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Abstract: The harvesting operation is a recurring task in the production of any crop, thus making it an
excellent candidate for automation. In protected horticulture, one of the crops with high added value
is tomatoes. However, its robotic harvesting is still far from maturity. That said, the development
of an accurate fruit detection system is a crucial step towards achieving fully automated robotic
harvesting. Deep Learning (DL) and detection frameworks like Single Shot MultiBox Detector (SSD)
or You Only Look Once (YOLO) are more robust and accurate alternatives with better response
to highly complex scenarios. The use of DL can be easily used to detect tomatoes, but when their
classification is intended, the task becomes harsh, demanding a huge amount of data. Therefore,
this paper proposes the use of DL models (SSD MobileNet v2 and YOLOv4) to efficiently detect the
tomatoes and compare those systems with a proposed histogram-based HSV colour space model
to classify each tomato and determine its ripening stage, through two image datasets acquired.
Regarding detection, both models obtained promising results, with the YOLOv4 model standing out
with an F1-Score of 85.81%. For classification task the YOLOv4 was again the best model with an
Macro F1-Score of 74.16%. The HSV colour space model outperformed the SSD MobileNet v2 model,
obtaining results similar to the YOLOv4 model, with a Balanced Accuracy of 68.10%.

Keywords: computer vision; fruit detection; machine learning; robotic harvesting; SSD; YOLO

1. Introduction

The high labour demand for the execution of several agricultural tasks causes bottle-
necks within farms’ organisation with associated efficiency costs, especially in recurrent
situations of unavailability of labour. Competition for labour between sectors and the
ageing or scarcity of workers contribute to labour shortages [1]. In the agricultural industry,
the problem is aggravated by the hazardous nature of most farming operations, which
makes them unattractive and exclusive, often associated with social discrimination and
illegal labour flows. Cost reduction is thus hindered by the vital needs for labour power [2].
This context demands the adoption of new technologies and the search for solutions that
improve cost reduction or compensate for the lack of labour to guarantee the success of the
various production systems.

Introducing robotic technology in agriculture could alter productivity, ergonomics
and labour hardship. Protected or greenhouse horticulture is one of the most intensive in
production inputs and knowledge, focusing on the production of crops with high added
value, where labour accounts for up to 50% of the usual costs [3]. The harvesting operation
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becomes an excellent candidate for automation due to being recurrent and crucial in the
production of high-value crops [4]. Increasing efficiency and reducing labour dependency in
this operation could ensure higher yields and competitiveness in high-tech food production,
so the development of harvesting robots should be considered as a viable alternative [5].
However, despite all the advances, the penetration of robots is not yet comparable to the
robots developed for open-field farming systems [6] and every year millions of tons of
fruit and vegetables are harvested manually in greenhouses. The scarce use of robots can
be attributed to their low performance, so it is essential to understand why this limited
performance and challenges that can generate a positive trend [4,5,7].

Few crops are as important as tomatoes. Between 2003 and 2017, the world tomato
production increased annually from 124 million tonnes to more than 177 million tonnes, and
over the last 15 years, consumption has experienced sustained growth of around 2.5% [8].
This is one of the leaders when it comes to protected horticulture. In the south-east of Spain,
Almería, home to the world’s largest concentration of greenhouses (over 30,000 hectares),
tomatoes are the main crop, accounting for 37.7% of all production [9]. Manual tomato
harvesting is associated with low labour productivity because it is sporadic, fatiguing,
with high to moderate physical effort and high repeatability by the operator, requiring
about 700–900 h/year/ha [10], generating a low labour force attractiveness. Along with the
scarcity of labour, the precarious working conditions and increased labour costs constrain
the greenhouse harvesting operation. The importance of this crop and the associated
high production costs justify the fact that this is one of the most common crops in the
development of robotic harvesting [6].

However, robotising tomato harvesting is not an easy task. The robot must detect and
manipulate, in a heterogeneous and unpredictable environment, a fruit that also varies in
position, size, shape, colour and even reflectance [4,11].The colour is used as an indicator
of ripeness, and the desired level of ripeness by the producer can vary. As a climacteric
fruit, tomatoes can be harvested at the physiological maturity stage (green colour), ripening
detached from the plant, or at a more advanced stage, showing a reddish colour [12].
Therefore, in addition to detection, it is desirable to enable its classification based on colour,
or even extract other relevant features, the so-called phenotyping process [13], in order to
achieve a selective and differentiated harvest.

Accessibility and visibility of the fruit are two major challenges in the harvesting
task [4]. Different lighting conditions that the robot may encounter and scenarios where
many fruits are occluded by different parts of the plant, which end up becoming obstacles
that prevent not only their access but also their visibility. The robotic system must detect
less visible fruits and harvest them without damaging other fruits and plant parts.

Despite the difficulties imposed by the set of factors described, there are already some
prototypes developed for robotic tomato harvesting [14–19]. All the projects mentioned
point towards the same future goal: to improve the robot’s performance. Harvesting a
greater number of fruits in less time while maintaining high precision becomes imperative.
In most cases, the cause of failure is associated with the visual perception of the system,
where problems such as light intensity, overlapping and occlusion of the fruits to be
detected, due to the different parts of the plant, hinder and end up further delaying the
intended goal. Therefore, fruit detection and classification is a critical area capable of
dictating the success or failure of robotic systems.

Robotics agricultural applications present a close relationship with image processing
and artificial vision techniques, promoting the joint development of these fields. Computer
vision has attracted growing interest and is often used to provide accurate, efficient and
automated solutions to tasks traditionally performed manually [20]. It comprises methods
and techniques that allow developing systems endowed with artificial vision, feasibly
implementing them in practical applications.

Systems based on computer vision involve an image acquisition phase, through
cameras or sensors, which will be later processed and analysed. Image analysis refers to
the methods used to differentiate a region of interest (RoI) to be detected [21–23]. Visual
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features are used to differentiate this region from the most elementary ones, such as colour,
size, shape or texture, to the most complex, such as spectral reflectance or thermal response,
in an attempt to evaluate the relationship between a given set of pixels and those features.
Thresholding the visual features is the most elementary method, but it is less robust, as the
high variance of the environment affects the performance of this type of method [11].

Another strategy is Deep Learning (DL), based on Machine Learning (ML), with
better response to complex scenarios since it has strong learning capabilities [24]. The
main DL algorithm used in object detection is Convolutional Neural Networks (CNN).
Some detection frameworks have been developed using CNN, such as the one-stage
object detectors like the Single Shot Multibox Detector (SSD) [25] or You Only Look Once
(YOLO) [26], which are capable of feature extraction and object detection in a single step.
This process consumes less time and can therefore be used in real-time applications, such
as harvesting robots [27].

Despite increasing, research on fruit detection and classification using models such as
SSD or YOLO is still limited [28]. Better vision systems for all the different operations in
the agricultural environment must be developed in parallel with faster and more accurate
image processing/algorithm methods [6], demanding research in line with the objectives
and the topic proposed by the presented paper.

This study is framed within the activities of the ROBOCARE (see https://www.
inesctec.pt/en/projects/robocare#intro, accessed on 4 November 2021) (Intelligent Preci-
sion Robotic Platforms for Protected Crops) project, P2020 developed by INESC TEC. The
ROBOCARE project aims to research and develop intelligent precision robotic platforms
for protected crops to decrease the reduction of labour burden and increase the ergonomics
of the agricultural operations and the consequent increase in labour productivity and eco-
nomic profitability of crops. The team leading the project is working on the development
of a greenhouse tomato harvesting robot.

This study is focused on the computer vision of the robot. The main objective is to
train and evaluate two DLmodels (SSDMobileNet v2 and YOLOv4) for tomato detection
and compare whether the classification of tomatoes into different classes, based on their
ripeness, can be done effectively through those same DL models or a proposed model
based on HSV (Hue, Saturation and Value) colour space.

The structure of this paper comprises the following sections: Section 2 presents the
current state-of-the-art on image-based tomato detection and ripeness classification based
on colour feature analysis and DL approaches. Section 3 explains how the experiment
was performed. Section 4 displays the results obtained with a more detailed discussion
presented in Section 5. Finally, Section 6 summarises the experiments and the results,
indicating the future work to improve them.

2. Related Work

This section presents the current state-of-the-art image-based tomato detection and
ripeness classification based on colour feature analysis (Table 1) and DL approaches
(Table 2), presenting the respective authors and results achieved.

Colour is perhaps the most widely used feature in image segmentation, especially
to distinguish a ripe fruit from the complex natural background, as it has significant and
stable visual characteristics that are less dependent on the size of the image. However,
colour segmentation may not be the most effective method given its sensitivity to problems
such as different illumination conditions or occlusions. To alleviate these problems, besides
the usual RGB (Red, Green, Blue), different colour spaces are used, such as HSV (Hue,
Saturation, Value), HIS (Hue, Intensity, Saturation), L*a*b (CIELAB), among others, to
extract colour information from the object to be detected, in this case the fruit. Either one
or more colour spaces can be used, as in the case of Qingchun et al. [29] who developed a
riped tomato harvesting robot for a greenhouse, whose identification and location of fruits
consist of transforming RGB colour space images into a HIS colour model or Arefi et al. [30]

https://www.inesctec.pt/en/projects/robocare##intro
https://www.inesctec.pt/en/projects/robocare##intro
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that proposed an algorithm for recognising riped tomatoes through a combination of RGB,
HSI and YIQ colour spaces and morphological characteristics of the image.

Table 1. Results of different papers regarding tomato detection and classification through colour-
based models. (N/A = Not Available).

Task Method No. Ripeness Classes Results Authors

Detection L*a*b* colour space and
K-means clustering

1 class Inference time 10.14 s Yin et al. [31]

Detection
L*a*b colour space and
Bi-level partition fuzzy

logic entropy

1 class N/A Huang et al. [32]

Detection
RGB, HSI, and YIQ colour
spaces and Morphological

characteristics

1 class Accuracy 96.36% Arefi et al. [30]

Detection RGB colour space images
into a HIS colour model

1 class Inference time 4 s
Accuracy 83.90%

Qingchun et al. [29]

Detection
RGB colour space into an

HIS colour space, threshhold
method and Cany operator

1 class N/A Zhang [33]

Detection R component of the RGB
images and Sobel operator

1 class
Accuracy

87.50% (Clustered)
80.80% (Beef)

Benavides et al. [34]

Detection HSV colour space and Watershed
segmentation method

1 class Accuracy 81.60% Malik et al. [35]

Detection L*a*b colour space and
Threshold algorithm

3 classes Accuracy 93% Zhao et al. [36]

Classification Aggregated percent surface area
below certain Hue angles

6 classes Accuracy 77% Choi et al. [37]

Classification HSV colour histogram matching 5 classes Accuracy 97.20% Li et al. [38]

Classification K-Nearest Neighbour based on
GLCM and HSV colour space

5 classes Accuracy 100% Indriani et al. [39]

Classification Fuzzy Rule-Based classification
based on RGB colour space

6 classes Accuracy 94.29% Goel and Sehgal [40]

Classification YCbCr colour histogram 6 classes Accuracy 98% Rupanagudi et al. [41]

Classification Multiplication of V and Cb colour
channel using Otsu thresholding

6 classes Mean Square
Error 3.14

Arum Sari et al. [42]

To segment and extract colour information from the fruit, different thresholding
algorithms and mathematical morphology approaches are used, especially to overcome
occlusion and overlap situations. Malik et al. [35] presented a riped tomato detection
algorithms based on HSV colour space and a Watershed segmentation method was used
to “separate” the clustered fruits. Arum Sari et al. [42] multiplied the Cb and V channels,
from the YCbCr and YUV colour spaces, respectively, through the Otsu segmentation
algorithm, when classifying tomatoes into 6 different classes. Yin et al. [31] segmented
riped tomatoes through K-means clustering using the colour space L*a*b* and Indriani
et al. [39] combined the HSV colour space with Gray Level Co-occurrence Matrix and
K-Nearest Neighbour to differentiate tomatoes into 5 different classes. Huang et al. [32]
used the L*a*b* colour space to segment and localise riped tomatoes in a greenhouse and
bi-level partition fuzzy logic entropy to discriminate the fruits from the background and
Goel and Sehgal [40] applied Fuzzy Rule-Based classification through the RGB colour space.
To improve detection and achieve better segmentation, some studies make use of edge
detection operations like the Canny [43] or the Sobel [44] operators as proposed in the
Zhang [33] and Benavides et al. [34] studies, respectively.

Deep Learning (DL) [45] is one of the Machine Learning (ML) based methods most
used nowadays, having more recently entered the agricultural domain as a new solution
to image analysis. Its success is based on the fact that they have high levels of abstraction
and the ability to automatically learn complex features present in images [46]. The main
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DL architecture used for object detection and classification are the Convolutional Neural
Networks (CNN) [47] that makes use of convolution operations in at least one of its
layers. CNN are faster at learning and interpreting complex, large-scale problems due
to the sharing of weights and the use of more sophisticated models that allow massive
parallelisation [48].

Table 2. Results of different papers regarding tomato detection and classification through Deep
Learning (DL) one-stage detection models. (N/D = Not Described).

Task DL Model No. of Ripeness Classes Results Authors

Detection
SSD MobileNet, SSD Inception,

SSD ResNet, SSD ResNet 101
and YOLOv4 Tiny

2 classes F1-Score 66.15%
(SSD MobileNet v2)

Magalhães et al. [49]

Detection
YOLOv4, SSD Inception v2,
SSDMobileNet v2 and SSD

ResNet 50

2 classes F1-Score 61.16%
(YOLOv4)

Padilha et al. [50]

Detection SSD VGG16, SSD MobileNet
and SSD Inception V2

3 classes Average Precision 98.85%
(SSD Inception v2)

Yuan et al. [28]

Detection Improved YOLOv3 N/D F1-Score 94.18% Chen et al. [51]

Detection Improved YOLOv3 1 class Mean Average
Precision 76.90%

Zhang et al. [52]

Detection YOLO-Tomato 1 class F1-Score 93.91% Liu et al. [53]
Detection Improved YOLOv3 Tiny 1 class F1-Score 91.92% Xu et al. [54]

Detection YOLOv3, YOLOv3Tiny,
YOLOv4, and YOLOv4 Tiny

2 classes F1-Score 66%
(YOLOv4)

Rupareliya et al. [55]

Detection Modified YOLO-Tomato models 2 classes F1-Score 97.90%
(YOLO-Tomato-C)

Lawal [56]

Detection
Faster-RCNN, PPN

SSD MobileNet v2, RetinaNet,
SSD Inception v2, YOLOv3

3 classes
Mean Average

Precision 74.51%
(RetinaNet)

Tsironis et al. [57]

Classification CCN and YOLO model 3 classes Average Accuracy
94.67% (YOLO)

Mutha et al. [58]

One of the most popular approaches are the one-stage detection frameworks, such as
the Single Shot Multibox Detector (SSD) [25] or You Only Look Once (YOLO) [26]. These
frameworks are composed of a backbone, which is a CNN that consider a dense sampling of
possible locations of the objects to detect, and additional convolution layers, often referred
to as the head, which can detect and classify the objects in a single step [59]. This process is
less time consuming and can therefore be used in real-time applications.

The most elementary feature extraction methods, which rely on the “manual” selection
of certain features, can see their effectiveness dissipate when faced with the agricultural
environment’s problems (i.e., variations in illumination, occlusions, overlaps, etc.). The
great advantage of DL models is that they do not require “manual” feature extraction.
However, these can be used as a processing input, automatically selecting and classifying
relevant features [60].

There are already some studies that compare and evaluate different SSD and YOLO
architectures, with different CNNs, especially when it comes to tomato detection [28,49,50,
55,57]. However, the only and most relevant paper found on tomato classification based on
one-stage detectors was the one by Mutha et al. [58], who compared a CNN with a YOLO
model to classify tomatoes into 3 classes (unriped, riped and damaged).

It is worth noting that some papers report the modification and improvement of
several YOLO models. Chen et al. [51] and Zhang et al. [52] improved the YOLOv3 model,
while Xu et al. [54] improved the YOLOv3 Tiny model. Liu et al. [53] developed the YOLO-
Tomato, based on the YOLOv3 model, to detect tomato under complex environmental
conditions and Lawal [56] proposed fusing those same models with different activation
functions to detect unripe and ripe tomatoes. The great results obtained by these authors
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show that improving and specifying the state-of-the-art DL models for a particular task can
be a great advantage and lead to substantially better results.

3. Materials and Methods
3.1. Dataset Acquisition and Processing

Two image datasets of tomatoes of the “Plum” variety at different ripeness stages were
collected in greenhouses. Both datasets were made publicly available at the open-access
digital repository Zenodo:

• AgRobTomato Dataset [61];
• RpiTomato Dataset [62].

AgRobTomato Dataset images were collected on two different days (6 and 8 August
2020) at a greenhouse in Barroselas, Viana do Castelo, Portugal. To increase the represen-
tativeness of the data, the mobile robot AgRob v16 (Figure 1a), controlled by a human
operator, was guided through the greenhouse inter-rows and captured RGB images of
the tomato plants using a ZED camera (see https://www.stereolabs.com/zed/, accessed
on 15 August 2021), recording them as a video in a single ROSBag file. The video was
converted into images by sampling a frame every 3 s to reduce the correlation between
images, ensuring an overlapping ratio of about 60%. The images collected on the two days
were merged, resulting in a dataset of 449 images with a resolution of 1280 × 720 px each.

From a different greenhouse located in Amorosa, Viana do Castelo, Portugal, on 15
June 2021, a total of 60 tomatoes with different ripeness stages were selected and RGB im-
ages of each fruit were captured from different perspectives. The images were taken with a
Raspberry Pi Computer Model B (see https://www.raspberrypi.com/products/raspberry-
pi-4-model-b/, accessed on 15 August 2021) with 4 GB RAM, connected to a Raspberry Pi
High Quality Camera (see https://www.raspberrypi.com/products/raspberry-pi-high-
quality-camera/, accessed on 15 August 2021) (12.3 MP and 7.9 mm diagonal image size)
with a 6 mm (wide angle) CS-mount lens with 3 MP (Figure 1b). A total of 258 images were
obtained, which made the RpiTomato Dataset.

Figure 1. AgRob v16 (a) and the Raspberry Pi High Quality camera (b) used for image collection.

The general focus of the ML field is to predict an outcome using the available data. The
prediction task can be called a “detection problem” when the outcome represents a single
class. If the outcome represents different classes, it means a “classification problem” [63].
This study aims to detect and classify tomatoes using two one-stage object detection
frameworks (SSD and YOLO). When it comes to classification, to differentiate the fruits

https://www.stereolabs.com/zed/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/
https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/
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according to their ripeness stage, four classes were defined based on the USDA colour chart
for fresh tomatoes [64], as presented in Figure 2.

Figure 2. Classes defined according to the colour of tomato during ripening: Green (a)—more than
90% of the surface is green; Turning (b)—10 to 30% of the surface is yellow; Light Red (c)—between
60 to 90% of the surface is red; Red (d)—90 to 100% surface is red.

3.2. Deep Learning Approach
3.2.1. Dataset Structure

To train and evaluate the DL models, all images from the AgRobTomato Dataset and
all images, except for the green tomato images, from the RpiTomato Dataset were selected.
Since the AgRobTomato Dataset already had many green tomato images, it was decided
not to select images of tomatoes at this stage of ripeness from the RpiTomato Dataset to
balance the total set of selected images. A total of 632 images were selected.

Since it involves supervised learning, the models need to be provided with an anno-
tated dataset. Thus, the images were manually annotated using the open-source annotation
tool CVAT (see https://cvat.org/, accessed on 22 October 2021), indicating by rectangular
bounding boxes the position and class of each plant. The images were annotated with the
4 chosen ripeness classes. After annotating, the images of both datasets were exported
under the Pascal VOC format [65] and the YOLO format [66] to train the SSD and YOLO
frameworks, respectively.

High-resolution DL models are time and computationally consuming and cannot pro-
cess full-sized images, considering the input of square images, thus rescaling them before
processing. For this reason, to avoid distortion, the original images of the AgRobTomato
Dataset were split into images with a resolution of 720 × 720 px. Due to their original
resolution, the RpiTomato Dataset images needed to be rescaled (961× 720) px and cropped
to achieve the 720 × 720 px resolution. The split operation doubled the images from the
AgRobTomato Dataset, thus increasing the total number of images to 1081. However, some
of them contained few annotations, and the splitting resulted in non-annotated images.
These images were then removed from the dataset, being left with 1029 images.

To train and validate the different models, the images were divided into 3 sets:

• Training set—60% of the data;
• Validation set—20% of the data;
• Test set—20% of the data.

https://cvat.org/
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Data augmentation was used to artificially increase the dataset, improving the overall
learning procedure and performance by inputting varied data into the model [67]. The
transformations were carefully chosen, applying those that could happen in an actual
robotic harvesting operation, just to the training and validation sets with a random factor,
as displayed in Figure 3.

Figure 3. Different types of transformations applied to the images.

The data augmentation led to 7598 annotated images. The training and validation
sets contained 5543 and 1850 images, respectively, while the test set was composed of
205 images.

3.2.2. Models Training

The literature refers to several ML frameworks, an interface, library, or tool that easily
creates ML models [46]. In this study, the choice of framework falls on TensorFlow (see
https://www.tensorflow.org/, accessed on 3 November 2021) [68], an open source easily
scalable ML library developed by Google, which provides a collection of workflows to
develop and train models using Python, C++, JavaScript, or Java.

TensorFLow r.1.15.0 was used for the training and inference scripts, which run on
Google Collaboratory (Colab) notebooks (see https://colab.research.google.com/, ac-
cessed on 25 September 2021) that give free access to powerful GPU’s (Graphics Pro-
cessing Unit) and TPU’s (Tensor Processing Unit) to develop DL models. Although the
GPU’s available may vary for each Colab session, in general an NVIDIA Tesla T4 with
a VRAM of 12 GB and a computation capability between 3.5 and 7.5 was assigned to
all sessions. One pre-trained SSD MobileNet v2 model from the TensorFlow database
(see https://github.com/tensorflow/models/blob/master/research/object_detection/g3
doc/tf1_detection_zoo.md, accessed on 3 November 2021) and one YOLOv4 model from
the Darknet database (see https://github.com/zauberzeug/darknet_alexeyAB, accessed
on 3 November 2021) were considered in this study. Both models were pre-trained with
Google’s COCO (Common Objects in Context) dataset (see https://cocodataset.org/#home,
accessed on 3 November 2021) with an input size of 640 × 640 px (SSD MobileNet v2) and
416 × 416 px (YOLOv4).

Through transfer learning, a fine-tune was performed on pre-trained models to detect
and classify tomatoes. Slight changes to the default training pipeline were made, such as
adjusting the batch size for each model (24 to the SSD MobileNet v2 model and 64 to the
YOLOv4 model) and removing data augmentation from the pipeline. The SSD MobileNetv2
model training sessions ran for 35,000 epochs, while the YOLOv4 model training was much

https://www.tensorflow.org/
https://colab.research.google.com/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/zauberzeug/darknet_alexeyAB
https://cocodataset.org/#home
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faster, requiring only 8000 epochs. The number of epochs may vary from model to model,
but in this case, was chosen based on the suggestion given by the literature, but mainly
taking into account the “average loss” training metric, selecting the number of epochs
that would be sufficient to converge. As far as the MobileNet v2 SSD model is concerned,
an evaluation session occurred at every 50 epochs, following the standard value used by
the pre-trained models. Since Darknet had no available validation sessions, it was not
considered for the YOLOv4 model. These evaluation sessions are quite useful, since they
allow monitoring the evolution of the training, meaning if the evaluation loss started to
increase while the training loss decreased or remained constant, the deep learning model
was over-fit to the training data.

3.2.3. In a Nutshell

Figure 4 reports an overview of all the required steps used to reach the trained DL models.

Figure 4. Workflow of the performed methods to reach the trained DL models.

3.3. HSV Colour Space Model Approach

An approach based on histograms from the HSV colour space was developed as
an alternative to DL models for tomato classification. All the scripts used throughout
this process are authorship and were created from scratch through Spyder (see https:
//www.spyder-ide.org/, accessed on 25 October 2021). The developed HSV colour space
model and the scripts can be found in the following GitHub repository: https://github.
com/gerfsm/HSV_Colour_Space_Model (accessed on 25 October 2021).

In order to build the model, images of 10 tomatoes from each ripeness class were
selected. To add some variability, half of the images come from the AgRobTomato Dataset
and the other from the RpiTomato Dataset, as they present different perspectives of the
fruits. The AgRobTomato Dataset offers a farther perspective, while in the RpiTomato
Dataset the fruits are closer.

The first step was to extract the RoI from the images. All the images were labelled
using the annotation tool CVAT and the coordinates of the annotation bounding box were
used to segment the image and extract the RoI.

The next step was to convert the RoI images from RGB to HSV colour space. The
RGB colour information is usually much noisier than the HSV information. Thus, using
only the Hue channel makes a computer vision algorithm less sensitive, if not invariant,
to problems like lighting variations. The image’s colour space conversion was performed
through the function “cv.cvtColor()” (see https://docs.opencv.org/4.5.2/df/d9d/tutorial_
py_colorspaces.html, accessed on 13 June 2021) from OpenCV [69].

For each HSV image, a colour histogram was generated focusing only on the Hue chan-
nel. OpenCV was used to extract the colourimetric data from the RoI. Different applications
use different scales to represent the HSV colour space. For the Hue values, OpenCV uses a

https://www.spyder-ide.org/
https://www.spyder-ide.org/
https://github.com/gerfsm/HSV_Colour_Space_Model
https://github.com/gerfsm/HSV_Colour_Space_Model
https://docs.opencv.org/4.5.2/df/d9d/tutorial_py_colorspaces.html
https://docs.opencv.org/4.5.2/df/d9d/tutorial_py_colorspaces.html
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scale ranging between 0 and 179. Since the interest is focused on analysing the region of
colours that a tomato can display, the entire colour spectrum is unnecessary. Therefore, the
location of the origin for the Hue parameter was changed, giving the histogram a seemingly
normal distribution. Through Matplotlib [70], the function “matplotlib.pyplot.hist” (see
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html, accessed on 22
July 2021) was used to plot the H-spectrum histogram. In this case, the function parameter
“density” was set to “True”, which causes a probability density to be drawn and returned.
It was preferred to use all the bins in the range to get as accurate a model as possible. Each
bin displays the bin’s raw count divided by the total number of counts and the bin width
so that the area under the histogram integrates to 1.

Although the segmentation technique used is faster and easier to implement, it can be
noted that the RoI covers the object to be classified and some of the background, which
slightly affects the results obtained. In some cases, the background makes the data look
multimodal, i.e., there is more than one “peak” data distribution. Trying to fit a multimodal
distribution with a unimodal (one “peak”) model will generally give a poor fit and lead to
incorrect classifications.

Gaussian mixture model was used to overcome this problem. This function is a
probabilistic model for representing normally distributed subpopulations within an overall
population (Figure 5) and was applied using the “sklearn.mixture.GaussianMixture” (see
https://scikit-learn.org/stable/modules/mixture.html, accessed on 29 July 2021) function,
from Sklearn (or scikit-learn) [71].

Figure 5. Representation of the H-spectrum and a Gaussian mixture model probability distribution.

3.3.1. Gaussian Filtering Approach

The next step was to choose the Gaussian with the highest peak, which corresponds
to the RoI and ignore the rest. The curve was selected according to the Gaussian mixture
weights. These weights are normalised to 1, motivated by the assumption that the model
must explain all the data, then use the law of total probability. So, in that sense, they are
the probabilities of the point being part of the cluster. In other words, the weights are
the estimated probability of a draw (i.e., distribution curve) belonging to each respective
normal distribution. Even with the background noise, the data distribution in the RoI
zone is well defined. The probability that this region is a normal distribution is much
higher, meaning that the weight is higher. Selecting the higher weights leads to the RoI
Gaussian, thereby enabling to separate pixels of tomatoes from pixels of the background.
For a more careful analysis, a boxplot was also generated for each RoI, through the function
“matplotlib.pyplot.boxplot” (see https://matplotlib.org/stable/api/_as_gen/matplotlib.
pyplot.boxplot.html, accessed on 29 July 2021). The boxplots represent the values within
3 standard deviations of the mean, corresponding to 99.7% of the Gaussian.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html
https://scikit-learn.org/stable/modules/mixture.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html
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Based on the results obtained, correlating the Hue histogram mean of each sample
with its respective class, a statistical classifier was reached. These results will be presented
and exploited later in the respective Section 4.1.

3.3.2. In a Nutshell

Figure 6 reports an overview of all the required steps used to reach the proposed HSV
colour space model.

Figure 6. Workflow of the performed methods to reach the HSV colour space model.

3.4. Evaluation Metrics

Although the DL models were trained with four classes, besides the classification
problem, they were also evaluated for their ability to detect, i.e., locate the fruits in the
image regardless of their ripeness stage. The HSV colour space model was only evaluated
for the classification problem.

A “correct detection” is commonly established through the Intersection over Union
(IoU) metric, measuring the overlapping area between the predicted bounding box (Bp) and
the groundtruth bounding box (Bgt) divided by the union area (1). In this case, a correct
detection was considered if IoU >= 50%.

IoU =
Area(Bp ∩ Bgt)

Area(Bp ∪ Bgt)
(1)

To better benchmark the two DL models, the metrics used by the Pascal VOC chal-
lenge [65] (Precision × Recall curve and Mean Average Precision) were chosen, with the
addition of the following metrics:

• Recall (2)—ability of the model to detect all the relevant objects (i.e., all groundtruth
bounding boxes);

• Precision (3)—ability to identify only the relevant objects;
• F1-Score (4)—first harmonic mean between Recall and Precision.

The number of groundtruths (relevant objects) can be computed by the sum of the
True Positives and False Negatives (TP + FN) and the number of detections is the sum of
the TP’s and False Positives (TP + FP). TP’s are the correct detections of the groundtruths,
FP’s are improperly detected objects and FN are undetected.

Recall =
TP

TP + FN
=

TP
All groundtruths

(2)
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Precision =
TP

TP + FP
=

TP
All detections

(3)

F1− Score = 2× Precision× Recall
Precision + Recall

(4)

All the detections performed by a DL model have a confidence rate associated with
them. Graphically representing the ratio between Precision and Recall (Precision × Recall
curve) can be seen as a trade-off between Precision and Recall for different confidence
values associated with the bounding boxes generated by a detector. A great object detector
keeps its Precision rates high, while its Recall increase. Thus, a high Area Under the Curve
(AUC) tends to indicate both high Precision and Recall.

However, it is difficult to accurately measure the AUC, as the Precision × Recall curve
is often a zigzag-like curve. To overcome this problem was calculated the Average Precision
(AP) metric by the all-point interpolation approach. In this case, the AP (5) is obtained
by interpolating the Precision at each level, taking the maximum Precision (Pinterp(R)) call
value is greater or equal than Rn+1.

AP = ∑
n
(Rn+1 − Rn)Pinterp(Rn+1) (5)

If there is more than one class to detect, the Mean Average Precision (mAP) metric is
used, simply the average AP over all classes (6). APi represents the AP of class i and NC is
the number of classes evaluated.

mAP =
∑NC

i=1 APi

NC
(6)

The final step of the inference was to optimise the confidence score, using the cross-
validation technique: validation set augmentations were removed, and the F1-Score was
computed for all the confidence thresholds from 0% to 100%, into steps of 1%. The confi-
dence threshold that optimises the F1-Score was selected for the model’s normal operation.
The test set was used to evaluate both models, and the whole inference process occurred
on the Google Colab server, using a Tesla T4 GPU.

To assess the classification ability, the evaluation metrics chosen were the Precision and
Recall for each class that will act as building blocks for the Macro F1-Score and Balanced
Accuracy metrics. The Balanced Accuracy metric is a simple arithmetic mean of Recall of
each class (7). To achieve the Macro F1-Score, it is necessary to compute Macro-Precision
and Macro-Recall, computed as the arithmetic means of the metrics for single classes (8).
These metrics give each class the same weight in the average, so that there is no distinction
between highly and poorly populated classes, which is useful in cases of unbalanced
datasets.

Balanced Accuracy =
∑No. Classes

1
TP

Total Groundtruths
No. Classes

(7)

Macro F1-Score = 2× Macro Precision×Macro Recall
Macro Precision + Macro Recall

(8)

4. Results
4.1. HSV Colour Space Model Classifier

Based on the Hue histogram mean of each sample used to build the model and its
correlation with the respective class, a quadratic function was obtained as the statistical
classifier through the Microsoft Excel tool (Figure 7).
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Figure 7. Correlation between the Hue histogram Gaussian mean of each sample with its respective
class, along with the plot of the tendency line, equation and R2 of the quadratic function obtain.

To classify the tomatoes, it was necessary to define the thresholds for each class. By
fine-tuning the equation, namely adding 0.25 to the independent term, the following was
established (9):

f (x) =


Green, if 000.1x2 − 0.2241x + 12.613 ≤ 1.5
Turning, if 1.5 < 000.1x2 − 0.2241x + 12.613 ≤ 2.5
LightRed, if 2.5 < 000.1x2 − 0.2241x + 12.613 ≤ 3.5
Red, if 000.1x2 − 0.2241x + 12.613 > 3.5

(9)

Achieving the classifier culminated in the ultimate model. For a specific image, given
the bounding boxes coordinates of the fruits to be classified (input), in a single pass, the
HSV colour space model segments the RoI’s, converts them to the HSV colour space,
through the colourimetric information. Furthermore, the Gaussian Mixture probabilistic
model generates a histogram and calculates its mean that through the statistical classifier
generates an output. The model returns the class to which that fruit belongs.

4.2. Tomato Detection Using Deep Learning Models

As mentioned, the models required defining the best confidence threshold before
evaluating their performance. Table 3 indicates the value of the confidence threshold that
maximises the F1-Score for each model, finding the best balance between the Precision
and Recall, optimising the number of TP’s while avoiding the FP’s and FN’s. Both models
found their best F1-Score at similar confidence thresholds, i.e., similar confidence in their
predictions. However, the YOLOv4 model achieved a better F1-Score of 86%.

Table 3. Confidence threshold for each DL model that optimises the F1-Score metric.

DL Models Conf. Threshold ≥ F1-Score

SSD MobileNet v2 56% 74.16%
YOLOv4 58% 86.01%

Figure 8 reports the evolution of the F1-Score with the variation of the confidence
threshold for cross-validation. It is possible to infer that the models behave slightly different.
Models with flattened curves indicate higher confidence in their predictions and a low
amount of FPs and FNs. Such is the case with the SSD MobileNet v2 model. Despite having
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a lower F1-Score, it is more consistent, as it can maintain essentially the same F1-Score
value over the confidence threshold.

Figure 8. Evolution of the F1-score with the variation of the confidence threshold for both DL models
in the validation set without augmentation.

The previous analysis provided the benchmark in the validation set. The results
presented below refer to the benchmarking of the test set that allows understanding the
generalisation capacity of the trained DL models.

Table 4 shows the results across the different metrics, considering all the predictions
and the best-computed confidence threshold. Lower confidence rates tend to have lower
Precision but a higher Recall rate. Hence, limiting the confidence threshold can become
an advantage, as can be seen by the YOLOv4 model results. When the model has full
freedom to make predictions (confidence threshold ≥ 0), it presents a Recall up to 96%,
but a Precision only around 16%, drastically affecting the F1-Score. However, by limiting
the confidence threshold, the model could obtain a higher Precision without harming the
Recall rate too much (still above 84%), thus obtaining an excellent F1-Score.

Another important aspect is the inference time, quite similar in both models, with a
slight advantage for the SSD MobileNet v2 model (0.067 s), reaching good and expected
values considering that we are talking about one-stage detectors.

Table 4. Detection results of the DL models over the evaluation metrics, considering all the predictions
and the best computed confidence threshold.

DL Models Conf. Threshold ≥ Inference Time mAP Precision Recall F1-Score

SSD MobileNet v2 0% 0.067 s 67.82% 74.76% 73.72% 74.03%
YOLOv4 0% 0.073 s 90.02% 16.45% 95.84% 28.07%

SSD MobileNet v2 56% 0.067 s 65.38% 77.62% 70.12% 73.68%
YOLOv4 58% 0.073 s 82.97% 86.73% 84.90% 85.81%

Figure 9 shows a Precision x Recall curve built using all the predictions. The best
performing model has the highest AUC, therefore the YOLOv4 model. However, the low
Precision at higher Recall rates and the lower F1-Score indicates that the model has much
prediction noise and false positives. Thus, considering all the model predictions, using the
F1-score as a balanced metric between the Recall and Precision, SSD MobileNet v2 was the
best performing model, with an F1-Score of 74.03%.
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Figure 9. Precision × Recall curve for both DL models considering all the predictions.

Performing an additional filtering process on the predictions, the Recall × Precision
curve was now transformed through a truncation process (Figure 10). Both models had
a Precision rate higher than 75%, with the YOLOv4 model almost achieving 87%. Recall
and Precision rates were similar for both models, especially on the YOLOv4 model, which
shows that the models are well balanced. Furthermore, the models had a high confidence
rate in their predictions, with the YOLOv4 model standing out, reaching an F1-Score close
to 86%, meaning that it possesses the ability to detect almost all groundtruths, without
neglecting Precision, i.e., having few FP’s.

Figure 10. Precision × Recall curve for both DL models using the best confidence threshold.

Figure 11 allows to perceive, from image analysis, the capacity of the DL models
through representative images of the test set. Both models had a good response in tomato
detection, dealing very well with the complexities of the environment. The models were
able to detect green tomatoes with high colour correlation with the background. Further-
more, in poor lighting situations, both models performed well, showing robustness and
capability to deal successfully with problems posed by different lighting conditions. In cases
where tomatoes are occluded by branches, stems, leaves or other tomatoes (overlapped),
the models showed a great performance.
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Figure 11. Detection results comparison between the two DL models in situations of lesser or greater
complexity. Blue bounding boxes represents groundtruth annotations; Green, Yellow, Orange and Red
bounding boxes represents Green, Turning, Light Red and Red tomatoes predictions, respectively.

4.3. Tomato Ripeness Classification: Deep Learning vs. HSV Colour Space Models

Regarding the classification problem, Table 5 presents the results for the different
metrics used in the evaluation of the two DL models and the proposed HSV colour space
model. All models were able to distinguish the Red tomato class very well, with Precision
rates above 80%, with the HSV colour space and the YOLOv4 models standing out with
around 89%. However, they still had much more struggle to classify all relevant objects of
this class, unlike the SSD MobileNet v2 model, which achieved a Recall of 84%.

On the other hand, the complexity of detecting and subsequently classifying green
tomatoes affected the SSD MobileNet v2 model much more. The YOLOv4 and HSV colour
space models obtained excellent results, both in Precision and Recall, with the proposed
model standing out with rates higher than 98% in both metrics.

It is noticeable that there was considerable difficulty in distinguishing Turning and
Light Red class tomatoes by all models, especially the MobileNet v2 SSD and HSV colour
space which could not detect even half of the relevant objects of the two classes, with poor
Recall rates of around 43%.

Macro F1-Score and Balanced Accuracy metrics provides a general and better under-
standing of the results obtained. YOLOv4 model outperformed the SSD MobileNet v2 and
HSV colour space models with a Macro F1-Score of 74.16%. The low value obtained by the
SSD MobileNet v2 model was highly affected by its weak ability to distinguish between
Turning and Light Red tomatoes.

Regarding the Balanced Accuracy, the YOLOv4 model was again better at classifying
the fruits, with 68.87% of Balanced Accuracy. However, the HSV colour space model
achieved a very similar result (68.10%) mainly due to its strong ability to classify Green
and Red class tomatoes.
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Table 5. Classification results of the over the evaluation metrics, considering each model’s best-
computed confidence threshold.

DL Models Fruit Ripeness Precision Recall Macro F1-Score Balanced
Accuracy

SSD MobileNet v2

Green 77.27% 70.09%

65.93% 62.70%Turning 59.38% 55.88%
Light Red 60.61% 40.82%

Red 80.77% 84.00%

YOLOv4

Green 85.38% 84.66%

74.16% 68.87%Turning 70.77% 67.65%
Light Red 76.32% 59.18%

Red 88.89% 64.00%

HSV Colour Space

Green 98.24% 98.31%

70.93% 68.10%Turning 50.00% 63.24%
Light Red 58.33% 42.86%

Red 89.47% 68.00%

Figure 12 illustrates cases of poor classifications due to the difficulty of the models in
distinguishing some tomato classes. An interesting aspect is how the DL models dealt with
these situations. For some fruits, the models drew two bounding boxes of different classes.
The tomatoes are correctly detected, but at least one of the class predictions is incorrect,
which ultimately affects the classification results obtained.

Figure 12. Classification results comparison between the two DL models and the HSV colour space
model with the groundtruth annotations. Green, Yellow, Orange and Red bounding boxes represents
Green, Turning, Light Red and Red tomatoes predictions, respectively.

5. Discussion

This work proposed the training and testing of two DL models for tomato detection
and compared them with a developed HSV colour space model regarding the classification
of those fruits according to their colour/ripeness through images of two datasets collected
for this effect.

Overall, both models were generic enough to detect tomato successfully. The results
were similar between the validation set and the test set, with the YOLOv4 model obtaining
promising results, being the best performing model. Interestingly, the use of filtered results
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by a threshold was only significant to the YOLOv4 model. The SSD MobileNet v2 model
obtained identical results regardless of the confidence threshold, which means that it can
be used without any filtering process without compromising the results. The models were
able to detect tomatoes at different ripeness stages, even in complex scenarios, considering
occlusions, overlaps and variations in illumination conditions. As they are one-stage
detectors, the SSD MobileNetv2 and YOLOv4 models, although faster at detecting, could
lack accuracy. This is not overly verified, showing good inference times that, together with
the results of Precision and Recall, allow these models to be applied in systems equipped
with computer vision to perform tasks in real time.

Comparing these results with different authors is essential to understand the relevance
of the results obtained and potential aspects that could be improved. Both models outper-
formed with distinction those presented by Yuan et al. [28], Magalhães et al. [49], Padilha
et al. [50] and Rupareliya et al. [55], which obtained quite high Precision rates but ended up
failing in their ability to detect all relevant objects, causing the overall F1-Score to vary only
between 60 and 66%. The models evaluated in this paper only lagged behind some heavily
modified models. Chen et al. [51], Liu et al. [53], Lawal [56] and Xu et al. [54] improved
the YOLOv3 and YOLOv3 Tiny models leading to an F1-Score consistently higher than
90%. However, most of these models were trained with a single class, regardless of the fruit
ripeness stage, and in some cases the datasets were largely or entirely composed of red
tomatoes which, due to the higher colour contrast between the fruit and the background,
are easier to detect. To the best of our knowledge, there is no literature reporting the
application of DL models in the detection of tomato in a greenhouse context with more
than three classes. Therefore, taking into account that the models were lightly modified and
trained with four classes with real greenhouse environment images, the SSD MobileNet v2
and YOLOv4 model results are very promising, even more so considering that the latter
achieved an F1-Score close to 86%.

When it comes to classification ability, the DL models behaved quite differently. The
results did not follow the detection ones, largely due to the difficulty of the models in
distinguishing the intermediate classes (Turning and Light Red). The similarity in terms of
colour between the two classes may interfere with the results. Besides, even to the human
eye, the distinction of the fruits between these classes can be somewhat subjective and
imprecise. This is reflected in the annotation process itself that, at the training level, can
make complex the models learning. Nevertheless, both models achieved great results in
the Green and Red class tomatoes classification.

As an alternative in classification, an HSV colour space model was proposed. The
model obtained superb results in the Green class tomatoes classification but struggled to
distinguish tomatoes from the Turning class with the Light Red class. A possible reason
for this is the Gaussian mixture model used. It is an iterative algorithm that is not optimal.
As such, especially in frontier classes, it does not always give the same result that varies
according to what was initially assumed. Still, it outperformed the SSD MobileNet v2
model with distinction and came close to the YOLOv4 model, especially regarding the
Balanced Accuracy. The results become more interesting when one realises that to achieve
these results, the DL models had to be trained with a large number of images (7393 images).
In contrast, the HSV colour space model was developed with only 40 images (10 from each
class). Another advantage of the proposed model is its simplicity, making it more intuitive
and accepted: adjusting the number of classes required and changing the confidence
thresholds for each class.

The sorting of fruits based on their ripeness stage is an operation much more asso-
ciated with post-harvest. For this reason, in the overwhelming majority of studies, the
classification of fruits is done in a structured environment. This is similar to that found
in processing industries after the fruits are harvested. The only relevant paper that has
evaluated the ability of DL models to classify tomatoes is from Mutha et al. [58], who
achieved an average accuracy of 94.67% through a YOLO architecture in the classification
of 3 distinct tomato classes. Despite this, the tomato images used do not even represent the
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agricultural environment in general, nor a greenhouse, in particular, and the test set only
contained 23 images. Regarding more conventional methods, through colour-based models,
Benavides et al. [34] achieved an accuracy of 77% through the aggregated percent surface
area below certain Hue angles, when classifying tomatoes in 6 different ripening stages.
Using the HSV colour space to classify tomatoes into 5 classes, Gupta et al. [44] proposed a
colour histogram matching and Malik et al. [35] used a K-Nearest Neighbour obtaining an
accuracy of 97.20% and 100%, respectively. Although these studies show better results than
our proposed HSV colour space model, they were all conducted with images of tomatoes
detached from the plant, in an artificial environment, with a stable and solid background.
All this demonstrates and makes our work groundbreaking since it was carried out with
images of a real greenhouse environment, aimed at evaluating not only the detection but
also the classification of tomatoes at different ripeness stages.

In summary, the DL models performed well in the detection task but had more
difficulty in the classification one, with the HSV colour space model outperforming the
SSD MobileNet v2 model. The different models have their advantages and disadvantages.
The DL models are more time and computationally demanding. However, unlike the
HSV colour space model, they handle complex scenarios a lot better, which can have a
big influence on the performance of more elementary methods. Getting the best out of
each model, an alternative could be modifying and fusing a DL model with the proposed
HSV colour space model, to create a framework capable of detecting a greater number of
fruits and classify them correctly without much loss in both moments. Some work has
been developed along this line of thought, such as the one carried out by Ko et al. [72] that
proposes a novel method for classifying tomato ripeness by utilizing multiple streams of
CNN and their stochastic decision fusion, however, once again, the study was conducted
in an artificial environment, still lacking the transfer and applicability of these models in
a real agricultural context. Our publicly available datasets also contributes to scientific
progress with the potential to be used to train and develop more accurate visual perception
solutions for operation in a greenhouse context.

6. Conclusions

In this paper, two pre-trained DL models were benchmarked in tomato detection
and compared with a HSV colour space model in the classification of those fruits in four
maturity classes. Two datasets of tomato images in greenhouses were acquired for that
purpose.

The YOLOv4 model best detected tomatoes, achieving an F1-Score of 85.81%, with a
good tradeoff between the Precision and Recall rates. The results of the classification task
were satisfactory and promising, with the YOLOv4 model standing out once again with a
Macro F1-Score of 74.16%. The HSV colour space model outperformed the SSD MobileNet
v2, obtaining a Balanced Accuracy similar to the YOLOv4 model of 68.10%. All models had
more difficulty classifying tomatoes of the intermediate classes (Turning and Light Red).
Although less demanding in its development, the HSV colour space model does not deal as
well as DL models with highly complex scenarios.

In perspective, putative future work should go through: (i) enlarge the dataset, balanc-
ing it with more images with Red tomatoes; (ii) evaluating the performance of these models
in on-time conditions, inside the greenhouses; (iii) benchmark this DL models against
new and more optimized backbone networks, such as ResNet18, ResNet50, SE-ResNet,
SENet-154 [73] or ViT vision transformers [74] and (iv) improve the HSV colour space
model to better deal with the problems of the complex environment, considering an image
segmentation DL model or develop an algorithm for tomato boundaries detection inside
the bounding box, by formalizing a thresholding algorithm that picks the most reddish
pixel and analyzes all neighbors without a drastic change to green (background).
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The following abbreviations are used in this manuscript:

AUC Area Under Curve
AP Average Precision
COCO Common Objects in Context
Colab Google Collaboratory
CNN Convolutional Neural Networks
DL Deep Learning
FN False Negative
FP False Positive
GPU Graphics Processing Unit
IoU Intersection over Union
ML Machine Learning
mAP mean Average Precision
RoI Region of Interest
SSD Single Shot Multibox Detector
TPU Tensor Processing Unit
TP True Positives
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