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Abstract 26 

Background 27 

Inflammatory bowel disease (IBD) patients wait months and undergo numerous invasive 28 

procedures between the initial appearance of symptoms and receiving a diagnosis. In order to 29 

reduce time until diagnosis and improve patient wellbeing, machine learning algorithms capable 30 

of diagnosing IBD from the gut microbiome’s composition are currently being explored. To date, 31 

these models have had limited clinical application due to decreased performance when applied 32 

to a new cohort of patient samples. Various methods have been developed to analyze microbiome 33 

data which may improve the generalizability of machine learning IBD diagnostic tests. With an 34 

abundance of methods, there is a need to benchmark the performance and generalizability of 35 

various machine learning pipelines (from data processing to training a machine learning model) 36 

for microbiome-based IBD diagnostic tools. 37 

Results 38 

We collected fifteen 16S rRNA microbiome datasets (7707 samples) from North America to 39 

benchmark combinations of gut microbiome features, data normalization methods, batch effect 40 

reduction methods, and machine learning models. Pipeline generalizability to new cohorts of 41 

patients was evaluated with four binary classification metrics following leave-one dataset-out 42 

cross validation, where all samples from one study were left out of the training set and tested 43 

upon. We demonstrate that taxonomic features obtained from QIIME2 lead to better classification 44 

of samples from IBD patients than inferred functional features obtained from PICRUSt2. In 45 

addition, machine learning models that identify non-linear decision boundaries between labels are 46 

more generalizable than those that are linearly constrained. Prior to training a non-linear machine 47 

learning model on taxonomic features, it is important to apply a compositional normalization 48 

method and remove batch effects with the naive zero-centering method. Lastly, we illustrate the 49 
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importance of generating a curated training dataset to ensure similar performance across patient 50 

demographics.  51 

Conclusions 52 

These findings will help improve the generalizability of machine learning models as we move 53 

towards non-invasive diagnostic and disease management tools for patients with IBD.  54 

 55 
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Introduction 72 

The human gut microbiome is a collection of microbes, viruses, and fungi residing 73 

throughout the digestive tract. The gut microbiota plays an important role in human health, 74 

influencing food digestion, the immune system, mental health, and numerous other functions 75 

(reviewed in [1]). In line with the functional role in human health, alterations in the gut microbiome 76 

have been linked to illnesses such as multiple sclerosis, type II diabetes, and inflammatory bowel 77 

disease (IBD) [2, 3]. IBD comprises two main subtypes: Crohn’s disease (CD) and ulcerative 78 

colitis (UC), characterized by periodic inflammation throughout the gastrointestinal tract or 79 

localized to the colon, respectively [4]. The prevalence of IBD is increasing globally over the last 80 

several decades, from 79.5 to 84.3 per 100 000 people between 1990 and 2017, with Canada 81 

having among the highest IBD rates at 700 per 100 000 people in 2018 [5, 6]. Although the 82 

disease etiology is currently undetermined, the increasing rates of IBD have been linked to 83 

lifestyle factors, such as a Western diet [7].  84 

Currently, IBD diagnosis and monitoring is primarily performed via blood tests, fecal 85 

calprotectin, and endoscopies. These methods can be costly, invasive, and display variable 86 

accuracy, all of which leads to delayed diagnosis and infrequent disease monitoring [8]. 87 

Therefore, there is an unmet need for the development of further non-invasive, low-cost, and rapid 88 

methods for screening, diagnosis, and disease management for the growing number of IBD 89 

patients [9, 10]. One potential diagnostic test within these constraints involves using the gut 90 

microbiome composition to identify patients with IBD.  91 

Over the past decade, several studies have compared the gut microbiome profiles of healthy 92 

individuals and those with CD or UC [2, 11–21]. Common characteristics of the gut microbiome 93 

identified in patients with IBD are the reduction in bacterial diversity and development of a 94 

dysbiotic state, referring to alterations in the structure and function of the gut microbiome 95 

compared to healthy individuals [12, 14, 19]. Principal coordinate analysis with UniFrac [16] or 96 
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Bray-Curtis [17] distance of the gut microbiome’s composition has identified differential clustering 97 

of healthy and IBD samples. Although the dysbiotic state is commonly identified in IBD patients, 98 

it remains unknown whether the microbiome initiates IBD or is only a reflection of the patient’s 99 

current health status. Larger meta-analyses have aimed to identify differentially abundant taxa 100 

between IBD patients and healthy controls in order to generate potential diagnostic biomarkers, 101 

although with limited success to date [18].  102 

Due to difficulties identifying biomarkers with standard statistical methods for disease 103 

diagnosis, the field has moved to applying predictive machine learning (ML) models for 104 

classification of patient phenotypes. Several studies have demonstrated accurate classification of 105 

patients with IBD from their gut microbiome profile with ML models [2, 12, 13, 15, 18, 22–24]. 106 

Common ML models employed for IBD classification include random forest (collection of decision 107 

trees for classification) [2, 15], logistic regression (binary linear classifier) [13], and neural 108 

networks (layers of differently weighted nodes contributing to a classification) [23, 24].  109 

Features commonly used for IBD classification with ML models can be categorized into 110 

three groups: clinical, bacterial, and functional. Clinical features encapsulate those regarding the 111 

patient (i.e. age, sex, body mass index (BMI)) and results from other clinical tests (i.e. calprotectin, 112 

colonoscopy), which are independent of a patient’s microbiome profile [25]. Taxonomy and 113 

functional features are usually determined via sequencing-based microbiome profiling, such as 114 

amplicon sequencing of the 16S rRNA gene or whole genome shotgun (WGS) sequencing of all 115 

DNA in a sample [26]. Bioinformatic tools, such as QIIME2 [27] or LotuS2 [28], provide pipelines 116 

for clustering 16S rRNA-amplicon sequences into operational taxonomic units (OTUs) which can 117 

then be compared to public databases to find taxonomy assignments [29]. WGS reads are 118 

frequently used to infer potential functions represented in the genomes of microbial community 119 

members (reviewed in [30]). Similarly, we can use known genomes in public databases to derive 120 

functional predictions in a community based solely on amplicon sequencing based taxonomy 121 

profiles, implemented in tools such as PICRUSt2 [31]. Although WGS provides greater taxonomic 122 
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resolution and estimates of microbiome functions, 16S rRNA amplicon sequencing is currently 123 

more applicable to a diagnostic test due to its speed, affordability, and standardization of analysis 124 

tools.  125 

A critical, and often under-explored, consideration for generating ML models for disease 126 

classification is their generalizability to previously unseen cohorts of patients. A ML model that 127 

underperforms when presented with data from a new patient cohort is not reliable enough to be 128 

applied in a clinical setting [32]. Despite this, models currently used in the context of microbiome 129 

data are often only trained and cross-validated with different splits of data from the same cohort. 130 

In studies where cross-validation with an unseen sample cohort is performed, the model’s 131 

performance is often lower, indicative of the model overfitting to the training set [22, 23]. A 132 

proposed explanation for the reduced performance is the potential for introduction of non-133 

biological variability to the data by wet-lab protocols and sequencing instruments during the 134 

processing of these samples, typically observed in meta-analysis of microbiome data [12].  135 

In order to improve model performance on unseen data, it is necessary to apply 136 

normalization and batch effect reduction techniques prior to model training. Normalization is a 137 

critical step to remove biases to feature abundance estimates, such as the data’s compositional 138 

nature, heteroskedasticity, or skewness. For example, microbiome data’s compositional nature 139 

prevents the direct application of standard statistical methods as they may lead to erroneous 140 

results, and requires prior application of compositional normalization methods [33, 34]. In addition, 141 

methods have been developed to remove the technical “batch effects” commonly identified in 142 

collections of samples from different studies, such as naive zero-centering methods and the 143 

recently developed empirical Bayes’ method, Meta-analysis Methods with a Uniform Pipeline for 144 

Heterogeneity (MMUPHin) [35–38]. To date, the effect of various combinations of normalization 145 

and batch effect reduction techniques on ML model generalizability remains to be benchmarked. 146 

In this article, we propose a standardized approach for evaluating the performance and 147 

generalizability of data processing pipelines and ML models with microbiome data to classify 148 
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patients with IBD. Previous microbiome ML benchmarking studies focused on performance of 149 

various combinations of model type, normalization, and microbiome compositional features using 150 

variations of fivefold cross validation [24, 39]. Fivefold cross validation fails to assess the 151 

generalizability to new, unseen sample batches as each split potentially contains samples from 152 

all batches present in the dataset. Therefore, we implemented a leave-one-dataset-out (LODO) 153 

[40] cross-validation method to directly assess cross-batch generalizability. In this approach, the 154 

model is iteratively trained on samples of all but one dataset and then tested on the left-out 155 

dataset. Different combinations of data types, normalization methods, batch effect reduction 156 

methods, and ML models were assessed in order to establish a comprehensive performance 157 

benchmark of microbiome-based disease classification in the context of IBD.  158 

 159 

 160 
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Results 170 

Overview of samples and methods 171 

In order to assess the cross-batch performance of each pipeline, we implemented a LODO 172 

cross validation approach. We collected 16S rRNA gene next generation sequencing data from 173 

15 studies in North America for a total of 7707 samples, comprising 55% healthy and 45% IBD 174 

samples, of which 56% are CD and 44% are UC (Table 1). We completed 15 cross-validation 175 

iterations with a single dataset removed from the training set for generation of the classification 176 

model which was then used to assess model performance (Figure 1).  177 

We evaluated the ability to classify samples from patients with IBD or non-IBD controls 178 

using different combinations of three taxonomic feature sets or six functional feature sets, eight 179 

normalization methods, four batch effect reduction methods, and nine machine learning models 180 

(Figure 1). The binary classification performance of each combination of feature set, 181 

normalization, batch effect reduction, and machine learning model was assessed with four 182 

classification metrics: F1 score, Matthews Correlation Coefficient (MCC), binary accuracy, and 183 

Area Under the receiver operating characteristics Curve (ROC-AUC, abbr. AUC) [60, 61]. We 184 

assessed generalizability through two methods. First, we sorted the pipeline components of 185 

interest (e.g. types of machine learning models) by the mean and standard deviation of their  186 

performance assessed by each metric. Second, in order to determine if the performance was 187 

significantly different, we performed statistical comparison of the pipelines’ metrics with a Mann-188 

Whitney U test. Therefore, the most generalizable component was defined as the top sorted 189 

method which displayed significantly better performance than baseline or other methods.  190 

 191 

Top IBD classification was obtained using taxonomic features 192 

Taxonomic features (species, genus or OTU) are predominantly used as input for ML 193 

models, whereas it is less common to use inferred functional features from PICRUSt2 as input. 194 
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However, previous studies have identified lower inter-individual variation of the gut microbiome’s 195 

inferred functional profile than taxonomy [62, 63], suggesting that functional features may lead to 196 

better classification performance and generalizability. We processed the 16S sequencing 197 

samples with QIIME2 and PICRUSt2 to obtain taxonomy and functional feature abundance 198 

estimates, respectively.  199 

For each ML model, we assessed the performance with taxonomy and functional 200 

abundance features in combination with normalization and batch effect reduction methods. 201 

Independent sorting of four classification performance metrics indicated that the taxonomic 202 

features classified IBD samples more effectively than functional features (Figure 2A, 203 

Supplemental Figure 1A). Comparison of performance with taxonomy and functional features 204 

confirmed the significantly higher performance for classification of IBD samples with taxonomic 205 

features (Figure 2B, Supplemental Figure 1B). Therefore, ML models using taxonomic features 206 

from this dataset lead to better classification of IBD samples than functional features. 207 

Taxonomic classification with QIIME2 consists of seven hierarchical ranks, with kingdom 208 

and species at the top and bottom, respectively. Each consecutively lower taxonomy rank 209 

provides greater resolution of the gut microbiome’s composition while also increasing data 210 

sparsity, which can negatively affect an ML model’s performance [64]. Previous literature 211 

comparing different taxonomy ranks for disease classification indicated that lower ranks, down to 212 

genus, improved performance [65]. We assessed whether the trend for improved classification 213 

continued with the species rank and OTUs, despite their increasing sparsity. While no significant 214 

performance difference was observed between species and genus ranks, both displayed 215 

significantly higher classification performance than OTU features (Supplemental Figure 1C).  216 

 217 

Non-linear models achieve greatest classification performance 218 

Machine learning classification models identify decision boundaries within the feature space 219 

to separate sample labels from one another. For some ML models (BNB, Linear SVC, LR), these 220 
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boundaries are linearly constrained, whereas others (RF, KNN, MLP, Radial SVC, XGBoost) can 221 

identify more complex, non-linear relationships between features and class. We assessed the 222 

generalizability of three linear and five non-linear ML models across the taxonomy and functional 223 

feature sets.  224 

Independent sorting of ML models for each performance metric indicated that the non-linear 225 

models had greater classification performance (top five were non-linear models) than the linear 226 

models (Figure 3A, Supplemental Figure 2A). Comparison of aggregate scores further 227 

confirmed non-linear models had significantly higher F1 score, MCC, AUC, and accuracy than 228 

linear models (Figure 3B, Supplemental Figure 2B). In order to directly assess whether the non-229 

linearity of a model improves classification in the context of microbiome data, we compared linear 230 

and non-linear variations of a support vector machine and logistic regression. Comparison of the 231 

two variations enables direct analysis of the impact of decision boundary constraints on 232 

performance, independent of differences in model architecture. The non-linear (radial) version of 233 

logistic regression and support vector machines (Radial) had significantly greater performance 234 

than the linear version (Linear) across all four metrics (Figure 3C, Supplemental Figure 2C). 235 

Lastly, we assessed which non-linear model led to the highest classification performance. Across 236 

all four metrics, the random forest and XGBoost models were significantly better than MLP, KNN, 237 

and radial SVC models (Supplemental Figure 2D). In conclusion, non-linear models provided 238 

more accurate IBD classification, likely due to the complex relationships between features and 239 

disease labels. 240 

Other ML model architectures, such as convolutional neural networks (CNNs), are 241 

commonly used for classification problems with certain structure in the input data, such as image 242 

classification. In the context of microbiome data, the CNN MDeep adds structure to OTU features 243 

through hierarchical agglomerative clustering of the phylogeny-induced correlation between 244 

OTUs [58]. As MDeep is currently only developed for OTU features, we assessed whether this 245 

CNN architecture led to greater classification performance with OTU abundance than our MLP 246 
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architecture. Comparison of each performance metric across all normalization and batch effect 247 

reduction methods indicated MDeep performance was not significantly different than our MLP 248 

model (Supplemental Figure 2E).  249 

Due to the significantly better performance of non-linear classification models and 250 

taxonomic features, our subsequent analysis of normalization and batch effect reduction methods 251 

utilized only taxonomic feature sets and non-linear models.  252 

 253 

Evaluation of normalization methods 254 

We assessed normalization methods which account for different biases commonly 255 

observed in next-generation sequencing data: compositionality, heteroskedasticity, and 256 

skewness. We selected two normalizations designed for compositional data: the isometric log 257 

ratio (ILR) and centered log ratio (CLR) [66]. We selected two normalization methods which aim 258 

to reduce the heteroskedasticity: the arcsine square root (ARS) transformation [67] of the total 259 

sum scaling (TSS) values and the variance stabilized transformation (VST) from the R package 260 

DESeq2 [68]. Next, we assessed a log transformation of the TSS values (LOG), which reduces 261 

the positive skew commonly seen in the distribution of microbiome data. Lastly, we assessed 262 

normalization by TSS alone to remove differences in sequencing depth between samples or no 263 

normalization (NOT). 264 

Independent sorting of each performance metric consistently identified the compositional 265 

normalization methods (CLR and ILR) as the most generalizable across non-linear models, 266 

followed by the variance/distribution modifiers (ARS, LOG, VST), and TSS as the consistently 267 

lowest performing normalization (Figure 4, Supplemental Figure 3A). Furthermore, the 268 

compositional methods led to significantly better performance than the other normalization types 269 

across all four metrics (Supplemental Figure 3B), whereas the variance/distribution modifiers 270 

and scaling method were only significantly better than no normalization. These results indicate 271 
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the importance of normalization methods which account for the compositional properties of 272 

microbiome data prior to model training. 273 

 274 

Evaluation of batch effect reduction methods 275 

A common issue with combining next-generation sequencing datasets for meta-analyses is 276 

the systematic differences between datasets due to differences in technical protocols. These 277 

differences add non-biological variation to the samples, decreasing the ability to ascertain 278 

biological signals [69]. Various approaches have been proposed to remove technical artifacts 279 

from dataset collections, of which we selected two relevant to microbiome data [37, 38]. First, 280 

zero-centering methods aim to reduce batch effects by centering the mean of each feature within 281 

a batch to zero. Second, Meta-analysis Methods with a Uniform Pipeline for Heterogeneity in 282 

microbiome studies (MMUPHin) [39] (microbiome specific empirical Bayes’ methods), estimate 283 

and remove batch-specific parameters for each feature. Two variations of MMUPHin were 284 

implemented to simulate the scenario of obtaining a new dataset when implemented for a 285 

diagnostic test. The first (#1) applied MMUPHin to the training and test sets separately, whereas 286 

the second (#2) only applied MMUPHin to the training set (see Methods for detailed description). 287 

The different batch effect reduction methods were sorted by the mean and standard 288 

deviation of their performance across taxonomic features, non-linear models, and all 289 

normalization methods. Our sorting method indicated that zero-centering was the most 290 

generalizable approach across the non-linear models. Whereas MMUPHin #1 and #2 were less 291 

generalizable than no batch reduction, with MMUPHin #2 the least generalizable (Figure 5, 292 

Supplemental Figure 4A). Additionally, zero-centering led to significantly higher binary accuracy 293 

and MCC compared to all other methods, whereas F1 score and AUC were higher only when 294 

compared to no batch effect reduction and MMUPHin #2. MMUPHin #1 had significantly better 295 

performance than MMUPHin #2, with no difference in performance observed compared to no 296 

batch effect reduction (Supplemental Figure 4B).  297 
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 298 

Evaluation of model performance on sample and patient subgroups 299 

The samples used to assess the performance of different combinations of normalizations, 300 

batch effect reduction, and ML models were drawn from across sample collection methods (i.e. 301 

stool and biopsy) and patient demographics (i.e. paediatric and adult samples). While we did not 302 

set inclusion criteria for samples based on these differences, previous research has demonstrated 303 

distinct differences in microbiome composition between sample types and demographic groups 304 

[18, 70, 71]. For example, principal coordinate analysis (PCoA) with weighted UniFrac distance 305 

[72] and principal component analysis (PCA) of CLR-transformed taxonomic features indicated 306 

paired biopsy and stool samples from the same individual cluster separately [73].  307 

We compared the model performance for the sample and patient demographics for which 308 

we were able to acquire sufficient metadata and have been associated with microbiome 309 

alterations: sample type (biopsy vs. stool), IBD subtype (CD vs. UC), sex (Female vs. Male), BMI 310 

(BMI < 30 vs. BMI > 30), and age (Adult vs. Pediatric). To assess the performance within each 311 

demographic, we included the predictions from taxonomic features (species, genus, OTU) with a 312 

compositional normalization method, zero-centering batch effect reduction, and a non-linear ML 313 

model. Our analysis focused on the MCC performance metric as it is more robust to imbalanced 314 

label distribution [61], which occurred when the samples were grouped by the five metadata 315 

categories mentioned. A logistic regression function was used to assess changes in performance 316 

corresponding to each demographic while controlling for the other metadata (Table 2).  317 

The models displayed reduced performance for biopsy samples compared to stool samples, 318 

increased performance for samples from adult patients compared to paediatric patients, and 319 

decreased performance of samples from patients with BMI less than 30 compared to patients with 320 

BMI greater than 30. On the other hand, there was no difference in classification performance for 321 

females compared to males or for samples from patients with CD compared to patients with UC 322 

(Table 2). Similar results were reproduced with F1 scores, AUC, and accuracy (Supplemental 323 
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Table 1). The metadata groups with different performance between the two categories coincided 324 

with those that are not equally represented in our dataset, highlighting the importance of 325 

accounting for different demographic groups in a microbiome based diagnostic test.  326 

 327 

Evaluation of top performing pipeline combinations for IBD classification 328 

Our analysis identified the features, ML models, normalization methods, and batch effect 329 

reduction methods which led to the most generalizable performance. In order to determine the 330 

best overall combination of features, data processing, and ML model we assessed the top three 331 

performing models (Table 3). The top three models consisted of the most generalizable individual 332 

components: taxonomic features (genus), non-linear model (XGBoost or RF), compositional 333 

normalization (ILR or CLR), and zero-centering to remove batch effects. Therefore, the 334 

combination of the most generalizable methods led to the best classification performance. 335 

 336 

Identification of important features for classification with a XGBoost model 337 

In addition to predicting disease diagnoses, machine learning models can be used to identify 338 

biomarkers for disease by identifying features important for disease classification. We 339 

characterized the feature importance from the second-best overall data processing and ML model 340 

pipeline (Table 3). We did not analyze the feature importance of the best-performing model 341 

because the ILR normalized values no longer correspond to the starting features thereby 342 

preventing interpretation of feature importance. For an XGBoost model, the importance 343 

corresponds to a feature’s contribution to the model’s decision during training, referred to as the 344 

gain value [57]. We extracted the features’ gain values from each of the 15 LODO iterations, 345 

sorted by the mean of all iterations, and plotted the top fifteen features (Figure 6). In addition, we 346 

determined the change in abundance for each taxonomy to assess whether our dataset aligned 347 

with previous findings on changes of the microbiome in IBD. 348 
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Amongst the top features are many taxa in the short chain fatty acid (SCFA) producing 349 

Clostridium XIVa/IV clusters, including bacteria from the Eubacterium, Coprococcus, 350 

Lachnospira, and Ruminiclostridium genera (Figure 6A). Aligning with previous studies, these 351 

bacteria were decreased, with the exception of Coprococcus 3, in IBD samples vs control samples 352 

in our dataset (Figure 6B) [2, 74]. Fusobacterium and Veillonellaceae genera, commonly 353 

increased in the gut microbiome of IBD patients, were also top contributors to the XGBoost 354 

classifier (Figure 6A/B) [2, 75]. In addition, the Prevotellaceae genus was the second most 355 

important feature, with the decreased abundance in IBD samples agreeing with previous studies 356 

showing decreased abundance in the gut microbiome of patients with CD and UC (Figure 6A/B) 357 

[76]. XGBoost classifiers have the best potential for use as a diagnostic test due to their 358 

performance as well as their interpretability and utility in identifying disease biomarkers.  359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 
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Discussion 371 

We assessed how different feature sets, ML models, normalization methods, and batch 372 

effect reduction methods affect predictive performance across patient cohorts in a LODO cross 373 

validation approach. The limited applicability of a PCR-based diagnostic test with a handful of 374 

microbiomes for IBD diagnosis [77] has led the field to explore the use of ML models for disease 375 

diagnosis. Our benchmark provides practical suggestions for ways to improve the performance 376 

of an IBD diagnostic test using the gut microbiome composition. First, genus abundance 377 

estimates from 16S rRNA sequencing need to be normalized by a compositional normalization 378 

method, with CLR normalization being the most appropriate as it allows for each features 379 

importance to the ML models decision to be assessed. Second, zero-centering batch effect 380 

reduction should be applied to each batch of samples collected, sequenced, and processed 381 

together to reduce systematic batch differences. Following normalization and batch effect 382 

reduction, an XGBoost or random forest classification model should be trained and optimal 383 

hyperparameters determined for implementation as a diagnostic test. With respect to the training 384 

dataset, it is important to account for patient demographics or technical differences between 385 

samples that have been associated with gut microbiome alterations. We suggest several options 386 

for optimal performance: (1) ensure balanced representation in the training dataset, (2) include 387 

the metadata labels as a feature for the model, or (3) deploy diagnostic ML models built 388 

specifically for one demographic group. In addition, the LODO cross-validation methodology is an 389 

important tool for the selection of new data preprocessing and model building methods. 390 

Previous studies have demonstrated greater consistency of functional feature abundances 391 

than taxonomic feature abundance in both healthy individuals [78–80] and those with IBD [63, 392 

81]. In fact, some studies were unable to identify a single bacterium present in every IBD patient 393 

from their cohort [62]. The reduced variation and sparsity of functional features led us to 394 

hypothesize that functional abundance profiles would lead to better classification of IBD samples. 395 
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However, through our LODO cross validation, we found that classification performance with 396 

functional features was significantly worse than with taxonomic features (Figure 2B, 397 

Supplemental Figure 1B). We postulate the reason for the reduced classification performance 398 

with functional profiles is due to the limited recapitulation of functional profiles with PICRUSt2 [31, 399 

82] and the inability of 16S rRNA sequencing to identify strain-level functional differences of the 400 

present bacteria [83]. To overcome these limitations in future studies, measurement of the 401 

microbiome’s gene content by WGS, transcriptomes by RNA-seq, or metabolites by 402 

metabolomics need to be explored. In fact, functional profiles from whole genome sequencing led 403 

to better predictions of patients with IBD who achieved remission with vedolizumab than taxonomy 404 

abundance [23]. While whole genome sequencing may improve disease classification, its much 405 

higher cost than 16S rRNA sequencing substantially hinders the technology’s adoption as a 406 

diagnostic test.  407 

A major hurdle in the implementation of sequencing based diagnostic tests in the clinic is 408 

the observed systematic differences between sample preparations. In a previous study, removal 409 

of these batch effects with an empirical Bayes’ or zero centering approach led to improved 410 

classification [84]. However, our work only identified improved cross-batch classification 411 

performance with zero-centering and not the empirical Bayes’ method MMUPHin (Figure 5). 412 

Current empirical Bayes’ approaches are designed and optimized for disease mechanism and 413 

biomarker discovery where the disease covariate is known and incorporated in the method. The 414 

inclusion of a disease covariate is not applicable to a diagnostic scenario though, where the 415 

diagnosis label is to be determined. The lack of improvement in classification performance with 416 

MMUPHin #1 compared to no batch reduction is potentially due to its implementation in a scenario 417 

the method was not optimized for.  418 

Similar to batches of samples collected for a diagnostic test, the batches in our dataset were 419 

not balanced, with some containing only a single diagnosis class (e.g. all samples coming from 420 

IBD patients). In cases where the batch and diagnosis label are confounded, batch correction 421 
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methods tend to reduce the disease associated differences in the process of removing the batch 422 

differences [37]. Therefore, the more advanced removal of batch effects by MMUPHin likely led 423 

to an over-adjustment within the unbalanced batches and removal of the disease differences. 424 

Whereas, the less sophisticated removal of batch effects with the covariate naive zero-centering 425 

approach retained sufficient biological signal between disease labels for non-linear ML models to 426 

correctly classify samples across batches. Batch correction methods that do not require input of 427 

a covariate have been developed, such as frozen surrogate variable analysis or reference 428 

principal component integration (RPCI) [85, 86], although their applicability to microbiome data 429 

has not been assessed.  430 

The sparse availability of metadata for the samples led to several limitations in our analysis. 431 

First, the identification of CD and UC patients relied on the accuracy of the diagnosis coding in 432 

the public databases. However, there were no studies explicitly validating the registration of CD 433 

and UC diagnosis codes. Second, although our study demonstrated reliable results, gaps in the 434 

publicly available data prevented us from several critical analyses. For instance, we lacked 435 

information on how the patients were diagnosed in every study, the timing of sample collection in 436 

relationship to their diagnosis and disease progression, current disease activity quantification, 437 

DNA extraction and sample storage information. Furthermore, there was limited information on 438 

environmental factors such as medication usage, alcohol usage, smoking, diet, and other factors 439 

known to alter the gut microbiome which could affect our analysis [81, 87]. Of the sample 440 

information and patient demographic data we obtained, clear differences in performance of our 441 

top pipelines were observed (Table 2). Therefore, future studies with improved lifestyle and 442 

clinical metadata are needed to systematically address how these factors affect performance of 443 

a gut microbiome diagnostic test.  444 

Other non-invasive diagnostic tests for IBD, such as fecal calprotectin, continue to have 445 

significant differences between the reports on the sensitivity and specificity for classifying IBD 446 

patients from non-IBD [88, 89]. While high performance levels have been reported, one recent 447 
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study identified a 78% accuracy for identifying patients with IBD using fecal calprotectin [90], 448 

which is approximately 10% lower than our best model. Furthermore, while we focused solely on 449 

IBD classification, ML models using microbiome composition have wider applicability than 450 

singular biomarkers such as calprotectin. Models using microbiome data have already been 451 

implemented to predict if a patient with IBD will respond to a medication [23], to predict a patient’s 452 

postprandial glycemic response [91], and for classification of other diseases, such as Parkinson’s 453 

disease [48], to name a few.  454 

 455 

Conclusion 456 

With sufficient data and validation, analysis of the fecal gut microbiome can indeed be 457 

leveraged as a multi-purpose predictive tool. Given the significant delay [92–94] and associated 458 

costs of diagnosis [95, 96], it is critical to continue exploration of approaches that increase 459 

accessibility of diagnosis and decrease the cost of testing [97] in a community health or primary 460 

care setting. XGBoost and random forest machine learning models with microbiome data have 461 

the potential to achieve these goals. Further work to gather more well-annotated data, improve 462 

performance and assess models with validation studies is required. 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 
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Methods 473 

Acquisition of sample data 474 

Sample FASTQ files were acquired from the European Nucleotide Archive (ENA) browser. 475 

The sample metadata was acquired from the corresponding publication’s supplementary 476 

materials or the QIITA microbiome platform. Only samples collected from individuals in North 477 

America were used from each dataset. The dataset accessions and technical information 478 

regarding the samples in each dataset are available in Supplemental Table 2.  479 

The following fifteen studies were included in our dataset: 480 

1. The American Gut cohort is from a large, open platform which collected samples from 481 

individuals in the US to identify associations between microbiomes, the environment, and 482 

individual’s phenotype [41]. We included available samples that did not contain any self-483 

reported diseases in the metadata.  484 

2. The CVDF study determined the effect of cardiorespiratory fitness on microbiome 485 

composition and comprises a range of fitness levels [42].  486 

3. The GEVERSM study assessed the microbiome composition of treatment naive, newly 487 

diagnosed, paediatric patients with IBD and adult patients diagnosed with IBD for 0 to 57 488 

years [2].  489 

4. The GEVERSC cohort consists of additional samples from paediatric and adult patients 490 

added to the GEVERSM study [2].  491 

5. The GLS study longitudinally sampled 19 patients with CD (Crohn’s disease activity index 492 

(CDAI) between 44 and 273) and 12 healthy control individuals [20].  493 

6. The Human Microbiome Project (HMP) study longitudinal tracked paediatric and adult 494 

patients ranging from newly diagnosed to diagnosed for 39 years. Diagnosis was 495 

confirmed by colonoscopy prior to enrollment in the study along with several other 496 

inclusion criteria listed in the corresponding publication [43].  497 
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7. The MUC study collected mucosal biopsies from 44 paediatric patients with CD and 62 498 

non-IBD paediatric control patients [21].  499 

8. PRJNA418765 was a longitudinal study of patients with CD that were refractory to anti-500 

TNF initiating ustekinumab assessed at week 0, 4, 6 and 22. To be included, patients 501 

required at least three months Crohn’s disease history and a CDAI between 220 and 450 502 

[44].  503 

9. PRJNA436359 was a longitudinal study of new onset and treatment naive paediatric 504 

patients with UC receiving a variety of medications at week 0, 4, 12, and 52. Inclusion 505 

criteria consisted of presence of disease beyond the rectum, Paediatric Ulcerative Colitis 506 

Activity Index (PUCAI) of 10 or more, and no previous therapy [45].  507 

10. QIITA10184 was a study comparing five different fecal collection methods and their effect 508 

on the healthy participant’s microbiome composition identified with 16S rRNA gene 509 

sequencing [46].  510 

11. QIITA10342 study assessed the microbiome composition and function of healthy 511 

individuals in two American Indian communities in the United States [47].  512 

12. QIITA10567 samples consist of the control individuals in a study linking alterations in 513 

microbiome composition to Parkinson’s disease [48].  514 

13. The QIITA1448 study compared microbiome composition of individuals in traditional 515 

agricultural societies in Peru to those in industrialized cities in the United States [49].  516 

14. The QIITA2202 study collected longitudinal stool samples from two healthy individuals 517 

alongside detailed lifestyle characteristics to correlate with microbiome composition [48, 518 

50].  519 

15. The QIITA550 study collected longitudinal stool samples from two individuals to assess 520 

temporal changes in microbiome composition [51].  521 

 522 
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Taxonomy classification with QIIME2 523 

Taxonomy abundance tables were generated from the FASTQ files using QIIME2 (v2020.2) 524 

[27]. Reads were trimmed to remove low quality reads (trimming parameters listed in 525 

Supplemental Table 1), chimeras removed, and sequences denoised using Dada2 [52] or Deblur 526 

(for GLS and AG only). The processed sequences were clustered into OTUs and the centroid 527 

sequences classified with a Naive Bayes classifier [53] at 99% identity using the Silva 132 99% 528 

reference database [29, 54, 55]. For classification, the corresponding 16S rRNA gene 529 

hypervariable region’s sequences were extracted from the Silva 132 99% reference database 530 

with the QIIME2 plugin feature-classifier’s extract-reads function using the primers from the 531 

respective study. The extracted reads and the corresponding taxonomy were used to train the 532 

Naive Bayes classifier with the QIIME2 plugin feature-classifier’s fit-classifier-naive-bayes 533 

function. Taxonomic feature tables were collapsed to species (level 7) and genus (level 6) 534 

classification for further analysis.  535 

 536 

Inferring Functional Abundance with PICRUSt2 537 

Functional abundance tables were generated using PICRUSt2 (v2.3.0) from the OTU 538 

abundance table and representative OTU sequences from QIIME2. We generated abundance 539 

tables from the six different databases incorporated into PICRUSt2: Clusters of Orthologous 540 

Groups of proteins (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs (KO), 541 

Enzyme Commission (EC), Pfam protein domain (PFAM), TIGR protein family (TIGRFAM) and 542 

MetaCyc pathways. Each database is independently curated and provides information on different 543 

aspects of the functional properties present in the microbiome.  544 

 545 

Leave-One-Dataset-Out (LODO) cross validation 546 

The generalizability of each model, normalization, and batch effect reduction method, was 547 

determined through a cross validation strategy which assessed predictive performance on 548 
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previously unseen batches of samples (Supplemental Figure 5). As there were 15 datasets, we 549 

iterated through the full dataset 15 times, generating the training set by removing all samples from 550 

a single dataset to a separate test set. The training set was used to prune features that were not 551 

present in at least 10% of samples from one dataset. Following pruning, the remaining features 552 

were selected from the test set and the samples were normalized and batch reduced with the 553 

respective methods. Lastly, the training set was balanced to have the same number of healthy 554 

and IBD samples by subsampling the label with the greater number of samples, while maintaining 555 

the proportion of samples from each collection site, disease label (UC/CD/Control), and sample 556 

type (stool/biopsy). 557 

For our modified implementation of MMUPHin, the data processing was adjusted to ensure 558 

the training and test sets were batch reduced separately. For MMUPHin #1, the test dataset’s 559 

samples were removed and the data from the remaining studies batch reduced with MMUPHin 560 

prior to training the model. Independently, the full dataset (with training studies and test dataset) 561 

was batch reduced and the test dataset’s samples then used to assess the model’s classification 562 

performance (Supplemental Figure 5, MMUPHin #1). For MMUPHin #2, the training studies 563 

were batched reduced with MMUPHin prior to model training and the model’s classification 564 

performance then assessed on non-batch reduced samples from the test dataset (Supplemental 565 

Figure 5, MMUPHin #2). Lastly, feature abundance for some samples following MMUPHin batch 566 

effect reduction on the training set when QIITA2202 was left out and the test set when HMP was 567 

left out were all zero. Rows with all zero are not appropriate input for the compositional 568 

normalization methods, therefore we replaced the feature values for these samples with equal 569 

relative abundance prior to normalization. 570 

 571 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442488
http://creativecommons.org/licenses/by/4.0/


 

24 

Feature Selection 572 

Following taxonomy classification and inference of functional abundance, features present 573 

in less than 10% of the samples within each dataset were pruned from the dataset. The feature 574 

pruning was performed on the training set only, with the features then selected from the test set.  575 

 576 

Normalization methods 577 

When possible, normalization methods were implemented using python (v3.6.12) and R 578 

(v3.6.3) packages with the methods already incorporated. For CLR and ILR normalization, zero 579 

values were first replaced with the multiplicative replacement function prior to normalization with 580 

the clr and ilr functions, respectively, from the python package SciKit-Bio (v0.5.2). CLR performs 581 

a log transformation of abundance values, which are normalized by the geometric mean of all 582 

features. ILR uses a change of coordinate space projection calculation to transform proportional 583 

data (or relative abundances) to a new space with an orthonormal basis. 584 

For TSS normalization, the counts for each feature were divided by the sum of all feature 585 

counts in the sample with a custom python function. The method constrains the sample row sum 586 

to one, aiming to similarly scale all samples while maintaining biological information of microbial 587 

abundances. For ARS normalization, the TSS normalized values were transformed with sqrt 588 

function followed by the arcsin function from the python package numpy (v1.19.2). The LOG 589 

normalization was also applied to the TSS normalized values using the log function from numpy 590 

following replacement of all 0s with 1.  591 

For VST normalization, we used the varianceStabilizingTransformation function in the R 592 

package DESeq2 (v1.26.0). VST aims to factor out the dependence of the variance in the mean 593 

abundance of a feature. The method numerically integrates the dispersion relation of the feature 594 

mean fitted with a spline, evaluating the transformation for each abundance in the feature. VST 595 

normalization was performed similarly to the previously described modified MMUPHin 596 
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implementation, with the training set normalized separately from the test set as the normalization 597 

is dependent on all samples present in the dataset.  598 

 599 

Batch effect reduction methods 600 

We explored two methods for batch effect reduction: naive zero-centering and an empirical 601 

Bayes method. The naive zero-centering batch effect reduction entails centering the mean of 602 

each feature within each batch to zero [37]. We also assessed MMUPHin, a recently developed 603 

empirical Bayes method designed specifically for zero-inflated microbial abundance data. 604 

MMUPHin estimates parameters for the additive and multiplicative batch effects, using normal 605 

and inverse gamma distributions, respectively. The estimated parameters are then used to 606 

remove the batch effects from the dataset [38, 56]. For MMUPHin, the sample type (stool/biopsy) 607 

was used as a covariate for MMUPHin #1 and the sample type and disease label (UC/CD/Control) 608 

were covariates for MMUPHin #2. We considered a batch as the whole dataset or split a dataset 609 

into multiple batches when the metadata indicated different sample preprocessing methods or 610 

samples were processed in different locations.  611 

 612 

Standard machine learning models 613 

We assessed the classification performance of standard machine learning and deep 614 

learning models. The standard models were implemented using the python package SciKit-Learn 615 

(v0.23.2). Hyperparameters were not optimized and decided prior to experimentation. 616 

 617 

Bernoulli Naive Bayes Classifier 618 

The Bernoulli Naive Bayes Classifier (BNB) model converts the feature space to binary 619 

values and then estimates parameters of a Bernoulli distribution for classification purposes. We 620 

implemented the BNB model using the default settings in SciKit-Learn.  621 

 622 
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Random Forest  623 

Random Forest (RF) models use an ensemble of decision trees that discriminate the feature 624 

space by a sequence of threshold conditional statements. The power of the model comes from 625 

its non-linear classification capabilities and the number of trees used to label classification. We 626 

implemented the Random Forest classifier with the following modifications to the default SciKit-627 

learn settings: n_estimaters = 500, max_features = sqrt, and class_weight = balanced. 628 

 629 

K-Nearest Neighbour Classifier 630 

The K-Nearest Neighbour Classifier (KNN) classifies each sample by majority vote of the K 631 

nearest neighbours in its surrounding. We implemented the K Neighbors classifier with the 632 

following modifications to the default SciKit-learn settings: n_neighbors = 6, weights = distance, 633 

and metric = manhattan. 634 

 635 

Support Vector Machine Classifier 636 

The Support Vector Machine Classifier (SVC) identifies multivariate decision boundaries 637 

that separate class labels. We implemented two SVC variations, the first with a linear kernel, 638 

constraining the decision boundary to a linear hyperplane, using the SGDClassifier class from 639 

SciKit-learn with the following modifications to default settings: loss = modified_huber, tol = 10e-640 

5, and max_iter = 10000. The second variation used the radial basis function kernel with the SVC 641 

class from SciKit-Learn, which removes the linear constraint of the decision boundary, with the 642 

following modifications to the default settings: tol = 10e-6, class_weight = balanced, and max_iter 643 

= 100000.  644 

 645 

Logistic Regression 646 

Logistic Regression classification estimates the probability of a certain class in a binary 647 

classification problem using a statistical fit to the logistic function. We implemented the 648 
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LogisticRegression class from SciKit-Learn with the following modifications to the default settings: 649 

solver = sag, class_weight = balanced, and max_iter = 10000. For the non-linear variation, the 650 

feature space was first transformed with the radial basis function kernel implemented with the 651 

rbf_kernel function from SciKit-Learn prior to fitting a logistic regression model. 652 

 653 

Gradient Boosted Trees (XGBoost) 654 

Gradient boosted trees consist of a collection of sequential decision trees, where each tree 655 

learns and reduces the error of the previous tree [57]. The gradient boosted trees model was 656 

implemented with the XGBoost package’s (v1.2.0) XGBoostClassifier class with the following 657 

modifications to default settings: n_estimators = 500. 658 

 659 

Deep learning models 660 

The deep learning models were built with the python package Tensorflow (v2.2.0). The 661 

models were trained for up to 100 epochs with a batch size of 16 and samples shuffled. The best 662 

weights were selected using early stopping (EarlyStopping callback) by monitoring the validation 663 

loss (5% split of the training set) with a min_delta = 1x10-3 and patience = 10. 664 

 665 

Multilayer Perceptron (MLP) 666 

A MLP is a neural network architecture composed of one or more layers of fully connected 667 

neurons that take as input the weights of the previous layer and output the result of an activation 668 

function to the subsequent layer. For binary classification, the final layer contains a single node 669 

that predicts the class probability. We implemented an MLP architecture with three hidden layers 670 

of 256 neurons using a rectified linear unit (ReLU) activation function followed by a Dropout layer 671 

with a dropout rate of 50%. The final layer predicted the class label with a sigmoid activation 672 

function. The model was trained using a binary cross entropy loss function and the Adam 673 

optimizer with a learning rate of 0.001.  674 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442488
http://creativecommons.org/licenses/by/4.0/


 

28 

 675 

Convolutional Neural Network  676 

We implemented MDeep, a CNN architecture recently designed for microbiome data [58]. 677 

CNNs require an inherent structure to present in the data, which is added to the OTU dataset by 678 

hierarchical agglomerative clustering of the phylogeny-induced correlation between OTUs. We 679 

built a phylogenetic tree with the align_to_tree_mafft_fasttree function in the QIIME2 phylogeny 680 

python plugin using the OTU representative sequences obtained from clustering 16S rRNA 681 

sequences with QIIME2. The phylogenetic tree was imported into R using the phyloseq package 682 

and the cophenetic distance between OTUs determined with the R package ape. The cophenetic 683 

distance was then used to calculate the phylogeny-induced correlation as described in the original 684 

study and OTUs clustered using the HAC function from the MDeep GitHub repository 685 

(https://github.com/lichen-lab/MDeep).  686 

 687 

Performance metrics 688 

To measure the performance of the various normalization, batch effect reduction, and model 689 

combinations we used four commonly used metrics for binary classification: F1 score, Area Under 690 

the receiver operating characteristic Curve (AUC), binary accuracy and Matthews Correlation 691 

Coefficient (MCC). Since the number of samples in each dataset ranged from 23 to 1279, we first 692 

balanced the number of samples from each dataset by up sampling each (with replacement) to 693 

100 000 samples while maintaining the confusion matrix proportions for each individual dataset. 694 

Balancing the number of samples ensured that altered performance with a single, large dataset 695 

did not control the overall score and changes in performance for small studies was still observed. 696 

The up sampled dataset was then used to calculate the respective metrics using the functions 697 

implemented in SciKit-Learn.  698 

 699 
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Sample subgroup performance analysis 700 

We assessed the performance of our algorithm for five different metadata variables, each 701 

with two categorical labels. The samples were grouped by the five variables, with the two 702 

categories for each variable coded as 0 or 1. The performance metric was calculated within each 703 

grouping for classification of control samples and either UC or CD (depending on the specific 704 

grouping). For the logistic regression analysis, the metric was input as the dependent variable 705 

and the five metadata groups as the independent variables. The MCC score was scaled with the 706 

MinMaxScaler from SciKit-Learn to scale the range from 0 to 1 as required for the logistic function.  707 

 708 

Feature Importance from XGBoost Classifier  709 

In order to determine the importance of each taxonomy, we collected the features’ gain 710 

value from our second-best pipeline composed of CLR normalized, zero-centered, genus 711 

abundance features with an XGBoost Classifier. The gain values were collected from the trained 712 

XGBoost classifier in each LODO iteration separately.  713 

 714 

Taxonomy Differential Abundance 715 

Differential taxonomy abundance was performed with Analysis of Compositions of 716 

Microbiomes with Bias Correction (ANCOM-BC) (v1.0.5) [59]. The fold change between control 717 

samples and IBD samples (UC and CD) was determined with a Bonferroni multiple comparison 718 

correction applied to the p-values.  719 

 720 

 721 

 722 

 723 
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Abbreviations 724 

ANCOM-BC Analysis of Compositions of Microbiomes with Bias Correction 725 

ARS  Arcsine square root transformation 726 

AUC  Area Under the receiver operating characteristics Curve 727 

BMI  Body mass index 728 

BNB  Bernoulli Naive Bayes Classifier 729 

CD  Crohn’s disease 730 

CDAI  Crohn’s disease activity index 731 

CLR  Centered-log ratio 732 

CNN  Convolutional neural network 733 

COG  Clusters of Orthologous Groups of proteins 734 

EC  Enzyme Commission 735 

HMP  Human Microbiome Project 736 

IBD  Inflammatory Bowel Disease 737 

ILR  Isometric-log ratio 738 

KEGG  Kyoto Encyclopedia of Genes and Genomes 739 

KNN  K-Nearest Neighbour Classifier 740 

KO  KEGG orthologs 741 

LODO  Leave-one-dataset-out 742 

LOG  Log transformation 743 

LR  Logistic Regression 744 

MCC  Matthews Correlation Coefficient 745 

ML  Machine learning 746 

MLP  Multilayer Perceptron 747 

MMUPHin Meta-analysis Methods with a Uniform Pipeline for Heterogeneity 748 
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NOT  No normalization 749 

OTU  Operational taxonomic unit 750 

PCA  Principal component analysis  751 

PCoA  Principal coordinate analysis 752 

PFAM  Pfam protein domain 753 

PUCAI  Paediatric Ulcerative Colitis Activity Index 754 

RF  Random Forest 755 

RPCI  Reference principal component integration 756 

SCFA  Short chain fatty acid 757 

SVC  Support Vector Machine Classifier 758 

TSS  Total sum scaling 759 

TIGRFAM TIGR protein family 760 

UC   Ulcerative Colitis 761 

VST  Variance stabilized transformation 762 

XGBoost eXtreme Gradient Boosting 763 

WGS  Whole genome shotgun 764 

 765 

 766 

 767 

 768 

 769 

 770 

 771 
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Tables 1107 

Table 1. Overview of 15 datasets used to compare the effect of different features, data 1108 

preprocessing methods, and machine learning models on IBD classification performance.  1109 

Available metadata (age, sex, BMI), disease activity, and medication use) is provided for each 1110 

dataset. Blank spaces indicate that the respective metadata was not available for the dataset’s 1111 

samples. The following abbreviations are used: female (F), male (M), and other (O).  1112 

 1113 

Study Accession 
Disease 

Type 

Number 
of 

Samples 

Sample Type Age Sex BMI 
Disease 
Activity 

Medications 

Stool Biopsy Mean SD F M O Mean SD Active 
Rem-
ission 

Biologics 
Immuno-

suppresants 
5-

ASA 

American Gut PRJEB11419 Control 1279 1279 0 46.5 12.2 600 595 1 23.3 2.7      

CVDF PRJNA308319 Control 39 39 0 25.4 4.2 15 24  24.0 2.9      

GEVERSC 

 CD 219 219 0 12.0 2.9 87 132         

PRJEB13680 Control 28 28 0 12.3 3.5 10 18         

 UC 37 37 0 11.8 3.6 22 15         

GEVERSM 

 CD 689 166 523 19.6 14.2 312 377      15 31 51 

PRJEB13679 Control 320 7 313 14.0 9.8 157 163         

 UC 268 106 162 24.9 17.5 121 147      2 5 52 

GLS PRJEB23009 
CD 340 340 0 30.2 9.0 215 102  25.7 7.2 43 297 145 74 15 

Control 335 335 0 48.6 14.4 152 166  32.8 8.4      

HMP 

 CD 66 0 66 23.5 13.0 32 34         

ibdmdb.org Control 43 0 43 28.7 22.0 20 23         

 UC 36 0 36 27.7 17.4 20 16         

MUC PRJNA317429 
CD 35 0 35 14.5 3.5 13 22         

Control 47 0 47 11.9 3.4 21 25         

PRJNA418765 PRJNA418765 CD 589 589 0 40.4 13.2 332 257  26.4 6.6  589 416   

PRJNA436359 PRJNA436359 UC 1178 917 261 12.6 3.3 582 596    875 303    

QIITA10184 PRJEB13895 Control 962 962 0             

QIITA10342 PRJEB13619 Control 58 58 0 43.2 15.3    31.0 7.5      

QIITA10567 PRJEB14674 Control 133 133 0 70.3 8.6    28.3 5.7      

QIITA1448 PRJEB13051 Control 23 23 0             

QIITA2202 PRJEB6518 Control 516 516 0 29.6 4.8 516          

QIITA550 PRJEB19825 Control 467 467 0 32.8 0.5 131 336         

Total   7707 6221 1486   3358 3048 1   918 1189 578 110 118 
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Table 2. Model performance for different sample types and patient demographics.  1116 

Samples with available metadata were categorized into groups based on the collection method 1117 

or the patient’s specific demographic group based on sex, age, and BMI. Predictive performance 1118 

for all combinations of taxonomic features, compositional normalizations, zero-centering batch 1119 

effect reduction, and non-linear models were included in the analysis. Logistic regression was 1120 

performed to assess the performance differences within each sample and demographic group 1121 

while adjusting for the remaining covariates. **** indicates p-value < 0.0001, and * indicates p-1122 

value < 0.05. Coefficient refers to the corresponding independent variable’s coefficient for the 1123 

logistic regression function and SE refers to the standard error of the coefficient.  1124 

Group Variable Coefficient SE 

Sample Type Biopsy (vs. Stool) -0.44 * 0.2 

Life Stage Adult (vs. Pediatric) 1.39 **** 0.18 

BMI Stratification BMI <30 (vs. BMI > 30) -0.85 **** 0.19 

Sex Female (vs. Male -0.02 0.18 

IBD Type CD (vs. UC) 0.05 0.18 

 1125 

 1126 

Table 3. Top three data processing and model pipelines for classifying IBD samples.  1127 

Three combinations which appeared most frequently when all models were sorted by F1 score, 1128 

accuracy, AUC, or MCC.  1129 

Features Normalization 
Batch 

Reduction 
Model 

F1 
Score 

Accuracy AUC MCC 

Genus ILR Zero-Centering XGBoost 83.67 87.92 87.9 74.3 

Genus CLR Zero-Centering XGBoost 82.96 87.41 87.3 73.2 

Genus ILR Zero-Centering 
Random 
Forest 

82.66 87.4 86.9 72.9 

        

 1130 

 1131 

 1132 
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Figures 1133 

 1134 

Figure 1. Leave-one-dataset-out cross-validation pipeline.  1135 

The experiments comprised three different stages to go from raw sequence files to the 1136 

performance metrics. 1) Raw sequences were processed with Dada2 or Deblur and close-1137 

reference clustered into OTUs at 99% identity. The OTUs were classified to taxonomy at 99% 1138 

identity with QIIME2 and used to infer functional profiles with PICRUSt2. 2) Generating predictions 1139 

for the 15 iterations of our LODO cross validation consisted of all possible combinations of the 1140 

listed filtering method, normalization methods, batch effect reduction methods, and models. 3) 1141 

The predictions from each iteration were combined and the number of samples from each dataset 1142 

up sampled to 100 000 prior to calculating the performance metrics. The descriptions of acronyms 1143 

and abbreviations are the following: Clusters of Orthologous Groups of proteins (COG), Kyoto 1144 
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Encyclopedia of Genes and Genomes (KEGG) orthologs (KO), Enzyme Commission (EC), Pfam 1145 

protein domain (PFAM), TIGR protein family (TIGRFAM) and MetaCyc pathways (pathway), 1146 

centered log-ratio (CLR), isometric log-ratio (ILR), arcsine square root transformation (ARS), 1147 

variance stabilizing transformation (VST), log transformation (LOG), total sum scaling (TSS), no 1148 

normalization (NOT), Bernoulli Naive Bayes (BNB), logistic regression (LR), linear support vector 1149 

machine (Linear SVC), random forest (RF), K nearest neighbours (KNN), radial support vector 1150 

machine (Radial SVC), eXtreme Gradient Boosting (XGBoost), convolutional neural network 1151 

(CNN), multilayer perceptron (MLP). 1152 

 1153 

 1154 

 1155 

 1156 

 1157 

 1158 

 1159 

 1160 

 1161 

 1162 

 1163 

 1164 

 1165 
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 1167 

Figure 2. Optimal disease classification of microbiome samples obtained with taxonomic 1168 

features.  1169 

A) Average performance of the taxonomy and functional feature sets for each ML model 1170 

architecture. Rows were sorted in descending order by the mean column followed by the standard 1171 

deviation (SD) column. B) Distribution of performance metrics for taxonomy and functional 1172 

features across all normalization, batch effect reduction, and model combinations. Independent 1173 

Mann-Whitney U tests were performed to compare aggregate performance of taxonomy and 1174 

functional features. The analysis was limited to normalization (ILR, CLR, VST, ARS, LOG, TSS, 1175 

NOT) and batch effect reduction (no batch reduction or Zero-Centering) methods that were 1176 

performed on all feature sets. **** indicates p-value < 0.0001. 1177 

 1178 
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 1179 

Figure 3. Non-linear models are better suited to identify decision boundaries between 1180 

control and IBD samples than linear models. 1181 

A) Average model performance for each feature set across normalization and batch effect 1182 

reduction methods. Rows were sorted in descending order by mean followed by the standard 1183 

deviation of performance across all feature sets. B) Distribution of performance of non-linear (RF, 1184 

MLP, KNN, XGBoost, radial SVC) and linear (BNB, Linear SVC, LR) models. Independent Mann-1185 

Whitney U-tests were performed to compare each performance metric. The analysis was limited 1186 

to normalization (ILR, CLR, VST, ARS, LOG, TSS, NOT) and batch effect reduction (no batch 1187 

effect reduction or zero centering) methods performed on all feature types. C) Distribution of 1188 

classification performance with the non-linear and linear variations of logistic regression and 1189 

support vector machines across all feature sets. A Mann-Whitney U test with Bonferroni correction 1190 

was performed to compare the linear and non-linear variation of each model respectively. **** 1191 

indicates p-value < 0.0001. 1192 

 1193 
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 1194 

Figure 4. Compositional normalization methods lead to the highest model performance for 1195 

IBD classification.  1196 

Average model performance with each normalization method across all batch effect reduction 1197 

methods. Performance following data processing with all pairwise combinations of the 1198 

normalization methods (ILR, CLR, LOG, ARS, VST, TSS and NOT) and batch effect reduction 1199 

methods (No batch reduction, MMUPHin #1, MMUPHin #2, and Zero-Centering) were included. 1200 

Rows were sorted in descending order by the mean and standard deviation of each performance 1201 

metric across the non-linear models. No analysis was performed for MDeep paired with ILR as 1202 

the ILR normalized values no longer map directly to a feature, therefore removing the 1203 

phylogenetic structure required for MDeep. 1204 

 1205 

 1206 

 1207 

 1208 

 1209 

 1210 

 1211 

 1212 
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 1214 

Figure 5. Batch effect reduction with the naive zero-centering method improved IBD 1215 

classification. 1216 

Average performance of each batch effect reduction method across all combinations of 1217 

normalization methods, taxonomic features, and non-linear ML models. Performance following 1218 

data processing with all pairwise combinations of the normalization methods (ILR, CLR, LOG, 1219 

ARS, VST, TSS and NOT) and batch effect reduction methods (No batch reduction, MMUPHin 1220 

#1, MMUPHin #2, and Zero-Centering) were included. Rows were sorted in descending order by 1221 

the mean and standard deviation of performance across all non-linear models.  1222 

 1223 
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 1235 

 1236 

Figure 6. Features with greatest contribution to IBD classification by an XGBoost classifier.  1237 

A) An XGBoost classifier was trained with CLR normalized genus abundance features and zero-1238 

centered batch effect reduction for fifteen LODO iterations. The features’ gain values for each 1239 

iteration were extracted and sorted by the mean gain across all iterations. The lowest 1240 

classification rank for each feature was used as the label for the corresponding bar. B) Changes 1241 

in taxonomy abundance between control samples and those from patients with IBD. Bars 1242 

represent the fold change ± the standard error determined with Analysis of Compositions of 1243 

Microbiomes with Bias Correction (ANCOM-BC). Red indicates a significant fold change between 1244 

IBD and control samples (p < 0.05) and black indicates non-significant fold change. 1245 
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Supplemental Tables 1252 

Supplemental Table 1. Model performance on sample and patient demographics. 1253 

Samples were grouped by the five different metadata categories and the classification 1254 

performance with the indicated metric determined for control and CD or UC (depending on the 1255 

metadata group). Coefficient refers to the corresponding independent variable’s coefficient for the 1256 

logistic regression function and SE refers to the standard error of the coefficient. **** indicates p-1257 

value < 0.0001, *** indicates p-value < 0.001, ** indicates p-value < 0.01, and * indicates p-value 1258 

< 0.05.   1259 

Metric Group Variable Coefficient SE 

F1 Score Sample Type Biopsy (vs. Stool) -0.33 0.21 

F1 Score Life Stage Adult (vs. Pediatric) 0.47 ** 0.18 

F1 Score BMI Stratification BMI <30 (vs. BMI > 30) 0.49 ** 0.19 

F1 Score Sex Female (vs. Male 0.31 0.19 

F1 Score IBD Type CD (vs. UC) 0.54 ** 0.18 

AUC Sample Type Biopsy (vs. Stool) -0.18 0.2 

AUC Life Stage Adult (vs. Pediatric) 1.25 **** 0.17 

AUC BMI Stratification BMI <30 (vs. BMI > 30) -0.17 0.18 

AUC Sex Female (vs. Male 0.1 0.18 

AUC IBD Type CD (vs. UC) 0.07 0.17 

Accuracy Sample Type Biopsy (vs. Stool) -0.7 *** 0.2 

Accuracy Life Stage Adult (vs. Pediatric) 1.03 **** 0.18 

Accuracy BMI Stratification BMI <30 (vs. BMI > 30) 0.41 * 0.19 

Accuracy Sex Female (vs. Male 0.2 0.19 

Accuracy IBD Type CD (vs. UC) 0.17 0.18 
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Supplemental Table 2. Overview of QIIME2 processing for 15 microbiome datasets.  1266 

Samples were collected from the listed ENA accession, with only samples corresponding to 1267 

individuals in North America retained. Trim length was used as input for the trunc_len parameter, 1268 

forward trim as the trim_left input for single end read and trim_left_f for paired-end reads, and 1269 

reverse trim as the trim_left_r input for paired-end reads in the python API for QIIME2’s Dada2 1270 

plugin. 1271 

Study ID 
ENA 

Accession 
Hypervariable 

Region 
Trim 

Length 
Forward 

Trim 
Reverse 

Trim 

American Gut ERP012803 V4 124 0 0 

CVDF PRJNA308319 V3-V4 290 40 40 

GEVERSC PRJEB13680 V4 174 0 0 

GEVERSM PRJEB13679 V4 174 0  

GLS PRJEB23009 V4 99 0  

HMP ibdmdb.org V4 249 0 0 

MUC PRJNA317429 V4 174 19 21 

PRJNA418765 PRJNA418765 V4 245 0 3 

PRJNA436359 PRJNA436359 V4 170 0 3 

QIITA10184 PRJEB13895 V4 120 0  

QIITA10342 PRJEB13619 V4 100 0  

QIITA10567 PRJEB14674 V4 99 0  

QIITA1448 PRJEB13051 V4 99 0  

QIITA2202 PRJEB6518 V4 99 0  

QIITA550 PRJEB19825 V4 149 0  
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Supplemental Figures 1281 

 1282 

Supplemental Figure 1. Greater classification of IBD samples with taxonomic features than 1283 

functional features.  1284 

A) Average performance for each type of feature across different model architectures. Rows were 1285 

sorted in descending order by the mean column followed by the standard deviation (SD) column. 1286 

B) Distribution of performance metrics across all normalization, batch effect reduction, and model 1287 

combinations. Independent Mann-Whitney U-tests were performed to compare aggregate 1288 

performance measured by each metric of taxonomy and functional features. C) Comparison of 1289 

classification performance with the three taxonomic feature sets. All pairwise comparisons were 1290 

performed with a Mann-Whitney U-test followed by Bonferroni correction and the significant 1291 

comparisons are indicated. The analysis was limited to normalization (ILR, CLR, VST, ARS, LOG, 1292 

TSS, NOT) and batch effect reduction (No batch reduction or Zero-Centering) methods that were 1293 

performed on all feature sets. **** indicates p-value < 0.0001, *** indicates p-value < 0.001, * 1294 

indicates p-value < 0.05. 1295 
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 1297 

Supplemental Figure 2. Greater IBD classification performance with non-linear than linear 1298 

ML models. 1299 

A) Average model performance for each feature set across normalization and batch effect 1300 

reduction methods. B) Distribution of performance of non-linear and linear models. Independent 1301 

Mann-Whitney U-tests were performed to compare each performance metric. Analysis was limited 1302 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442488
http://creativecommons.org/licenses/by/4.0/


 

55 

to datasets preprocessed using normalization (ILR, CLR, VST, ARS, LOG, TSS, NOT) and batch 1303 

effect reduction (No batch reduction or Zero-Centering) methods performed on all feature types. 1304 

C) Distribution of classification performance with the non-linear and linear variations of logistic 1305 

regression and support vector machines across all feature sets. A Mann-Whitney U test with 1306 

Bonferroni correction was performed to compare the linear and non-linear variation of each model 1307 

respectively. D) Comparison of IBD classification performance between the non-linear models. 1308 

All pairwise comparisons were performed by Mann-Whitney U test with a Bonferroni correction 1309 

and the significant comparisons were labelled. E) Comparison of two neural network 1310 

architectures: the convolutional neural network MDeep or a MLP. A Mann-Whitney U test was 1311 

used to compare each performance metric and the significant comparisons were labelled. **** 1312 

indicates p-value < 0.0001, *** indicates p-value < 0.001, ** indicates p-value < 0.01, and * 1313 

indicates p-value < 0.05. 1314 
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 1329 

Supplemental Figure 3. Compositional normalization methods lead to the highest model 1330 

performance for IBD classification.  1331 

A) Average model performance with each normalization method across all batch effect reduction 1332 

methods. B) Comparing the effect of different classes of normalization methods. The 1333 

compositional category consists of CLR and ILR (green), variance/distribution modifiers consists 1334 

of VST, ARS, and LOG (blue), scaling consists of TSS (orange), and no normalization consists of 1335 

NOT (brown). All pairwise combinations were compared with a Mann-Whitney U test with a 1336 

Bonferroni correction and the significant comparisons labelled. **** indicates p-value < 0.0001, 1337 

*** indicates p-value < 0.001, ** indicates p-value < 0.01, and * indicates p-value < 0.05.  1338 
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 1345 

Supplemental Figure 4. Removing batch effects with zero-centering improved IBD 1346 

classification. 1347 

A) Batch effect reduction methods sorted by average performance across all combinations 1348 

normalization methods, taxonomic features, and non-linear ML models. B) Comparing the effect 1349 

of different batch effect reduction methods on classification of IBD samples. All pairwise 1350 

combinations were compared with a Mann-Whitney U test and the significant comparisons were 1351 

labelled. **** indicates p-value < 0.0001, *** indicates p-value < 0.001, ** indicates p-value < 0.01, 1352 

and * indicates p-value < 0.05.  1353 
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 1362 

Supplemental Figure 5. LODO cross validation pipeline for different batch effect reduction 1363 

methods.  1364 

Pipeline performance (combinations of a normalization method, batch effect reduction method, 1365 

and ML model) was determined with LODO cross validation. Four variations were used to account 1366 

for different requirements in the batch effect reduction step to ensure the training and test set 1367 

were independent. The coloured boxes under the text indicate which studies the corresponding 1368 

step was performed with. The diagram illustrates how a single dataset (illustrated by the different 1369 

colours) is removed from the dataset the model is trained with and then tested on. The dashed 1370 

arrow indicates the step returned to in each iteration, with a different dataset removed in each 1371 

iteration. 1372 
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