Benchmark Calculations of Reaction Energies, Barrier Heights, and Transition State Geometries for Hydrogen Abstraction from Methanol by a Hydrogen Atom

Jingzhi Pu and Donald G. Truhlar
Department of Chemistry and Supercomputer Institute, University of Minnesota, 207
Pleasant Street S.E., Minneapolis, MN 55455-0431

Abstract

We report benchmark calculations of reaction energies, barrier heights, and transition state geometries for the reaction of $\mathrm{CH}_{3} \mathrm{OH}$ with H to produce $\mathrm{CH}_{2} \mathrm{OH}$ and H_{2}. Highly accurate composite methods, such as CBS, G2, G3, G3X, G3SX, and multi-coefficient correlation methods (MCCMs) are used to calibrate lower-cost methods. We also performed single-level $\operatorname{CCS}(\mathrm{T})$ calculations extrapolated to the infinite-basis limit based on aug-cc-pVXZ $(X=3,4)$ correlation consistent basis sets. The benchmark highlevel calculations give consensus values of the forward reaction barrier height and the reaction energy of $9.7 \mathrm{kcal} / \mathrm{mol}$ and $-6.4 \mathrm{kcal} / \mathrm{mol}$, respectively. To evaluate the accuracy of cost-efficient methods that are potentially useful for dynamics studies of the title reaction, we further include the results obtained by hybrid density-functional-theory methods and hybrid meta-density-functional-theory methods that have recently been designed for chemical kinetics. Results obtained by popular semiempirical methods are also given for comparison. Based on the benchmark gas-phase results, we suggest MCQCISD/3, MC3BB, and BB1K as reasonably accurate and affordable electronic structure methods for calculating dynamics for the title reaction.

1. Introduction

One of the most important steps in calculating reaction rate constants by variational transition state theory ${ }^{1-5}$ (VTST) is to obtain accurate approximations to the stationary points on reliable potential energy surface (PES). The past several decades have seen tremendous progress in developing accurate and affordable electronic structure methods to provide potential energy information for various size systems. ${ }^{6-10}$ However, the large majority of these methods are designed for stable chemical species, i.e., for energy minima on PESs. Very recently, though, reaction barrier heights and transition state properties were introduced as criteria for developing methods that are particularly useful for chemical kinetics. ${ }^{11-18}$ With the availability of "accurate for dynamics" PES methods, reliable calculations of reaction rate constants become feasible for systems with more than three or four atoms.

Methanol has been suggested as a potential substitute for fossil feul since its combustion produces significantly less air pollutants than that of gasoline. ${ }^{19}$ Under fuelrich conditions, a large fraction of methanol is consumed by the reaction with atomic hydrogen. ${ }^{20}$ Undoubtedly, the kinetics of methanol reacting with hydrogen plays an important role in combustion. The reaction of methanol with H also provides a prototype for DNA damage that occurs under ionizing rediation, where the hydrogen abstraction step from deoxyribose is believed to lead to a broken DNA strand and ultimately to cell death. ${ }^{21}$

Due to its general importance in combustion atmospheric chemistry, and biological systems, the title reaction as been subjected to a large numer of experimental studies and theoretical calculations. A gas-phase rate expression has been suggested by Tsang in a chemical kinetics database. ${ }^{22}$ Significant kinetic isotope effects (KIEs) have been reported by several groups. ${ }^{23-25}$ In perticular, the KIEs for a deuterium atom attacking methanol have been measured both in the gas phase ${ }^{24}$ and in aqueous solution. ${ }^{25}$ In order to elucidate the solvation effect on the reaction dynamics, Chuang et.
al. performed rate constant calculations ${ }^{26}$ for $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}$ employing variational transition state theory with multidimentional tunneling (VTST/MT) based on a potential energy surface obtained by a linear combination of Hartree-Fock (HF) ${ }^{27}$ and Austin model 1^{28} (AM1). In their solution-phase calculations, the free energy of solvation was obtained by the SM5.42 solvation model. ${ }^{29}$ By using a collective solvent coordinate, the non-equlibrium solvation effect for this reaction was also addressed. ${ }^{30}$ Although sophisticated dynamics models have been applied in these calculations, the quantitative results are still largly determined by the quality of the potential energy surface. The potential energy surface for this system has been characterized by various other levels of theory, ${ }^{26,31-33}$ but unfortunately the various theoretical estimates do not agree with each other within chemical accuracy.

In the current work, we re-examine the reactive barrier height and reaction energy by applying a wide spectrum of electronic structure methods, especially including the recently developed methods that are designed for chemical kinetics. Our first goal is to obtain benchmark values for these two energetic quantities and for the transition state geometry for the title reaction. Based on these reliable consensus results, the uncertainty of the stationary points on the potential energy surface that impedes the reliable reaction rate calculations can be largely removed. Then the second goal is to identify the least expensive levels of electronic structure theory that gives a reasonably accurate barrier height and energy of reaction.

The paper is organized as follows. Section 2 describes methods we used in our calculations. Section 3 presents the energetic and geometric results and discussion. A brief summary of our calculations is given in Section 4 as concluding remarks.

2. Computational details

We calculated the zero-point-exclusive energy of reaction and the classical barrier heights for both the forward and reverse reactions of $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2}$.

These energies are either calculated using single-point methods or by full geometry optimization. We denote the single-point energy calculations as $\mathrm{X} / / \mathrm{Y}$, where a singlepoint energy calculation at level X is carried out for the geometry optimized at a lower level Y . If X is identical to Y , we simply denote the calculation as X . The methods used for geometry optimization include the HF method, ${ }^{27}$ Møller-Plesset second order (MP2) perturbation theory, ${ }^{34}$ two hybrid density functional methods: MPW1K ${ }^{11}$ and B3LYP, ${ }^{35}$ four hybrid meta-density-functional methods: B1B95, $15,36 \mathrm{BB} 1 \mathrm{~K},{ }^{15}$ MPW1B95, ${ }^{17}$ and MPWB1K, ${ }^{17}$ five multi-coefficient correlation methods (MCCMs): multi-coefficient Gaussian-2, version 3 (MCG2/3), 12a,14 multi-coefficient Gaussian-3, version 3 $(\mathrm{MCG} 3 / 3)^{12 \mathrm{bc}, 14}$ and multi-coefficient quadratic configuration interaction with single and double excitations, version 3 (MC-QCISD/3), ${ }^{12,13}$ the scaling all correlation method, version 3 (SAC/3), 12,37 and two doubly hybrid density function theory (DHDFT) methods: MC3BB and MC3MPW. ${ }^{16}$ For single-point calculations we have used the coupled cluster method with single, double, and non-iterative triple excitations $\operatorname{CCSD}(\mathrm{T}),{ }^{38}$ Gaussian-3 based on scaling ${ }^{39}$ (G3S), reduced-order extended G3S ${ }^{40}$ [G3SX(MP3)], and four available complete basis set (CBS) models, namely: CBSAPNO, ${ }^{41}$ CBS-QB3, ${ }^{42,43}$ CBS-Q ${ }^{42}$, and CBS-4M. ${ }^{43}$ The basis sets employed for singlelevel ab initio methods and DFT calculations are the $6-31 \mathrm{G}(\mathrm{d}),{ }^{44} 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p}),{ }^{44}$ MIDI!, ${ }^{45}$ and MG3S ${ }^{46 a}$ basis sets. For systems containing only elements no heavier than F, such as in the present study, the MG3S basis set is identical to $6-311+G(2 d f, 2 p)$, in which the diffuse function on hydrogens has been removed from the $6-311++G(2 d f, 2 p)$ basis set. ${ }^{46 b}$

The radical species have doublet electronic states and were treated with the unrestricted HF (UHF) method ${ }^{27 b}$ and unrestricted correlated methods. All single-point calculations were preformed using the GAUSSIAN03 program. ${ }^{47}$ The MCCM calculations were performed with the MULTILEVEL 4.0 program. ${ }^{48}$ The spin-orbit contribution to the
energy is zero for the present systems. ${ }^{49}$ The SAC/3, MC-QCISD/3, and MCG3/3 calculations were performed with version 3s coefficients. ${ }^{14}$

The $\operatorname{CCSD}(\mathrm{T})$ calculations are carried out using MOLPRO 2002.6. ${ }^{50}$ We employ the extrapolation scheme proposed by Helgaker ${ }^{51 \mathrm{a}}$ and used by Csaszar et. al. ${ }^{51 \mathrm{~b}}$ to obtain the infinite basis-set limit of $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVXZ:

$$
\begin{equation*}
E(X)=E_{\infty}+\frac{b}{X^{3}} \tag{1}
\end{equation*}
$$

where X represents the number of primitive functions in the most diffuse contracted functions of the split valence basis set (in the current calculation $X=3$ for valence triple zeta and 4 for valence quadruple zeta); $E(X)$ is the energy obtained with a given X, i.e., the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-PVXZ energy; E_{∞} denotes the extrapolated energy corresponding to extrapolated to an infinite basis-set limit; and b is a fitting parameter.

We also perform calculations by using semiempirical molecular orbital theories based on the neglect of differential overlap (NDO) approximation. The NDO methods tested in the present study include AM128 and Parametrized Model 3 (PM3) ${ }^{52}$ as implemented in the MOPAC 5.010MN program ${ }^{53}$ (the parameters are the same as in MOPAC 5 and MOPAC 6), Modified Symmetrically orthogonal Intermediate Neglect of Differential Overlap (MSINDO) ${ }^{54}$ as implemented in MSINDO 2.6, ${ }^{55}$ and two Pairwise Distance Directed Gaussian (PDDG) methods, ${ }^{56}$ namely PDDG/PM3 and PM3/MNDO, as implemented in a modified MOPAC $6 .{ }^{57}$ The AM1, PM3, PDDG/PM3, and PDDG/MNDO methods are based on Neglect of Diatomic Differential Overlap (NDDO). 58 MSINDO is based on Intermediate Neglect of Differential Overlap (INDO). ${ }^{59}$

3. Results and discussion

3.1. Energetics

Table 1 gives the reaction barrier heights, the reaction energies, and the breaking and forming bond energies obtained at various levels of theory. The bond energy for the breaking bond $(\mathrm{C}-\mathrm{H})$ is calculated as the dissociation energy of $\mathrm{CH}_{3} \mathrm{OH}$ to $\mathrm{CH}_{2} \mathrm{OH}$ and H ; and the bond energy for the forming bond $(\mathrm{H}-\mathrm{H})$ is calculated as the energy difference of H_{2} and two hydrogen atoms. The barrier heights, reaction energies, and bond energies are zero-point exclusive. In Table 1, we group the methods by their asymptotic computational scaling behaviors N^{α}, where N is the number of atoms, and α is in the range of 3-7. (Within each group, methods are listed in an approximate order of descending accuracy for barrier heights of hydrogen atom transfer reaction involving first-row atoms, as largely determined by previous ${ }^{14-17,60}$ systematic tests.) Apart from the methods that we investigate in the present work, we also include for comparison in Table 1 selected results of Chuang et. al. ${ }^{26}$ and some representative data available in literature. The barrier heights and reaction energy based on the very accurate Weizmann1^{61} (W1) method are obtained from a recently constructed database for parametrizing the BMK ${ }^{18}$ density functional. Recommended values of both the forward and reverse barrier heights for the reaction of methanol with H had been suggested ${ }^{11}$ based on comparisons to experiment and incorporated in a thermochemistry and thermochemical kinetics database called Database $/ 3,{ }^{14}$ but one of the goals of the present work is to test these values in case the experiments are not accurate. The zero-point-exclusive reaction energy ${ }^{26}$ and bond energies for breaking the $\mathrm{C}-\mathrm{H}$ bond ${ }^{62}$ and forming the $\mathrm{H}-\mathrm{H}$ bond ${ }^{63}$ in this reaction have been estimated. One can also derive the reaction energy and these bond energies from accurate atomization energies. ${ }^{14} \mathrm{We}$ list these previously evaluated data in Table 1 as well, and we will evaluate their accuracy against the benchmark results calculated in the present work.

The N^{7} methods represent state-of-the-art techniques for computational thermochemistry. First, it is interesting to note that the W1 method predicts barrier heights and a reaction energy that are closely consistent with the extrapolated $\operatorname{CCSD}(\mathrm{T})$
results, which give a forward barrier height of $9.6 \mathrm{kcal} / \mathrm{mol}$. The G3-type methods give a slightly higher forward barrier height, $9.7-10.0 \mathrm{kcal} / \mathrm{mol}$, than that obtained by the W1 method. The CBS methods tend to underestimated the barrier heights, as we ${ }^{60 c}$ and Coote et. al. ${ }^{64}$ found in the studies of hydrogen atom transfer reactions between hydrocarbon radicals. In particular, CBS-APNO gives a forward barrier height as low as $9.1 \mathrm{kcal} / \mathrm{mol}$. Altogether, the N^{7} methods listed in Table 1 give an average forward barrier height of $9.7 \mathrm{kcal} / \mathrm{mol}$ and an average reverse barrier height of $16.0 \mathrm{kcal} / \mathrm{mol}$. Note that we exclude the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ//QCISD/MG3 results in calculating these average values, since the $\operatorname{CCSD}(\mathrm{T})$ calculation usually requires a large basis set to obtain reliable energies. Consequently, we suggest that the forward barrier height in Database $/ 3$ may be too low ($7.3 \mathrm{kcal} / \mathrm{mol}$) for this reaction, although the reaction energy used in Database $/ 3$ seems to be reasonably accurate (see below).

Although G3-type methods obtain forward barrier heights that are consistent with each other, they predict different reaction energies with a maximum deviation of 0.9 kcal . In particular, the G3X method seems to overestimate the magnitude of the reaction exothermicity ($-6.7 \mathrm{kcal} / \mathrm{mol}$) compared to the W 1 result ($-6.1 \mathrm{kcal} / \mathrm{mol}$). The CBS methods are designed for accurate atomization energies, and therefore should be very reliable in calculating reaction energies. The highest level of CBS methods, i.e., CBSAPNO, gives a reaction energy of $-6.1 \mathrm{kcal} / \mathrm{mol}$, in a good agreement with W 1 and extrapolated $\operatorname{CCSD}(\mathrm{T})$ results. However, the other N^{7} versions of CBS methods (CBS-Q and CBS-QB3) predict a reaction energy of $6.7-6.8 \mathrm{kcal} / \mathrm{mol}$, which agrees with MCG2 and MCG3 results very well. On average, the N^{7} methods give a reaction energy of -6.4 $\mathrm{kcal} / \mathrm{mol}$ [again, we exclude the $\operatorname{CCSD}(\mathrm{T})$ double zeta basis set result for the same reason as when we calculate the average barrier heights]. Encouragingly, the reaction energy used in Database/3 which is derived from accurate experiment-based atomization energies agrees well with the average value we obtained here from high-level benchmark calculations.

Next we use the consensus values of the energetics from the N^{7} methods, i.e., a forward barrier and reaction energy of $9.7 \mathrm{kcal} / \mathrm{mol}$ and $-6.4 \mathrm{kcal} / \mathrm{mol}$, respectively, to evaluate the accuracy of more cost-efficient methods. Among the N^{6} methods, MCQCISD/3 can be identified as the best method. It gives a forward barrier height (10.3 $\mathrm{kcal} / \mathrm{mol}$) that is only slightly too high, and the reaction energy deviates from our best estimate by less than $0.5 \mathrm{kcal} / \mathrm{mol}$. Selecting the most accurate method that is affordable for dynamics calculation is one of our key goals in the present study. Although MCQCISD/3 gives satisfactory performance on the barrier heights and reaction energetics, the QCISD component in a MC-QCISD/3 calculations is still computationally formidable for calculating a reaction path over a wide reaction coordinate range, especially if a small gradient step is needed to secure a converged path. Furthermore, expensive Hessian calculations required for vibrational analysis at the QCISD level exacerbate the cost situation for an MC-QCISD/3 potential energy surface.

Promising alternatives are the doubly hybrid DFT methods, MC3BB and MC3MPW, which scale to N^{5}. The most intriguing feature of these methods is that they introduce an MP2 component into the DFT energies, ${ }^{16}$ in the spirit of hybrid DFT, where an HF component is mixed into DFT calculations. Table 1 shows that MC3BB and MC3MPW give almost perfect forward reaction barrier heights and reasonable reaction energies. Interestingly, we note that neither the single-level MP2 calculations nor the scaling all correlation (SAC) method can give qualitative correct energetic results without mixing DFT into the equation. The essential element in the DFT is probably the static correlation contained implicitly in the DFT exchange.

One should be able to make further improvement by the aid of the specific reaction parameters ${ }^{65}$ (SRP) introduced into these two MC3 methods. We note that the MP2 components in the two doubly hybrid DFT methods are obtained with a small basis set of $6-31+G(d, p),{ }^{16}$ which makes them very suitable for providing the potential energy in dynamics calculations, since for small systems these methods would be as inexpensive
as DFT methods using a large basis sets. An even more appealing choice is to use DFT methods or hybrid DFT methods, which are scale as $N .{ }^{4}$ In the present work, we test several newly developed hybrid DFT (HDFT) methods that are designed for kinetics, in particular MPW1K, BB1K, and MPWB1K. First of all, in Table 1, all the HDFT methods parametrized for kinetics are superior to pure DFT methods such as mPWPW91 or to HDFT methods with a lower percentage of HF exchange, such as B3LYP, for predicting reaction barrier heights. The hybrid meta-DFT methods with general parametrizations, such as MPW1B95 and B1B95, make significant improvement over the HDFT methods without a kinetic energy density, 66 in terms of both the barrier heights and the reaction energy for the title reaction. In particular, MPW1B95 and B1B95 both give reaction energies of $-6.5 \mathrm{kcal} / \mathrm{mol}$, in a good agreement with our consensus value, but they predict barrier heights that are too low compared to accurate methods. The predicted barrier heights are significantly improved to $8.7 \mathrm{kcal} / \mathrm{mol}$ in BB 1 K and MPWB1K by increasing the percentage of HF exchange. Furthermore, BB1K also gives a reasonably good reaction energy of $-5.7 \mathrm{kcal} / \mathrm{mol}$.

Although identifying accurate NDDO or INDO methods (which scale as N^{3}) would be useful for applying them to hydrogen abstraction involving alcohols in biological systems, where cost-coefficient methods are highly desirable for treating a macromolecular system that usually contains thousands of atoms, the last section of Table 1 shows that no popular generally parameterized semiempirical method is able to give barrier height or reaction energy accurate within $7 \mathrm{kcal} / \mathrm{mol}$ for the $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}$ reaction. The specially parametrized AM1-SRP method is more accurate but suffers from having been parameterized to apparently unreliable experimental data.

3.2. Transition state geometry

Figure 1 shows the transition state structure for the reaction of $\mathrm{CH}_{3} \mathrm{OH}$ with H , where one of the hydrogen atoms at the gauche position to the hydroxyl group is being
abstracted. ${ }^{26}$ Table 2 gives the key bond distances at the transition state optimized at various levels of theory and the sum of these distances (also called the perpendicular looseness). All calculations in Table 2 are from the present work. Since the highest-level method at which we fully optimized the transition state geometry is MCG3/3, we use this geometry as benchmark to evaluate the performance of other methods. Mean unsigned deviations (MUDs) of the breaking and forming bond distances from the MCG3 results are also tabulated in Table 2 for this purpose. In methods that scale to $N^{6}, ~ M C-Q C I S D / 3$ and QCISD/MG3 predict values of these key bond distances that agree well with the results obtained by MCG3/3. The MUDs for MC-QCISD/3 and QCISD/MG3 are 0.005 \AA and $0.010 \AA$, respectively. The small error of the QCISD/MG3 geometry indicates that the geometry we used for high-level double slash calculations should be sufficiently accurate. It is encouraging that the two MC3 methods perform best in predicting transition state geometries among all N^{5} methods in the present study. In particular the MC3BB and MC3MPW give MUEs of $0.022 \AA$ and $0.028 \AA$, respectively. Without the aid of a hybrid DFT or a hybrid meta-DFT component, SAC/3 only performs about as well as the single-level MP2 calculations, where MUDs are $0.04-0.06 \AA$.

The N^{4} methods represent promising candidates for dynamics calculations. Among these methods, both the hybrid DFT and hybrid meta-DFT methods parameterized for kinetics, i.e., MPW1B1K, BB1K, and MPW1K, give small errors comparable to N^{6} methods such as MC-QCISD/3 and QCISD/MG3. Although the methods with a general parametrization can perform even better in terms of the transition state geometry (for example, B1B95/MG3 gives a MUD of only $0.002 \AA$ compared to an MUD of $0.008 \AA$ given by BB1K/MG3), the generally parameterized methods are less promising for kinetic calculations since they usually tend to underestimate the reaction barrier heights.

Table 3 lists the bond angles at the transition state optimized for the most accurate methods recommended by this paper, namely, MCG3/3, MC-QCISD/3, MC3BB, and

BB1K. The results of QCISD/MG3, SAC/3, and several hybrid DFT and hybrid metaDFT are also included in Table 3 for comparison. MC-QCISD/3 and QCISD/MG3 are able to predict these key angles in a good agreement with the MCG3/3 results. This is consistent with the conclusion that we draw from the transition state bond distances. Again, the MC3 and hybrid (meta-) DFT methods give very accurate angles for the transition state with small MUDs less than 1 degree.

4. Concluding remarks

In this article we have reported benchmark calculations for the classical barrier height, reaction energy, and transition state geometry of the reaction of hydrogen abstraction from methanol by a hydrogen atom. We obtained a consensus value of the forward reaction barrier height of $9.7 \mathrm{kcal} / \mathrm{mol}$ and the reaction energy of $-6.4 \mathrm{kca} / \mathrm{mol}$. Based on the benchmark results, we identified three reasonably accurate and affordable methods that are most suitable for further dynamics calculations, in particular, MCQCISD/3, MC3BB, and BB1K. Our results also show that these highly recommended methods are able to predict very accurate transition state geometries for the title reaction, with MUDs less than or equal to $0.02 \AA$ and 0.7 degree, for bond distances and bond angles, respectively.

Acknowledgments. This work was supported in by the U. S. Department of Energy, Office of Basic Energy Sciences.

Reference

(1) Garrett, B. C.; Truhlar, D. G. J. Chem. Phys. 1984, 81, 309.
(2) Truhlar, D. G.; Isaacson, A. D.; Garrett, B. C. In Theory of Chemical Reaction Dynamics; Baer, M., Ed.; CRC Press: Boca Raton, FL, 1985; Vol. 4; p 65.
(3) Kreevoy, M. M.; Truhlar, D. G. In Investigation of Rates and Mechanisms of Reactions; Bernasconi, C. F., Ed.; John Wiley \& Sons, Inc.: New York, 1986; Vol. 6; p 13.
(4) Tucker, S. C.; Truhlar, D. G. In New Theoretical Concepts Understanding Organic Reactions; J. Bertran, I. G. C., Ed.; Kluwer Academic Publishers: Dordrecht, 1989; Vol. 267; p 291.
(5) Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. J. Phys. Chem. 1996, 100, 12771. Chuang, Y.-Y.; Corchado, J. C.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 1140.
(6) Hehre, W. J.; Radom, L.; Schleyer, P. v.R. Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley \& Sons, Inc.: New York, 1986.
(7) Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974.
(8) Gao, J.; Thompson, M., Eds. Combined Quantum Mechanical and Molecular Mechanical Methods: ACS Symposium Series 712; American Chemical Society: Washington, DC, 1998.
(9) Thiel, W. in Modern Methods and Algorithms of Quantum Chemistry, Second Edition; Grotendorst, J., Ed.; NIC series, Vol. 3; John von Neumann Institute for Computing, Jülich, 2000; p 261.
(10) Staszewska, G.; Staszewski, P.; Schultz, N. E.; Truhlar, D. G. Phys. Rev. B, submitted.
(11) Lynch, B. J., Fast, P. L., Harris, M., Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811.
(12) (a) Fast, P. L.; Sanchez, M. L.; Corchado, J. C.; Truhlar, D. G. J. Chem. Phys.1999, 110, 11679. (b) Tratz, C. M.; Fast, P. L.; Truhlar, D. G. PhysChemComm 1999, 2, Article 14. (c) Fast, P. L.; Sanchez, M. L.; Truhlar, D. G. Chem. Phys. Lett. 1999, 306, 407.
(13) Fast, P. L.; Truhlar, D. G. J. Phys. Chem. A. 2000, 104, 6111.
(14) Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 3898.
(15) Zhao, Y.; Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 2715.
(16) Zhao, Y.; Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 4786.
(17) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A. 2004, 108, 6908.
(18) Boese, A. D.; Martin, J. M. L. J. Chem. Phys. 2004, 121, 3405.
(19) (a) Aronowitz, D.; Naegell, D. W.; Glassman, I. J. Phys. Chem. 1977, 81, 2555. (b) Norton, T. S.; Dryer, F. L. Int. J. Chem. Kinet. 1990, 22, 219. (c) Marshall, E. Science 1989, 246, 1999. (d) Morton, L.; Hunter, N.; Gesser, H. Chem. Ind. 1990, 457.
(20) Grotheer, H. H.; Kelm, S.; Driver, H. S. T.; Hutcheon, R. J.; Lockett, R. D.; Robertson, G. N. Ber. Bunsen-Ges, Phys. Chem. 1992., 96, 1360.
(21) Pardo, L.; Banfelder, J.; Osman, R. J. Am. Chem. Soc. 1992, 114, 2382.
(22) Tsang, W. J. Phys. Chem. Ref. Data 1987, 16, 471.
(23) (a) Campion, A.; Williams, F. J. Am. Chem. Soc. 1972, 94, 7633. (b)

Hudson, R. L.; Shiotani, M.; Williams, F. Chem. Phys. Lett. 1977, 48, 193. (c) Doba, T.; Ingold, K. U.; Siebrand, W.; Wildman, T. A. Faraday Discuss. Chem. Soc. 1984, 78, 175. (d) Doba, T.; Ingold, K. U.; Siebrand, W.; Wildman, T. A. J. Phys. Chem. 1984, 88, 3165.
(24) Meagher, J. F.; Kim, P.; Lee, J. H.; Timmons, R. B. J. Phys. Chem. 1974, 78, 2650.
(25) Lossack, A. M.; Roduner, E. Bartels, D. M. J. Phys. Chem. A 1998, 102, 7462.
(26) Chuang, Y.-Y.; Radhakrishnan, M. L.; Fast, P. L.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 4893.
(27) (a) Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69. (b) Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1954, 22, 571.
(28) (a) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902. (b) Holder, A. J.; Dennington, R. D.; Jie, C.; Yu, G. Tetrahedron, 1994, 50, 627. (c) Dewar, M. J. S.; Jie, C.; Yu, G. Tetrahedron, 1993, 23, 5003.
(29) Zhu, T.; Li, J.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. J. Chem. Phys. 1999, 110, 5503.
(30) Chuang, Y.-Y.; Truhlar, D. G. J. Am. Chem. Soc. 1999, 121, 10157.
(31) Jodkowski, J. T.; Rayez, M.-T.; Rayez, J.-C.; Berces, T.; Dobe, S.
J. Phys. Chem. A 1999, 103, 3750.
(32) Lendvay, G.; Berces, T.; Marta, F. J. Phys. Chem. A 1997, 101, 1588.
(33) Blowers, P.; Ford, L.; Masel, R. J. Phys. Chem. A 1998, 102, 9267.
(34) (a) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. (b) Pople, J. A.;

Binkley, J.; Seeger, R. Int. J. Quantum Chem. Symp. 1976, 10, 1.
(35) Becke, A. D., J. Chem. Phys. 1993, 98, 5648. Stephens, P. J.; Devlin, F. J.;

Ashvar, C. S.; Bak, K. L.; Talyor, P. R.; Frisch, M. J. ACS Symp. Ser. 1996, 629, 105.
(36) Becke, A. D. J. Chem. Phys. 1996, 104, 1040.
(37) Gordon, M. S.; Truhlar, D. G. J. Am. Chem. Soc. 1986, 108, 5412.
(38) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
(39) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1999, 110, 4703.
(40) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 2001, 114, 108.
(41) Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081.
(42) Ochterski, J. W.; Petersson, G. A.; Montgomery Jr., J. A. J. Chem. Phys. 1996, 104, 2598.
(43) (a) Montgomery Jr., J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1999, 110, 2822. (b) Montgomery Jr., J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 2000, 112, 6532.
(44) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109, 7764.
(45) Easton, R. E.; Giesen, D. J.; Welch, A.; Cramer, C. J.; Truhlar, D. G. Theor. Chim. Acta. 1996, 93, 281.
(46) (a) Lynch, B. J.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 1384. (b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
(47) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, M. P. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004, GAUSSIAN 03, C. 01 .
(48) Zhao, Y.; Rodgers, J. M.; Lynch, B. J.; Fast, P. L.; Pu, J.; Chuang, Y.-Y.; Truhlar, D. G. MULTILEVEL-version 4.0/G03; University of Minnesota, Minneapolis, 2004.
(49) Fast, P.L.; Corchado, J.; Sanchez, M. L.; Truhlar, D. G. J. Chem. Phys. A 1999, 103, 3139.
(50) Werner, H.-J.; Knowles, P. J.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Celani, P.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.; Hetzer, G.; Knowles, P. J.; Korona, T.; Lindh, R.; Lloyd, A. W.; McNicholas, S. J.; Manby, F. R.; Meyer, W.; Mura, M. E.; Nicklass, A.; Palmieri, P.; Pitzer, R.; Rauhut, G.; Schütz, M.; Schumann, U.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Werner, H.-J., MOLPRO 2002.6, University of Birmingham, Birmingham, 2002.
(51) (a) Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. J. Chem. Phys. 1997, 106, 9639. (b) Csaszar, A. G.; Allen, W. D.; Schaefer, H. F., III. J. Chem. Phys. 1998, 108, 9751.
(52) Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209.
(53) Stewart, J. J. P.; Rossi, I.; Hu, W.-P.; Lynch, G. C.; Liu, Y.-P.; Chuang, Y.-Y.; Pu, J.; Li, J.; Cramer, C. J.; Fast, P. L.; Truhlar, D. G. MOPAC-version 5.010MN, University of Minnesota, Minneapolis, 2003.
(54) Ahlswede, B.; Jug, K. J. Comp. Chem. 1999, 20, 563.
(55) Jug, K.; Bredow, T.; Geudtner, G. MSINDO-version 2.6, University of Hannover, Hannover, Germany, 2003.
(56) Repasky, M. P.; Chandrasekhar, J.; Jorgensen, W. L. J. Comp. Chem. 2002, 23, 1601.
(57) See: http://zarbi.chem.yale.edu/utils/pddg/pddg.htmlT
(58) Pople, J. A.; Santry, D. P.; Segal, G. A. J. Chem. Phys. 1965, 43, S129.
(59) Pople, J. A.; Beveridge, D. L.; Dobosh, P. A. J. Chem. Phys. 1967, 47, 2026.
(60) (a) Lynch B. J.; Truhlar, D. G. ACS Symp. Ser., in press. (b) Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 8996. (c) Dybala-Defratyka, A.; Paneth, P.; Pu, J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 2475.
(61) Martin, J. M. L.; de Oliveira, G. J. Chem. Phys. 1999, 111, 1843.

Parthiban, S.; Martin, J. M. L. J. Chem. Phys. 2001, 114, 6014.
(62) Bauschlicher, C. W., Jr.; Langhoff, S. R.; Walch, S. P. J. Chem. Phys. 1992, 96, 450. Bauschlicher, C. W., Jr.; Langhoff, S. R. J. Chem. Phys. 1990, 173, 367.
(63) Kolos, W.; Wolniewicz, L. J. Chem. Phys. 1964, 41, 3663.
(64) Coote, M. L. J. Phys. Chem. A 2004, 108, 3865.
(65) Gonzàlez-Lafont, A.; Truong, T. N.; Truhlar, D. G. J. Phys. Chem. 1991, 95, 4618.
(66) Becke, A. D. J. Chem. Phys. 1996, 104, 1040.

TABLE 1. Reaction Energies, Barrier Heights, and Bond Energies (in kcal/mol).

Method	$V_{\mathrm{f}}{ }^{\text {a }}$	$V_{r}{ }^{b}$	ΔE	$D_{\mathrm{e}}(\mathrm{C}-\mathrm{H})$	$D_{\mathrm{e}}(\mathrm{H}-\mathrm{H})$	Ref.
N^{7} methods						
W1	9.6	15.7	-6.1	$103.5^{\text {c }}$	$109.6{ }^{\text {c }}$	18
G3SX//B3LYP/6-31G(2df,p)	9.8	15.9	-6.1	103.7	109.8	p.w. ${ }^{\text {d }}$
G3SX(MP3)//B3LYP/6-31G(2df,p)	10.0	16.2	-6.3	103.6	109.9	p.w.
G3X//B3LYP/6-31G(2df,p)	9.7	16.4	-6.7	103.3	110.0	p.w.
Ext-CCSD (T) aug-cc-pVXZ $(X=3,4)$	9.6	15.8	-6.1	103.5	109.6	p.w.
$\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVQZ//QCISD/MG3	9.6	15.6	-6.0	103.1	109.2	p.w.
G3S//MP2(full)/6-31(d)	9.9	15.7	-5.8	103.8	109.6	p.w.
CCSD(T)/aug-cc-pVTZ//QCISD/MG3	9.6	15.4	-5.9	102.7	108.5	p.w.
CBS-QB3//QCISD/MG3	9.5	16.2	-6.7	104.0	110.7	p.w.
CBS-QB3//B3LYP/6-31G(d^{\dagger})	9.4	16.1	-6.7	104.0	110.7	p.w.
CBS-Q//QCISD/MG3	9.4	16.2	-6.8	103.8	110.6	p.w.
CBS-Q//MP2/6-31G(d^{\dagger})	9.0	15.7	-6.7	103.9	110.5	p.w.
MCG2/3//QCISD/MG3	9.7	16.5	-6.8	104.2	111.0	p.w.
MCG3/3	10.0	16.9	-6.9	104.0	110.9	p.w.
MCG3/3//MC-QCISD/3	10.0	16.9	-6.9	103.9	110.9	p.w.
CBS-APNO//QCISD/6-311G(d,p)	9.1	15.2	-6.1	103.8	109.9	p.w.
CBS-APNO//QCISD/MG3	9.1	15.2	-6.1	103.8	109.9	p.w.
G2//MP2/6-31G(d)	9.0	17.2	-8.2	n.a. ${ }^{\text {e }}$	n.a.	29
CCSD(T)/aug-cc-pVDZ//QCISD/MG3	10.4	14.1	-3.7	100.4	104.1	p.w.
N^{6} methods						
MC-QCISD/3	10.3	17.2	-6.8	104.4	111.2	p.w.
CBS-4M//QCISD/MG3	10.4	16.2	-5.8	104.2	110.0	p.w.
CBS-4M//UHF/3-21G(d)	10.7	16.1	-5.4	104.6	110.0	p.w.
QCISD/MG3	11.0	17.5	-6.5	100.9	107.4	p.w.
CCSD/cc-pVDZ	10.8	16.3	-5.5	98.1	103.6	26
QCISD/cc-pVDZ	10.5	16.2	-5.7	97.9	103.6	26
QCISD/6-31G(d)	16.6	18.7	-2.1	95.3	97.4	26
N^{5} methods						
MC3BB	9.8	14.6	-4.7	102.5	107.2	p.w.
MC3MPW	9.5	13.8	-4.3	101.2	105.5	p.w.
SAC/3	14.3	16.2	-1.9	104.2	106.1	p.w.
MP2/cc-pVTZ	14.3	16.2	-1.9	101.7	103.6	26
MP2/cc-pVDZ	14.4	15.4	-1.0	97.3	98.3	26
MP2/6-31+G(d,p)	16.8	18.0	-1.9	104.2	106.1	p.w.
MP2(full)/6-31G(d)	20.2	17.7	2.5	95.2	92.7	p.w.
MP2/6-31G(d)	20.2	17.8	2.4	95.1	92.7	26

N^{4} methods							
BB1K/MG3S	8.7	14.5	-5.7	101.6	107.3	p.w.	
BB1K/6-31+G(d,p)	8.4	14.2	-5.8	102.8	108.6	p.w.	
MPWB1K/MG3S	8.7	13.9	-5.2	102.0	107.1	p.w.	
MPW1K/MG3S	7.9	13.5	-5.6	99.4	104.9	p.w.	
MPW1K/6-31+G(d,p)	7.7	13.4	-5.6	100.6	106.2	p.w.	
B1B95/MG3S	7.0	13.5	-6.5	101.0	107.6	p.w.	
MPW1B95/MG3S	7.1	12.9	-5.8	101.5	107.3	p.w.	
B3LYP/cc-pVDZ	2.0	10.6	-8.6	98.8	107.4	26	
B3LYP/6-31+G(d,p)	3.2	12.9	-9.7	102.0	111.7	p.w.	
B3LYP/6-31G(d)	3.6	11.7	-8.1	101.7	109.8	26	
B3PW91/6-31G(d)	5.0	11.2	-6.2	100.7	106.8	26	
B3LYP/MIDI!	1.7	11.5	-9.8	97.9	107.7	26	
AC-SRP	7.8	12.3	-4.5	101.4	106.0	26	
HF\|	AM1-SRP	7.8	12.8	-5.0	105.6	110.7	26
mPWPW91/6-31+G(d,p)	1.9	9.4	-7.6	99.7	107.3	p.w.	
HF/cc-pVTZ	19.8	22.5	-2.7	79.0	81.7	26	
HF/cc-pVDZ	20.1	24.2	-4.1	79.6	83.7	26	
HF/MIDI!	20.1	22.9	-2.9	77.3	80.1	p.w.	
HF/6-31G(d)	21.7	22.9	-1.2	80.6	81.8	26	
HF/STO-3G	19.1	30.3	-11.2	104.5	115.7	26	
N^{3} methods							
AM1-SRP	4.1	9.0	-4.9	104.4	109.3	26	
AM1	-0.4	27.6	-28.0	81.4	109.4	p.w.	
PM3	0.2	38.7	-38.6	79.0	117.6	p.w.	
MSINDO	23.5	37.7	-14.3	94.4	108.7	p.w.	
PDDG/PM3	-4.0	53.6	-57.6	79.3	136.9	p.w.	
PDDG/MNDO	2.2	46.3	-44.2	74.2	118.4	p.w.	
Other							
Database/3	7.3	13.8	-6.5	103.0	109.5	14	
Previous estimate			-5.1	104.4	109.5	26,62,63	
$a_{\text {forward barrier height }}$ ${ }^{c}$ calculated at the present work $e_{\text {n.a. }}$ denotes not available.	deno	prese	work				

TABLE 2. Key Bond Distances in Transition State (in \AA).

Method	$r_{\mathrm{H}-\mathrm{H}^{a}}$	$r_{\mathrm{C}-\mathrm{H}^{b}}$	sum	Ref.	MUD c	
\boldsymbol{N}^{7} methods						
MCG3/3	0.979	1.306	2.286	p.w. ${ }^{d}$	0.000	
\boldsymbol{N}^{6} methods						
MC-QCISD/3 $^{\text {QCISD/MG3 }}$	0.973	1.309	2.281	p.w.	0.005	
QCISD/cc-pVDZ	0.969	1.316	2.283	p.w.	0.010	
CCSD/cc-pVDZ	0.984	1.326	2.310	26	0.013	
QCISD/6-31G(d)	0.980	1.328	2.308	26	0.012	
\boldsymbol{N}^{5} methods	0.963	1.358	2.321	26	0.034	
MC3BB						
MC3MPW	0.952	1.324	2.276	p.w.	0.022	
SAC/3	0.945	1.328	2.273	p.w.	0.028	
MP2/cc-pVTZ	0.923	1.340	2.263	p.w.	0.045	
MP2/cc-pVDZ	0.928	1.342	2.270	26	0.044	
MP2/6-31+G(d,p)	0.941	1.355	2.296	26	0.044	
MP2(full)/6-31G(d)	0.920	1.346	2.266	p.w.	0.050	
MP2/6-31G(d)	0.927	1.373	2.301	p.w.	0.059	
\boldsymbol{N}^{4} methods	0.928	1.373	2.301	26	0.059	
BB1K/MG3S						
BB1K/6-31+G(d,p)	0.969	1.311	2.280	p.w.	0.008	
MPWB1K/MG3S	0.968	1.315	2.283	p.w.	0.010	
MPW1K/MG3S	0.965	1.313	2.278	p.w.	0.010	
MPW1K/6-31+G(d,p)	0.966	1.311	2.277	p.w.	0.009	
B1B95/MG3S	0.964	1.314	2.279	p.w.	0.011	
MPW1B95/MG3S	0.983	1.306	2.289	p.w.	0.002	
B3LYP/cc-pVDZ	0.977	1.309	2.286	p.w.	0.002	
B3LYP/6-31+G(d,p)	1.026	1.299	2.325	26	0.027	
B3LYP/6-31G(d)	1.004	1.295	2.299	p.w.	0.018	
B3PW91/6-31G(d)	1.011	1.301	2.312	26	0.019	
B3LYP/MIDI!	1.001	1.308	2.309	26	0.012	
AC-SRP	1.070	1.261	2.331	26	0.068	
HF\|	AM1-SRP	0.971	1.322	2.293	26	0.012
mPWPW91/6-31+G(d,p)	0.867	1.277	2.144	26	0.071	
HF/cc-pVTZ	1.034	1.280	2.314	p.w.	0.040	
HF/cc-pVDZ	0.972	1.346	2.301	26	0.020	
HF/MIDI!	0.967	1.334	2.318	26	0.024	
HF	0.973	1.343	2.316	p.w.	0.021	
	0.960	1.351	2.311	26	0.032	

HF/STO-3G	0.968	1.275	2.243	26	0.021
\boldsymbol{N}^{3} methods					
AM1-SRP	1.104	1.310	2.114	26	0.090
AM1	1.341	1.135	2.467	26	0.267
PM3	1.113	1.458	2.569	p.w.	0.157
MSINDO	1.027	1.239	2.267	p.w.	0.058
PDDG/PM3	2.033	1.108	3.141	p.w.	0.626
PDDG/MNDO	1.153	1.251	2.404	p.w.	0.212

${ }^{a}$ Forming bond distance
${ }^{b}$ Breaking bond distance
${ }^{c}$ MUD is mean unsigned deviation of the $r_{\mathrm{H}-\mathrm{H}}$ and $r_{\mathrm{C}-\mathrm{H}}$
distances from the MCG3/3 values
${ }^{d}$ p.w. denotes present work

TABLE 3. Key Bond Angles in Transition State (in degrees).

Method	$\theta_{1}{ }^{a}$	$\theta_{2}{ }^{\text {b }}$	$\theta_{3}{ }^{c}$	MUD ${ }^{\text {d }}$
N^{7} methods				
MCG3/3	177.2	110.1	104.1	0.0
N^{6} methods				
MC-QCISD/3	177.1	110.0	104.1	0.1
QCISD/MG3	177.5	110.1	104.0	0.1
N^{5} methods				
MC3BB	178.0	110.4	103.6	0.5
MC3MPW	177.8	110.3	103.6	0.4
SAC/3	177.9	110.5	103.8	0.4
N^{4} methods				
BB1K/MG3S	178.0	110.5	103.5	0.6
BB1K/6-31+G(d,p)	178.4	110.6	103.7	0.7
MPWB1K/MG3S	177.8	110.4	103.5	0.5
MPW1K/MG3S	177.8	110.4	103.4	0.5
MPW1K/6-31+G(d,p)	178.1	110.5	103.6	0.6
B1B95/MG3S	178.7	110.8	103.6	0.9
MPW1B95/MG3S	178.4	110.6	103.6	0.7
${ }^{a^{\text {a }} \mathrm{C}-\mathrm{H}-\mathrm{H} \text { angle (see Figure 1) }}$				
${ }^{\text {b }} \mathrm{O}-\mathrm{C}-\mathrm{H}$ angle (see Figure 1)				
${ }^{c} \mathrm{H}-\mathrm{C}-\mathrm{H}$ angle (see Figure 1)				
${ }^{d}$ MUD is mean unsigned devi	of the	ee angl	from th	MCG3/3

Figure Captions

Figure 1. Transition state geometry for $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}$

Figure 1

