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1Benchmark Dose Calculation fromEpidemiological DataEsben Budtz-Jørgensen,1;? Niels Keiding,1 and Philippe Grandjean21Department of Biostatistics, University of CopenhagenBlegdamsvej 3, DK-2200 Copenhagen N, Denmark.2Institute of Public Health, University of Southern DenmarkWinslowparken 17, DK-5000 Odense C, Denmark.?email: ebj@biostat.ku.dkSummary. A threshold for dose-dependent toxicity is crucial for standards setting, butmay not be possible to specify from empirical studies. Crump (1984) instead proposed tocalculate the lower statistical con�dence bound of the benchmark dose, which he de�nedas the dose that causes a small excess risk. This concept has several advantages and hasbeen adopted by regulatory agencies for establishing safe exposure limits for toxic sub-stances such as mercury. We have examined the validity of this method as applied to anepidemiological study of continuous response data associated with mercury exposure. Formodels that are linear in the parameters we derived an approximative expression for thelower con�dence bound of the benchmark dose. We �nd that the benchmark calculationsare highly dependent upon the choice of the dose-e�ect function and the de�nition of thebenchmark dose. We therefore recommend that several sets of biologically relevant defaultsettings be used to illustrate the e�ect on the benchmark results and to stimulate researchthat will guide an a priori choice of proper default settings.Key words: Con�dence limits; Environmental epidemiology; Exposure standards; Modeldependence; Multiple regression.1 IntroductionWhen regulatory agencies produce exposure limits, the decisions are based on availabledocumentation on adverse e�ects of the chemical in question (WHO, 1994). As thresholdsmay be di�cult to derive from empirical studies, the benchmark dose (BMD) (Crump,1984, 1995) has been de�ned as the dose of a toxic compound which increases the prob-ability of an abnormal response by a benchmark response (BMR), i.e., from P0 for anunexposed subject to P0+BMR for a subject at the BMD. The BMDL is a statisticallower con�dence limit of the BMD. An advantage of this approach is that it takes intoconsideration both biological variation and statistical uncertainty.



2The benchmark method is applicable to both categorical and continuous exposure data,including epidemiological data that may involve a continuous exposure scale, a gradedresponse parameter, and potential confounding e�ects of covariates. Most recently, theReference Dose for methylmercury of the U.S. Environmental Protection Agency (EPA)was based on benchmark calculations, and a National Academy of Sciences (NAS) com-mittee reviewed and approved the methodology (2000).The benchmark calculations depend on the default settings for several parameters: A 10%BMR has been proposed for animal experiments on developmental toxicity (Allen et al.,1994). However, a BMR of 5% was used by EPA and NAS, because it corresponds to adoubling of the prevalence of a pathological response, P0, which was de�ned as 5%. Asdose-response function, the EPA (1997) used the average for the polynomial and Weibullmodels for dichotomous methylmercury e�ects, while for continuous responses, the NAScommittee (2000) chose a power function.The present paper provides a systematical statistical discussion of the benchmark approachas applied in environmental epidemiology. As our example, we use data from a largeepidemiological study performed on the Faroe Islands to investigate the health e�ects ofprenatal mercury exposure. This study was identi�ed by the NAS committee (2000) asthe critical epidemiological study of mercury toxicity. In adapting the original benchmarkconcept, the method must be extended to allow confounder correction. An approximativeexpression for the BMDL in linear models is derived, and the model dependence of thebenchmark approach is investigated. Approximative con�dence limits for the excess risk ata given dose are derived, and BMDL calculation in more complex linear models is discussedin regard to the wider applicability of this approach.2 The Faroese Mercury StudyMethylmercury is a common contaminant in seafood and freshwater �sh. While adversee�ects have been unequivocally demonstrated in poisoning incidents, the implications oflower-level exposures in �sh eating populations have been controversial (Grandjean, 1999).This issue was therefore explored in a birth cohort of 1022 children from the Faroe Islands.Information about the children's prenatal exposure was obtained by measuring the mercuryconcentrations in maternal hair at parturition and in cord blood. The latter biomarkerwas thought to be the best indicator of the amount of the neurotoxicant that had reachedthe fetal circulation. Because the e�ects of fetal exposure to methylmercury are persistent,the children underwent a detailed neuropsychological examination, at age 7 years, whenadvanced neurobehavioral testing would be feasible. We shall use as an example the BostonNaming Test, a cognitive task re�ecting language ability. This test was also used by theNAS committee (2000) to calculate benchmark doses. In this test the child is presentedwith drawings of objects, which the child has to name. As test score we use the number



3of objects that the child failed to identify. Because of the large number of drawingsand because on average about half of these drawings are identi�ed the distribution ofthis outcome variable, given important predictors, is approximately normal. In multipleregression analysis Grandjean et al. (1997) estimated that a 10-fold increase in the cordblood mercury concentration causes a test score de�cit of about 1.9 points (p<0.0001).3 The Benchmark Approach for Experimental DataThe benchmark concept was �rst developed for standardized experimental dichotomous(normal/abnormal) responses (Crump, 1984), and was later extended to also cover con-tinuous response data (Crump, 1995), which we shall consider. Let Y (d) denote the re-sponse of a subject at exposure d. Large responses are assumed to be disadvantageous.The de�nition of the benchmark dose (BMD) is speci�c to a dose-response model. In thissection only models of the following form will be consideredY (d) = f(d) + �;where � � N(0; �2), that is, at a given dose d the response is assumed to be normallydistributed with mean given by the dose-response function f and standard deviation �. Thedose-response function is monotone and may depend on known and unknown parameters.For example, Crump (1984, 1995) suggested a family of power functions, the so-calledK-power model: f(d) = �0 + �dK, where �0; � and K � 1 are parameters to be estimatedfrom the data.To de�ne the BMD it is necessary to specify the abnormal performance. For continuousdata, a cut-o� level (x0) can be speci�ed above which all responses are considered abnormal.The probability of an abnormal response in an unexposed subject is thenP0 = PfY (0) > x0g = 1� �fx0 � f(0)� g; (1)where � is the standard cumulative normal distribution function. Rather than specifyingx0 directly one can also specify the percentage of unexposed subjects whose responses areconsidered abnormal, i.e. P0, x0 can then be calculated by applying equation (1). OftenP0 is set at 5%. The BMD is de�ned as the dose that results in an increased probabilityof an abnormal test performance by a benchmark response (BMR), i.e., the BMD satis�esPfY (BMD) > x0g � P0 = BMR. Figure 1 gives a graphical illustration of the BMDde�nition.The BMDL is calculated as the statistical 95% lower (one-sided) con�dence bound of theBMD. In this way the power of the study is taken into account. The less the precision thelower the BMDL.



4The BMR is often set at 5% so that the corresponding BMD will double the risk of anabnormal response, given that P0 is 5% (NAS, 2000). Everything else being equal, lowerBMRs will result in lower BMDs.

Figure 1: Hypothetical dose-response relation illustrating the concepts of benchmark ap-proach. The dose-response curve indicates that when the dose increases so does the expec-ted response. The distribution of responses in unexposed subjects is shown on the y-axis.Responses above the prespeci�ed x0 are considered abnormal. The risk of an abnormalresponse in unexposed subjects is P0 indicated by the shaded area. At the BMD theresponse distribution has been translated upward and the risk of an abnormal responsehas increased to P0+BMR. The BMDL is placed somewhere between 0 and the estimatedBMD depending on the amount of information in the study.



54 The Benchmark Approach in Observational StudiesObservational studies usually do not include a control group completely free of exposure,the exposures are distributed continuously, and the response variable is in�uenced byconfounders in addition to the exposure of interest. Therefore, let Y (d; c1; :::; ck) denotethe response of a subject at exposure d and with confounder values c1; :::; ck. We �rstassume that the dependence of the response on the exposure and the confounders can bemodeled using a multivariate additive modelY (d; c1; : : : ; ck) = f(d) + h(c1; c2; : : : ; ck) + �; (2)where � � N(0; �2) and h is any real valued function typically depending on unknownparameters. The question now is how to de�ne the BMD in the presence of the con-founders. Still the main idea is that the BMD is the dose that increases the probabilityof an abnormal response by a prespeci�ed amount (BMR), i.e., PfY (BMD; c1; :::; ck) >x0g � PfY (0; c1; :::; ck) > x0g = BMR. Using the additivity of the model it is easily seenthat this statement is equivalent toff(BMD)� f(0)g=� =��1[1� PfY (0; c1; : : : ; ck) > x0g]� ��1[1� PfY (0; c1; : : : ; ck) > x0g � BMR]: (3)In the extended benchmark method the level of abnormal test performance x0 is speci�edsuch that all unexposed subjects have the same (prespeci�ed) risk P0 of an abnormalresponse, i.e. PfY (0; c1; :::; ck) > x0g = P0 for all c1; :::; ck. Using this de�nition, thecorresponding BMD (and BMDL) will not depend on the confounders, as can be seenfrom equation (3), and exposure to the BMD causes the risk of an abnormal response toincrease from P0 to P0+BMR. An interpretation in terms of expected test performance isgiven by equation (3): For each subject the BMD increases the expected response by aprespeci�ed multiple 
 = ��1(1� P0)� ��1(1� P0 � BMR) of the standard deviation �of the random response component.The main change when extending the benchmark method to epidemiological data is there-fore to let the de�nition of an abnormal response depend on the confounders. If for instanceP0 is set at 5%, then the response of a given subject is considered abnormal if it is abovethe 95th percentile in the distribution of responses from unexposed subjects with the samevalues on the confounders as the subject at hand. Although not quite explicitly stated,a similar approach seems to have been used by Crump et al. (1998, 2000). In multiplelinear regression Bailer et al. (1997) de�ned the absolute exposure concentration as thedose causing the expected test score to increase � response units compared to unexposedsubjects with the same confounder pro�le. This de�nition corresponds to a benchmarkdose with P0 = 1� �(�=�) and BMR=0:5� P0.



65 BMDLs in Models Linear in the ParametersIn models which depend linearly on the unknown parameters, it is possible to obtain closedexpressions for the BMD as well as approximative expressions for the BMDL. Considerthe model Y (d; c1; : : : ; ck) = �0 + �g(d) + �1c1 + : : :+ �kck + �; (4)where � � N(0; �2). The function g (which is assumed known) is increasing and g(0) = 0.Crump (1995) required that g0(0) <1 from the point of view that dose-response functionswith an in�nite slope at zero dose are not biologically plausible.The BMD is determined by solving equation (3), yielding:BMD = � 1 if � � 0g�1(
�� ) if � > 0where 
 = ��1(1� P0)� ��1(1� P0 � BMR). Note that if � � 0 there is no solution toequation (3) since an increasing dose will not increase the expected response. A naturalway to estimate the BMD is to substitute the unknown parameters in the BMD expressionby estimates: dBMD = ( 1 if b� � 0g�1(
b�b� ) if b� > 0This estimator is consistent but clearly biased (Ef dBMDg = 1). However, this bias is ofminor concern if (as is usually the case) the main aim of the benchmark analysis is tocalculate a lower con�dence limit of the BMD.5.1 BMDL calculationThere are several ways to calculate the con�dence limits, in particular Crump (1984, 1995)suggested likelihood-based limits for the BMDL calculation. Here the lower 95% con�dencelimit is approximated by the 5th percentile in the estimated distribution of dBMD. Thismethod is preferred since it yields a closed expression for the BMDL.The 5th percentile (
) in the distribution of dBMD is approximated. We assume as abovethat large values are detrimental and �rst consider the likely case where P (b� > 0)> 5%.In this case 
 is �nite and satis�es Pfg�1(
b�=b�) � 
; b� > 0g = 5% which can easily berewritten as Pfpvb�=b� � 
pv=g(
)g = 95%, where v is the amount information on theexposure parameter, e.g., for simple linear regression with n observations v = �ni=1(di� �d)2.



7The random variable pvb�=b� has a noncentral t-distribution with df degrees of freedomand noncentrality parameter pv�=�. According to Johnson and Welch (1939), the 95thpercentile in this distribution can be approximated byp95 = pv� + u95p�2 + (c�2 � u295�2)=2df�(1� u295=2df) ; (5)where u95 � 1:645 is the 95th percentile in the standard normal distribution. Thusp95 � 
pv=g(
) which means that 
 � g�1(
pv=p95): In the rare situation of a stronglybene�cial substance with � < �u95�=pv, equivalent to P (b� > 0) < 5%, the probability ofan �nite BMD estimate is below 5% and 
 =1.The lower 95% con�dence bound on the BMD used here is the 5th percentile in theestimated distribution of the dBMD, which is obtained simply by substituting estimates forthe unknown parameters in the expression for 
BMDL = ( 1 if t = pvb�=b� � �u95g�1f 
b�(1�u295=2df)b�+u95dSE(b�)p1+(t2�u295)=2df g if t = pvb�=b� > �u95 (6)where cSE(b�) = b�=pv is the estimated standard deviation of b�.It is seen that BMDL is easily obtained from standard multiple regression output. Notealso that for an increasing number of the degrees of freedom the BMDL as approximatedby (6) approaches (from below) the crude approximative con�dence limit obtained byassuming that the residual variance is known, i.e. BMDL = g�1[
b�=fb� + u95 � cSE(b�)g]if t = pvb�=b� > �u95. Thus, the terms (1 � u295=2df) and p1 + (t2 � u295)=2df can beinterpreted as correcting for the uncertainty in b�.The BMDL decreases as a function of the estimated exposure e�ect (b�) and increases asa function of exposure parameter information (v) and BMR. An increase in the randomresponse variation (b�2) has two opposing e�ects. On one hand the BMDL is lowered asa result of increased estimation uncertainty. On the other hand the response distributionbecomes more dispersed which will lead to a higher dBMD because the same increase inexpected test performance will correspond to a smaller increase in the risk of an abnormalresponse. When b� > 0 the latter e�ect is the stronger so that the BMDL increases asa function of b�2. Thus, if a strong predictor of the response which is not related to theexposure is excluded from the set of independent variables then a higher BMDL is obtained.5.2 Dichotomous response dataThe extended benchmark method cannot be used directly for 0/1-responses if confoundingis present. For such data a response is abnormal simply if it is 1, so the parameter x0 is not



8available. This means that the probability of an abnormal response in unexposed subjectswill depend on the confounder values and so will the BMD (Bailer et al., 1997). However,for logistic regression models (logit[PfY (d; c1; :::; ck) = 1g] = �0+�g(d)+�1c1+ :::+�kck)it seems obvious to de�ne the BMD as the dose resulting in a prespeci�ed proportionalincrease (BMR) in the odds for an abnormal response, i.e.,PfY (BMD; c1; : : : ; ck) = 1g=[1� PfY (BMD; c1 : : : ; ck) = 1g]PfY (0; c1; : : : ; ck) = 1g=[1� PfY (0; c1; : : : ; ck) = 1g] = BMR: (7)Solving (7) for BMD, yields BMD = g�1flog(BMR)=�g if � > 0, independent of confoundervalues. The BMDL is obtained using the approach described above and the asymptoticnormality of b�, as BMDL=g�1[log(BMR)=fb� + u95cSE(b�)g] if b� > �u95cSE(b�). Alho andValtonen (1995) derived an algorithm giving likelihood based con�dence limits on the dosecausing a prespeci�ed increase in the linear predictor in generalized linear models withknown scale parameter.6 Model Dependence of BMDL and BMDTo study the model dependence of the benchmark approach BMDL-values are compared fora linear model i.e. g(d) = d, and a power model i.e. g(d) = d�, where � is a known positivenumber. For simplicity it is assumed that no covariates are present and that the exposurevariable d follows a logarithmically normal distribution with parameters [Eflog(d)g =�; varflog(d)g = � 2]. These assumptions yield a parametric expression for the exposureparameter information v = �ni=1fg(di) � g(d)g2 � n � varfg(d)g = n � fexp(�2� 2) � 1g �exp(�2� 2 + 2��).Model dependence is especially a problem if two models describing the data almost equallywell yield very di�erent estimates of the parameter of interest. If the linear model and thepower model explain about the same percentage of the response variation, the exposuret-statistics (pvb�=b�) in the two models will be approximately equal. Thus, using the crudeapproximative expression (section 5.1), the ratio between BMDLs from the linear modeland the power model becomesBMDL1BMDL� �s fexp(� 2)� 1g � exp(� 2)[fexp(�2� 2)� 1g � exp(�2� 2)] 1� � (t + u95pn
 ) 1��1;where t denotes the mutual level of the two test statistics. This ratio is 1 when � = 1 andcan be shown to decrease monotonically as a function of � unless 
 > 5:63�(t+u95)=pn. Soexcept when BMR is high, the lower the � the lower the BMDL. Furthermore, it is seenthat the BMDL model dependence becomes stronger for more signi�cant dose-responserelations and for lower BMRs. As BMR decreases toward zero this ratio increases beyond



9all bounds or decreases toward 0 depending on whether � is below or above 1. In Figure2 the ratio as a function of � is shown for selected values of the other parameters.

Figure 2: Ratio between the BMDL of the linear dose-response model and the BMDL ofa power function model with known power parameter. This ratio is shown as a functionof the power parameter for BMR=2, 5 or 10% and P0 = 5%, n = 100, t = 2:00, � 2 = 1:00.Model dependence is reduced if dose-response functions with in�nite slope at zero doseare avoided. Using two di�erent dose-response functions f1 and f2, not necessarily lin-ear in the parameters but with �nite positive slope at zero dose, it is easily shown thatdBMDf1= dBMDf2 ! f 02(0) b�f1 =f 01(0) b�f2 for BMR! 0; where b�f1 and b�f2 are the estimatedstandard deviations of the random response component assuming f1 and f2, respectively.Thus, the ratio between dBMDs estimated in di�erent models stays bounded even as theBMR approaches zero.



107 BMDLs in More Complex Dose-Response ModelsUnder the model assumptions (2) the excess risk of an abnormal response at dose d isER(d) = PfY (d; c1; :::; cn) > x0g � PfY (0; c1; :::; cn) > x0g (8)= 1� �[��1(1� P0) + ff(0)� f(d)g=�]� P0 (9)It is noticed that this increase in risk is the same for all confounder values. Under the linearmodels (4) the above expression simpli�es to ER(d) = 1��f��1(1�P0)�� �g(d)=�g�P0,which is consistently estimated by substituting the unknown parameters by their estimates.An upper 95% con�dence limit on ER(d) is obtained by again exploiting that pvb�=b� hasa noncentral t-distribution, yielding ER(d)95 = 1 � P0 � �f��1(1 � P0) � cp95g(d)=pvgwhere cp95 is obtained from (5) substituting parameters by estimates.Also notice, that since the risk of an abnormal response at dose d (Pfdg) does not dependon the confounders ordinary dichotomous data dose-response functions for P (d) may beapplied by specifying f(d) accordingly: P (d) = q(d) if f(d) = f(0) + ���1(1 � P0) ����1f1 � q(d)g: For responses with no confounding this correspondence between dose-response models for continuous and dichotomous data in the benchmark approach wasnoted by Crump (1995). The present generalization depends on the confounders enteringthe model in an additive fashion.In section 5 an approximative expression for BMDLs was obtained in linear models wherethe dependence of the expected response on the exposure is described by a single term:� �g(d). Although these models are quite �exible they may not always su�ce. For example,the exposure e�ect may depend on the level of an e�ect modi�er. Within the set of linearmodels more complex dose-response relations can be modeled by increasing the number ofterms depending on the dose. Ordinary polynomials and fractional polynomials (Roystonand Altman, 1994) are well known examples of functions having multiple terms. In thesemodels it may not be possible to derive a closed expression for the BMD. However, uppercon�dence limits on the excess risk at exposure d (9) can be determined exactly as describedabove since f bf(0)� bf (d)g=b� has a (scaled) noncentral t-distribution. The BMDL can thenbe determined by solving the equation ER(d)95 =BMR in d. In the presence of e�ectmodi�cation both the BMD and the BMDL will depend on level of the e�ect modi�er,re�ecting that not all subjects are equally sensitive.Furthermore, the benchmark approach can easily be extended to models where the residualvariance is proportional to a known increasing function of the exposure dose. In linearmodels it will be possible to derive expressions for BMDs and BMDLs using the methodsdescribed above.



118 Application of Benchmark CalculationsPrevious analyses of mercury toxicity used data from studies carried out in Iraq (Crumpet al., 1995), New Zealand (Crump et al., 1998) and the Seychelles (Crump et al., 2000).In these studies the K-power model was used for the dependence of a child's test score onthe mercury dose, yielding only convex dose-response functions. To make our results ascomparable as possible to those results, we have used the same model. However, as thedose-e�ect could also be concave within some dose ranges other functions were also appro-priate. To illustrate model dependence, dBMDs and BMDLs were therefore also calculatedfor a linear model (gfdg = d), a square root model (gfdg = pd+ 1� 1) and a logarithmicmodel (gfdg = logfd + 1g). None of the dose-response curves considered has an in�niteslope at zero dose. Confounder adjustment is carried out as indicated above using thesame set of confounders which was identi�ed in Grandjean et al. (1997).In the K-power model the BMD is given as (
�=�)1=K , which is estimated by substitutingparameters by estimates (obtained using the SAS procedure NLIN). With unknown K thismodel is not linear in the parameters, so the theory described in section 5 does not ap-ply. Instead, the BMDL is calculated using the parametric bootstrap method (Efron andTibshirani, 1993). Again, the lower con�dence limit of the BMD is approximated by the5th percentile in the estimated distribution of dBMD, but here this percentile is determinedby simulating 2000 new data sets from the estimated distribution of the original data.Each data set has covariate values identical to the values of the original data whereas theresponse is given by the function of the covariates estimated in the original data plus arandom normal error with variance b�2. After each simulation, the BMD is estimated, andthe BMDL is then determined as the 5th percentile in the empirical distribution of theestimates. Table 1dBMDs and BMDLs (�g=l) calculated for the cord blood mercury concentration fordi�erent BMRs and P0 = 5%. Further, �2�log(L) indicates minus twice the log of thelikelihood function, while t is the usual test statistic for no e�ect of the exposure.BMR=0.02 BMR=0.05 BMR=0.10Model �2�log(L) t dBMD BMDL dBMD BMDL dBMD BMDLK-power a 7793.72 - 39.55 28.73 84.98 61.22 142.32 102.22Linear 7793.72 3.49 39.55 26.81 84.98 57.61 142.32 96.49Square Root 7790.84 3.89 11.55 6.73 40.78 22.30 102.03 53.91Logarithmic 7790.42 3.94 1.55 0.93 6.46 3.11 27.94 9.67a bK =1.



12Table 2dBMDs and BMDLs (�g=g) calculated for the maternal hair mercury concentration fordi�erent BMRs and P0 = 5%. Further, �2�log(L) indicates minus twice the log of thelikelihood function, while t is the usual test statistic for no e�ect of the exposure.BMR=0.02 BMR=0.05 BMR=0.10Model �2�log(L) t dBMD BMDL dBMD BMDL dBMD BMDLK-power a 8021.66 - 7.08 4.79 15.22 10.02 25.49 16.69Linear 8021.66 2.90 7.08 4.51 15.22 9.69 25.49 16.22Square Root 8021.71 2.89 4.03 2.20 12.48 6.28 28.95 13.77Logarithmic 8022.58 2.73 1.83 0.91 8.35 3.03 41.27 9.30a bK =1.Tables 1 and 2 give estimated BMDs and BMDLs for mercury exposure expressed as thecord blood concentration and the maternal hair concentration, respectively.For both exposure variables, the power parameter in the K-power model is estimated to1, thus yielding a linear model. This means that the dBMD of the K-power model is equalto that of the linear model, but the BMDLs are slightly di�erent because of the additionalparameter estimated in the K-power model and because of simulation uncertainty.The �ts of the linear, the square root and the logarithmic models were compared in pairs.Each model in a given pair was tested against an expanded model that included bothmodels. A high p-value in this test indicates that the model at hand does not �t the datasigni�cantly worse than the expanded model. For all pairs, the expanded model �ttedthe data only slightly better than the best of the models in the pair. This means thatthe models can be compared simply by calculating their �2 log(L)-di�erence and thenjudging this value from a �21-table. For the cord blood mercury, there is no di�erencebetween the �t of the logarithmic and the square root model, but both of these modelsare marginally signi�cantly better than the linear model (p = 6% � 8%). For the hairmercury results, the data do not allow a judgment as to which model is the best. The �tof the K-power model cannot be compared to the rest of the models by formal asymptoticlikelihood testing, because this model has estimates on the boundary of the parameterspace ( bK = 1). However, as the K-power model gives the same �t as the linear model buthas one more (redundant) parameter, at best this model can be considered only as goodas the linear model.The BMDLs for the cord blood mercury exhibit a substantial variation across the models,with the logarithmic model giving the lowest results. For BMR=2% the BMDL of thelogarithmic model and the linear model di�er by a factor of almost 30, while for BMR=10%this factor has dropped to about 10. Also, the results for the square root model are



13considerably higher than for the logarithmic model, although the di�erence in �t betweenthese two models was far from signi�cant. Since the model uncertainty is larger andthe mercury e�ect weaker when using the maternal hair concentration as the exposurevariable it is no surprise that the observed model dependence of the BMDL is weaker.Again, the logarithmic model yields the lowest results, while the linear model yields thehighest. However, the ratio of the results is now only about 5 for BMR=2% and 1.7 forBMR=10%.The square root and the logarithmic models obviously depend on the choice of scale ofthe dose, which de�nes the meaning of the constant 1 in these models. We �nd (data notshown) that the lower the constant the lower the BMDL. However, the BMDLs of a squareroot model without adding a constant (gfdg = pd) were still not as low as the results ofthe logarithmic model (with constant 1).In Figure 3, the model dependence for the cord blood concentration is illustrated graph-ically. For each model the estimated expected excess response due to mercury exposure isshown as a function of the mercury dose (d! bffdg� bff0g). The BMD is the dose whichcauses a certain level of excess response, i.e: f(BMD)� f(0) = 
�. Since the estimates of� are approximately the same in all the models, the dBMDs can (approximately) be foundas the intersections between the excess response curves and the same horizontal line. Thecurves are clearly di�erent: although 95% of the observations have a mercury concentrationbetween 5 and 80 �g/l, the logarithmic curve is far above the linear dose-response curveacross this range. It may seem strange that there is not enough information in the datafrom almost 1000 children to determine which of these curves is the best. However, thecurves shown are not the estimated dose-response functions (d ! bffdg) which are muchcloser across the actual dose range and intersect twice. The excess response curves di�ermore because of the large di�erences in the estimated response level of unexposed children( bff0g), determined by extrapolation. Compared to a convex curve (the linear) a concavedose-response curve (the logarithmic) will give a lower unexposed response level, a higherslope at low doses and a lower slope at high doses. Thus, at low BMRs the correspondingconcave excess response curve will yield lower dBMDs and BMDLs. At a certain BMR theexcess response curves meet, yielding identical dBMDs. However, the BMDL of the concavecurve will still be lower because the concave curve is not as steep as convex one when thetwo curves meet. Thus, the point of intersection with the horizontal line is more uncertainfor the concave curve, thereby giving wider BMD-con�dence bands. An example of thisis seen in Table 2: For BMR=10% the logarithmic dBMD is higher than the linear dBMDwhile the opposite relation is seen for the BMDLs.
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Figure 3: For each model the estimated expected excess response due to mercury exposureis shown as a function of the mercury dose (d! bf(d)� bf (0)). The BMD is the dose whichcauses a certain level of excess response given as a multiple of the standard deviation ofthe random response component, i.e: f(BMD)� f(0) = 
�. Since the estimates of � areapproximately the same in all the models, the dBMDs can (approximately) be found asthe intersections between the excess response curves and the same horizontal line. Linescorresponding to P0 = 5% and BMR=5%; 10% are indicated on the graph.8.1 Validity of Con�dence LimitsExcept for the K-power model, all BMDL-values are calculated using the formula (6). Thevalidity of these con�dence limits was investigated by simulations. For each model, onemillion data sets was simulated from the estimated distribution of the original data. Aftereach simulation the BMDL was calculated and then compared to the known BMD. Table3 shows the empirical coverage probability. For all models and both exposure variables,



15the coverage probability is very close to the nominal value of 95%.Table 3Empirical coverage probability in percent of BMDL in 1.000.000 simulations from theestimated distribution of the response variable in the Faroese data. The standarddeviation of the estimated coverage probability is 0.022%.Dose-Response ModelLinear Square Root LogarithmicBlood Mercury 95.0426 95.1036 95.0404Hair Mercury 94.9921 95.0493 95.0089For each of the models the set of observations satisfying that the BMDL is less than theBMD is independent of the prespeci�ed parameters P0 and BMR. This means that thecoverage probability of the BMDL is the same for all combinations of P0 and BMR.9 DiscussionStatistical methods for determination of safe dose levels have largely been aimed at beingused for dichotomous responses from animal experiments (WHO, 1994). For more com-plex epidemiological data the extended benchmark method can be applied with certainreservations.The closed approximative expression for the BMDL will facilitate future calculations andimprove understanding of the benchmark approach. Kodell and West (1993) derived a re-lated method for BMDL calculation in an experimental setting also based on the noncentralt-distribution. However, this method is iterative and does not provide a closed expressionfor the BMDL. Furthermore, Johnson and Welch (1939) showed that the approximationto the noncentral t-distribution used here is superior to the one used by Kodell and West.A priori speci�cation of P0 and BMR is a fundamental di�culty in the benchmark ap-proach. Ideally, these speci�cations should be based on biological considerations. However,often the biological understanding of the mechanism under consideration is inadequate andinstead it seems that a P0 of 5% and a BMR of 5% or 10% have somewhat arbitrarily beenchosen as the default values (EPA, 1997; Crump et al., 1998, 2000; NAS, 2000). Theresults of the Faroese study clearly underline that the choice of BMR is critical: both forthe square root model and the logarithmic model did the cord blood results increase by afactor of about 10 when the BMR was changed from 2% to 10% and P0 was �xed at 5%.The less critical sensitivity of the BMDL to speci�cation of P0 has been investigated inadditional calculations (data not shown). When P0 was increased from 5% to 16%, cord



16blood BMDLs decreased by 40% to 70%. When deciding whether a given set of values forP0 and BMR corresponds to a biologically signi�cant e�ect for a given endpoint it mightbe helpful to calculate 
�b�, which is the expected excess response of a subject at the BMD.Figure 3 shows that a P0 and a BMR of 5% corresponds to an expected excess responseof about 1.8 points on the Boston Naming Test, while the expected score is increased byapproximately 3 points at the BMD if the BMR is changed to 10%. The implications ofsuch e�ects should be considered from a neurological viewpoint.In the extended method, the cut-o� x0 separating an abnormal response from a normal oneis not constant but is calculated such that, for all unexposed subjects, the risk of an abnor-mal response is equal to a prespeci�ed amount P0. In accordance with the original method,the BMD is de�ned as the dose which increases the risk from P0 to P0+BMR. In additionto being mathematically convenient in that the result does not depend on the confounders,this extension of the benchmark method seems natural because it corresponds to doing anordinary benchmark calculation for each combination of the confounder values (with thesame prespeci�ed P0 for each combination). An alternative approach would have been to�x only one (confounder independent) cut-o� value and to de�ne the BMD as the dosecausing a certain increased risk of exceeding this level. It is easily seen from (3) that evenin a model assuming no e�ect modi�cation this approach would yield covariate-dependentBMDs. Thus, this covariate dependence is solely a consequence of not taking into accountdi�erences in response level between unexposed subjects with di�erent covariate pro�leswhen de�ning the abnormal response level.However, application of the benchmark method to epidemiological data may be proble-matic, because the de�nition of BMD is dependent on the response level of unexposedsubjects. When an unexposed control group is not available, the unexposed responselevel is determined by extrapolation, thereby making the benchmark result sensitive tothe selection of dose-response model. In addition, many response variables are noisy. Inthe Faroese data, about 80% of the variation in the test scores on the Boston NamingTest could not be explained by known predictors. A consequence of this noise is a lim-ited power to distinguish between dose-response functions that have relatively di�erent(concave/convex) curve shapes in the observed dose-range (and therefore might be verydi�erent at zero dose). Thus, even though the models considered may yield very di�er-ent BMDLs, they may �t the data almost equally well. In the relatively large Faroesestudy, the model dependence had serious consequences: BMDLs from the linear and thelogarithmic dose-response models di�ered by a factor between 10 to 30, depending on theselected BMR. For smaller studies, the model dependence will probably be even greater.On the subject of extrapolation and model dependence, the standard advice is (Crump,1995): The BMR is typically set at the lower end of the range that can be detectedexperimentally, in order to avoid uncertainties associated with low-dose extrapolation usingmodels that may not re�ect biological realities. This statement assumes the existence of a



17dose range in which the estimated excess response curves (d ! bffdg � bff0g) run closelytogether. Such a range may exist for the dose-response curves (d! bffdg). However, as aresult of the translation given by the di�erences in the estimated unexposed response level(as determined by extrapolation), the excess response curves may be very di�erent in thewhole dose-range, yielding highly model-dependent results.The calculations presented in this paper emphasize that the benchmark approach is usefulto derive guidance from epidemiological data for the purpose of de�ning safe exposuresto toxic compounds, such as mercury. However, the uncertainties inherent in such datamay have severe implications for some calculations of benchmark doses. Benchmark cal-culations are no more precise than the data that they are based upon. The benchmarkcalculations are also likely to show substantial dependence on choices of default parametersand default dose-response models. Ideally, these choices should be based on appropriatemedical considerations, rather than on tradition. When limited information is available toguide the choice of conditions for the calculations, benchmark doses should therefore becalculated for a variety of relevant settings. Presentation of such results should stimulatediscussions on the health implications associated with di�erent model choices, and theyshould hopefully inspire further research in the �eld of dose-response curve modeling.AcknowledgementsThe authors are grateful to Dr. Pal Weihe for allowing us to use data from the Faroesecohort. This study was supported by grants from the National Institute of EnvironmentalHealth Sciences (ES06112 and ES09797), the U.S.Environmental Protection Agency (9W-0262-NAEX), the European Commission (Environment Research Programme), the DanishMedical Research Council, and the Danish Health Insurance Foundation. We thank JørgenHilden, the editors and referees for helpful comments.ReferencesAlho, J.M. and Valtonen, E. (1995). Interval estimation of inverse dose-response. Biomet-rics 51, 491-501.Allen, B.C., Kavlock, R.J., Kimmel, C.A. and Faustman, E.M. (1994). Dose-responseassessment for developmental toxicity. II. Comparison of generic benchmark doseestimates with no observed e�ect levels. Fundamental and Applied Toxicology 23,487-495.Bailer, A.J., Stayner, L.T., Smith, R.J., Kuempel, E.D. and Prince, M.M. (1997). Esti-mating benchmark concentrations and other noncancer endpoints in epidemiologystudies. Risk Analysis 17, 771-780.Crump, K. (1984). A new method for determining allowable daily intakes. Fundamentaland Applied Toxicology 4, 854-871.



18Crump, K. (1995). Calculations of benchmark doses from continuous data. Risk Analysis15, 79-89.Crump, K., Kjellstrøm, T., Shipp, A.M., Silvers, A. and Stewart, A. (1998). In�uenceof prenatal mercury exposure upon scholastic and psychological test performance:Benchmark analysis of a New Zealand cohort. Risk Analysis 18, 701-713.Crump, K., Van Landingham, C., Shamlaye, C., Cox, C., Davidson, P.W., Myers, G.J.and Clarkson, T.W. (2000). Benchmark concentrations for methylmercury obtainedfrom the Seychelles Child Development Study. Environmental Health Perspectives108, 257-263.Crump, K., Viren, J., Silvers, A., Clewel, H. III, Gearhart, J. and Shipp, A. (1995).Reanalysis of dose-response data from the Iraqi methylmercury poisoning episode.Risk Analysis 15, 523-532.Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. London: Chap-man & Hall.Environmental Protection Agency (EPA) (1997). Mercury Study Report to Congress.Washington, D.C.: U.S. Environmental Protection Agency.Grandjean, P. (1999). Mercury risks: Controversy or just uncertainty? Public HealthReports 114, 512-515.Grandjean, P., Weihe, P., White, R.F., Debes, F., Araki, S., Yokoyama, K., Murata, K.,Sørensen, N., Dahl, R. and Jørgensen, P.J. (1997). Cognitive de�cit in 7-year-oldchildren with prenatal exposure to methylmercury. Neurotoxicology and Teratology19, 417-428.International Programme on Chemical Safety (1994). Assessing Human Health Risks ofChemicals: Derivation of Guidance Values for Health-Based Exposure Limits. Envir-onmental Health Criteria 170. Geneva: World Health Organization.Johnson, N.L. and Welch, B.L. (1939). Applications of the noncentral t-distribution.Biometrika 31, 362-389.Kodell, R.L. andWest, R.W. (1993). Upper con�dence limits on excess risk for quantitativeresponses. Risk Analysis 13, 177-182.National Academy of Sciences (NAS) (2000). Toxicological E�ects of Methylmercury.Washington, D.C.: National Academy Press.Royston, P. and Altman, D.G. (1994). Regression using fractional polynomials of continu-ous covariates: Parsimonious parametric modelling. Applied Statistics 43, 429-467.




