0.1530 0.9983 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1467 0.8438 0.9037 0.9111 0.9179 0.9198 0.9167 0.9173 0.9284 0.9204 0.9247
1468+ 0.1139 0.8985 0.9586 0.9571 0.9630 0.9614 0.9562 0.9599 0.9617 0.9537
1471 0.5074 0.8915 0.5519 0.9522 0.9741 0.9729 0.9541 0.9726 0.9414 0.9459
1475+ 0.2441 0.5822 0.3670 0.6082 0.6003 0.5969 0.6068 0.6209 0.6031 0.5984
1476 0.1773 0.9919 0.2300 0.9927 0.9931 0.9907 0.9920 0.9948 0.9933 0.9912
1478 0.1684 0.9650 0.8509 0.9893 0.9908 0.9896 0.9857 0.9916 0.9873 0.9885
1479 0.5074 0.5459 0.7857 0.9354 0.9558 0.9566 0.9321 0.9492 0.9511 0.9431
1480 0.5909 0.7034 0.7069 0.7354 0.7394 0.7383 0.7400 0.7550 0.7417 0.7469
1485 0.4991 0.6191 0.5922 0.8351 0.8340 0.8232 0.8171 0.8484 0.8194 0.8367
1486− 0.5927 0.9640 0.8404 0.9662 0.9645 0.9655 0.9655 0.9683 0.9634 0.9646
1487 0.8837 0.9435 0.9351 0.9460 0.9468 0.9447 0.9466 0.9482 0.9501 0.9470
1489− 0.5838 0.8873 0.7588 0.9004 0.9002 0.8946 0.8986 0.9028 0.8990 0.8949
1491 0.0100 0.6177 0.8252 0.8096 0.8144 0.7929 0.8117 0.8094 0.8100 0.8010
1492− 0.0100 0.5135 0.1219 0.5994 0.6146 0.6137 0.5842 0.6012 0.6094 0.5773
1493 0.0104 0.6412 0.7217 0.8135 0.8025 0.7858 0.8138 0.8138 0.8037 0.8027
1494 0.5634 0.8492 0.7924 0.8814 0.8893 0.8795 0.8823 0.8849 0.8760 0.8804
1497 0.3356 0.9908 0.5913 0.9979 0.9971 0.9962 0.9977 0.9983 0.9966 0.9975
1501 0.1008 0.8690 0.8559 0.9475 0.9513 0.9433 0.9406 0.9536 0.9333 0.9416
1504 0.5528 0.9758 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1505 0.0550 0.9900 0.1339 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1510 0.5485 0.9474 0.8936 0.9713 0.9713 0.9719 0.9749 0.9719 0.9731 0.9737
1515 0.0599 0.7971 0.9029 0.8959 0.8971 0.8884 0.8837 0.8779 0.8913 0.8738
1570 0.8988 0.9814 0.9450 0.9857 0.9863 0.9853 0.9841 0.9864 0.9848 0.9851
1596− 0.3771 0.9388 0.6375 0.8603 0.9303 0.9356 0.9344 0.8933 0.7836 0.8638
4134+ 0.5109 0.7586 0.6604 0.7967 0.8017 0.7956 0.7937 0.8058 0.7942 0.7969
4134+ 0.5023 0.7674 0.6660 0.7950 0.7955 0.7856 0.7948 0.8139 0.7901 0.8026
4135− 0.8914 0.9441 0.9413 0.9480 0.9477 0.9458 0.9473 0.9501 0.9488 0.9475
4534+ 0.5062 0.9696 0.9097 0.9695 0.9701 0.9692 0.9712 0.9724 0.9658 0.9694
4534+ 0.5018 0.9688 0.9115 0.9708 0.9698 0.9682 0.9711 0.9726 0.9646 0.9699
4538− 0.2374 0.5936 0.3597 0.6505 0.6876 0.6674 0.6405 0.6755 0.6349 0.6469
23517+ 0.4987 0.5031 0.5140 0.5220 0.5225 0.5230 0.5221 0.5215 0.5236 0.5236

40496 0.0947 0.7000 0.7533 0.7653 0.7687 0.7627 0.7693 0.7653 0.7713 0.7573
40499 0.0888 0.9622 0.2067 0.9981 0.9981 0.9977 0.9976 0.9988 0.9979 0.9981
40509 0.5145 0.8667 0.8831 0.8937 0.8932 0.8903 0.8932 0.8947 0.8903 0.8889
40668− 0.5035 0.7868 0.6364 0.8012 0.8023 0.7968 0.7986 0.8084 0.8027 0.8019
40670− 0.3855 0.9182 0.9449 0.9635 0.9621 0.9616 0.9655 0.9656 0.9552 0.9656

40685− 0.6439 0.9997 0.8191 0.9995 0.9997 0.9995 0.9996 0.9998 0.9996 0.9994
40701+ 0.7529 0.9476 0.8601 0.9591 0.9603 0.9585 0.9592 0.9618 0.9531 0.9561
40923− 0.0213 0.7779 0.5717 0.7187 0.7562 0.7308 0.6277 0.7879 0.6694 0.6610
40927+ 0.0994 0.3510 0.2956 0.3726 0.3680 0.3974 0.3285 0.3744 0.3282 0.3142
40975+ 0.5395 0.9563 0.7597 0.9881 0.9911 0.9723 0.9956 0.9963 0.9873 0.9913
40978+ 0.7520 0.9735 0.9685 0.9780 0.9778 0.9754 0.9771 0.9792 0.9738 0.9744
40979+ 0.0962 0.9522 0.9185 0.9822 0.9825 0.9810 0.9823 0.9865 0.9777 0.9785

454

Benchmark and Survey of Automated Machine Learning Frameworks

40981+ 0.5150 0.8459 0.8657 0.8865 0.8845 0.8792 0.8816 0.8942 0.8942 0.8845
40982+ 0.2310 0.7448 0.4407 0.7861 0.8005 0.7913 0.7962 0.8014 0.7772 0.7878
40983+ 0.8981 0.9791 0.9451 0.9851 0.9864 0.9860 0.9853 0.9874 0.9842 0.9857
40984− 0.1423 0.9222 0.4307 0.9335 0.9325 0.9261 0.9349 0.9408 0.9355 0.9394
40994+ 0.8469 0.9191 0.9185 0.9673 0.9710 0.9611 0.9630 0.9648 0.9617 0.9586
40996− 0.1014 0.8571 0.7158 0.8526 0.8610 0.8543 0.8570 0.8656 0.8520 0.8487
41027− 0.4247 0.7878 0.6166 0.8697 0.8610 0.8550 0.8698 0.8759 0.8473 0.8605
41142− 0.4954 0.6806 0.6603 0.7299 0.7294 0.7256 0.7294 0.7363 0.7346 0.7315
41143+ 0.5030 0.7769 0.7510 0.8248 0.8253 0.8192 0.8229 0.8247 0.8160 0.8184
41146− 0.5004 0.9300 0.5080 0.9516 0.9501 0.9464 0.9518 0.9527 0.9441 0.9445
41150− 0.5962 0.9238 0.7733 0.9316 0.9300 0.9293 0.9288 0.9332 0.9285 0.9303
41159− 0.5211 0.7765 0.5849 0.7237 0.7617 0.7443 0.7329 0.7973 0.7118 0.7585
41161+ 0.6243 0.9351 0.7037 0.9863 0.9868 0.9863 0.9855 0.9884 0.9868 0.9868
41163− 0.2001 0.9171 0.6670 0.9384 0.9473 0.9270 0.9295 0.9485 0.9401 0.9406
41164− 0.1620 0.6657 0.6544 0.6864 0.6951 0.6892 0.6896 0.6924 0.6909 0.6935
41165− 0.0989 0.3104 0.3271 0.3897 0.3654 0.3745 0.4055 0.4055 0.3956 0.3940
41166− 0.1481 0.6116 0.3813 0.6439 0.6451 0.6328 0.6306 0.6508 0.6321 0.6349
41167+ 0.0029 0.8720 0.4201 0.7447 0.8553 0.8399 0.8603 0.8543 0.7388 0.8089
41168− 0.3593 0.6588 0.5277 0.6887 0.6890 0.6850 0.6880 0.6913 0.6848 0.6886
41169− 0.0225 0.2917 0.1725 0.3242 0.3330 0.3248 0.3202 0.3320 0.3235 0.3222

Average 0.3902 0.8335 0.6964 0.8746 0.8782 0.8725 0.8748 0.8821 0.8711 0.8732

Table 15: Average accuracy of CASH solvers on selected OpenML data sets. Data sets
containing missing values are omitted. The best results per data set are highlighted in bold.
Results not significantly worse than the best result—according to a Wilcoxon signed-rank
test—are underlined. On data sets marked by + and −, CASH solvers performed better
and worse, respectively, than AutoML frameworks.

Data Set Dummy RF Random auto-sklearn TPOT ATM hpsklearn H2O

3− 0.50761 0.98467 0.99062 0.98986 0.99431 0.99326 0.99051 0.99426
12− 0.10317 0.94617 0.97633 0.97767 0.97333 0.98178 0.94758 0.97433
15 0.52857 0.95714 0.95873 0.96875 0.96571 0.98474 0.96000 0.96286
23− 0.35249 0.50950 0.53262 0.54638 0.55882 0.58100 0.53047 0.53733
24 0.49922 1.00000 0.99993 1.00000 1.00000 1.00000 1.00000 0.99848
29 0.51111 0.84976 0.85507 0.87289 0.86377 0.89133 0.85956 0.86184
31− 0.56867 0.72667 0.72400 0.73433 0.74400 0.76578 0.70121 0.74867
38 0.88207 0.98454 0.98550 0.98288 0.98746 – 0.97438 0.98419
42 0.08439 0.91561 0.91911 0.91954 0.92732 0.94504 0.92585 0.93122
54− 0.26417 0.72165 0.81969 0.82008 0.81811 0.81522 0.75787 0.82717

188 0.21267 0.61086 0.62670 0.63886 0.65566 0.64190 0.64072 0.65570

451 0.50533 0.99933 0.99081 0.99019 0.99091 1.00000 0.99404 0.97967
469+ 0.16583 0.18625 0.20382 0.20365 0.20833 0.27028 0.19139 0.19542
470 0.56733 0.65050 0.64563 0.65687 0.66832 0.71221 0.63762 0.71089
1053 0.68766 0.80505 0.81126 0.81344 0.81810 0.82100 0.80998 0.74819
1067− 0.74060 0.84739 0.85340 0.85118 0.86019 0.86856 0.84044 0.80869
1111 0.96487 0.98235 0.98228 0.98244 0.98182 – 0.98189 0.96555
1112 0.86358 0.92542 0.92586 0.92725 0.92624 – 0.92599 0.78802
1114 0.86357 0.94048 0.95030 0.95094 0.95085 – 0.95068 0.93415
1169+ 0.50570 0.61520 0.59845 0.66665 0.66895 0.63671 0.65080 0.61266
1461− 0.79323 0.89985 0.90398 0.90447 0.90705 0.89957 0.90451 0.90060
1464+ 0.63200 0.74889 0.77778 0.76667 0.78711 0.81956 0.78044 0.73378
1468− 0.10741 0.88765 0.93117 0.94167 0.94784 0.96049 0.94012 0.95216
1475− 0.24553 0.58998 0.58601 0.59695 0.61291 0.60272 0.58293 0.61656

1486+ 0.59173 0.96344 0.96656 0.96903 0.97026 0.96055 0.96891 0.97146

455

Zöller & Huber

1489+ 0.58453 0.88890 0.89205 0.89716 0.90450 0.89963 0.89273 0.89205
1492+ 0.00687 0.51333 0.62795 0.65172 0.61146 0.61097 0.54667 0.56435
1590 0.63379 0.85021 0.87013 0.86938 0.87089 0.85448 0.86727 0.86656
1596+ 0.37644 0.93818 0.89143 0.96395 0.94542 0.66390 0.95227 0.92908
4134− 0.50462 0.76314 0.77762 0.78890 0.80249 0.77087 0.77798 0.80044
4135+ 0.88895 0.94491 0.94444 0.94761 0.94891 0.94606 0.94750 0.95114

4534− 0.50612 0.96847 0.96244 0.96590 0.96913 0.96464 0.96964 0.97160

4538+ 0.23130 0.59207 0.65004 0.67733 0.67586 0.66217 0.67272 0.70165

4550 0.12346 0.99414 0.99907 1.00000 1.00000 1.00000 0.99983 1.00000

6332 0.52407 0.73951 0.76173 0.79012 0.81009 0.81701 0.76667 0.78333
6332 0.49877 0.76481 0.77058 0.77353 0.81173 0.79155 0.75823 0.80000
23380 0.18677 0.95000 0.99841 0.98265 1.00000 – 0.97131 1.00000

23381 0.50333 0.55867 0.55556 0.56667 0.56867 0.66978 0.56844 0.58400
23512 0.50065 0.67445 0.71930 0.72296 0.72031 0.67135 0.70743 0.71281
23517− 0.49962 0.50259 0.51939 0.51926 0.52082 0.51941 0.52033 0.50635
40536 0.72550 0.85195 0.86225 0.86291 0.86392 0.86128 0.86661 0.84968
40668+ 0.50439 0.78341 0.79628 0.82109 0.84123 0.77698 0.82886 0.86500

40670+ 0.39100 0.91412 0.95889 0.95962 0.95931 0.95282 0.96109 0.96904

40685+ 0.64405 0.99962 0.99968 0.99978 0.99974 0.99955 0.99253 0.99987

40701− 0.76320 0.94313 0.95313 0.95620 0.96000 0.95007 0.94533 0.95370
40923+ 0.02127 0.78048 0.02169 0.74009 – 0.89470 0.86438 0.58220
40927− 0.10096 0.35102 – – 0.29429 0.32001 0.32093 0.36389

40966 0.12407 0.94228 0.99506 0.99043 0.99506 1.00000 0.96380 0.99551
40975− 0.53218 0.95318 0.97958 0.97264 0.99422 0.96763 0.98786 0.99191
40978− 0.75346 0.97368 0.97114 0.97774 0.97398 0.96900 0.97358 –
40979− 0.09983 0.95217 0.97367 0.97783 0.96883 0.97750 0.98121 0.97600
40981− 0.49324 0.85604 0.85556 0.87053 0.86184 0.89050 0.86913 0.87633
40982− 0.21681 0.74425 0.76364 0.78268 0.79091 0.76415 0.75955 0.78062
40983− 0.89683 0.97886 0.98581 0.98612 0.98540 0.98657 0.95289 0.98574
40984+ 0.14473 0.93001 0.93333 0.93088 0.94055 0.92564 0.90664 0.94185

40994− 0.83704 0.91914 0.92407 0.94074 0.94547 0.96975 0.92593 0.93642
40996+ 0.09844 0.85777 0.84450 0.87844 0.78089 0.82114 0.85060 0.87341
41027+ 0.42598 0.78945 0.85378 0.86775 0.88735 0.87540 0.88691 0.90047

41138 0.96474 0.99268 0.99137 0.99287 0.99339 0.97097 0.99360 0.99369

41142+ 0.50234 0.67977 0.73081 0.74754 0.72645 0.72169 0.71630 0.72811
41143− 0.50748 0.78170 0.80603 0.82009 0.82366 0.79911 0.80078 0.80906
41146+ 0.49532 0.93062 0.94753 0.93921 0.95533 0.93476 0.94675 0.92510
41147 0.49923 0.62564 0.66709 0.68314 0.66110 0.80064 0.66694 0.64798
41150+ 0.59589 0.92356 0.92891 0.94334 0.93850 0.90234 0.87477 0.94604

41159+ 0.51942 0.77610 – 0.64227 0.72548 0.66063 0.74347 0.81928

41161− 0.62482 0.93468 0.75042 0.74757 0.98495 0.90729 0.82518 0.95625
41163+ 0.19703 0.92263 0.94793 0.98357 0.96254 0.95391 0.97243 0.96988
41164+ 0.16375 0.66570 0.67395 0.70255 0.68336 0.67357 0.69104 0.71752

41165+ 0.09480 0.30877 0.39922 0.44843 – 0.35252 0.34203 –
41166+ 0.14885 0.61045 0.63762 0.66933 0.65075 0.67940 0.65451 0.67841
41167− 0.00286 0.87164 – – – 0.38666 0.77971 –
41168+ 0.36200 0.65848 0.69273 0.71814 0.69642 0.63788 0.68494 0.71786
41169+ 0.02272 0.29082 0.29566 0.30692 0.33576 0.32108 0.28741 –

Average 0.44921 0.79980 0.80853 0.82606 0.83040 0.80292 0.81075 0.82910

Table 16: Average accuracy of AutoML frameworks on selectedOpenML data sets. Entries
marked by – consistently failed to generate an ML pipeline. The best results per data set
are highlighted in bold. Results not significantly worse than the best result—according to
a Wilcoxon signed-rank test—are underlined. On data sets marked by + and −, AutoML
frameworks performed better and worse, respectively, than CASH solvers.

456

Benchmark and Survey of Automated Machine Learning Frameworks

0.2 0.4 0.6 0.8 1.0
Random Search

0.2

0.4

0.6

0.8

1.0

BO
HB

0.2 0.4 0.6 0.8 1.0
Random Search

0.2

0.4

0.6

0.8

1.0

BT
B

0.2 0.4 0.6 0.8 1.0
Random Search

0.2

0.4

0.6

0.8

1.0

hy
pe

ro
pt

0.2 0.4 0.6 0.8 1.0
Random Search

0.2

0.4

0.6

0.8

1.0

Op
tu

ni
ty

0.2 0.4 0.6 0.8 1.0
Random Search

0.2

0.4

0.6

0.8

1.0

Ro
BO

0.2 0.4 0.6 0.8 1.0
Random Search

0.2

0.4

0.6

0.8

1.0
SM

AC

0.2 0.4 0.6 0.8 1.0
SMAC

0.2

0.4

0.6

0.8

1.0

BO
HB

0.2 0.4 0.6 0.8 1.0
SMAC

0.2

0.4

0.6

0.8

1.0

BT
B

0.2 0.4 0.6 0.8 1.0
SMAC

0.2

0.4

0.6

0.8

1.0

hy
pe

ro
pt

0.2 0.4 0.6 0.8 1.0
SMAC

0.2

0.4

0.6

0.8

1.0

Op
tu
ni
ty

0.2 0.4 0.6 0.8 1.0
SMAC

0.2

0.4

0.6

0.8

1.0

Ro
BO

0.2 0.4 0.6 0.8 1.0
BOHB

0.2

0.4

0.6

0.8

1.0

BT
B

0.2 0.4 0.6 0.8 1.0
BOHB

0.2

0.4

0.6

0.8

1.0

hy
pe

ro
pt

0.2 0.4 0.6 0.8 1.0
BOHB

0.2

0.4

0.6

0.8

1.0

Op
tu
ni
ty

0.2 0.4 0.6 0.8 1.0
BOHB

0.2

0.4

0.6

0.8

1.0

Ro
BO

0.2 0.4 0.6 0.8 1.0
Optunity

0.2

0.4

0.6

0.8

1.0

BT
B

0.2 0.4 0.6 0.8 1.0
Optunity

0.2

0.4

0.6

0.8

1.0

hy
pe

ro
pt

0.2 0.4 0.6 0.8 1.0
Optunity

0.2

0.4

0.6

0.8

1.0

Ro
BO

0.2 0.4 0.6 0.8 1.0
hyperopt

0.2

0.4

0.6

0.8

1.0

BT
B

0.2 0.4 0.6 0.8 1.0
hyperopt

0.2

0.4

0.6

0.8

1.0

Ro
BO

0.2 0.4 0.6 0.8 1.0
RoBO

0.2

0.4

0.6

0.8

1.0

BT
B

Figure 19: Pair-wise comparison of the mean precision of CASH algorithms. The axes
represent the accuracy score of the stated CASH algorithm. Each point represents the
averaged results for a single data set. Identical performances are plotted directly on the
angle bisector. The comparison with grid search is omitted due to spacial constrictions.

457

Zöller & Huber

0.2 0.4 0.6 0.8 1.0
Random Search

0.2

0.4

0.6

0.8

1.0
AT

M

0.2 0.4 0.6 0.8 1.0
Random Search

0.2

0.4

0.6

0.8

1.0

au
to

-s
kl

ea
rn

0.2 0.4 0.6 0.8 1.0
Random Search

0.2

0.4

0.6

0.8

1.0

H2
O

Au
to

M
L

0.2 0.4 0.6 0.8 1.0
Random Search

0.2

0.4

0.6

0.8

1.0

hy
pe

ro
pt

-s
kl

ea
rn

0.2 0.4 0.6 0.8 1.0
Random Search

0.2

0.4

0.6

0.8

1.0

TP
OT

0.2 0.4 0.6 0.8 1.0
auto-sklearn

0.2

0.4

0.6

0.8

1.0

AT
M

0.2 0.4 0.6 0.8 1.0
auto-sklearn

0.2

0.4

0.6

0.8

1.0

H2
O

Au
to

M
L

0.2 0.4 0.6 0.8 1.0
auto-sklearn

0.2

0.4

0.6

0.8

1.0

hy
pe

ro
pt
-s
kl
ea

rn

0.2 0.4 0.6 0.8 1.0
auto-sklearn

0.2

0.4

0.6

0.8

1.0

TP
OT

0.2 0.4 0.6 0.8 1.0
TPOT

0.2

0.4

0.6

0.8

1.0

AT
M

0.2 0.4 0.6 0.8 1.0
TPOT

0.2

0.4

0.6

0.8

1.0

H2
O

Au
to

M
L

0.2 0.4 0.6 0.8 1.0
TPOT

0.2

0.4

0.6

0.8

1.0

hy
pe

ro
pt
-s
kl
ea

rn

0.2 0.4 0.6 0.8 1.0
ATM

0.2

0.4

0.6

0.8

1.0

H2
O

Au
to

M
L

0.2 0.4 0.6 0.8 1.0
ATM

0.2

0.4

0.6

0.8

1.0

hy
pe

ro
pt
-s
kl
ea

rn

0.2 0.4 0.6 0.8 1.0
hyperopt-sklearn

0.2

0.4

0.6

0.8

1.0

H2
O

Au
to

M
L

Figure 20: Pair-wise comparison of normalized performances of AutoML frameworks. The
axes represent the accuracy score of the stated AutoML framework. Each point represents
the averaged results for a single data set. Identical performances are plotted directly on the
angle bisector.

458

Benchmark and Survey of Automated Machine Learning Frameworks

References

Alaa, A. M., & Van Der Schaar, M. (2018). AutoPrognosis: Automated Clinical Prognostic
Modeling via Bayesian Optimization with Structured Kernel Learning. International
Conference on Machine Learning, 1, 139–148.

Alia, S., & Smith-Miles, K. A. (2006). A meta-learning approach to automatic kernel
selection for support vector machines. Neurocomputing, 70 (1-3), 173–186.

Anderson, R. L. (1953). Recent Advances in Finding Best Operating Conditions. Journal

of the American Statistical Association, 48 (264), 789–798.

Ayria, P. (2018). A complete Machine Learning PipeLine.. Available at https://www.

kaggle.com/pouryaayria/a-complete-ml-pipeline-tutorial-acu-86.

Baidu (2018). EZDL.. Available at http://ai.baidu.com/ezdl/.

Balaji, A., & Allen, A. (2018). Benchmarking Automatic Machine Learning Frameworks.
arXiv preprint arXiv:1808.06492.

Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1997). Genetic Programming:

An Introduction. Morgan Kaufmann.

Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., & Mahajan, A. (2013).
Mixed-integer nonlinear optimization. Acta Numerica, 22, 1–131.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and
New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35 (8), 1798–1828.

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for Hyper-Parameter
Optimization. In International Conference on Neural Information Processing Systems,
pp. 2546–2554.

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization.
Journal of Machine Learning Research, 13, 281–305.

Bergstra, J., Yamins, D., & Cox, D. D. (2013). Hyperopt: A python library for optimizing
the hyperparameters of machine learning algorithms. In Python in Science Conference,
pp. 13–20.

Bilalli, B., Abelló, A., & Aluja-Banet, T. (2017). On the Predictive Power of Meta-Features
in OpenML. International Journal of Applied Mathematics and Computer Science,
27 (4), 697–712.

Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R. G., van Rijn,
J. N., & Vanschoren, J. (2017). OpenML Benchmarking Suites and the OpenML100.
arXiv preprint arXiv:1708.03731v1.

Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R. G., van Rijn,
J. N., & Vanschoren, J. (2019). OpenML Benchmarking Suites. arXiv preprint

arXiv:1708.03731v2. arXiv:1708.03731.

Bottou, L. (2012). Stochastic Gradient Descent Tricks. In Neural Networks, Tricks of the

Trade, Reloaded, pp. 430–445. Springer.

459

https://www.kaggle.com/pouryaayria/a-complete-ml-pipeline-tutorial-acu-86
https://www.kaggle.com/pouryaayria/a-complete-ml-pipeline-tutorial-acu-86
http://ai.baidu.com/ezdl/

Zöller & Huber

Breiman, L. (2001). Random Forests. Machine Learning, 45 (1), 5–32.

Breiman, L., Friedman, J., Stone, C. J., & Olsen, R. (1984). Classification and Regression

Trees. Chapman and Hall.

Brochu, E., Cora, V. M., & de Freitas, N. (2010). A Tutorial on Bayesian Optimization of
Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning. arXiv preprint arXiv:1012.2599.

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Member, S., Cowling, P. I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., & Colton, S. (2012). A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence and

AI in Games, 4 (1), 1–49.

Buyya, R. (1999). High Performance Cluster Computing: Architectures and Systems, Vol. 1.
Prentice Hall.

Chan, T. (2017). Advisor.. Available at https://github.com/tobegit3hub/advisor.

Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing Multiple Pa-
rameters for Support Vector Machines. Machine Learning, 46, 131–159.

Chen, B., Wu, H., Mo, W., Chattopadhyay, I., & Lipson, H. (2018). Autostacker: A Com-
positional Evolutionary Learning System. In Genetic and Evolutionary Computation

Conference, pp. 402–409.

Chen, P.-W., Wang, J.-Y., & Lee, H.-M. (2004). Model selection of SVMs using GA ap-
proach. In IEEE International Joint Conference on Neural Networks.

Chu, X., Ilyas, I. F., Krishnan, S., & Wang, J. (2016). Data Cleaning: Overview and
Emerging Challenges. In International Conference on Management of Data, pp. 2201–
2206.

Chu, X., Morcos, J., Ilyas, I. F., Ouzzani, M., Papotti, P., Tang, N., & Ye, Y. (2015).
KATARA: A Data Cleaning System Powered by Knowledge Bases and Crowdsourcing.
In ACM International Conference on Management of Data, pp. 1247–1261.

Claesen, M., Simm, J., Popovic, D., Moreau, Y., & De Moor, B. (2014). Easy Hyperparam-
eter Search Using Optunity. arXiv preprint arXiv: 1412.1114.

Clouder, A. (2018). Shortening Machine Learning Development Cycle
with AutoML.. Available at https://www.alibabacloud.com/blog/

shortening-machine-learning-development-cycle-with-automl_594232.

Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary Algorithms

for Solving Multi-Objective Problems, Vol. 5. Springer.

Das, P., Ivkin, N., Bansal, T., Rouesnel, L., Gautier, P., Karnin, Z., Dirac, L., Ramakr-
ishnan, L., Perunicic, A., Shcherbatyi, I., Wu, W., Zolic, A., Shen, H., Ahmed, A.,
Winkelmolen, F., Miladinovic, M., Archembeau, C., Tang, A., Dutt, B., Grao, P., &
Venkateswar, K. (2020). Amazon SageMaker Autopilot: a white box AutoML solution
at scale Piali. In Data Management for End-to-End Machine Learning, pp. 1–7.

das Dôres, S. C. N., Soares, C., & Ruiz, D. (2018). Bandit-Based Automated Machine
Learning. In Brazilian Conference on Intelligent Systems.

460

https://github.com/tobegit3hub/advisor
https://www.alibabacloud.com/blog/shortening-machine-learning-development-cycle-with-automl_594232
https://www.alibabacloud.com/blog/shortening-machine-learning-development-cycle-with-automl_594232

Benchmark and Survey of Automated Machine Learning Frameworks

Dash, M., & Liu, H. (1997). Feature Selection for Classification. Intelligent Data Analysis,
1, 131–156.

De Miranda, P. B., Prudêncio, R. B., De Carvalho, A. C. P., & Soares, C. (2012). An Exper-
imental Study of the Combination of Meta-Learning with Particle Swarm Algorithms
for SVM Parameter Selection. International Conference on Computational Science

and Its Applications, pp. 562–575.

de Sá, A. G. C., Pinto, W. J. G. S., Oliveira, L. O. V. B., & Pappa, G. L. (2017). RECIPE:
A Grammar-Based Framework for Automatically Evolving Classification Pipelines. In
European Conference on Genetic Programming, Vol. 10196, pp. 246–261.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clus-
ters. Communications of the ACM, 51 (1), 107–113.

Desautels, T., Krause, A., & Burdick, J. W. (2014). Parallelizing Exploration-Exploitation
Tradeoffs with Gaussian Process Bandit Optimization. Journal of Machine Learning

Research, 15, 4053–4103.

Dinsmore, T. (2016). Automated Machine Learning: A Short History.. Available at https:
//blog.datarobot.com/automated-machine-learning-short-history.

Domhan, T., Springenberg, J. T., & Hutter, F. (2015). Speeding up Automatic Hyperpa-
rameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves.
International Joint Conference on Artificial Intelligence, pp. 3460–3468.

Dor, O., & Reich, Y. (2012). Strengthening learning algorithms by feature discovery. In-

formation Sciences, 189, 176–190.

Doshi-Velez, F., & Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine
Learning. arXiv preprint arXiv:1702.08608.

Drori, I., Krishnamurthy, Y., de Paula Lourenco, R., Rampin, R., Kyunghyun, C., Silva,
C., & Freire, J. (2019). Automatic Machine Learning by Pipeline Synthesis using
Model-Based Reinforcement Learning and a Grammar. In International Conference

on Machine Learning AutoML Workshop.

Drori, I., Krishnamurthy, Y., Rampin, R., Lourenco, R. d. P., Ono, J. P., Cho, K., Silva, C.,
& Freire, J. (2018). AlphaD3M : Machine Learning Pipeline Synthesis. In International

Conference on Machine Learning AutoML Workshop.

Eduardo, S., & Sutton, C. (2016). Data Cleaning using Probabilistic Models of Integrity
Constraints. In Neural Information Processing Systems.

Efimova, V., Filchenkov, A., & Shalamov, V. (2017). Fast Automated Selection of Learning
Algorithm And its Hyperparameters by Reinforcement Learning. In International

Conference on Machine Learning AutoML Workshop.

Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., & Leyton-Brown,
K. (2013). Towards an Empirical Foundation for Assessing Bayesian Optimization
of Hyperparameters. In NIPS Workshop on Bayesian Optimization in Theory and

Practice.

461

https://blog.datarobot.com/automated-machine-learning-short-history
https://blog.datarobot.com/automated-machine-learning-short-history

Zöller & Huber

Eggensperger, K., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2015). Efficient Benchmark-
ing of Hyperparameter Optimizers via Surrogates. In AAAI Conference on Artificial

Intelligence, pp. 1114–1120.

Eggensperger, K., Lindauer, M. T., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2018).
Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Sur-
rogates. Machine Learning, 107, 15–41.

Elshawi, R., Maher, M., & Sakr, S. (2019). Automated Machine Learning: State-of-The-Art
and Open Challenges. arXiv preprint arXiv:1906.02287.

Escalante, H. J., Montes, M., & Luis, V. (2009). Particle Swarm Model Selection for Au-
thorship Verificatio. Iberoamerican Congress on Pattern Recognition, pp. 563–570.

Fabris, F., & Freitas, A. A. (2019). Analysing the Overfit of the auto-sklearn Automated
Machine Learning Tool. In Machine Learning, Optimization, and Data Science, Vol.
11943, pp. 508–520. Springer International Publishing.

Falkner, S., Klein, A., & Hutter, F. (2018). BOHB: Robust and Efficient Hyperparameter
Optimization at Scale. In International Conference on Machine Learning, pp. 1437–
1446.

Fernández-Godino, M. G., Park, C., Kim, N.-H., & Haftka, R. T. (2016). Review of multi-
fidelity models. arXiv preprint arXiv:1609.07196.

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., & Hutter, F. (2018). Practical Au-
tomated Machine Learning for the AutoML Challenge 2018. International Conference
on Machine Learning AutoML Workshop.

Feurer, M., & Hutter, F. (2018). Towards Further Automation in AutoML. In International

Conference on Machine Learning AutoML Workshop.

Feurer, M., Klein, A., Eggensperger, K., Springenber, J. T., Blum, M., & Hutter, F. (2015a).
Efficient and Robust Automated Machine Learning. In International Conference on

Neural Information Processing Systems, pp. 2755–2763.

Feurer, M., Springenberg, J. T., & Hutter, F. (2015b). Initializing Bayesian Hyperparameter
Optimization via Meta-Learning. National Conference on Artificial Intelligence, pp.
1128–1135.

Frazier, P. I. (2018). A Tutorial on Bayesian Optimization. arXiv preprint arXiv:

1807.02811, pp. 1–22.

Friedman, L., & Markovitch, S. (2015). Recursive Feature Generation for Knowledge-based
Learning. Journal of Artificial Intelligence Research, 1, 3–17.

Fukunaga, K., & Hostetler, L. D. (1975). The estimation of the gradient of a density
function, with applications in pattern recognition. IEEE Transactions on Information

Theory, 21 (1), 32–40.

Galhardas, H., Florescu, D., Shasha, D., & Simon, E. (2000). AJAX:An Extensible Data
Cleaning Tool. In International Conference on Management of Data, pp. 590–596.

Gama, J., & Brazdil, P. (2000). Characterization of Classification Algorithms. In Portuguese

Conference on Artificial Intelligence.

462

Benchmark and Survey of Automated Machine Learning Frameworks

Garrido-Merchán, E. C., & Hernández-Lobato, D. (2018). Dealing with Integer-valued Vari-
ables in Bayesian Optimization with Gaussian Processes. In International Conference

on Machine Learning AutoML Workshop, pp. 1–18.

Gaudel, R., & Sebag, M. (2010). Feature Selection as a One-Player Game. In International

Conference on Machine Learning, pp. 359–366.

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite. In Conference on Computer Vision and Pattern

Recognition.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planmning: Theory & Praxis.
Morgan Kaufmann Publishers, Inc.

Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., & Vanschoren, J. (2019). An
Open Source AutoML Benchmark. In International Conference on Machine Learning

AutoML Workshop.

Gil, Y., Honaker, J., Gupta, S., Ma, Y., Orazio, V. D., Garijo, D., Gadewar, S., Yang, Q., &
Jahanshad, N. (2019). Towards Human-Guided Machine Learning. In International

Conference on Intelligent User Interfaces.

Gil, Y., Yao, K.-T., Ratnakar, V., Garijo, D., Steeg, G. V., Szekely, P., Brekelmans, R.,
Kejriwal, M., Luo, F., & Huang, I.-H. (2018). P4ML: A Phased Performance-Based
Pipeline Planner for Automated Machine Learning. In International Conference on

Machine Learning AutoML Workshop, pp. 1–8.

Ginsbourger, D., Janusevskis, J., & Le Riche, R. (2010a). Dealing with asynchronicity
in parallel Gaussian process based global optimization.. Available at https://hal.
archives-ouvertes.fr/hal-00507632.

Ginsbourger, D., Le Riche, R., & Carraro, L. (2010b). Kriging Is Well-Suited to Parallelize
Optimization. In Computational Intelligence in Expensive Optimization Problems, pp.
131–162. Springer Berlin Heidelberg.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., & Sculley, D. (2017). Google
Vizier: A Service for Black-Box Optimization. In ACM International Conference on

Knowledge Discovery and Data Mining, pp. 1487–1495.

Gomes, T. A., Prudĉncio, R. B., Soares, C., Rossi, A. L., & Carvalho, A. (2012). Combin-
ing Meta-Learning and Search Techniques to Select Parameters for Support Vector
Machines. Neurocomputing, 75 (1), 3–13.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Representation Learning. In Deep

Learning, chap. 15. MIT Press.

Google LLC (2019). AI Explanations Whitepaper. Tech. rep., Google LLC.

Gower, J. C. (1971). A General Coefficient of Similarity and Some of Its Properties. Bio-

metrics, 27 (4), 857–871.

Gustafson, L. (2018). Bayesian Tuning and Bandits : An Extensible , Open Source Library

for AutoML by. Ph.D. thesis, Massachusetts Institute of Technology.

463

https://hal.archives-ouvertes.fr/hal-00507632
https://hal.archives-ouvertes.fr/hal-00507632

Zöller & Huber

Guyon, I., Bennett, K., Cawley, G., Escalante, H. J., Escalera, S., Ho, T. K., Maciá, N.,
Ray, B., Saeed, M., Statnikov, A., & Viegas, E. (2015). Design of the 2015 ChaLearn
AutoML Challenge. International Joint Conference on Neural Networks, pp. 1–8.

Guyon, I., Chaabane, I., Escalante, H. J., Escalera, S., Jajetic, D., Lloyd, J. R., Maciá, N.,
Ray, B., Romaszko, L., Sebag, M., Statnikov, A., Treguer, S., & Viegas, E. (2016).
A brief Review of the ChaLearn AutoML Challenge: Any-time Any-dataset Learn-
ing without Human Intervention. In International Conference on Machine Learning

AutoML Workshop, pp. 21–30.

Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. Journal
of Machine Learning Research, 3, 1157–1182.

Guyon, I., Saffari, A., Dror, G., & Cawley, G. (2008). Analysis of the IJCNN 2007 Agnostic
Learning vs. Prior Knowledge Challenge. Neural Networks, 21 (2-3), 544–550.

Guyon, I., Sun-Hosoya, L., Boullé, M., Escalante, H. J., Escalera, S., Liu, Z., Jajetic, D., Ray,
B., Saeed, M., Sebag, M., Statnikov, A., Tu, W.-W., & Viegas, E. (2018). Analysis of
the AutoML Challenge series 2015-2018. In Automatic Machine Learning: Methods,

Systems, Challenges. Springer Verlag.

Guyon, I., Weston, J., & Barnhill, S. (2002). Gene Selection for Cancer Classification using
Support Vector Machines. Machine Learning, 46, 389–422.

H2O.ai (2018). H2O Driverless AI.. Available at https://www.h2o.ai/products/

h2o-driverless-ai/.

H2O.ai (2019). H2O AutoML.. Available at http://docs.h2o.ai/h2o/latest-stable/
h2o-docs/automl.html.

He, X., Zhao, K., & Chu, X. (2019). AutoML: A Survey of the State-of-the-Art. arXiv

preprint arXiv:1908.00709.

Hellerstein, J. M. (2008). Quantitative Data Cleaning for Large Databases. United Nations

Economic Commission for Europe.

Hennig, P., & Schuler, C. J. (2012). Entropy Search for Information-Efficient Global Opti-
mization. Journal of Machine Learning Research, 13, 1809–1837.

Hesterman, J. Y., Caucci, L., Kupinski, M. A., Barrett, H. H., & Furenlid, L. R. (2010).
Maximum-Likelihood Estimation With a Contracting-Grid Search Algorithm. IEEE

Transactions on Nuclear Science, 57 (3), 1077–1084.

Hoffman, M. W., Shahriari, B., & de Freitas, N. (2014). On correlation and budget con-
straints in model-based bandit optimization with application to automatic machine
learning. In Artificial Intelligence and Statistics, pp. 365–374.

Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A Practical Guide to Support Vector
Classification..

Huberman, B. A., Lukose, R. M., & Hogg, T. (1997). An Economics Approach to Hard
Computational Problems. Science, 275 (5296), 51–54.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential Model-Based Optimization
for General Algorithm Configuration. In International Conference on Learning and

Intelligent Optimization, pp. 507–523.

464

https://www.h2o.ai/products/h2o-driverless-ai/
https://www.h2o.ai/products/h2o-driverless-ai/
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

Benchmark and Survey of Automated Machine Learning Frameworks

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2012). Parallel algorithm configuration. In
International Conference on Learning and Intelligent Optimization, Vol. 7219.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2014). An Efficient Approach for Assessing
Hyperparameter Importance. In International Conference on Machine Learning, pp.
754–762.

Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: An Automatic
Algorithm Configuration Framework. Journal of Artificial Intelligence Research, 36,
267–306.

Hutter, F., Kotthoff, L., & Vanschoren, J. (2018a). Automated Machine Learning: Methods,

Systems, Challenges. Springer.

Hutter, F., Kotthoff, L., & Vanschoren, J. (2018b). Hyperparameter Optimization. In
Automatic Machine Learning: Methods, Systems, Challenges, pp. 3–38. Springer.

Jamieson, K., & Talwalkar, A. (2015). Non-stochastic Best Arm Identification and Hyper-
parameter Optimization. In Artificial Intelligence and Statistics, pp. 240–248.

Jeffery, S. R., Alonso, G., Franklin, M. J., Hong, W., & Widom, J. (2006). Declarative Sup-
port for Sensor Data Cleaning. In International Conference on Pervasive Computing,
pp. 83–100.

Kandasamy, K., Krishnamurthy, A., Schneider, J., & Póczos, B. (2018). Parallelised
Bayesian Optimisation via Thompson Sampling Kirthevasan. In International Con-

ference on Artificial Intelligence and Statistics, pp. 133–142.

Kanter, J. M., & Veeramachaneni, K. (2015). Deep Feature Synthesis: Towards Automating
Data Science Endeavors. In IEEE International Conference on Data Science and

Advanced Analytics, pp. 1–10.

Katz, G., Shin, E. C. R., & Song, D. (2017). ExploreKit: Automatic feature generation and
selection. In IEEE International Conference on Data Mining, pp. 979–984.

Kaul, A., Maheshwary, S., & Pudi, V. (2017). AutoLearn - Automated Feature Generation
and Selection. In IEEE International Conference on Data Mining.

Kégl, B. (2017). How to Build a Data Science Pipeline.. Available at https://www.

kdnuggets.com/2017/07/build-data-science-pipeline.html.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. In International Con-

ference on Neural Networks, pp. 1942–1948.

Khayyaty, Z., Ilyasz, I. F., Jindal, A., Madden, S., Ouzzani, M., Papotti, P., Quiané-Ruiz,
J. A., Tang, N., & Yin, S. (2015). BigDansing: A System for Big Data Cleansing. In
ACM International Conference on Management of Data, pp. 1215–1230.

Khurana, U., Samulowitz, H., & Turaga, D. (2018a). Ensembles with Automated Feature
Engineering. In International Conference on Machine Learning AutoML Workshop.

Khurana, U., Samulowitz, H., & Turaga, D. (2018b). Feature Engineering for Predictive
Modeling Using Reinforcement Learning. In AAAI Conference on Artificial Intelli-

gence, pp. 3407–3414.

465

https://www.kdnuggets.com/2017/07/build-data-science-pipeline.html
https://www.kdnuggets.com/2017/07/build-data-science-pipeline.html

Zöller & Huber

Khurana, U., Turaga, D., Samulowitz, H., & Parthasrathy, S. (2016). Cognito: Automated
Feature Engineering for Supervised Learning. In IEEE International Conference on

Data Mining, pp. 1304–1307.

Klein, A., Falkner, S., Bartels, S., Hennig, P., & Hutter, F. (2016). Fast Bayesian Op-
timization of Machine Learning Hyperparameters on Large Datasets. In Artificial

Intelligence and Statistics, pp. 528–536.

Klein, A., Falkner, S., Mansur, N., & Hutter, F. (2017a). RoBO: A Flexible and Robust
Bayesian Optimization Framework in Python. In NIPS Bayesian Optimization Work-

shop.

Klein, A., Falkner, S., Springenberg, J. T., & Hutter, F. (2017b). Learning Curve Prediction
With Bayesian Neural Networks. International Conference on Learning Representa-

tions, pp. 1–16.

Koch, P., Golovidov, O., Gardner, S., Wujek, B., Griffin, J., & Xu, Y. (2018). Autotune:
A Derivative-free Optimization Framework for Hyperparameter Tuning. In ACM

International Conference on Knowledge Discovery and Data Mining, pp. 443–452.

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo Planning. In European

Conference on Machine Learning, pp. 282–293.

Kohavi, R., & John, G. H. (1995). Automatic Parameter Selection by Minimizing Estimated
Error. In International Conference on Machine Learning, pp. 304–312.

Komer, B., Bergstra, J., & Eliasmith, C. (2014). Hyperopt-Sklearn: Automatic Hyper-
parameter Configuration for Scikit-Learn. In International Conference on Machine

Learning AutoML Workshop, pp. 2825–2830.

Kononenko, I. (1994). Estimating attributes: Analysis and extensions of RELIEF. European
Conference on Machine Learning.

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2016). Auto-
WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA.
Journal of Machine Learning Research, 17, 1–5.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press.

Krishnan, S., Wang, J., Franklin, M. J., Goldberg, K., Kraska, T., Milo, T., & Wu, E. (2015).
SampleClean: Fast and Reliable Analytics on Dirty Data. IEEE Data Engineering

Bulletin, 38 (3), 59–75.

Krishnan, S., Wang, J., Wu, E., Franklin, M. J., & Goldberg, K. (2016). ActiveClean:
Interactive Data Cleaning For Statistical Modeling. In Proceedings of the VLDB

Endowment, Vol. 12, pp. 948–959.

Krishnan, S., & Wu, E. (2019). AlphaClean: Automatic Generation of Data Cleaning
Pipelines. arXiv preprint arXiv:1904.11827.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. In International Conference on Neural Information

Processing Systems, Vol. 1, pp. 1097–1105.

466

Benchmark and Survey of Automated Machine Learning Frameworks

Lacoste, A., Larochelle, H., Marchand, M., & Laviolette, F. (2014). Sequential Model-Based
Ensemble Optimization. In Uncertainty In Artificial Intelligence, pp. 440–448.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines
that learn and think like people. Behavioral and Brain Sciences, 40, 1–58.

Lam, H. T., Thiebaut, J.-M., Sinn, M., Chen, B., Mai, T., & Alkan, O. (2017). One button
machine for automating feature engineering in relational databases. arXiv preprint

arXiv:1706.00327.

Langevin, S., Jonker, D., Bethune, C., Coppersmith, G., Hilland, C., Morgan, J., Azunre,
P., & Gawrilow, J. (2018). Distil: A Mixed-Initiative Model Discovery System for
Subject Matter Experts. In International Conference on Machine Learning AutoML

Workshop.

LaValle, S. M., Branicky, M. S., & Lindemann, S. R. (2004). On the Relationship Between
Classical Grid Search and Probabilistic Roadmaps. The International Journal of

Robotics Research, 23, 673–692.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and
reversals. Soviet physics doklady, 10 (8), 707–710.

Levesque, J. C., Durand, A., Gagne, C., & Sabourin, R. (2017). Bayesian Optimization
for Conditional Hyperparameter Spaces. In International Joint Conference on Neural

Networks, pp. 286–293.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Hardt, M., Recht, B., & Talwalkar,
A. (2020). A System for Massively Parallel Hyperparameter Tuning. In Machine

Learning and Systems.

Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2016). Efficient
Hyperparameter Optimization and Infinitely Many Armed Bandits. arXiv preprint

arXiv:1603.06560.

Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hyper-
band: A Novel Bandit-Based Approach to Hyperparameter Optimization. Journal of
Machine Learning Research, 18, 1–52.

Lindauer, M., & Hutter, F. (2018). Warmstarting of Model-based Algorithm Configuration.
In AAAI Conference on Artificial Intelligence, pp. 1355–1362.

Luo, G. (2016). A Review of Automatic Selection Methods for Machine Learning Algorithms
and Hyper- parameter Values. Network Modeling Analysis in Health Informatics and

Bioinformatics, 5 (1), 1–15.

Maclaurin, D., Duvenaud, D., & Adams, R. P. (2015). Gradient-based Hyperparameter
Optimization through Reversible Learning. In International Conference on Machine

Learning, pp. 2113–2122.

Margaritis, D. (2009). Toward Provably Correct Feature Selection in Arbitrary Domains.
In Neural Information Processing Systems, pp. 1240–1248.

Markovitch, S., & Rosenstein, D. (2002). Feature generation using general constructor
functions. Machine Learning, 49 (1), 59–98.

467

Zöller & Huber

Maron, O., & Moore, A. (1993). Hoeffding Races: Accelerating Model Selection Search for
Classification and Function Approximation. Advances in Neural Information Process-

ing Systems, pp. 59–66.

McGushion, H. (2019). HyperparameterHunter.. Available at https://github.com/

HunterMcGushion/hyperparameter_hunter.

Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical
Society, 72 (4), 417–473.

Mej́ıa-Lavalle, M., Sucar, E., & Arroyo, G. (2006). Feature Selection With A Perceptron
Neural Net. In International Workshop on Feature Selection for Data Mining, pp.
131–135.

Messaoud, I. B., El Abed, H., Märgner, V., & Amiri, H. (2011). A design of a preprocessing
framework for large database of historical documents. In Workshop on Historical

Document Imaging and Processing, pp. 177–183.

Mohr, F., Wever, M., & Hüllermeier, E. (2018). ML-Plan: Automated machine learning via
hierarchical planning. Machine Learning, 107, 1495–1515.

Momma, M., & Bennett, K. P. (2002). A Pattern Search Method for Model Selection of
Support Vector Regression. In SIAM International Conference on Data Mining, pp.
261–274.

Motoda, H., & Liu, H. (2002). Feature Selection, Extraction and Construction. Communi-

cation of Institute of Information and Computing Machinery, 5, 67–72.

Munos, R. (2014). From Bandits to Monte-Carlo Tree Search: The Optimistic Principle
Applied to Optimization and Planning. Tech. rep., hal-00747575.

Nargesian, F., Samulowitz, H., Khurana, U., Khalil, E. B., & Turaga, D. (2017). Learning
Feature Engineering for Classification. In International Joint Conference on Artificial

Intelligence, pp. 2529–2535.

Nguyen, T.-D., Maszczyk, T., Musial, K., Zöller, M.-A., & Gabrys, B. (2020). AVATAR
- Machine Learning Pipeline Evaluation Using Surrogate Model. In International

Symposium on Intelligent Data Analysis, pp. 352–365.

Nickson, T., Osborne, M. A., Reece, S., & Roberts, S. (2014). Automated Machine Learning
on Big Data using Stochastic Algorithm Tuning. arXiv preprint arXiv: 1407.7969.

Olson, R. S., Bartley, N., Urbanowicz, R. J., & Moore, J. H. (2016). Evaluation of a
Tree-based Pipeline Optimization Tool for Automating Data Science. In Genetic and

Evolutionary Computation Conference, pp. 485–492.

Olson, R. S., & Moore, J. H. (2016). TPOT : A Tree-based Pipeline Optimization Tool
for Automating Machine Learning. In International Conference on Machine Learning

AutoML Workshop, pp. 66–74.

Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., Kidd, L. C., & Moore, J. H.
(2016). Automating biomedical data science through tree-based pipeline optimization.
In Applications of Evolutionary Computation, pp. 123–137. Springer International
Publishing.

468

https://github.com/HunterMcGushion/hyperparameter_hunter
https://github.com/HunterMcGushion/hyperparameter_hunter

Benchmark and Survey of Automated Machine Learning Frameworks

Opitz, D., & Maclin, R. (1999). Popular Ensemble Methods: An Empirical Study. Journal
of Artificial Intelligence Research, 11, 169–198.

Parry, P. (2019). auto ml.. Available at https://github.com/ClimbsRocks/auto_ml.

Parzen, E. (1961). On Estimation of a Probability Density Function and Mode. The Annals

of Mathematical Statistics, 33 (3), 1065–1076.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pedregosa, F. (2016). Hyperparameter optimization with approximate gradient. In Inter-

national Conference on Machine Learning, pp. 737–746.

Perrone, V., Shen, H., Seeger, M., Archambeau, C., & Jenatton, R. (2019). Learning search
spaces for Bayesian optimization: Another view of hyperparameter transfer learning.
In Advances in Neural Information Processing Systems 32, pp. 12771—-12781. Curran
Associates, Inc.

Petri, C. A. (1962). Kommunikation mit Automaten. Ph.D. thesis, Universität Hamburg.

Poli, R., Langdon, W. B., McPhee, N. F., & Koza, J. R. (2008). A Field Guide to Genetic

Programing. Lulu.com.

Polikar, R. (2006). Ensemble Based Systems in Decision Making. IEEE Circuits and Systems

Magazine, 6 (3), 21–45.

Post, M. J., van der Putten, P., & van Rijn, J. N. (2016). Does Feature Selection Improve
Classification? A Large Scale Experiment in OpenML. In Advances in Intelligent Data

Analysis XV, pp. 158–170.

Press, G. (2016). Data Scientists Spend Most of Their Time Clean-
ing Data.. Available at https://whatsthebigdata.com/2016/05/01/

data-scientists-spend-most-of-their-time-cleaning-data/.

Probst, P., Boulesteix, A.-L., & Bischl, B. (2019). Tunability: Importance of Hyperparame-
ters of Machine Learning Algorithms. Journal of Machine Learning Research, 20 (53),
1–32.

Pudil, P., Novovičová, J., & Kittler, J. (1994). Floating search methods in feature selection.
Pattern recognition letters, 15 (11), 1119–1125.

Pyle, D. (1999). Data Preparation for Data Mining. Morgan Kaufmann Publishers, Inc.

Quanming, Y., Mengshuo, W., Hugo, J. E., Isabelle, G., Yi-Qi, H., Yu-Feng, L., Wei-Wei,
T., Qiang, Y., & Yang, Y. (2018). Taking Human out of Learning Applications: A
Survey on Automated Machine Learning. arXiv preprint arXiv:1810.13306.

Rahm, E., & Do, H. H. (2000). Data cleaning: Problems and Current Approaches. In IEEE

Data Engineering Bulletin.

Rakotoarison, H., Schoenauer, M., & Sebag, M. (2019). Automated Machine Learning with
Monte-Carlo Tree Search. In International Joint Conference on Artificial Intelligence,
pp. 3296–3303.

469

https://github.com/ClimbsRocks/auto_ml
https://whatsthebigdata.com/2016/05/01/data-scientists-spend-most-of-their-time-cleaning-data/
https://whatsthebigdata.com/2016/05/01/data-scientists-spend-most-of-their-time-cleaning-data/

Zöller & Huber

Rakotomamonjy, A. (2003). Variable selection using SVM-based criteria. Journal of Ma-

chine Learning Research, 3, 1357–1370.

Raman, V., & Hellerstein, J. M. (2001). Potter’s Wheel: An Interactive Data Cleaning
System. In International Conference on Very Large Data Bases, Vol. 1, pp. 381–390.

RapidMiner (2018). Introducing RapidMiner Auto Model.. Available at https://

rapidminer.com/resource/automated-machine-learning/.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning.
The MIT Press.

Ratcliff, J. W., & Metzener, D. E. (1988). Pattern Matching: The Gestalt Approach. Dr

Dobbs Journal, 13 (7), 46–72.

Reif, M., Shafait, F., & Dengel, A. (2012). Meta-learning for evolutionary parameter opti-
mization of classifier. Machine Learning, 87, 357–380.

Rekatsinas, T., Chuy, X., Ilyasy, I. F., & Ré, C. (2017). HoloClean: Holistic Data Repairs
with Probabilistic Inference. In VLDB Endowment, pp. 1190–1201.

Reynolds, C. W. (1987). Flocks, Herds, and Schools: A Distributed Behavioral Model.
Computer Graphics, 21 (4), 25–34.

Robbins, H. (1952). Some Aspects of the Sequential Design of Experiments. Bulletin of the

American Mathematical Society, 58 (5), 527–535.

Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, 33 (1-2), 1–39.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.

Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in
bioinformatics. Bioinformatics, 23 (19), 2507–2517.

Salvador, M. M., Budka, M., & Gabrys, B. (2016). Towards automatic composition of
multicomponent predictive systems. In International Conference on Hybrid Artificial

Intelligence Systems, pp. 27–39.

Salvador, M. M., Budka, M., & Gabrys, B. (2017). Modelling multi-component predictive
systems as petri nets. In Industrial Simulation Conference, pp. 17–23.

Samanta, B. (2004). Gear fault detection using artificial neural networks and support vector
machines with genetic algorithms. Mechanical Systems and Signal Processing, 18 (3),
625–644.

Schoenfeld, B., Giraud-Carrier, C., Poggemann, M., Christensen, J., & Seppi, K. (2018).
Preprocessor Selection for Machine Learning Pipelines. In International Conference

on Machine Learning AutoML Workshop.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de Freitas, N. (2016). Taking the
Human Out of the Loop: A Review of Bayesian Optimization. Proceedings of the

IEEE, 104 (1), 148 – 175.

Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. Journal of
Data Warehousing, 5 (4), 13–22.

470

https://rapidminer.com/resource/automated-machine-learning/
https://rapidminer.com/resource/automated-machine-learning/

Benchmark and Survey of Automated Machine Learning Frameworks

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre,
L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2017).
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Al-
gorithm. arXiv preprint arXiv:1712.01815.

Smith, M. G., & Bull, L. (2005). Genetic Programming with a Genetic Algorithm for
Feature Construction and Selection. Genetic Programming and Evolvable Machines,
6 (3), 265–281.

Smith, M. J., Wedge, R., & Veeramachaneni, K. (2017). FeatureHub: Towards collabora-
tive data science. In IEEE International Conference on Data Science and Advanced

Analytics, pp. 590–600.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian Optimization of
Machine Learning Algorithms. In Advances in Neural Information Processing Systems,
pp. 2951–2959.

Snyman, J. A. (2005). Practical Mathematical Optimization: An introduction to basic opti-

mization theory and classical and new gradient-based algorithms. Springer.

Sohn, S. Y. (1999). Meta analysis of classification algorithms for pattern recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21 (11), 1137–1144.

Solis, F. J., & Wets, R. J.-B. (1981). Minimization By Random Search Techniques. Math-

ematics of Operations Research, 6 (1), 19–30.

Sondhi, P. (2009). Feature Construction Methods: A Survey. Sifaka. Cs. Uiuc. Edu, 69,
70–71.

Sparks, E. R., Talwalkar, A., Haas, D., Franklin, M. J., Jordan, M. I., & Kraska, T. (2015).
Automating model search for large scale machine learning. In ACM Symposium on

Cloud Computing, pp. 368–380.

Swearingen, T., Drevo, W., Cyphers, B., Cuesta-Infante, A., Ross, A., & Veeramachaneni,
K. (2017). ATM: A distributed, collaborative, scalable system for automated machine
learning. In IEEE International Conference on Big Data, pp. 151–162.

Swersky, K., Snoek, J., & Adams, R. P. (2014). Freeze-Thaw Bayesian Optimization. arXiv
preprint arXiv:1406.3896.

Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-WEKA: Combined
Selection and Hyperparameter Optimization of Classification Algorithms. In ACM

International Conference on Knowledge Discovery and Data Mining, pp. 847–855.

Tran, B., Xue, B., & Zhang, M. (2016). Genetic programming for feature construction and
selection in classification on high-dimensional data. Memetic Computing, 8, 3–15.

Tuggener, L., Amirian, M., Rombach, K., Lörwald, S., Varlet, A., Westermann, C., & Stadel-
mann, T. (2019). Automated Machine Learning in Practice: State of the Art and
Recent Results. In Swiss Conference on Data Science, pp. 31–36.

Tuv, E., Borisov, A., Runger, G., & Torkkola, K. (2009). Feature Selection with Ensem-
bles, Artificial Variables, and Redundancy Elimination. Journal of Machine Learning

Research, 10, 1341–1366.

471

Zöller & Huber

USU Software AG (2018). Katana.. Available at https://katana.usu.de/.

Vafaie, H., & De Jong, K. (1992). Genetic Algorithms as a Tool for Feature Selection in
Machine Learning. In International Conference on Tools with Artificial Intelligence,
pp. 200–203.

van Rijn, J. N., Abdulrahman, S. M., Brazdil, P., & Vanschoren, J. (2015). Fast Algorithm
Selection Using Learning Curves. In International Symposium on Intelligent Data

Analysis.

van Rijn, J. N., & Hutter, F. (2018). Hyperparameter Importance Across Datasets. In
International Conference on Knowledge Discovery and Data Mining, pp. 2367–2376.

Vanschoren, J. (2019). Meta-Learning. In Automatic Machine Learning: Methods, Systems,

Challenges, pp. 35–61. Springer.

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2014). OpenML: networked science
in machine learning. ACM International Conference on Knowledge Discovery and

Data Mining, 15 (2), 49–60.

Weisz, G., Gyorgy, A., & Szepesvari, C. (2018). LeapsAndBounds: A Method for Approx-
imately Optimal Algorithm Configuration. In International Conference on Machine

Learning AutoML Workshop, pp. 5257–5265.

Wever, M., Mohr, F., & Hüllermeier, E. (2018). ML-Plan for Unlimited-Length Machine
Learning Pipelines. In International Conference on Machine Learning AutoML Work-

shop.

Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (2015a). Hyperparameter Search Space
Pruning - A New Component for Sequential Model-Based Hyperparameter Optimiza-
tion. In Joint European Conference on Machine Learning and Knowledge Discovery

in Databases, pp. 104–119.

Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (2015b). Learning Hyperparameter Op-
timization Initializations. In IEEE International Conference on Data Science and

Advanced Analytics.

Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (2017). Automatic Frankensteining:
Creating Complex Ensembles Autonomously. In SIAM International Conference on

Data Mining, pp. 741–749.

Wolpert, D. H. (1992). Stacked Generalization. Neural Networks, 5 (2), 241–259.

Yang, Y., & Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text
Categorization. International Conference on Machine Learning, 97, 412–420.

Zhang, Y., Bahadori, M. T., Su, H., & Sun, J. (2016). FLASH: Fast Bayesian Optimiza-
tion for Data Analytic Pipelines. In ACM International Conference on Knowledge

Discovery and Data Mining, pp. 2065–2074.

Zhou, L. (2018). How to Build a Better Machine Learning
Pipeline.. Available at https://www.datanami.com/2018/09/05/

how-to-build-a-better-machine-learning-pipeline/.

472

https://katana.usu.de/
https://www.datanami.com/2018/09/05/how-to-build-a-better-machine-learning-pipeline/
https://www.datanami.com/2018/09/05/how-to-build-a-better-machine-learning-pipeline/

