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ABSTRACT: We study the electronic and optical properties of 39 small
molecules containing transition metal atoms and 7 others related to quantum-
dots for photovoltaics. We explore in particular the merits of the many-body
GW formalism, as compared to the ΔSCF approach within density functional
theory, in the description of the ionization energy and electronic affinity. Mean
average errors of 0.2−0.3 eV with respect to experiment are found when using
the PBE0 functional for ΔSCF and as a starting point for GW. The effect of
partial self-consistency at the GW level is explored. Further, for optical
excitations, the Bethe−Salpeter formalism is found to offer similar accuracy as
time-dependent DFT-based methods with the hybrid PBE0 functional, with
mean average discrepancies of about 0.3 and 0.2 eV, respectively, as compared
to available experimental data. Our calculations validate the accuracy of the
parameter-free GW and Bethe−Salpeter formalisms for this class of systems,
opening the way to the study of large clusters containing transition metal atoms of interest for photovoltaic applications.

1. INTRODUCTION

Electronic ground- and excited state properties of molecules
can be modeled very accurately using many-body wave function
quantum-chemistry methods. However, such calculations are
computationally expensive and scale unfavorably with the size
of the system and are therefore mainly feasible for small
molecules.1−3 For larger molecules and nanoparticles, suitable
theoretical approximations are needed to lower the computa-
tional burden, while assuring a satisfying level of accuracy.
Theories such as Hartree−Fock (HF) and, even more, density
functional theory (DFT), are appealing as they are computa-
tionally efficient. Within DFT, (semi)local approximations to
the exchange-correlation functional, such as the local-density
approximation (LDA)4 or the generalized-gradient approxima-
tion (GGA),5 can yield reasonably good ground-state total
energies.3 DFT-LDA one-particle energy eigenvalues can
qualitatively agree with experiment; however, the energy gaps
are severely underestimated,3 whereas in Hartree−Fock theory
they are usually strongly overestimated.2 Band gaps of
semiconductors obtained with hybrid functionals (such as
B3LYP,6 PBE0,7 HSE8), which contain a fraction of Hartree−
Fock exchange, were found to be in much better agreement
with experiment than those from (semi)local functionals.9−11

For a series of 34 molecules, however, using the PBE0
functional, Rostgaard et al.12 obtained HOMO energies which

deviate by 2.55 eV on average from experimental ionization
energies. The authors conclude that the amount of HF
exchange needed to reproduce experiment is highly system-
dependent.
A much more accurate way to access one-particle excitations

in finite systems based on DFT and its hybrid generalization are
ΔSCF calculations.2 The ΔSCF method has also been extended
and applied to higher excited states, but becomes impracticable
for large systems with many low-lying states,13 and its accuracy
depends on the ability of the exchange-correlation functional in
DFT to yield correct ground-state energies, which is not always
the case.
In a solid, where it is not obvious to carry out ΔSCF

calculations, since there is no localized state whose occupation
can be varied, many-body Green’s function-based approaches
have been found to be extremely successful to predict the
ionization energies and the band gaps of materials.2,3 The GW
approximation to the self-energy is usually used in Hedin’s
equations.14 Hedin’s equations should in principle be solved
self-consistently, which can easily make the computational
burden very large. Therefore, the GW correction to a prior self-
consistent calculation within a simpler approximation is very
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often evaluated perturbatively (G0W0). The final result thus
depends on the choice of the approach chosen as a starting
point.2,15 Another way to make calculations more efficient
consists in neglecting the frequency dependence of the
screening of the Coulomb potential in W, such as in the
Coulomb-hole plus screened exchange (COHSEX) approx-
imation to the GW self-energy.14

GW approaches have been much less used for atoms and
molecules than for solids, but several authors have recently
performed comparative GW calculations for molecules in the
gas phase.12,15−27 Blase et al.17 applied different levels of GW to
a set of molecules relevant for organic photovoltaics, including
C60. The authors compared ionization energies and quasipar-
ticle gaps from G0W0 and self-consistent GW (where the self-
consistency is restricted to the eigenvalues) starting from LDA
or Hartree−Fock-like eigenvalues. They found a similar
agreement with experiment for self-consistent GW and
perturbative G0W0 starting from Hartree−Fock eigenvalues.
Similarly, excellent agreement with high-level many-body
quantum chemistry techniques (CASPT2, EOM-IP-CCSD)
was obtained for the frontier orbitals of DNA and RNA
nucleobasis.28

Rostgaard et al.12 performed fully self-consistent PAW-GW
calculations for a large set of small molecules and systematically
investigated the effects of core−valence interactions and self-
consistency.
Bruneval and Marques15 compared different DFT functionals

as starting points for G0W0 calculations. The authors concluded
that hybrid functionals, especially those with a large HF-
exchange contribution, are the best starting point for a GW
calculation.
In this work, we apply different approximations to GW, using

both self-consistent and perturbative GW on top of several
starting points (DFT-PBE0, Hartree−Fock, self-consistent (sc)
COHSEX), to a set of small transition metal molecules and a
few others related to thin-film photovoltaics, in order to
systematically evaluate their agreement with experimental data
and ΔSCF calculations. We also aim to identify by means of
benchmark calculations which GW scheme represents the best
compromise between computational cost and accuracy, in order
to prepare a further study of larger nanostructures containing
transition metals, which are promising for applications as
absorbers in the new generation of thin-film solar cells.
Although Cu(InGa)Se2 (CIGS) is one of the most widely
used thin-film absorber material, indium-free alternatives, such
as Cu2ZnSn(S,Se)4 (CZTS), have already begun to replace
CIGS, in order to reduce the material costs. Thin films of
CZTS can be made by depositing a solvent containing CZTS
nanoparticles on a substrate. The required homogeneous film is
obtained by sintering. Another possible application for CZTS
are quantum-dot sensitized solar cells. In both cases, the
dependence of the optical absorption gap on the grain size or
quantum-dot size is of interest. Whereas the optical properties
of clusters made of Si have been investigated,29,30 only little is
known about the size-dependence of the optical gap for CZTS
clusters. An experimental study31 reported an optical gap
opening at a cluster diameter between 2 and 5 nm. A few ab
initio calculations of optical spectra of bulk CIGS and CZTS(e)
have already been published by other groups.32,33 For bulk
CZTS and other transition metal compounds, a single-shot GW
calculation (G0W0) after a self-consistent COHSEX run has
been shown to be very successful.34 Here, we will determine

whether the same approach is suitable for (small) molecules of
the same elements as well.
In order to model neutral electronic excitations, such as light

absorption, in molecules, accurate one-particle energy levels are
not always sufficient because the electron−hole interaction may
become important. The Bethe−Salpeter equation (BSE), which
includes the latter, has been successfully applied for modeling
optical excitations both of extended solids and of atoms and
molecules.2 Even though less documented than for bulk
systems, the merits of the BSE approach for gas phase
molecules has recently gained increasing attention.24,26,35−44

Time-dependent density-functional theory (TDDFT) is, in
principle, equally suitable and computationally less expensive,
but its accuracy depends strongly on the underlying exchange-
correlation functional, and is size and system dependent.
Whereas TDDFT within the local-density approximation
(TDLDA) has been successfully applied to small systems, it
does not reproduce the experimental spectrum of, for example,
bulk silicon.2 Here, we compare results obtained with both the
BSE and TDDFT, using a hybrid functional, for our set of small
molecules, but we stress that the TDDFT approach may not be
successful for larger cluster sizes.
This paper is organized as follows. In section 2, we describe

the computational details of our ab initio calculations. In
section 3, we estimate the possible errors caused by the
incompleteness of the Gaussian basis, the pseudopotential
approach, and the use of an auxiliary basis. We then compare
ionization energies, electron affinities, and optical gaps,
obtained at different levels of theory, with available
experimental data. We discuss all results in section 4, and
close with a summary.

2. METHODS AND COMPUTATIONAL DETAILS

2.1. DFT Geometry Optimization. Our calculations are
performed at the computed equilibrium geometry, obtained by
minimizing the total energy of the molecules within DFT using
the code NWChem,45 with the hybrid PBE0 exchange-
correlation functional,7 a Gaussian basis, and atomic
pseudopotentials (except for H). The choice of using
pseudopotentials is motivated by our intention to run GW
calculations for larger clusters in the future. We tested very
carefully the quality of the pseudopotentials against all-electron
calculations. Note that pseudopotentials of transition metals
include semicore electrons in the valence. It is known that
special care must be taken in the core−valence partition for
GW calculations.46 In principle, the self-energy should contain
an appropriate core−valence exchange interaction, which is
only modeled at the LDA level, if the semicore states are
included in the core. For this reason, GW corrections can carry
a substantial error when the spatial overlap between the valence
and the semicore wave functions is sizable.47,48 On the other
hand, it was found that, when semicore states are included in
the valence, GW corrections are reliable.49,50

According to Bruneval and Marques,15 a quadruple-ζ basis
plus polarization is needed to converge the ionization energies
of isolated atoms and small molecules within 0.1 eV, while for a
double-ζ basis plus polarization, the basis set error of the
HOMO energy is about 0.5 eV. We have thus chosen to
augment the “sbkjc-vdz-ecp” double-ζ Gaussian basis set of refs
51, 52, and 53, associated with the corresponding “sbkjc-ecp”
pseudopotentials, with the polarization and augmentation
functions of the correlation-consistent quadruple-ζ plus polar-
ization (“aug-cc-pvqz”) set of refs 54, 55, and 56. In this way,
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we take advantage of the smooth semicore and valence wave
functions of the “sbkjc-vdz-ecp” basis while maintaining the
accuracy of the “aug-cc-pvqz” basis. Our basis, in the following
named “aug-sbkjc-pp”, includes semicore states of the transition
metals in the valence. Geometries obtained with the “aug-sbkjc-
pp” basis are in good agreement with experiment (see below
and Supporting Information), and ionization energies and
electron affinities are well converged compared to the all-
electron “aug-cc-pvqz” basis (see Supporting Information).
The geometries are optimized until energy differences of

consequent steps fall below 10−6 Hartree, and the maximum
force below 1.8 × 10−3 Hartree/Bohr.
2.2. Quasiparticle Energies and Energy Gaps. In the

GW approximation, the self-energy Σ, which replaces the
exchange-correlation potential, reads

∫ω
π

ω ω ω ωΣ ′ = ′ ′ + ′ ′ ′ω′+
G Wr r r r r r( , , )

i

2
d e ( , , ) ( , , )i0

(1)

where W is the screened Coulomb interaction and G is the
time-ordered one-particle Green’s function:

∑ω
ϕ ϕ

ω ε ε μ
′ =

* ′

− + −+G r r
r r

( , , )
( ) ( )

i0 sign( )
n

n n

n n (2)

with μ equal to the electronic chemical potential. The energies
εn in eq 2 are electron addition and removal energies, which can
be fixed to a value determined by the starting point of a
perturbative G0W0 calculation, or can be updated in self-
consistent GW cycles until a converged value is reached. In the
following GW calculations, only the quasiparticle energies are
updated, while the ϕn orbitals are kept fixed. We label this
efficient partial self-consistent approach “evGW”.
The screened Coulomb interaction W is obtained from the

Dyson equation:

∫ ∫ω χ ω

ω

′ = ′ + ″ ″′ ″ ″ ″′

× ″′ ′

W v v

W

r r r r r r r r r r

r r

( , , ) ( , ) d d ( , ) ( , , )

( , , )

0

(3)

where χ0 is the independent-particle susceptibility,

∫χ ω
π

ω ω ω ω′ = − ′ ′ + ′ ′ ′G Gr r r r r r( , , )
i

d ( , , ) ( , , )0

(4)

and v is the Coulomb interaction. The quasiparticle energy of
the state n, εn

QP, is evaluated as a first-order perturbation of the
Kohn−Sham energy level, εn

KS,

ε ε ε= + ⟨ |Σ − | ⟩n V n( )n n
GW

n xc
QP KS QP

(5)

where Vxc is the exchange-correlation potential in DFT. A more
detailed description of this GW implementation has been given
in ref 17.
In the static COHSEX approximation, only W(ω = 0) is

taken into account, leading to

∑ ϕ ϕ μ ε ω

ω δ

Σ = − * ′ Θ − ′ =

+ ′ = − ′ − ′

W

W v

r r r r

r r r r r r

( ) ( ) ( ) ( , , 0)

1

2
( ( , , 0) ( , )) ( )

n
n n n

COHSEX

(6)

where Θ is Heaviside’s step function. Due to the reduced cost
of this static GW approximation, full self-consistency on both
eigenvalues and eigenstates can be performed, a scheme that we
label “scCOHSEX”.

We use the code Fiesta,17,42 which is based on a Gaussian-
basis implementation of the GW formalism. The energy
integration in eq 1 is performed along the imaginary axis
thanks to contour-deformation techniques. The one-body wave
functions ϕn are expanded at the “aug-sbkjc-pp” basis level (see
above). Two-point functions f(r,r′) are expanded in an auxiliary
Gaussian basis17,57,58 μ(r) using the resolution of the identity
with a Coulomb metric (RI-V),59 such that four-center
Coulomb integrals ⟨jk|v|lm⟩ between basis functions j, k, l,
and m read

∑ μ λ⟨ | | ⟩ = ⟨ | | ⟩ ⟨ | | ⟩
μλ

μλ
−jk v lm jk v V v lm1

(7)

with

∫ ∫μ μ⟨ | | ⟩ = ′ ′ ′jk v j k vr r r r r r rd d ( ) ( ) ( , ) ( )
(8)

and

∫ ∫ μ λ= ′ ′ ′μλV vr r r r r rd d ( ) ( , ) ( )
(9)

The auxiliary basis functions are of the form

μ θ ϕ= α−c r Rr( ) e ( , )r l
lm

2

(10)

where the Rlm are real spherical harmonics. As in ref 17, we use
an even-tempered auxilary basis (αi/αi+1 = constant). The
auxiliary basis is defined by the maximum and minimum radial
decay coefficient α, and the number of different coefficients for
each angular momentum number. Since the auxiliary basis
represents products of basis functions, we choose as minimum
and maximum coefficients those which correspond to twice the
minimum and maximum ones of the DFT basis. We find that
four to eight radial functions per atom and angular channel are
sufficient for our systems. Angular momentum numbers up to l
= 4 are included in the auxiliary basis. The auxiliary basis has
been validated by increasing the number of Gaussians per l-
channel, and also by comparing the results of Hartree−Fock
calculations performed with NWChem without any auxiliary
basis and Hartree−Fock calculations performed with Fiesta
with the auxiliary basis (see Supporting Information). All
occupied and virtual states are included in the calculation of the
time ordered Green’s function and the independent particle
susceptibility.
Both perturbative G0W0 and evGW calculations are

performed, either starting from DFT-PBE0 Kohn−Sham
orbitals, Hartree−Fock, or scCOHSEX quasiparticle states.
Further, following the simple evGW scheme, we also test as a
starting point a partially self-consistent COHSEX scheme
where only the eigenvalues are updated, keeping the input
PBE0 wave functions frozen. We label this evCOHSEX. In the
following, we use the notation “GW approach@starting point”;
for example, evGW@PBE0 indicates a (partially) self-consistent
GW calculation starting from PBE0 eigenstates. The different
levels of theory and self-consistency are listed in Table 1.
In the perturbative G0W0 and the evGW steps, we perform

the GW corrections for three to ten occupied and unoccupied
states each. States that are not corrected are rigidly shifted,
preserving the energy spacing of the input eigenstates. The
energy levels of the evGW calculations are typically converged
within a few millielectron volts (meV) or less in five to seven
iterations.
In order to estimate atomic relaxation effects, we also

perform vertical and adiabatic ΔSCF calculations using the
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PBE0 functional. The ionization energies (IE) and electron
affinities (EA) in ΔSCF are defined as

Δ = −

Δ = −

+

−

E E

E E

IE( SCF)

EA( SCF)

tot
1

tot
neutral

tot
neutral

tot
1

(11)

where Etot
neutral, Etot

+1, and Etot
−1 are the total energies of the neutral

molecules and the molecules with a missing and an additional
electron, respectively.
Experimental numbers used for comparison, taken from refs

60, 61, and 62−103, are averaged. The spread of the
experimental data is given in the Supporting Information.
2.3. Optical Gaps. Optical gaps are obtained by solving the

Bethe−Salpeter equation (BSE) on top of evGW@PBE0 states
using the code Fiesta, and from time-dependent density-
functional theory (TDDFT) with the PBE0 functional
(TDPBE0) using the code NWChem. The BSE reads

= − Ξ −L L L(1 )0
1

0 (12)

where L is the interacting-particle polarizability, and Ξ = iδΣ/
δG ≈ v −W is the BSE kernel. The BSE can be rewritten in the
electron−hole basis,104 Φn1n2(r1, r2) = ϕn1(r1)ϕn2*(r2), as

ω ω= − −−L f f( ) ( ) ( )n n n n
exc

n n n n n n

1
1 2 3 4 1 2 3 4 1 2 (13)

where the excitonic Hamiltonian reads

ε ε δ δ= − + − Ξf f( ) ( )n n n n
exc

n n n n n n n n n n n n
QP QP

1 2 3 4 2 1 1 3 2 4 1 2 1 2 3 4

(14)

Here, the εn
QP and f n are the energies and occupation numbers

of quasiparticle states ϕn, respectively. The two-point
susceptibility, relevant for light absorption, is obtained from
the four-point function L(1,2;3,4) as χ(1,2) = L(1,2;1,2). In
TDDFT, the equation to solve for χ reads

χ χ χ= − −(1 )0
1

0 (15)

where χ0 is the independent-particle susceptibility, and
δ δ= +v V n/xc , n being the electronic density, is the

TDDFT kernel. Equations 13 and 15 are solved by a Davidson
diagonalization. Coupling terms between resonant and non-
resonant transitions are included in exc and , namely, we go
beyond the Tamm−Dancoff approximation. We define the
optical gap from the BSE or TDDFT as the energy of the
lowest transition with a nonvanishing oscillator strength.
Optical excitations may cause sizable changes in the

geometry of a molecule. Experimentally, adiabatic optical
excitation energies are often available and sometimes differ
largely from the vertical ones. Theoretically and computation-
ally, geometry optimization in the excited state within the GW-
BSE formalism is in principle possible, but it has only been
performed for small molecules (CO and NH3).

105 The authors
obtain excellent agreement with experiment both for the

relaxed geometry in the excited state and the transition energy.
Alternatively, relaxed geometries can be obtained using
TDDFT.106 However, a simpler and computationally less
demanding approach is the following: In order to estimate
atomic relaxation effects, both vertical and adiabatic ΔSCF gaps
are calculated by excluding and including geometry relaxation
of the triplet excited state, respectively, of the neutral
molecules:

Δ = −E E E( SCF) (exc) (GS)gap
opt

tot
neutral

tot
neutral

(16)

where Etot
neutral(exc) and Etot

neutral(GS) are the total energies of the
lowest triplet state and the singlet ground state of the neutral
molecules. In principle, the singlet state is the one of interest,
but accessing it with ΔSCF is not straightforward, whereas the
triplet state can be accessed easily as the ground state with spin
1. We assume here that the relaxation energies are similar in the
triplet and the singlet state, an approximation we validate by
comparing, for a subset of the smaller molecules, relaxation
energies as calculated within TDPBE0 (singlet) and ΔSCF
(triplet). Because of its much smaller computational burden,
the ΔSCF approach is also applicable to the nanoparticles at
which we aim. Below and in the Supporting Information
(Figure S-6 and Table S-IX), we compare the results of both
approaches.

3. RESULTS

All calculated and available experimental data for the ionization
energies, electron affinities, quasiparticle, and optical gaps are
provided in the Supporting Information. We mainly focus here
below on a synthetic description, namely, mean absolute errors
(MAE) and mean absolute relative errors (MARE), and
postpone the discussion to the section 4.

3.1. Errors Due to Pseudopotentials, Finite Basis, and
Auxiliary Basis. Whereas the correlation part of the self-
energy, Σc, is hardly influenced by core−valence interactions,
the exchange part, Σx, is much more sensitive in this
respect.15,47 In order to assess the error associated with the
use of pseudopotentials, we first evaluate exchange core−
valence effects by comparing Hartree−Fock and PBE0
eigenvalues as provided by the NWChem code for different
all-electron (“ae”) and pseudopotential (“pp”) basis sets.
Further, as shown in the Supporting Information (Figures S-1
and S-2 and Table S-I), we compare for several molecules the
G0W0@PBE0 HOMOs and LUMOs obtained at the all-
electron aug-cc-pvqz and the aug-sbkjc-pp levels as defined
above. Our results show that the pseudopotential error in
G0W0@PBE0 is within about 0.1 eV (see Supporting
Information Table S-I).
In the G0W0 calculations, accurate ionization energies can be

obtained without augmentation functions, but the latter are
essential to converge the electron affinities (see Supporting
Information). The error arising from the auxiliary basis is found
to be small (about 0.14 eV maximum, usually much smaller; see
Supporting Information).

3.2. Geometries. The mean absolute error (MAE) of the
bond lengths optimized with the “aug-sbkjc-pp” basis and the
PBE0 functional is about 0.01 Å, which corresponds to a mean
absolute relative error of 0.5% (cf. Table 2). The experimental
and calculated bond lengths and bond angles of all molecules
are listed in the Supporting Information.

3.3. Ionization Energies. In Figure 1, the absolute
difference between calculated and experimental ionization

Table 1. Different Levels of Theory and Selfconsistency on
Wavefunctions (WF) and Eigenvalues (EV) Used Here

self-consistency on

theory WF EV

evCOHSEX − ×

scCOHSEX × ×

G0W0 − −

evGW − ×
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energies is drawn as a color map. The resulting mean-absolute
error (MAE) and mean absolute relative error (MARE) are
listed in Table 3. In the cases where the experimental values are
adiabatic, the vertical calculated numbers have been corrected
by the difference between the adiabatic and vertical ΔSCF
energies. For those experimental values, for which it is unclear
whether they are vertical or adiabatic (those without a
superscript in the tables in the Supporting Information), the
calculated values have not been corrected in the graph and left
out of the average. The mean absolute errors (MAE) for the
ionization energies are depicted in Figure 2.
The best GW result is obtained at the G0W0 level on top of

PBE0 or scCOHSEX, yielding a MAE of 0.21 and 0.26 eV,
respectively, close to the ΔSCF value of 0.29 eV. It should be
mentioned that G0W0@PBE0 and ΔSCF both break down for
the same system, Ag3I3). This points toward the spread of the
current experimental data (see discussion) as the main source
of disagreement for this molecule.
3.4. Electron Affinities. Figure 3 shows the same as Figure

1 for the electron affinities. The MAE of the electron affinities is
listed in Table 3 and depicted in Figure 4. On average, G0W0@
PBE0, scCOHSEX, and ΔSCF yield the best agreement with
available experimental data.
Three molecules (TiF4, WF6, MoF6) are problematic at

almost all levels of theory. These molecules dominate the MAE,
and, once again, this discrepancy can be attributed to the
difficulty to compare with experimental conditions (see
Discussion).
3.5. Quasiparticle Gaps. Comparison of our quasiparticle

gaps with experiment is even less straightforward, since most
experimental data for the IE are vertical, while those for the EA
usually are adiabatic. In addition, the latter are less abundant.
Therefore, the number of available experimental quasiparticle
gaps is reduced as compared to the IE or EA individually (only
8 molecules are included). Nevertheless, we list the MAE of the
quasiparticle gaps in Table 3 and depict them in Figure 5. The
calculated vertical quasiparticle gaps, and in the case of ΔSCF,
also the adiabatic ones, of all molecules are listed in the
Supporting Information. The G0W0@PBE0 approach yields a
very small MAE of 0.13 eV, actually smaller than the 0.18 eV

MAE of ΔSCF. This result indicates that the error within the
GW approach can be mostly described as a rigid shift of both
the HOMO and LUMO levels. This is a first indication that
excitation energies should be well described within the present
many-body formalism.
Besides comparison to experiment, we can compare all

methods on the full set of molecules. The effect of partial self-
consistency on the GW level, when starting from PBE0
eigenstates, is to increase the quasiparticle gaps (with a mean
increase of about 0.6 eV). On the other hand, when starting
from COHSEX eigenstates, which always overestimates the
quasiparticle gap at the G0W0 level when compared to

Table 2. Mean Absolute Error (MAE) and Mean Relative
Absolute Error (MARE) of the Bond Lengths and Bond
Angles

bond length (Å) bond angle (deg)

MAE MARE (%) MAE MARE (%)

0.011 0.5 0.004 0.004

Figure 1. (Color online) Absolute difference between calculated and experimental ionization energy at different levels of theory, in electron volts.

Table 3. MAE in Electron Volts and MARE in % of the
Ionization Energies, Electron Affinities, and Quasiparticle
Gaps

IE EA Eg

MAE MARE MAE MARE MAE MARE

PBE0 2.18 21.1 1.41 98.1 3.72 47.1

G0W0@PBE0 0.21 2.0 0.31 13.4 0.13 1.6

evGW@PBE0 0.38 3.6 0.49 24.4 0.49 6.0

HF 0.86 8.4 1.20 64.0 1.51 18.0

G0W0@HF 0.52 5.1 0.52 31.2 0.31 3.7

evGW@HF 0.47 4.7 0.54 31.7 0.26 3.0

evCOHSEX 1.92 18.4 0.28 12.9 1.55 19.4

G0W0@evCOHSEX 0.52 5.0 0.54 27.7 0.67 8.2

evGW@evCOHSEX 0.36 3.5 0.54 27.2 0.51 6.3

scCOHSEX 1.47 14.2 0.18 9.5 1.17 14.6

G0W0@scCOHSEX 0.26 2.6 0.59 31.2 0.25 3.0

evGW@scCOHSEX 0.30 2.9 0.58 30.6 0.27 3.2

ΔSCF 0.29 2.6 0.27 9.8 0.18 2.1

Figure 2. (Color online) MAE of the ionization energies versus theory
level.
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experiment, the effect of partial self-consistency is to reduce the
quasiparticle gaps (with a mean decrease of 0.2 eV).
3.6. Optical Gaps. The optical gaps obtained from BSE,

TDPBE0, and ΔSCF calculations are depicted in Figure 6, and
their MAE are compiled in Table 4. Here, “PBE0” refers to
HOMO−LUMO gaps as before, but “ΔSCF” now refers to the
energy difference between the first triplet state and the singlet
ground state of the neutral molecule, cf. eq 16. In Table 4, in
the case of adiabatic experimental gaps, the calculated vertical
energies have been corrected by the relaxation energy (Δr)
calculated either from ΔSCF for triplets (T) or from TDPBE0
for singlets (S). In Figure 6, we plot adiabatic transitions based
on the ΔSCF relaxation energies. Our BSE calculations are
either started from the quasiparticle energies obtained with
G0W0@PBE0, evGW@PBE0, or scCOHSEX. For the singlet
excitations, the many-body BSE@evGW@PBE0 leads to an
MAE of 0.3 eV, similar to the MAE of TDPBE0 (0.4 eV). For
the sake of completeness, the singlet−triplet excitation energy

splitting, obtained within both the BSE and TDPBE0, and the
relaxation energies from ΔSCF (T) and TDPBE0 (S) are
provided in the Supporting Information. Using the more
appropriate, but computationally much more expensive Δr from
TDPBE0 (S), the MAE is reduced by 0.2 eV for TDPBE0 and
by 0.3 eV for BSE@G0W0@PBE0, respectively, bringing these
theoretical data in better agreement with experiment.

4. DISCUSSION

4.1. Quasiparticle Energies. We observe that G0W0

calculations on top of frozen PBE0 orbitals yield the smallest
MAE for the IE and the quasiparticle gaps, but since the
experimental data for the IE are more numerous and probably
more accurate, we will focus on this quantity in our discussion.
We can note that at the G0W0 level, scCOHSEX is the second
best starting point, with only a small (0.05 eV) increase of the
MAE, which renders both methods quite similar in accuracy.
On the other hand, the 0.31 eV increase of the MAE for
G0W0@HF is a clear indication of a decreased agreement with
experiment.
The effect of partial self-consistence at the evGW level is to

increase the MAE when starting from PBE0 eigenstates, while it
has almost no effect on the MAE when scCOHSEX eigenstates
are used. At this level of theory, it is evGW@scCOHSEX, which
gives one of the smallest MAE for all the IE and the
quasiparticle gaps. This comes as no surprise, since the accuracy
of the COHSEX method was shown in the case of solids
containing localized d orbitals, where it reproduced the wave
functions stemming form a fully self-consistent GW calcu-
lation.107−110 The accuracy of the scCOHSEX wave functions,
when compared to hybrid functionals, was also discussed for
model streptocyanines,111 where it was shown to be in better
agreement with high-level coupled-cluster quantum chemistry
methods. The difference of about 0.3−0.4 eV between IE from
scCOHSEX and evCOHSEX calculations, respectively, pro-
vides an estimate for orbital relaxation effects in these
molecules, which should be larger than in solids.112 Another
point of interest is that the evGW@PBE0 and evGW@
evCOHSEX methods, which both use frozen PBE0 wave
functions, yield the same MAE for all quantities, suggesting that
the partial self-consistency effectively removes the dependence
on the initial eigenenergies, leaving only the dependence on the
initial wave functions.
By comparing ionization energies of a few molecules to those

obtained in refs 113, 114, and 15, we estimate that our perhaps
slightly different equilibrium geometries, the different basis sets,
use of an auxiliary basis set, and the pseudopotentials used here,
all together lead to differences of up to about 0.15 eV (see
Supporting Information). For TiO2, as a test case for small
molecules containing transition metal atoms, our G0W0@PBE0
value for the IE (9.57 eV) at the pseudopotential level can be
compared to the all-electron value of 9.46 eV, almost the same
as the one of Marom and co-workers (we estimate an IE of 9.4
eV from their Figure 3).114

In ref 12, which considered small molecules including first
and second row atoms, a MAE of 0.24 eV has been obtained for
the IE stemming from ΔSCF, compared to 0.5 eV for fully self-
consistent GW results. In the present study, the MAE for the IE
is about 0.3 eV for ΔSCF, 0.2 eV for G0W0@PBE0 (similar to
the 0.17 eV of ref 15), and 0.27 eV for evGW@scCOHSEX;
that is, the difference between the many-body and ΔSCF
approaches is reduced for this set of molecules with transition
metal atoms. However, as emphasized above, the many-body

Figure 3. (Color online) Absolute difference between calculated and
experimental electron affinities at different levels of theory, in electron
volts.

Figure 4. (Color online) MAE of the electron affinities versus theory
level.

Figure 5. (Color online) MAE of the quasiparticle gaps versus theory
level. Note the change of scale.
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approach offers a similar accuracy as ΔSCF with the PBE0
functional while offering a parameter-free formalism which can
extract all the quasiparticle spectrum.
Several points may be invoked to comment on the residual

discrepancy between theory and experiment. According to ref 3
and references therein, the polarization of core electrons,
neglected both in our pseudopotential- and the frozen-core
approach made in ref 12, can increase ionization energies and
change energy gaps by up to a few tenth of an eV in
semiconductors. Further, zero-point energy contributions may,
in principle, contribute to the difference between theory and
experiment. However, at least in the case of the Cu2, Ag2,
Au2,

66,86 AgCl, AgBr, and AgI molecules,91 differences in zero-
point energies do not seem to be responsible for the observed
discrepancy, because they are of the order of 0.01 eV only and
go into the wrong direction.
Another important point for heavy atoms are relativistic

effects, which can modify the quasiparticle states. In this paper,
we use scalar relativistic pseudopotentials excluding the effect of
spin−orbit coupling, which is known to close the quasiparticle
gaps by up to 0.4 eV, as found for tin-based perovskites.115 This
could, in principle, partially compensate the global over-
estimation with respect to experiment observed in the case of
evGW and G0W0@scCOHSEX.
It should finally be emphasized that experimental values

should be considered with care when discussing errors at the
scale of a few tenths of an electron volt. As emphasized above,
the distinction between vertical and adiabatic values is
sometimes difficult to assess. In some cases, the effect of
atomic relaxation in the excited state is large, for example in the
case of SnCl4, where it amounts to about 0.5 eV for the IE and

about 0.9 eV for the EA, and needs to be taken into account to
obtain satisfactory agreement between calculated and exper-
imental electron affinity.
In general, the experimental values contain error bars of the

order of up to several tenths of an electron volt. Therefore, our
calculated values and their experimental counterparts can be
compared only within a similar uncertainty of the order of a
tenth of an electron volt. Average experimental uncertainties
are about 0.1 eV for the IE, 0.2 eV for the EA, and 0.1 eV for
the quasiparticle gap (see Supporting Information). For
example, the ionization energy of Ag3I3 is systematically
underestimated by about 1 eV by all theory levels applied
here, with the exception of Hartree−Fock, compared to the
vertical experimental value of 10.43 eV from ref 89, but it agrees
much better with a different experimental value of 9.2 eV from
ref 60. For CuF, the experimentally measured ionization
energies scatter between 8.6 and 10.9 eV,60 a range that
includes all our many-body results.
In the case of WF6 and MoF6, the comparison to experiment

is particularly difficult. The experimentally measured electron
affinities scatter between 2.7 and 5.1 eV for WF6 and between
3.6 and 5.8 eV for MoF6.

60,116 Comparing to results of
calculations of others, we find that our adiabatic EA of 3.30 eV
for WF6 on evGW@scCOHSEX level is close to the calculated
value of 3.16 eV of ref 117, obtained on CCSD(T) level, using
an augmented quadruple-ζ plus polarization basis.
Finally, for TiF4, an additional electron is only weakly bound,

if no atomic relaxation is allowed, so that the vertical electron
affinity is approximately zero. In this case, it is not sufficient to
simply add the relaxation energy obtained from a ΔSCF
calculation. However, if the electron affinity is calculated in the

Figure 6. (Color online) Optical gaps from PBE0, ΔSCF, the BSE, and TDPBE0, compared to experimental data. The lines only serve as a guide to
the eye.

Table 4. MAE (in eV) and MARE (in %) of the Optical Gapsa

MAE using Δr (ΔSCF, T) MARE using Δr (ΔSCF, T) MAE using Δr (TDPBE0, S) MARE using Δr (TDPBE0, S)

PBE0 1.53 73 1.95 105

BSE@G0W0PBE0 (S) 0.59 23 0.31 16

BSE@evGW@PBE0 (S) 0.31 15 0.33 18

BSE@evGW@scCOHSEX (S) 0.66 28 0.71 39

ΔSCF (T) 0.65 24

TDPBE0 (S) 0.40 19 0.18 9
aWith the exception of ΔSCF, all excitation energies are those of singlet excitations. In the case of adiabatic experimental excitations, the calculated
vertical energies are corrected using either the triplet relaxation energies (“Δr (ΔSCF, T)”) or the singlet relaxation energies (“Δr (TDPBE0, S)”).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct5003658 | J. Chem. Theory Comput. 2014, 10, 3934−39433940



relaxed geometry of the TiF4
− anion, we obtain very good

agreement with experiment (on the G0W0@PBE0 level, EA =
2.35 eV; experiment, EA = 2.5 eV). We observe that the
LUMO is visibly deformed at the geometry of the neutral
molecule, compared to that of the relaxed geometry of the TiF4

−

anion. A similar strong dependence of weakly bound or
unbound orbitals on the positions of the nuclei may also occur
in other molecules.
4.2. Optical Gaps. The optical gaps obtained with BSE@

evGW on top of PBE0 (MAE ≈ 0.3 eV) and with TDPBE0
(MAE ≈ 0.2 eV) for our set of small molecules are both in
reasonable agreement with experiment. The MAE of the BSE
results is therefore not very different from that found by other
groups for organic molecules (MAE ≈ 0.4 eV40) and SiH4 (0.4
eV24 and 0.6 eV36). Similarly, it was found that the TDPBE0
leads to a MAE of 0.25 eV for organic molecules.118 Although
in practice TDDFT can be very successful for optical gaps both
in molecules and solids, the accuracy of the TDDFT gaps is
very sensitive to the exchange-correlation functional used.118

Whereas we expect the BSE to be transferable and predictive, in
general, it is not obvious a priori for a given system how closely
TDDFT gaps, obtained with a conventional functional, will
resemble experimental ones. For example, TDLDA or TDPBE
charge transfer excitations are located at much too low an
energy, while on the contrary cyanine-like excitations are too
large, two well-known failures that are cured within the BSE
approach.39,40,42,44,111

ΔSCF calculations, computationaly very efficient, yield
optical gaps that are too small on average (MAE = 0.6 eV)
but are an improvement compared to the HOMO−LUMO
gaps from PBE0 (MAE ≈ 1.5 eV). It should be kept in mind,
however, that the ΔSCF calculations have been performed for
excited triplet states, so that they are not directly comparable to
the optically excited singlet states of interest here. Further,
higher excited states and oscillator strengths are in general
difficult to access within ΔSCF. A case, where our ΔSCF
approach completely fails, is the ZnO molecule, where the first
triplet state is wrongly positioned 0.28 eV (0.013 eV for the
vertical excitation) below the singlet ground state by our ΔSCF
calculation with the PBE0 functional. Similarly, in ref 119, it
was found to lie 0.08 eV below the ground state using the
B3LYP functional and an augmented quadruple-ζ-plus-polar-
ization basis, whereas according to experiment and coupled-
cluster calculations, it lies 0.25 or 0.26 eV above the singlet
ground state.119 Nevertheless, ΔSCF can yield optical gaps
comparable to those of BSE calculations.40

Despite the fact that the quasiparticle gaps seem better
described by G0W0@PBE0, the best optical gaps are obtained
when using evGW@PBE0 quasiparticle states. In fact, the
BSE@G0W0@PBE0 excitation energies are generally under-
estimated with respect to the experimental optical gaps, which
leads to a complete closure of the optical gap for the ZnO
molecule. A closer inspection of this case shows that much of
the error stems from the unrenormalized quasiparticle gap,
which evGW increases by ca. 0.9 eV compared to G0W0,
whereas the exciton binding energy changes by ca. 0.2 eV. In
our test set, this is generally true and explains why the bigger
quasiparticle gaps of the evGW@PBE0 lead to better agreement
between the optical gaps obtained with the BSE and
experiment.

5. SUMMARY

We have calculated ionization energies (IE), electron affinities
(EA), and optical gaps for a set of small transition-metal
molecules with different levels of theory. We find that G0W0 on
top of PBE0 states yields ionization energies and electronic
affinities in good agreement with available experimental values
and ΔSCF calculations with the hybrid PBE0 functional.
Namely, the MAE as compared to experiment is found to be
0.3 and 0.2 eV within ΔSCF and G0W0@PBE0, respectively, for
the IE, while both techniques yield a MAE of 0.3 eV for the EA.
The agreement with experiment is increased in the case of the
quasiparticle gaps, for which G0W0@PBE0 yields an MAE of
0.1 eV. Further, optical gaps obtained from the Bethe−Salpeter
equation are in reasonable agreement with experiment (MAE ≈

0.3 eV at the BSE@evGW@PBE0 and BSE@G0W0@PBE0
levels), offering a similar accuracy on average as TDPBE0
(MAE ≈ 0.2 eV).
While ΔSCF calculations certainly offer the best compromise

for calculating the HOMO and LUMO energy levels, the self-
consistent GW approach allows to calculate all addition and
removal energies, with a N4 scaling within the present
resolution of the identity technique. Once the GW calculation
is performed, the Bethe−Salpeter formalism offers the same
computational performance as TDDFT within the standard
Casida’s approach, with the advantages of being suitable for a
wide range of systems and yielding similar accuracy for Frenkel,
Wannier, or charge-transfer excitations in finite size or extended
systems. For the sake of illustration, such GW−BSE calculations
have been performed on systems containing more than a
hundred atoms.120 The present study opens the way to
studying the quasiparticle and optical properties of larger
clusters containing transition metal atoms, including in
particular the quaternary CZTS and CIGS systems of
increasing interest in photovoltaics applications.
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