
Benchmark Circuits Improve the Quality of a Standard Cell Library

Rung-Bin Lin, Isaac Shuo-Hsiu Chou, Chi-Ming Tsai
Department of Computer Engineering and Science

Yuan-Ze University
Chung-Li, 320, Taiwan, R.O.C.

 Abstract -- The experience of designing and employing
two benchmark circuits to improve the quality of a
standard cell library is reported. It is found that most of the
errors can be uncovered by making use of these two
benchmark circuits to port the underlying cell library to
the target environment. Two releases of a 0.25um standard
cell library have been tested by these two benchmark
circuits to ensure their quality.

1. Introduction
A cell library is usually an ensemble of hundreds of

each individual cell. If it is going to function as a whole to
provide building blocks for larger designs, not only should
each individual cell be correctly designed, but also the
synthesized designs based on these library cells are absent
from errors. However, designing of a cell library requires
carrying out many complex tasks and involving design
efforts from a number of engineers. Errors are easily made
in this situation. Even in the case that each cell is designed
correctly, errors may still exist. For example, layout rule
violations may occur between two cells placed side by side
even if the layouts themselves of these two cells are error
free. In order to uncover the leftover errors of a cell library,
benchmark circuits are usually designed to fulfill this
mission. Thus, the quality of a cell library can be
substantially improved.

In the past designing of a cell library is usually
thought as a discipline in industrial community where the
advancement in cell library design is largely made. Since a
viable cell library will strengthen a company’s
competitiveness, the know-how with regard to designing a
high quality cell library is not often seen in open literature
[1-8]. However, with ever increasing availability of
semiconductor foundry and commercial CAD tools to the
university community and advancement in cell-based
synthesis technology, more activities in cell library design
within university community [9-11] have been carried out.
Especially, a cell library is the most fundamental
intellectual property (IP) for system-on-a-chip technology.
The methodologies or problems of making a cell library
into a viable IP can also be applied or found in building
more complex IPs. Thus, the university community should
be encouraged to do more research in designing of a high-
quality cell library.

 This work is supported by National Science Council,
Republic of China under Grant NSC86-2622-E-009-009

There are certainly many interpretations for “high
quality cell libraries”. A cell library regarded as high
quality by one company may not be considered as viable by
another company. However, high quality cell libraries
possess many common characteristics. Simply name a few
here:
(a). the functionality of each individual cell should be

correct in the models for logic synthesis and
simulation,

(b). the timing performance figures of each individual cell
claimed in the data sheet or models should be accurate
enough,

(c). the layout of each cell should be free of design rule
violations,

(d). the cells can be best utilized by a synthesis tool, and
(e). the cells can optimize placement and route of a large

design.

In this paper we present our experience on designing
and employing of two benchmark circuits to enforce (a), (b)
and (c) which are essential to a high quality cell library. To
justify (d) and (e) requires more benchmark circuits and
elaborate works so that it will not be addressed further in
this paper. The rest of this paper is organized as follows.
Section 2 summarizes the types of errors which can be
detected by the two benchmark circuits. Section 3 presents
the benchmark circuit mainly used to uncover the errors
belonging to error groups (1), (2), (3) and (4). Section 5
presents the benchmark circuit mainly used for certifying
the timing performance figures (i.e. uncover the errors
belonging to error group (5)).

2. Classification of Errors
The number of errors that could possibly occur in a

cell library is enormous. It is impossible for us to list all of
them. However, in order to facilitate our discussion, the
errors that could possibly be detected by the two
benchmark circuits are classified into the following five
groups:
(1). Incompleteness: the type of errors resulting from

missing the logical or physical entities for a particular
cell. For example, the logical model for a particular
cell is not present in the technology database for
Synopsys Design Compiler. Or the functional module
for a particular cell is not included in the database for
Cadence Verilog-XL logic simulator.

(2). Inconsistency: the type of errors resulting from a cell’s
parameter not following a predefined value or
standard. For example, the cell height of a particular
cell is not equal to a preset value. Or the pins are not
located on grids.

(3). Functional error: the logical function for a particular
cell is not correctly formulated in the models for logic
synthesis and simulation.

(4). Design rule violation: the type of errors resulting from
violating the layout design rule when cells are placed
side by side.

(5). Inaccuracy: the real timing performance figures are
inconsistent with those claimed in the data sheets or in
the models for logic synthesis and simulation.

Note that we simply list the possible types of errors
being able to be detected by the two benchmark circuits
when they are employed to port a cell library into a
working platform. Although there may still exist some
errors which can not be found by our approach, we
experience that the released standard cell library [11]
consists of very few leftover errors.

3. Benchmark Circuit I
This benchmark circuit is designed to detect errors

belonging to error groups (1), (2), (3), and (4). In order to
achieve this objective, all the cells in the library are
modularized according to their logic functions [3]. If the
cells are of like logic function, they will form a circuit
module (or subnetlist). For example, all AND gates are put
together in the subnetlist for AND gates, all OR gates
should be in the subnetlist for OR gates, etc. Figure 1
shows the block diagram of benchmark circuit I. Figure 2
shows a schematic of the subnetlist for NAND gates. All
the sequential cells (not shown in Figure 1) are also
modularized in the same way.

Subnetlist for
INVs

Subnetlist for
DELAYs

Subnetlist for
BUFs

8

8

8

8

3

3

8

3

8

3

3

2

2

3

Input Data

Output of
ANDs

Subnetlist for
ANDs

7

Output of
NANDs

7

Output of
ORs

7

Output of
NORs

7

Output of
XORs

2

Output of
NXORs

2

Output of
AOIs

8

Output of
MUXs

9

Output of
ADDs

4

Output of
INVs

Output of
BUFs

Output of
DELAYs

Output of
TRI-STATEs

6

Output of
CLOCK BUFs

Subnetlist for
CLOCK BUFs

Subnetlist for
TRI-STATEs

Subnetlist for
NANDs

Subnetlist for
ORs

Subnetlist for
NORs

Subnetlist for
XORs

Subnetlist for
NXORs

Subnetlist for
AOIs

Subnetlist for
MUXs

Subnetlist for
ADDs

9

Figure 1. Benchmark circuit I

nd5

nd7

nd2

nd2h

nd3

nd3h

nd5h

nd7h

m u x 2 1
a

b z

sel

m u x 2 1
a

b z

sel

m u x 2 1
a

b z

sel

m u x 2 1
a

b z

sel

m u x 2 1
a

b z

sel

m u x 2 1
a

b z

sel

m u x 2 1
a

b z

sel

{a ,b,c,d,e, f ,g,h}

sel

out [2]

out [3]

out [4]

out [5]

out [6]

out [7]

out [8]

nd4

nd4h

nd6

nd6h

nd8h

nd8

Figure 2. A subnetlist for NAND gates

A structural Verilog HDL module based on the
underlying standard cell library is written to implement this
benchmark circuit. The Verilog module is first imported to
Cadence platform. Since all the cells are included in this
circuit, if there is an incompleteness error (i.e., the logical
module for a particular cell is not present in database), it
will be caught here. This can also be done for the Synopsys
synthesis technology database. The placement and routing
of this circuit is then carried out. The inconsistency error
will be spotted over the course of placement and route,
while the layout rule violations are exposed by design rule
checking. This approach has quite effectively spotted
almost all the errors belonging to error groups (1), (2) and
(4).

To uncover the functional errors in the models for
logic synthesis and simulation requires more works. From
now on, this benchmark circuit will be called benchmark
circuit under test. Then, a circuit based on the intrinsic
operators provided by the Verilog language itself is
designed to generate a set of golden patterns. This circuit
will be called golden benchmark circuit. The golden
benchmark circuit is designed by the approach similar to
that used to design the benchmark circuit under test. That is,
the structure of the golden benchmark circuit is the same as
that shown in Figure 1. Each cell instance except the
multiplexer used to select the drive class for output in a
subnetlist of the benchmark circuit under test will have a
counterpart statement in the golden benchmark circuit. The
counterpart statement is composed of the Verilog intrinsic
operators. For example, the Verilog statement nd2 U01 (a,
b, z) represents an instance of a 2-input NAND gate in the
target library, where nd2 is the cell name, U01 is the
instance name, a and b are the input pins, and z is the
output pin. Then there will be a counterpart statement
assign z=!(a&b) in the golden benchmark circuit to
perform the function of 2-input NAND in the circuit. This
counterpart statement is made up of the intrinsic operators

“ !” and “&”. Figure 3 shows the subnetlist for NAND gates
in the golden benchmark circuit. The function of this
module is the same as the schematic shown in Figure 2.

module GNands (a, b, c, d, e, f, g, h, sel, out);
input a, b, c, d, e, f, g, h, sel;
output [8:2] out;

assign out[2]=!(a&b);
assign out[3]=!(a&b&c);
assign out[4]=!(a&b&c&d);
assign out[5]=!(a&b&c&d&e);
assign out[6]=!(a&b&c&d&e&f);
assign out[7]=!(a&b&c&d&e&f&g);
assign out[8]=!(a&b&c&d&e&f&g&h);

endmodule

Figure 3. A subnetlist for NAND gates in the golden
benchmark circuit.

The golden benchmark circuit is carefully verified and
then used to generate a set of golden output patterns. The
golden output patterns will be used to check the
functionality of the cells in the benchmark circuit under test.
Figure 4 shows the basic concept of this methodology.
Since the majority of cells in the underlying library have
eight or less than eight inputs and most of the subnetlists
for the like gates have similar structures, the subnetlists
with 8-bit inputs and 1-bit selector only require 512 test
patterns. Thus, a binary counter is employed to generate a
set of test patterns ranging from 0 to 511. Both of the
circuits are simulated with the same test patterns. The
golden pattern file and the output pattern file are compared
by “diff”, an UNIX command, to find out the difference
between two files. If no difference is detected, it indicates
the functions of all the cells in the library under test are
correct. Otherwise, there may be errors in the truth tables of
some cells. This methodology has been used to test a
0.25µm standard cell library. Several functional errors have
been detected.

Golden
Benchmark

Circuit

Benchmark
Circuit

Unfer Test

Test
Pattern

Generator

Golden
Pattern

File

Output
Pattern

File

Figure 4. The concept of functionality verification

4. Benchmark Circuit II
This benchmark circuit is designed mainly to detect

the errors belonging to error group (5). It can also be used
to spot some errors belonging to the other groups.
Although there are a variety of performance figures, they
usually influence the timing performance figures. Thus, we
will focus on the issues of timing performance verification.

The benchmark circuit for timing performance
verification contains a variety of common logic circuits that

allow us to evaluate the performance of a cell library.
Figure 5 shows a block diagram of the benchmark circuit
consisting of a common block, a delay block and a special
block. The common block includes some common logic
circuits performing some of the 74 series logic functions.
The delay block includes unit cell delay circuit, fanout
loading delay circuit and interconnect loading delay circuit.
The unit delay circuit is employed to evaluate the delay of
some basic gates. The fanout loading delay circuit is
employed to evaluate the influence of fanouts on the cell
delay. The interconnect loading delay circuit is used to
evaluate the influence of interconnect on the cell delay. The
special block includes bus circuit, tri-state buffer cells, ring
oscillator, buffer cells and SSN (Simultaneous Switching
Noise) test control circuit. Figure 6 shows a part of unit cell
delay circuit.

Output Selector

3
O[10:8]

Common Block

Flip-Flops

8-bit Magnitude Comparator

8-bit Shift Register

9-bit Parity Generator

4-bit Up/Down Counter

16*4 RAM

4-bit ALU

8 to 3 Priority Encoder

8

3

8

2

5

4

8

5

4

13

14

9

9

10

14

9

Direct_In Path
6

Special Block

Bus Circuit

Oscillator

Ring Oscillator

Buffer Cells

SSN Test Control Citcuit

10 2

2

2

32 SSNO[31:0]

BUFO[1:0]

{OS2, OS3}

R O

{B1, B5}

RI

BUFI

SSNCLR

2

8 O[7:0]
15

I[14:0]

Delay Block

Interconnect Loading Delay

Unit Cell Delay

Fanout Loading Delay

8

8

8

3
ADDR[2:0]

Figure 5. Block diagram of benchmark circuit II

Output 0Input
100 inverters

Output 1

VDD

50 NANDs + 50 inverters

Output 7

20 AO2s + 50 inverters

VDD

Output 4

GND

direct input path in the unit cell delay

Driver

Driver

Driver

Driver

Figure 6. The unit cell delay circuit

The benchmark circuit is designed with Verilog HDL.
After the function is verified by the Cadence Verilog-XL
logic simulator, the benchmark circuit is placed and routed
by Cadence Cell3 Ensemble. The layout is verified by LVS,
ERC and DRC. One of the layout views of this benchmark
circuit is illustrated in Figure 7.

Certifying the timing accuracy of a cell is often
required to realize a real circuit through silicon
implementation. After the real circuit is fabricated, a cell’s
timing performance figures are measured and compared to
the timing data obtained by SPICE simulation. If they are
matched, then the cell’s timing performance figures are
proved to be accurate. If they are mismatched, something
must be wrong with timing characterization or SPICE
models. Unfortunately, a university-made cell library
usually has little chance to be qualified by fabricated test
chips. So, we are trying hard to make our test chip
fabricated in one way and to doubly check the timing
performance figures of the circuits by running the
benchmark circuit through TimeMill [12] in another way.
We find that the timing delay figures obtained by TimeMill
is not too far different from those obtained by the
characterization system [13].

 Figure 7. A layout of the benchmark circuit for

performance verification

5. Conclusions
Two benchmark circuits have been designed and

employed to improve the quality of a standard cell library.
The types of errors, commonly occurring in a cell library,
are first classified into groups. Each benchmark circuit is
respectively designed to uncover different types of errors.
We find that many errors could have been released together
with the cell library if the benchmark circuits are not
employed to uncover the hidden errors. Also, the
benchmark circuits are designed with Verilog HDL such
that they can be easily understood and highly adaptable to
the needs of cell library development.

I/O cells form an essential part of a cell library.
Although the two benchmark circuits can also be employed
to find most of the errors occurring in I/O cells, more

elaborate works must be done or special circuits must be
designed to qualify the I/O cells. Realization of the I/O
cells through silicon implementation is indispensable to
qualifying their functionality. However, true silicon
implementation to qualify a university-made cell library is
still a hurdle yet to jump over for the coming years. If the
hurdle can be removed, the academic IP research and
design will thrive.

References
[1] W. Agastein, K. McFaul and P. Themins, “Validating

an ASIC Standard Cell Library,” Proceedings of the
Third Annual IEEE ASIC Seminar and Exhibit, pp.
P12-6.1-p12-6.4, September 1990.

[2] B.R. Blaes, M.G. Buehler, and Y-S Lin, “Propagation
Delay Measurements from a Timing Sampler Intended
for Use in Space,” IEEE Transactions on Nuclear
Science, Vol. NS-34, No. 6, pp. 1470-1473, December
1987.

[3] Bob Eisenstadt, “Improving CAD Software Quality,”
ASIC & EDA, pp. 38-41, December 1992.

[4] Lindsey Vereen and Mahendra Jain, ”Benchmarks
Define ASIC Performance,” ASIC & EDA, pp. 18-25,
September 1993.

[5] Ken Scott and Kurt Keutzer, ”Improving Cell
Libraries for Synthesis,” Proceedings of the IEEE
Custom Integrated Circuits Conference, pp.128-131,
1994.

[6] T. R. Bednar, R.A. Piro, D.W. Stout, L. Wissel, P.S.
Zuchowski, “Technology-Migratable ASIC Library
Design,” IBM J. RES. DEVELOP. Vol. 40, No. 4,
July 1996, pp. 377-386.

[7] S. Sunter ”Designing a CMOS Standard Cell Library,”
Proceedings of the IEEE Custom Integrated Circuits
Conference, pp.237-240, May 1987.

[8] D.V. Heinbuch, (Ed.) ”CMOS3 Cell Library,”
(Addison Wesley, Reading Mass., 1988).

[9] J.W.W. Chong, R.G. Forbes, ”Design of Basic CMOS
Cell Library,” IEE Proceedings G [Circuits, Devices
and Systems], Vol: 139, Iss:2 , pp. 256-260, April
1992.

[10] http:// www.erc.msstate.edu.
[11] Chi-Ming Tsai, Jinq-Chang Chen, Issac Shuo-Hsiu

Chou, Shu-Ren Ker, Jiunn-Ren Chen, Hui-Hsiang
Tung, Tsai-Min Chiang, Chyi-Bin Lin, Rung-Bin Lin,
and Yin-Kuan Lin, “Development of a 0.25um CMOS
Standard Cell Library,” Proceedings o f International
Conference on Computer Systems Technology for
Industrial Applications-Chip Technology, Hsinchu,
Taiwan, pp. 73-78, April 1998.

[12] TimeMill User Manual, Release 3.3, EPIC Design
Technology, Inc., 1995.

[13] Rung-Bin Lin and Shu-Ren Ker, ”An Automatic
Library Development System,” The 8th VLSI
Design/CAD Symposium, Taiwan, pp.237-240,
August 1997.

