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Benchmark classification dataset 
for laser-induced breakdown 
spectroscopy
Erik Képeš  1,2 ✉, Jakub Vrábel  1,2, Sára Střítežská1, Pavel Pořízka1 & Jozef Kaiser  1

In this work, we present an extensive dataset of laser-induced breakdown spectroscopy (LIBS) 
spectra for the pre-training and evaluation of LIBS classification models. LIBS is a well-established 
spectroscopic method for in-situ and industrial applications, where LIBS is primarily applied for 
clustering and classification tasks. As such, our dataset is aimed at helping with the development and 
testing of classification and clustering methodologies. Moreover, the dataset could be used to pre-
train classification models for applications where the amount of available data is limited. The dataset 
consists of LIBS spectra of 138 soil samples belonging to 12 distinct classes. The spectra were acquired 
with a state-of-the-art LIBS system. Lastly, the composition of each sample is also provided, including 
estimated uncertainties.

Background & Summary
Laser-induced breakdown spectroscopy (LIBS) is an emission spectroscopic method that uses a high-powered 
laser pulse to ignite a microplasma. �is is achieved by focusing laser pulses with lengths in the fs–ns range into 
spots with diameters of tens of µm. Consequently, a su�ciently high energy �uence is reached to ionize the target 
material. Subsequently, emission of the ignited plasma is collected, dispersed by a spectrometer, and recorded. 
Assuming a stoichiometric ablation, the dispersed light intensities can be related to the composition of the target 
material1,2.

Owing to these relatively simple principles, LIBS instrumentations are generally robust. Consequently, LIBS 
is o�en preferred in industrial settings that are unfavourable for most common spectroscopic methods, such as 
charged-particle-based techniques and variations of mass spectrometry. As such, LIBS has been widely adapted 
in geology3,4, steel industry5, and forensics6. Nevertheless, recently, LIBS has been gaining a foothold in various 
biological applications, e.g., mapping of biological samples7,8.

Generally, most successful applications of LIBS are clustering and classi�cation9,10. Meanwhile, the current 
limitations of LIBS inhibit LIBS from being reliably applied for quanti�cation. Consequently, there is a relatively 
wide range of literature reporting on the classi�cation of various materials using LIBS. As such, the classi�cation 
approaches also vary signi�cantly, including the spectral pre-processing, feature engineering, the classi�cation 
model itself11. Hence, the systematic comparison of the various approaches is not possible. Moreover, a common 
approach to classi�cation is the randomized division of the complete dataset into training, validation, and testing 
subsets. Hence, this approach relies on the testing dataset comprising emission spectra that were collected during 
the same measurement as the training spectra. However, in practical applications, fresh data is constantly being 
evaluated by the existing model, i.e., the testing dataset is constantly evolving.

Consequently–inspired by the recent breakthroughs in image recognition tasks partially made possible by 
datasets such as MNIST handwritten digit dataset12–we propose a similar dataset for LIBS. �e dataset is con-
structed from geological samples, where several distinct samples belong to the same class. �us, we propose a 
dataset where the training and testing data is sampled from distinct materials. As such, classi�ers that perform 
well on the proposed dataset must be able to generalize rather than simply learn the distribution of the data. �e 
classi�cation problem is shown schematically in Fig. 1: Various ore samples belong to the same geological class, 
e.g., the class hematite is represented by six samples. Four of these samples are provided in the training dataset, 
while the remaining two are included in the test dataset. Considering the interclass variability, this classi�cation 
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task is more challenging than the generally reported cases since the model is expected to generalize from the 
samples in the green region in order to accurately classify the samples in the red region.

�e dataset is expected to provide not only a benchmark for LIBS classi�cation models but also the means of 
testing classi�cation models for robustness or to identify overtraining. Moreover, the dataset could prove useful 
for implementing transfer learning for applications where only relatively small datasets are available. Lastly, the 
dataset could be used to develop feature-engineering and dimensionality-reduction methodologies.

Methods
Sample preparation. �e samples comprised certi�ed reference materials (soils) purchased from Ore 
Research & Exploration Pty Ltd (Melbourne, Australia) and dental gypsum (Spofadental, Czechia) in a weight 
ratio of 1:1, i.e., each sample consisted of 50 wt.% certi�ed reference soil powder (see below) and 50 wt.% gypsum 
powder. �e samples were prepared by mixing 400 mg of dry soil powder and 400 mg of dry gypsum powder. �e 
weight of the constituents was measured with a TP-303 laboratory scale (Denver Instruments, Germany) with 
an instrumental uncertainty of ±1 mg. In total, 46 soil samples were used (table included in the data repository). 
Each of the 46 soil powders belongs to one of 12 ore types. �e latter classi�cation was provided by the vendor and 
can be found in the OREAS tab of the support_tables.xlsx excel �le accessible in the data repository. For simplicity, 
in the upcoming description of the sample preparation, the gypsum portion of the samples is considered to be 
constant (within the measurement uncertainty) and is excluded.

To adjust the classi�cation di�culty of the dataset in a controlled manner, the soil powders were mixed to 
obtain a certain degree of intraclass similarity: Each of the 46 soil samples (base sample) was mixed with two soil 
powders (additive samples) from a di�erent ore class. Consequently, 138 samples were obtained in total. During 
the mixing, ¼ of the base sample’s mass was replaced with one of the additives. Subsequently, 0.5 ml water was 
added followed by another mixing. Lastly, the wet mixture was poured into a small plastic container, where it 
formed a �at surface.

Although the dataset is not meant for quantitative analysis, the composition of the samples is provided in 
the data repository including estimated uncertainties. �e uncertainties are provided without considering the 
in�uence of the added water.

Measurements. �e samples were measured in a state-of-the-art LIBS interaction chamber that enables the 
precise control of the measurement parameters, including the atmosphere. As such, the highest standards of LIBS 
measurements were maintained. �e samples were mapped with a 100 µm step size (distance between shots) at a 
20 Hz ablation repetition rate with a pulse energy of 15 mJ at the ablation wavelength of 532 nm (Nd:YAG, 10 ns 
pulse length, CFR400, Quantel, France). �e ablation crater diameter measured under an optical microscope 
was 60 µm. �e optical emission of the laser-induced plasma was collected using a single lens and guided to the 
entrance slit of an echelle spectrograph (EMU 65, Catalina Scienti�c, US; resolving power R = 6000) by an optical 
�bre. �e light resolved by the spectrometer (the echellogram) was recorded with an EMCCD camera (Falcon 
Blue, Raptor Photonic, IR) and translated into spectra using the control so�ware proprietary to the spectrometer 
(KestrelSpec™ Imaging Spectroscopy, Catalina Scienti�c, US). �e camera recorded the incoming light with a 
delay of 0.3 µs a�er the ablation laser pulse (commonly referred to as the gate delay) and for the duration of 50 µs 
(commonly referred to as the gate width). �ese timing values have been chosen following an optimization proce-
dure based on the signal-to-baseline ratio, where the height of an arbitrary emission line of a non-matrix element 
has been considered as the signal. �e measurements were carried out in air. Moreover, during the measurements, 
the sample surface was continuously purged by air with a volumetric �ow rate of 10 l/min.

Fig. 1 Schematic representation of the classi�cation task: samples belonging to the geological class of hematite 
in an arbitrary two-dimensional feature space.
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Data records
�e dataset (available on Figshare13) consists of two hdf5 �les, a .csv �le and a .xlsx table. �e �rst hdf5 �le (train.
h5) contains the training dataset which is advised to be further divided into a training and validation dataset. �e 
training dataset includes class labels. �e second hdf5 (test.h5) �le contains the testing data without class labels. 
�e rows of each dataset correspond to a single emission spectrum obtained by laser-induced breakdown spec-
troscopy. Consequently, the columns correspond to distinct wavelength values and the elements of the dataset 
are intensity values in arbitrary units (a.u.), which is a common representation of emission intensity in the LIBS 
community. �e training dataset contains 500 spectra for each sample. Nevertheless, the users are welcome to 
load in only a subset of the dataset (which is straightforward with the supported code). Meanwhile, the testing 
dataset contains a varying number of spectra for each sample.

�e class labels of the testing dataset are provided in the form of a .csv �le titled test_labels .csv. Lastly, the 
composition of the samples is given in an .xlsx �le (support_tables.xlsx). �e excel �le contains 4 spreadsheets: 
OREAS lists the composition of the certi�ed soil powders as provided by the vendor; MIXED_composition lists 
the estimated composition of the mixed samples (excluding the gypsum fraction); MIXED_uncertainty lists the 
estimated uncertainties of the mixed compositions; and MIXED_combined lists the mixed compositions and 
uncertainties in a more compact form. �e aim of providing the composition and the uncertainties in separate 
tables is to ease their import for data processing. Consequently, the table combining both the composition and 
uncertainties facilitates the presentation of the compositions.

Technical Validation
�e composition of the samples is provided with relevant uncertainties in the data repository. �e soil samples 
are certi�ed standard materials. Hence, their composition was determined by the vendor. �e uncertainty of 
the constituents’ weight fraction ranges from 4 to 10%. However, for a more modest uncertainty estimation, a 
constant uncertainty of 10% was considered, e.g., the uncertainty of an element present in the soil with a weight 
fraction of 10 wt.% was ±1 wt.%. �e �nal combined uncertainty was determined from the non-linear uncer-
tainty propagation as:
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where We is the weight fraction of analyte e in the sample; Ms k,  and we k,  are the weight of soil sample k and the 
analyte’s weight fraction in soil k, respectively; and MG is the weight of the added gypsum powder. For samples 
mixed from a single soil standard, =M 0s ,2 . Consequently, the uncertainty of analyte e in the �nal sample is given 
as:
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where X( )∆  is the uncertainty of the quantity X. Lastly, the uncertainty of the weight fraction of element e in the 
soil sample k is determined as ∆ = . ⋅w w( ) 0 1e e k,1 , .

�e dataset was classi�ed as part of a competition held at the EMSLIBS19 conference (http://libs.ceitec.cz/
libs-contest/). �e highest accuracy achieved was approximately 90%. Two additional approaches reached classi-
�cation accuracies over 80%. Details of the applied methodologies will be speci�ed elsewhere. Nevertheless, the 
classi�cation of the dataset has been proven to be adequately challenging to serve as a benchmark dataset.
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code availability
Custom code for loading in the training and testing datasets is available in the data repository for Python, R, 
and MATLAB. �e Python code was tested in Python 3.6 and requires the following libraries: “os”, “h5py”, and 
“numpy”. �e R code was tested in R 3.5.2 and requires the following libraries: “rhdf5”. Lastly, the MATLAB code 
was tested in MATLAB 2016. �e codes are intended to load in the data from the hdf5 �les in a user-friendly 
manner.
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