{: SCISPACE

formerly Typeset

@ Open access « Journal Article = DOI:10.1111/J.0006-341X.2001.00698.X
Benchmark Dose Calculation from Epidemiological Data — Source link [/

Esben Budtz-Jargensen, Niels Keiding, Philippe Grandjean

Institutions: University of Copenhagen, University of Southern Denmark

Published on: 01 Sep 2001 - Biometrics (Biometrics)

Topics: Environmental exposure and Benchmark (computing)

Related papers:

+ A New Method for Determining Allowable Daily Intakes

« Calculation of Benchmark Doses from Continuous Data

» Cognitive Deficit in 7-year-old Children With Prenatal Exposure to Methylmercury
« Critical issues in benchmark calculations from continuous data.

« Benchmark concentrations for methylmercury obtained from the Seychelles Child Development Study.

Share thispaper: @ ¥ M ™

View more about this paper here: https:/typeset.io/papers/benchmark-dose-calculation-from-epidemiological-data-
23ypc649r5


https://typeset.io/
https://www.doi.org/10.1111/J.0006-341X.2001.00698.X
https://typeset.io/papers/benchmark-dose-calculation-from-epidemiological-data-23ypc649r5
https://typeset.io/authors/esben-budtz-jorgensen-1uxjhtocrh
https://typeset.io/authors/niels-keiding-1dl1g7ts6h
https://typeset.io/authors/philippe-grandjean-4bqu01mi8o
https://typeset.io/institutions/university-of-copenhagen-9wj8wm2p
https://typeset.io/institutions/university-of-southern-denmark-2lb737x5
https://typeset.io/journals/biometrics-1ynh7xy8
https://typeset.io/topics/environmental-exposure-1y7j4a3h
https://typeset.io/topics/benchmark-computing-2t10njof
https://typeset.io/papers/a-new-method-for-determining-allowable-daily-intakes-3nj5f9tgzj
https://typeset.io/papers/calculation-of-benchmark-doses-from-continuous-data-4d7fia1kol
https://typeset.io/papers/cognitive-deficit-in-7-year-old-children-with-prenatal-egb1aagxr1
https://typeset.io/papers/critical-issues-in-benchmark-calculations-from-continuous-4etm656re0
https://typeset.io/papers/benchmark-concentrations-for-methylmercury-obtained-from-the-4xzw88qntw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/benchmark-dose-calculation-from-epidemiological-data-23ypc649r5
https://twitter.com/intent/tweet?text=Benchmark%20Dose%20Calculation%20from%20Epidemiological%20Data&url=https://typeset.io/papers/benchmark-dose-calculation-from-epidemiological-data-23ypc649r5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/benchmark-dose-calculation-from-epidemiological-data-23ypc649r5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/benchmark-dose-calculation-from-epidemiological-data-23ypc649r5
https://typeset.io/papers/benchmark-dose-calculation-from-epidemiological-data-23ypc649r5

SDU -+

University of Southern Denmark

Benchmark dose calculation from epidemiological data

Budtz-Jgrgensen, E.; Keiding, N.; Grandjean, P.

Published in:
Biometrics

DOI:
10.1111/j.0006-341x.2001.00698.x

Publication date:
2001

Document version:
Submitted manuscript

Citation for pulished version (APA):
Budtz-Jargensen, E., Keiding, N., & Grandjean, P. (2001). Benchmark dose calculation from epidemiological
data. Biometrics, 57, 698-706. https://doi.org/10.1111/j.0006-341x.2001.00698.x

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use

This work is brought to you by the University of Southern Denmark.

Unless otherwise specified it has been shared according to the terms for self-archiving.
If no other license is stated, these terms apply:

* You may download this work for personal use only.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim.
Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 31. May. 2022


https://doi.org/10.1111/j.0006-341x.2001.00698.x
https://doi.org/10.1111/j.0006-341x.2001.00698.x
https://portal.findresearcher.sdu.dk/en/publications/bcf97230-ba95-11dc-9626-000ea68e967b

Benchmark Dose Calculation from
Epidemiological Data

Esben Budtz-Jorgensen,'* Niels Keiding,! and Philippe Grandjean?

Department of Biostatistics, University of Copenhagen
Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
2Institute of Public Health, University of Southern Denmark
Winslowparken 17, DK-5000 Odense C, Denmark.
*email: ebj@biostat.ku.dk

SUMMARY. A threshold for dose-dependent toxicity is crucial for standards setting, but
may not be possible to specify from empirical studies. Crump (1984) instead proposed to
calculate the lower statistical confidence bound of the benchmark dose, which he defined
as the dose that causes a small excess risk. This concept has several advantages and has
been adopted by regulatory agencies for establishing safe exposure limits for toxic sub-
stances such as mercury. We have examined the validity of this method as applied to an
epidemiological study of continuous response data associated with mercury exposure. For
models that are linear in the parameters we derived an approximative expression for the
lower confidence bound of the benchmark dose. We find that the benchmark calculations
are highly dependent upon the choice of the dose-effect function and the definition of the
benchmark dose. We therefore recommend that several sets of biologically relevant default
settings be used to illustrate the effect on the benchmark results and to stimulate research
that will guide an a priori choice of proper default settings.

KEY wORDS: Confidence limits; Environmental epidemiology; Exposure standards; Model
dependence; Multiple regression.

1 Introduction

When regulatory agencies produce exposure limits, the decisions are based on available
documentation on adverse effects of the chemical in question (WHO, 1994). As thresholds
may be difficult to derive from empirical studies, the benchmark dose (BMD) (Crump,
1984, 1995) has been defined as the dose of a toxic compound which increases the prob-
ability of an abnormal response by a benchmark response (BMR), i.e., from P, for an
unexposed subject to P,-+BMR for a subject at the BMD. The BMDL is a statistical
lower confidence limit of the BMD. An advantage of this approach is that it takes into
consideration both biological variation and statistical uncertainty.



The benchmark method is applicable to both categorical and continuous exposure data,
including epidemiological data that may involve a continuous exposure scale, a graded
response parameter, and potential confounding effects of covariates. Most recently, the
Reference Dose for methylmercury of the U.S. Environmental Protection Agency (EPA)
was based on benchmark calculations, and a National Academy of Sciences (NAS) com-
mittee reviewed and approved the methodology (2000).

The benchmark calculations depend on the default settings for several parameters: A 10%
BMR has been proposed for animal experiments on developmental toxicity (Allen et al.,
1994). However, a BMR of 5% was used by EPA and NAS, because it corresponds to a
doubling of the prevalence of a pathological response, P,, which was defined as 5%. As
dose-response function, the EPA (1997) used the average for the polynomial and Weibull
models for dichotomous methylmercury effects, while for continuous responses, the NAS
committee (2000) chose a power function.

The present paper provides a systematical statistical discussion of the benchmark approach
as applied in environmental epidemiology. As our example, we use data from a large
epidemiological study performed on the Faroe Islands to investigate the health effects of
prenatal mercury exposure. This study was identified by the NAS committee (2000) as
the critical epidemiological study of mercury toxicity. In adapting the original benchmark
concept, the method must be extended to allow confounder correction. An approximative
expression for the BMDL in linear models is derived, and the model dependence of the
benchmark approach is investigated. Approximative confidence limits for the excess risk at
a given dose are derived, and BMDL calculation in more complex linear models is discussed
in regard to the wider applicability of this approach.

2 The Faroese Mercury Study

Methylmercury is a common contaminant in seafood and freshwater fish. While adverse
effects have been unequivocally demonstrated in poisoning incidents, the implications of
lower-level exposures in fish eating populations have been controversial (Grandjean, 1999).
This issue was therefore explored in a birth cohort of 1022 children from the Faroe Islands.
Information about the children’s prenatal exposure was obtained by measuring the mercury
concentrations in maternal hair at parturition and in cord blood. The latter biomarker
was thought to be the best indicator of the amount of the neurotoxicant that had reached
the fetal circulation. Because the effects of fetal exposure to methylmercury are persistent,
the children underwent a detailed neuropsychological examination, at age 7 years, when
advanced neurobehavioral testing would be feasible. We shall use as an example the Boston
Naming Test, a cognitive task reflecting language ability. This test was also used by the
NAS committee (2000) to calculate benchmark doses. In this test the child is presented
with drawings of objects, which the child has to name. As test score we use the number



of objects that the child failed to identify. Because of the large number of drawings
and because on average about half of these drawings are identified the distribution of
this outcome variable, given important predictors, is approximately normal. In multiple
regression analysis Grandjean et al. (1997) estimated that a 10-fold increase in the cord
blood mercury concentration causes a test score deficit of about 1.9 points (p<0.0001).

3 The Benchmark Approach for Experimental Data

The benchmark concept was first developed for standardized experimental dichotomous
(normal/abnormal) responses (Crump, 1984), and was later extended to also cover con-
tinuous response data (Crump, 1995), which we shall consider. Let Y(d) denote the re-
sponse of a subject at exposure d. Large responses are assumed to be disadvantageous.
The definition of the benchmark dose (BMD) is specific to a dose-response model. In this
section only models of the following form will be considered

where ¢ ~ N(0,0?), that is, at a given dose d the response is assumed to be normally
distributed with mean given by the dose-response function f and standard deviation . The
dose-response function is monotone and may depend on known and unknown parameters.
For example, Crump (1984, 1995) suggested a family of power functions, the so-called
K-power model: f(d) = By + 3dX, where (3,3 and K > 1 are parameters to be estimated
from the data.

To define the BMD it is necessary to specify the abnormal performance. For continuous
data, a cut-off level (z4) can be specified above which all responses are considered abnormal.
The probability of an abnormal response in an unexposed subject is then

Py = P(Y(0) > 20} = 1~ o{ Uy 1)
where ® is the standard cumulative normal distribution function. Rather than specifying
xo directly one can also specify the percentage of unexposed subjects whose responses are
considered abnormal, i.e. Py, o can then be calculated by applying equation (1). Often
P, is set at 5%. The BMD is defined as the dose that results in an increased probability
of an abnormal test performance by a benchmark response (BMR), i.e., the BMD satisfies
P{Y(BMD) > =z} — P, = BMR. Figure 1 gives a graphical illustration of the BMD
definition.

The BMDL is calculated as the statistical 95% lower (one-sided) confidence bound of the
BMD. In this way the power of the study is taken into account. The less the precision the
lower the BMDL.



The BMR is often set at 5% so that the corresponding BMD will double the risk of an
abnormal response, given that Py is 5% (NAS, 2000). Everything else being equal, lower
BMRs will result in lower BMDs.

Response

B+BMR

0 Dose BMD

Figure 1: Hypothetical dose-response relation illustrating the concepts of benchmark ap-
proach. The dose-response curve indicates that when the dose increases so does the expec-
ted response. The distribution of responses in unexposed subjects is shown on the y-axis.
Responses above the prespecified x, are considered abnormal. The risk of an abnormal
response in unexposed subjects is P, indicated by the shaded area. At the BMD the
response distribution has been translated upward and the risk of an abnormal response
has increased to Py+BMR. The BMDL is placed somewhere between 0 and the estimated
BMD depending on the amount of information in the study.



4 The Benchmark Approach in Observational Studies

Observational studies usually do not include a control group completely free of exposure,
the exposures are distributed continuously, and the response variable is influenced by
confounders in addition to the exposure of interest. Therefore, let Y (d, ¢y, ...,cx) denote
the response of a subject at exposure d and with confounder values cy,...,c;. We first
assume that the dependence of the response on the exposure and the confounders can be
modeled using a multivariate additive model

Y(dacl,--- ,Ck) :f(d)+h(61,62,... ,Ck)+€, (2)

where € ~ N(0,0?) and h is any real valued function typically depending on unknown
parameters. The question now is how to define the BMD in the presence of the con-
founders. Still the main idea is that the BMD is the dose that increases the probability
of an abnormal response by a prespecified amount (BMR), i.e., P{Y(BMD,e¢y,...,cx) >
zo} — P{Y(0,c1,...,ck) > o} = BMR. Using the additivity of the model it is easily seen
that this statement is equivalent to

{7(BMD) — f(0)}/o =
11— P{Y(0,c1,...,ck) >z} — ®7'[1 — P{Y(0,cq,-.. ,cx) > 1o} — BMR]. (3)

In the extended benchmark method the level of abnormal test performance xzq is specified
such that all unexposed subjects have the same (prespecified) risk Py of an abnormal
response, i.e. P{Y(0,cq,...,ck) > 2o} = P, for all ¢y,...,ck. Using this definition, the
corresponding BMD (and BMDL) will not depend on the confounders, as can be seen
from equation (3), and exposure to the BMD causes the risk of an abnormal response to
increase from P, to Pp+BMR. An interpretation in terms of expected test performance is
given by equation (3): For each subject the BMD increases the expected response by a
prespecified multiple O = ®1(1 — P) — & (1 — Py, — BMR) of the standard deviation &
of the random response component.

The main change when extending the benchmark method to epidemiological data is there-
fore to let the definition of an abnormal response depend on the confounders. If for instance
P, is set at 5%, then the response of a given subject is considered abnormal if it is above
the 95th percentile in the distribution of responses from unexposed subjects with the same
values on the confounders as the subject at hand. Although not quite explicitly stated,
a similar approach seems to have been used by Crump et al. (1998, 2000). In multiple
linear regression Bailer et al. (1997) defined the absolute exposure concentration as the
dose causing the expected test score to increase A response units compared to unexposed
subjects with the same confounder profile. This definition corresponds to a benchmark
dose with Py =1 — ®(A/o) and BMR=0.5 — F,.



5 BMDLs in Models Linear in the Parameters

In models which depend linearly on the unknown parameters, it is possible to obtain closed
expressions for the BMD as well as approximative expressions for the BMDL. Consider
the model

Y(d,ci,. . cr) = Bo+ Bg(d) + frci + ... 4 Brcr + ¢, (4)

where € ~ N(0,0?). The function g (which is assumed known) is increasing and g(0) = 0.
Crump (1995) required that ¢'(0) < oo from the point of view that dose-response functions
with an infinite slope at zero dose are not biologically plausible.

The BMD is determined by solving equation (3), yielding:

00 if <0

g7 (%) ifB>0

BMD:{
B

where Q@ = &71(1 — P) — ®7'(1 — P, — BMR). Note that if 3 < 0 there is no solution to
equation (3) since an increasing dose will not increase the expected response. A natural
way to estimate the BMD is to substitute the unknown parameters in the BMD expression
by estimates:

BMD ={ <0
o gfl(%) if 3>0

This estimator is consistent but clearly biased (E{B/M\D} = 00). However, this bias is of
minor concern if (as is usually the case) the main aim of the benchmark analysis is to
calculate a lower confidence limit of the BMD.

5.1 BMDL calculation

There are several ways to calculate the confidence limits, in particular Crump (1984, 1995)
suggested likelihood-based limits for the BMDL calculation. Here the lower 95%  confidence
limit is approximated by the 5th percentile in the estimated distribution of BMD. This
method is preferred since it yields a closed expression for the BMDL.

The 5th percentile () in the distribution of BMD is approximated. We assume as above
that large values are detrimental and first consider the likely case where P(B\ > 0)> 5%.
In this case - is finite and satisfies P{g~1(Q5/8) < v, 8 > 0} = 5% which can easily be
rewritten as P{\/v3/5 < Qy/v/g()} = 95%, where v is the amount information on the
exposure parameter, e.g., for simple linear regression with n observations v = X1, (d; —d)>.



The random variable \/03/G has a noncentral t-distribution with df degrees of freedom
and noncentrality parameter /v(3/o. According to Johnson and Welch (1939), the 95th
percentile in this distribution can be approximated by

ﬂ+U95\/0'2 CﬂQ —’U,950'2)/2df

o(l— U95/ 2df) ’
where ugs ~ 1.645 is the 95th percentile in the standard normal distribution. Thus
pos ~ Q4/v/g(v) which means that v ~ g='(Qv/v/pes). In the rare situation of a strongly

beneficial substance with 8 < —ugs0/+/v, equivalent to P(B\ > 0) < 5%, the probability of
an finite BMD estimate is below 5% and vy = oo.

The lower 95% confidence bound on the BMD used here is the 5th percentile in the
estimated distribution of the BMD which is obtained simply by substituting estimates for
the unknown parameters in the expression for «y

(5)

P95 —

BMDL = -1 51— ul, /2df) (6)
{ g {E-Fugsgﬁ(ﬁ) 1+(t2 —uly) /2d} if = \/_ﬂ/a > —Ugs

where SE( ) = 0/+/v is the estimated standard deviation of B.

It is seen that BMDL is easily obtained from standard multiple regression output. Note
also that for an increasing number of the degrees of freedom the BMDL as approximated
by (6) approaches (from below) the crude approximative confidence limit obtained by
assuming that the residual variance is known, i.e. BMDL = ¢ }[Q5/{3 + ugs - S/E(B\)}]
if t = \/EB/E > —ugs. Thus, the terms (1 — u2;/2df) and /1 + (£ — u2;)/2df can be
interpreted as correcting for the uncertainty in &.

The BMDL decreases as a function of the estimated exposure effect (B) and increases as
a function of exposure parameter information (v) and BMR. An increase in the random
response variation (%) has two opposing effects. On one hand the BMDL is lowered as
a result of increased estimation uncertainty. On the other hand the response distribution
becomes more dispersed which will lead to a higher BMD because the same increase in
expected test performance will correspond to a smaller increase in the risk of an abnormal
response. When (3 > 0 the latter effect is the stronger so that the BMDL increases as
a function of 2. Thus, if a strong predictor of the response which is not related to the
exposure is excluded from the set of independent variables then a higher BMDL is obtained.

5.2 Dichotomous response data

The extended benchmark method cannot be used directly for 0/1-responses if confounding
is present. For such data a response is abnormal simply if it is 1, so the parameter z; is not



available. This means that the probability of an abnormal response in unexposed subjects
will depend on the confounder values and so will the BMD (Bailer et al., 1997). However,
for logistic regression models (logit[P{Y (d, c1, -..,cx) = 1} = Bo+Bg(d) + Bic1 + ... + Brck)
it seems obvious to define the BMD as the dose resulting in a prespecified proportional
increase (BMR) in the odds for an abnormal response, i.e.,

P{Y(BMD,c,...,c) = 1}/[1 — P{Y(BMD, ¢, ... ,¢;) = 1}]
1

P{Y(0,c1,...,cx) = 1}/[1 = P{Y(0,cy,... ,cx) = = BMR. (7)

Solving (7) for BMD, yields BMD = g~!{log(BMR)/3} if 8 > 0, independent of confounder
values. The BMDL is obtained using the approach described above and the asymptotic
normality of 3, as BMDL=g'[log(BMR)/{8 + uesSE(B)}] if 8 > —ugsSE(S). Alho and
Valtonen (1995) derived an algorithm giving likelihood based confidence limits on the dose
causing a prespecified increase in the linear predictor in generalized linear models with
known scale parameter.

6 Model Dependence of BMDL and BMD

To study the model dependence of the benchmark approach BMDL-values are compared for
a linear model i.e. g(d) = d, and a power model i.e. g(d) = d*, where « is a known positive
number. For simplicity it is assumed that no covariates are present and that the exposure
variable d follows a logarithmically normal distribution with parameters [E{log(d)} =
w, var{log(d)} = 72|. These assumptions yield a parametric expression for the exposure
parameter information v = ¥, {g(d;) — g(d)}*> = n - var{g(d)} = n - {exp(a?7?) — 1} -
exp(a?7? + 2a).

Model dependence is especially a problem if two models describing the data almost equally
well yield very different estimates of the parameter of interest. If the linear model and the
power model explain about the same percentage of the response variation, the exposure
t-statistics (1/v(3/7) in the two models will be approximately equal. Thus, using the crude
approximative expression (section 5.1), the ratio between BMDLSs from the linear model
and the power model becomes

t+U95

NGIY

where t denotes the mutual level of the two test statistics. This ratio is 1 when o = 1 and
can be shown to decrease monotonically as a function of a unless Q > 5.63-(t+wug5)/+/n. So
except when BMR is high, the lower the o the lower the BMDL. Furthermore, it is seen
that the BMDL model dependence becomes stronger for more significant dose-response
relations and for lower BMRs. As BMR decreases toward zero this ratio increases beyond

)

- (

I

BMDL, - \/ {exp(72) — 1} - exp(7?)
BMDL, | [{exp(a?72) — 1} - exp(a?72)]a



all bounds or decreases toward 0 depending on whether « is below or above 1. In Figure
2 the ratio as a function of « is shown for selected values of the other parameters.

10000.00
—— BMR=0.02
— — BMR=0.05
1000.004 \ [ BMR=0.10

100.00 1

10.00

1.00

Linear—BMDL div Power—BMDL

0.10+

001 k T T T T
0.25 0.50 1.00 2.00 4.00

Power Parameter

Figure 2: Ratio between the BMDL of the linear dose-response model and the BMDL of
a power function model with known power parameter. This ratio is shown as a function
of the power parameter for BMR=2, 5 or 10% and P, = 5%, n = 100, t = 2.00, 72 = 1.00.

Model dependence is reduced if dose-response functions with infinite slope at zero dose
are avoided. Using two different dose-response functions f; and f5, not necessarily lin-
ear in the parameters but with finite positive slope at zero dose, it is easily shown that
BMDy, /BMDy, — f3(0) 5y, /f1(0) 54, for BMR — 0, where 6, and oy, are the estimated
standard deviations of the random response component assuming f; and f, respectively.
Thus, the ratio between BMDs estimated in different models stays bounded even as the
BMR approaches zero.
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7 BMDLs in More Complex Dose-Response Models

Under the model assumptions (2) the excess risk of an abnormal response at dose d is

ER(d) = P{Y(d,c1,...,cn) > zo} — P{Y(0,c1,...,cn) > o} (8)
1— @[3 (1 - Po) +{f(0) — f(d)}/o] — Po (9)

It is noticed that this increase in risk is the same for all confounder values. Under the linear
models (4) the above expression simplifies to ER(d) = 1—®{® }(1—Py) —3-g(d)/c} — P,
which is consistently estimated by substituting the unknown parameters by their estimates.
An upper 95% confidence limit on ER(d) is obtained by again exploiting that \/v(3/c has
a noncentral t-distribution, yielding ER(d)gs = 1 — Py — ®{®7'(1 — Py) — pesg(d)/+/v}
where pgs is obtained from (5) substituting parameters by estimates.

Also notice, that since the risk of an abnormal response at dose d (P{d}) does not depend
on the confounders ordinary dichotomous data dose-response functions for P(d) may be
applied by specifying f(d) accordingly: P(d) = q(d) if f(d) = f(0) + c® (1 — Py) —
o® {1 — q(d)}. For responses with no confounding this correspondence between dose-
response models for continuous and dichotomous data in the benchmark approach was
noted by Crump (1995). The present generalization depends on the confounders entering
the model in an additive fashion.

In section 5 an approximative expression for BMDLs was obtained in linear models where
the dependence of the expected response on the exposure is described by a single term:
B-g(d). Although these models are quite flexible they may not always suffice. For example,
the exposure effect may depend on the level of an effect modifier. Within the set of linear
models more complex dose-response relations can be modeled by increasing the number of
terms depending on the dose. Ordinary polynomials and fractional polynomials (Royston
and Altman, 1994) are well known examples of functions having multiple terms. In these
models it may not be possible to derive a closed expression for the BMD. However, upper
confidence limits on the excess risk at exposure d (9) can be determined exactly as described
above since {f(0) — f(d)}/7 has a (scaled) noncentral t-distribution. The BMDL can then
be determined by solving the equation ER(d)gs =BMR in d. In the presence of effect
modification both the BMD and the BMDL will depend on level of the effect modifier,

reflecting that not all subjects are equally sensitive.

Furthermore, the benchmark approach can easily be extended to models where the residual
variance is proportional to a known increasing function of the exposure dose. In linear
models it will be possible to derive expressions for BMDs and BMDLs using the methods
described above.
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8 Application of Benchmark Calculations

Previous analyses of mercury toxicity used data from studies carried out in Iraq (Crump
et al., 1995), New Zealand (Crump et al., 1998) and the Seychelles (Crump et al., 2000).
In these studies the K-power model was used for the dependence of a child’s test score on
the mercury dose, yielding only convex dose-response functions. To make our results as
comparable as possible to those results, we have used the same model. However, as the
dose-effect could also be concave within some dose ranges other functions were also appro-
priate. To illustrate model dependence, BMDs and BMDLs were therefore also calculated
for a linear model (g{d} = d), a square root model (g{d} = +/d +1—1) and a logarithmic
model (g{d} = log{d + 1}). None of the dose-response curves considered has an infinite
slope at zero dose. Confounder adjustment is carried out as indicated above using the
same set of confounders which was identified in Grandjean et al. (1997).

In the K-power model the BMD is given as (Q0/3)"/¥, which is estimated by substituting
parameters by estimates (obtained using the SAS procedure NLIN). With unknown K this
model is not linear in the parameters, so the theory described in section 5 does not ap-
ply. Instead, the BMDL is calculated using the parametric bootstrap method (Efron and
Tibshirani, 1993). Again, the lower confidence limit of the BMD is approximated by the
5th percentile in the estimated distribution of B/M\D, but here this percentile is determined
by simulating 2000 new data sets from the estimated distribution of the original data.
Each data set has covariate values identical to the values of the original data whereas the
response is given by the function of the covariates estimated in the original data plus a
random normal error with variance 62. After each simulation, the BMD is estimated, and
the BMDL is then determined as the 5th percentile in the empirical distribution of the
estimates.

Table 1
BMDs and BMDLs (ng/l) calculated for the cord blood mercury concentration for
different BMRs and Py =5%. Further, —2-log(L) indicates minus twice the log of the
likelthood function, while t is the usual test statistic for no effect of the exposure.

Model ~ —2log(L) t BMD BMDL BMD BMDL BMD BMDL
K-power @  7793.72 -  39.55 28.73 84.98 61.22 14232 102.22
Linear 7793.72 349 3955 26.81 84.98 57.61 14232  96.49

Square Root  7790.84 3.89 11.55 6.73 40.78 2230 102.03 53.91
Logarithmic  7790.42 3.94 1.55 0.93 6.46 3.11  27.94 9.67

a K =1.
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Table 2
BMDs and BMDLs (ng/g) calculated for the maternal hair mercury concentration for
different BMRs and Py =5%. Further, —2-log(L) indicates minus twice the log of the
likelithood function, while t is the usual test statistic for no effect of the exposure.

BMR=0.02 BMR=0.05 BMR=0.10

Model ~ —2log(L) ¢ BMD BMDL BMD BMDL BMD BMDL
K-power @  8021.66 -  7.08 479 1522 10.02 2549 16.69
Linear 8021.66 2.90 7.08 451 1522  9.69 2549  16.22

Square Root  8021.71  2.89 4.03 2.20 1248 6.28 28.95 13.77
Logarithmic  8022.58  2.73 1.83 0.91 8.35 3.03 41.27 9.30

a K =1.

Tables 1 and 2 give estimated BMDs and BMDLs for mercury exposure expressed as the
cord blood concentration and the maternal hair concentration, respectively.

For both exposure variables, the power parameter in the K-power model is estimated to
1, thus yielding a linear model. This means that the BMD of the K-power model is equal
to that of the linear model, but the BMDLs are slightly different because of the additional
parameter estimated in the K-power model and because of simulation uncertainty.

The fits of the linear, the square root and the logarithmic models were compared in pairs.
Each model in a given pair was tested against an expanded model that included both
models. A high p-value in this test indicates that the model at hand does not fit the data
significantly worse than the expanded model. For all pairs, the expanded model fitted
the data only slightly better than the best of the models in the pair. This means that
the models can be compared simply by calculating their —2log(L)-difference and then
judging this value from a x2-table. For the cord blood mercury, there is no difference
between the fit of the logarithmic and the square root model, but both of these models
are marginally significantly better than the linear model (p = 6% — 8%). For the hair
mercury results, the data do not allow a judgment as to which model is the best. The fit
of the K-power model cannot be compared to the rest of the models by formal asymptotic
likelihood testing, because this model has estimates on the boundary of the parameter
space (K = 1). However, as the K-power model gives the same fit as the linear model but
has one more (redundant) parameter, at best this model can be considered only as good
as the linear model.

The BMDLs for the cord blood mercury exhibit a substantial variation across the models,
with the logarithmic model giving the lowest results. For BMR=2% the BMDL of the
logarithmic model and the linear model differ by a factor of almost 30, while for BMR=10%
this factor has dropped to about 10. Also, the results for the square root model are
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considerably higher than for the logarithmic model, although the difference in fit between
these two models was far from significant. Since the model uncertainty is larger and
the mercury effect weaker when using the maternal hair concentration as the exposure
variable it is no surprise that the observed model dependence of the BMDL is weaker.
Again, the logarithmic model yields the lowest results, while the linear model yields the
highest. However, the ratio of the results is now only about 5 for BMR=2% and 1.7 for
BMR=10%.

The square root and the logarithmic models obviously depend on the choice of scale of
the dose, which defines the meaning of the constant 1 in these models. We find (data not
shown) that the lower the constant the lower the BMDL. However, the BMDLs of a square
root model without adding a constant (g{d} = v/d) were still not as low as the results of
the logarithmic model (with constant 1).

In Figure 3, the model dependence for the cord blood concentration is illustrated graph-
ically. For each model the estimated expected excess response due to mercury exposure is
shown as a function of the mercury dose (d — f{d} — f{0}). The BMD is the dose which
causes a certain level of excess response, i.e: f(BMD) — f(0) = Q0. Since the estimates of
o are approximately the same in all the models, the BMDs can (approximately) be found
as the intersections between the excess response curves and the same horizontal line. The
curves are clearly different: although 95% of the observations have a mercury concentration
between 5 and 80 pg/l, the logarithmic curve is far above the linear dose-response curve
across this range. It may seem strange that there is not enough information in the data
from almost 1000 children to determine which of these curves is the best. However, the
curves shown are not the estimated dose-response functions (d — f{d}) which are much
closer across the actual dose range and intersect twice. The excess response curves differ
more because of the large differences in the estimated response level of unexposed children
(f{0}), determined by extrapolation. Compared to a convex curve (the linear) a concave
dose-response curve (the logarithmic) will give a lower unexposed response level, a higher
slope at low doses and a lower slope at high doses. Thus, at low BMRs the corresponding
concave excess response curve will yield lower BMDs and BMDLs. At a certain BMR the
excess response curves meet, yielding identical BMDs. However, the BMDL of the concave
curve will still be lower because the concave curve is not as steep as convex one when the
two curves meet. Thus, the point of intersection with the horizontal line is more uncertain
for the concave curve, thereby giving wider BMD-confidence bands. An example of this
is seen in Table 2: For BMR=10% the logarithmic BMD is higher than the linear BMD
while the opposite relation is seen for the BMDLs.
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Figure 3: For each model the estimated expected excess response due to mercury exposure
is shown as a function of the mercury dose (d — f(d)— f(0)). The BMD is the dose which
causes a certain level of excess response given as a multiple of the standard deviation of
the random response component, i.e: f(BMD) — f(0) = Qo. Since the estimates of o are
approximately the same in all the models, the BMDs can (approximately) be found as
the intersections between the excess response curves and the same horizontal line. Lines

corresponding to Py = 5% and BMR=5%, 10% are indicated on the graph.

8.1 Validity of Confidence Limits

Except for the K-power model, all BMDL-values are calculated using the formula (6). The
validity of these confidence limits was investigated by simulations. For each model, one
million data sets was simulated from the estimated distribution of the original data. After
each simulation the BMDL was calculated and then compared to the known BMD. Table
3 shows the empirical coverage probability. For all models and both exposure variables,
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the coverage probability is very close to the nominal value of 95%.

Table 3
Empirical coverage probability in percent of BMDL in 1.000.000 simulations from the
estimated distribution of the response variable in the Faroese data. The standard
deviation of the estimated coverage probability is 0.022%.

Dose-Response Model
Linear Square Root Logarithmic
Blood Mercury 95.0426 95.1036 95.0404
Hair Mercury  94.9921 95.0493 95.0089

For each of the models the set of observations satisfying that the BMDL is less than the
BMD is independent of the prespecified parameters Py and BMR. This means that the
coverage probability of the BMDL is the same for all combinations of P, and BMR.

9 Discussion

Statistical methods for determination of safe dose levels have largely been aimed at being
used for dichotomous responses from animal experiments (WHO, 1994). For more com-
plex epidemiological data the extended benchmark method can be applied with certain
reservations.

The closed approximative expression for the BMDL will facilitate future calculations and
improve understanding of the benchmark approach. Kodell and West (1993) derived a re-
lated method for BMDL calculation in an experimental setting also based on the noncentral
t-distribution. However, this method is iterative and does not provide a closed expression
for the BMDL. Furthermore, Johnson and Welch (1939) showed that the approximation
to the noncentral ¢-distribution used here is superior to the one used by Kodell and West.

A priori specification of Py and BMR is a fundamental difficulty in the benchmark ap-
proach. Ideally, these specifications should be based on biological considerations. However,
often the biological understanding of the mechanism under consideration is inadequate and
instead it seems that a Py of 5% and a BMR of 5% or 10% have somewhat arbitrarily been
chosen as the default values (EPA, 1997; Crump et al., 1998, 2000; NAS, 2000). The
results of the Faroese study clearly underline that the choice of BMR is critical: both for
the square root model and the logarithmic model did the cord blood results increase by a
factor of about 10 when the BMR was changed from 2% to 10% and P, was fixed at 5%.
The less critical sensitivity of the BMDL to specification of P, has been investigated in
additional calculations (data not shown). When P, was increased from 5% to 16%, cord
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blood BMDLs decreased by 40% to 70%. When deciding whether a given set of values for
P, and BMR corresponds to a biologically significant effect for a given endpoint it might
be helpful to calculate Q-o, which is the expected excess response of a subject at the BMD.
Figure 3 shows that a Py and a BMR of 5% corresponds to an expected excess response
of about 1.8 points on the Boston Naming Test, while the expected score is increased by
approximately 3 points at the BMD if the BMR is changed to 10%. The implications of
such effects should be considered from a neurological viewpoint.

In the extended method, the cut-off zy separating an abnormal response from a normal one
is not constant but is calculated such that, for all unexposed subjects, the risk of an abnor-
mal response is equal to a prespecified amount Py. In accordance with the original method,
the BMD is defined as the dose which increases the risk from P, to P,--BMR. In addition
to being mathematically convenient in that the result does not depend on the confounders,
this extension of the benchmark method seems natural because it corresponds to doing an
ordinary benchmark calculation for each combination of the confounder values (with the
same prespecified Py for each combination). An alternative approach would have been to
fix only one (confounder independent) cut-off value and to define the BMD as the dose
causing a certain increased risk of exceeding this level. It is easily seen from (3) that even
in a model assuming no effect modification this approach would yield covariate-dependent
BMDs. Thus, this covariate dependence is solely a consequence of not taking into account
differences in response level between unexposed subjects with different covariate profiles
when defining the abnormal response level.

However, application of the benchmark method to epidemiological data may be proble-
matic, because the definition of BMD is dependent on the response level of unexposed
subjects. When an unexposed control group is not available, the unexposed response
level is determined by extrapolation, thereby making the benchmark result sensitive to
the selection of dose-response model. In addition, many response variables are noisy. In
the Faroese data, about 80% of the variation in the test scores on the Boston Naming
Test could not be explained by known predictors. A consequence of this noise is a lim-
ited power to distinguish between dose-response functions that have relatively different
(concave/convex) curve shapes in the observed dose-range (and therefore might be very
different at zero dose). Thus, even though the models considered may yield very differ-
ent BMDLs, they may fit the data almost equally well. In the relatively large Faroese
study, the model dependence had serious consequences: BMDLs from the linear and the
logarithmic dose-response models differed by a factor between 10 to 30, depending on the
selected BMR. For smaller studies, the model dependence will probably be even greater.

On the subject of extrapolation and model dependence, the standard advice is (Crump,
1995): The BMR is typically set at the lower end of the range that can be detected
experimentally, in order to avoid uncertainties associated with low-dose extrapolation using
models that may not reflect biological realities. This statement assumes the existence of a
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dose range in which the estimated excess response curves (d — f{d} — f{0}) run closely
together. Such a range may exist for the dose-response curves (d — f{d}) However, as a
result of the translation given by the differences in the estimated unexposed response level
(as determined by extrapolation), the excess response curves may be very different in the
whole dose-range, yielding highly model-dependent results.

The calculations presented in this paper emphasize that the benchmark approach is useful
to derive guidance from epidemiological data for the purpose of defining safe exposures
to toxic compounds, such as mercury. However, the uncertainties inherent in such data
may have severe implications for some calculations of benchmark doses. Benchmark cal-
culations are no more precise than the data that they are based upon. The benchmark
calculations are also likely to show substantial dependence on choices of default parameters
and default dose-response models. Ideally, these choices should be based on appropriate
medical considerations, rather than on tradition. When limited information is available to
guide the choice of conditions for the calculations, benchmark doses should therefore be
calculated for a variety of relevant settings. Presentation of such results should stimulate
discussions on the health implications associated with different model choices, and they
should hopefully inspire further research in the field of dose-response curve modeling.
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