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Abstract—Accurate segmentation of infant brain magnetic 

resonance (MR) images into white matter (WM), gray matter 

(GM), and cerebrospinal fluid (CSF) is an indispensable 

foundation for early studying of brain growth patterns and 

morphological changes in neurodevelopmental disorders. 

Nevertheless, in the isointense phase (approximately 6-9 months 

of age), due to inherent myelination and maturation process, WM 

and GM exhibit similar levels of intensity in both T1-weighted 

(T1w) and T2-weighted (T2w) MR images, making tissue 

segmentation very challenging. Despite many efforts devoted to 

brain segmentation, only few studies have focused on the 

segmentation of 6-month infant brain images. With the idea of 

boosting methodological development in the community, 

iSeg-2017 challenge (http://iseg2017.web.unc.edu) provides a set 

of 6-month infant subjects with manual labels for training and 

testing the participating methods. Among the 21 automatic 

segmentation methods participating in iSeg-2017, we review the 8 

top-ranked teams, in terms of Dice ratio, modified Hausdorff 

distance and average surface distance, and introduce their 
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pipelines, implementations, and source codes. We further 

discussed limitations and possible future directions. We hope the 

dataset in iSeg-2017 and this review article could provide insights 

into methodological development for the community. 

 
Index Terms—Infant, brain, segmentation, isointense phase, 

challenge 

I.! INTRODUCTION 

HE first year of life is the most dynamic phase of the 
postnatal human brain development, along with rapid 

tissue growth and development of a wide range of cognitive 
and motor functions. The increasing availability of 
non-invasive infant brain multimodal magnetic resonance 
images (MRI), e.g., T1-weighted (T1w) and T2-weighted 
(T2w) images, provides unprecedented opportunities for 
accurate and reliable charting of dynamic early brain 
developmental trajectories in understanding normative and 
aberrant growth. For example, the Baby Connectome Project1  
(BCP) [1] is acquiring and releasing both cross-sectional and 
longitudinal high-resolution multimodal MRI data from 500 
typically-developing children from birth to 5 years of age. The 
Developing Human Connectome Project2 (dHCP) in the UK is 
releasing MRI data from 1500 subjects acquired from 20 to 44 
weeks post-conceptional age. These large-scale datasets will 
undoubtedly greatly increase our limited knowledge on normal 
early brain development, and provide important insights into 
the origins and abnormal developmental trajectories of 
neurodevelopmental disorders, such as autism, schizophrenia, 
bipolar disorder, and attention-deficit/hyperactivity disorder. 

One fundamentally important step in studying the normal 
and abnormal early brain development is accurate 
segmentation of infant brain MR images into different regions 
of interest (ROIs), e.g., white matter (WM), gray matter (GM), 
and cerebrospinal fluid (CSF). There are three distinct phases 
in the first-year brain MRI, as shown in Fig. 1. During the 
infantile phase (<=5months), GM shows higher signal 
intensity than WM in T1w images. The isointense phase (6-9 
months) corresponds to the myelination and maturation 
process of the brain, yielding to an increase of the intensity of 
WM in T1w images and thus a low signal differentiation 
between GM and WM (which is also the case for T2w 

 
1 http://babyconnectomeproject.org 
2 http://www.developingconnectome.org 
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images). The last phase is the early adult-like phase (>9 
months), where GM intensity is much lower than that of WM 
in T1w images, similar to the pattern of tissue contrast in the 
adult MR images. The corresponding tissue intensity 
distributions of three phases are shown in the third row of Fig. 
1, from which we can see the relative good contrast for the 
infantile and early adult-like phases. However, in the 
isointense phase, the intensity distributions of voxels in GM 
and WM are largely overlapping (especially in the cortical 
regions), thus leading to the lowest tissue contrast and creating 
the main challenge for tissue segmentation, in comparison to 
images at other phases of brain development. Also, the 
appearance of exact isointense contrast varies across different 
brain regions due to nonlinear brain development [2]. These 
patterns, along with various factors, such as motion artifacts or 
severe partial volume effect due to smaller brain size and 
ongoing white matter myelination, make automatic 
segmentation of isointense infant brain MRI a highly 
challenging task, thus causing that existing computational 
tools typically developed for processing and analyzing adult 
brain MRI, e.g., SPM, FSL, BrainSuite, CIVET, FreeSurfer 
and HCP pipeline, often perform poorly on infant brain MRI 
[3]. 

 
Fig. 1. T1- and T2-weighted MR images of an infant longitudinally scanned at 
2 weeks, 3, 6, 9 and 12 months of age. At around 6 months of age, MR images 
show the lowest tissue contrast, implying the most significant challenge for 
tissue segmentation. The corresponding tissue intensity distributions from 
T1w MR images are shown in the bottom row, which indicates high overlap 
of WM and GM intensities in the isointense phase. 

We have witnessed the spread and rise in popularity of 
Grand Challenges in the medical imaging community during 
the last years (e.g., NeoBrainS12 3  [4], MRBrainS 4  [5], 
ISLES5[6], and BRATS6 [7]). These challenges have allowed 
development of public benchmarks that serve as fair and 
up-to-date comparisons for the methods proposed by 
colleagues around the world. For example, the MICCAI 
challenge on neonatal MRI segmentation (NeoBrainS123) and 
the MICCAI challenge on adult MRI segmentation 
(MRBrainS4) mainly focused on the infantile and adult-like 
phases, respectively, rather than the challenging isointense 
phase. To date, only a few studies focused on the 
segmentation of 6-month infant brain image [4, 8-10]. In 
iSeg-20177 challenge, researchers were invited to participate 

 
3 http://neobrains12.isi.uu.nl 
4 http://mrbrains13.isi.uu.nl 
5 http://www.isles-challenge.org 
6 https://www.med.upenn.edu/sbia/brats2017/data.html 
7 http://iseg2017.web.unc.edu 

with their automatic algorithms to segment WM, GM and CSF 
on isointense (6-month) infant brain MR scans, which remains 
scarce in the field. At the time of writing this paper, 21 teams 
had submitted their results on the iSeg-2017 website. In this 
paper, we focus only on those methods that were ranked 
among the 8 top teams in terms of Dice Coefficient (DICE), 
modified Hausdorff distance (HD95) and Average Surface 
Distance (ASD). In the next section, we introduce the cohort 
employed for this challenge. Then, in Section III, the metrics 
used to evaluate the performance of the proposed methods are 
detailed. Section IV provides a complete description of the 
top-ranked methods selected for this review. Section V 
discusses their performance, limitations and possible future 
directions. 

II.! DATA 

Selected MR scans for training and testing were randomly 
chosen from the pilot study of Baby Connectome Project 
(BCP, http://babyconnectomeproject.org). All infants were 
term born (GA 40±1 weeks) without any pathology. At the 
time of scanning, average age is 6.0±0.5 months old. MR 
scans were acquired on a Siemens head-only 3T scanners with 
a circular polarized head coil. During the scan, infants were 
asleep, unsedated, fitted with ear protection, and their heads 
were secured in a vacuum-fixation device. 

•!T1-weighted MR images were acquired with 144 sagittal 
slices using parameters: TR/TE = 1900/4.38 ms, flip angle 
= 7º, resolution = 1×1×1 mm3; 

•!T2-weighted MR images were obtained with 64 axial 
slices: TR/TE = 7380/119 ms, flip angle = 150º, 
resolution =1.25×1.25×1.95 mm3. 

For image preprocessing, T2w images were rigidly aligned 
onto their corresponding T1w images. All images were 
resampled into an isotropic 1×1×1 mm3 resolution. Next, 
standard image preprocessing steps were performed before 
manual segmentation, including skull stripping [11], intensity 
inhomogeneity correction [12], and manual removal of the 
cerebellum and brain stem by experts.  

 
Fig. 2. T1w and T2w MR images of an infant subject scanned at 6 months of 
age (isointense phase), provided by iSeg-2017. From left to right: T1w MR 
image, T2w MR image, and manual label image. 

To generate reliable manual segmentation, we first took 
advantage of the follow-up 24-month scans of the same 
subjects, with high tissue contrast, to generate an initial 
automatic segmentation for 6-month scans by using a publicly 
available software iBEAT (www.nitrc.org/projects/ibeat/). 
This is based on the fact that at term birth, the major sulci and 
gyri are already present in the neonates [13]. The pattern of 
the major sulci and gyri are generally preserved but are 
fine-tuned during brain development [14]. Specifically, the 
cortical convolutions emerge in the late gestation before birth 
[15], with extensive folding occurs during the third trimester 
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[16, 17]. At term birth, although the brain is only one-third of 
adult volume [18], the major sulci and gyri present in the adult 
are already established [13]. Second, based on the obtained 
initial automatic segmentation, manual editing was performed, 
under the guidance of an experienced neuroradiologist (Dr. 
Valerie Jewells, UNC-Chapel Hill), to correct segmentation 
errors (based on both T1w and T2w MR images) and 
geometric defects by using ITK-SNAP, with the help of 
surface rendering. For example, if there is a hole/handle in the 
surface, we will first localize the related slices, and then check 
the segmentation maps of both T1w and T2w images to 
determine whether to fill the hole or cut the handle. Generally, 
it took almost one week for correcting one subject. Fig. 2 
shows an example of a 6-month infant subject with T1w and 
T2w MR images, and manual labels of WM, GM and CSF, 
where WM includes unmyelinated white matter and 
myelinated white matter; GM includes cortical gray matter 
and subcortical gray matter; and CSF includes the ventricles 
and cerebrospinal fluid in the extracerebral space. Finally, 10 
infant subjects with manual labels are provided for training 
and 13 infant subjects with manual labels are provided for 
testing. Note that the manual labels of testing subjects are not 
provided to the participants for fair comparison. All testing 
subjects were segmented off site and uploaded for evaluation. 

III.! EVALUATION 

To evaluate the performance of different methods, we use 
Dice coefficient (DICE), average surface distance (ASD), and 
modified Hausdorff distance (HD95) as evaluation metrics to 
evaluate the accuracy. 

•!DICE 

DICE = 2|( ∩ *||(| + |*| 
where (  and *  denote the binary segmentation labels 
generated manually and computationally, respectively, |(| 
denotes the number of positive elements in the binary 
segmentation (, and |(, ∩ ,*| is the number of shared positive 
elements by ( and *. 

•!ASD 

ASD = 120
∑ 23456∈89:;<= , <?@5A∈8B ∑ 15A∈8B + ∑ 2345A∈8B:;<?, <=@56∈89 ∑ 156∈89 C 

where DE is the surface of the ground-truth label map, DF  is the 
surface of the automatically segmented label map, and :;<? , <=@ indicates the Euclidean distance from vertex <?  to the 
vertex <=. 

•!HD95 HD(I,J) = max;ℎ(I,J), ℎ(J, I)@ 

where I and J are the two sets of vertices identified manually 

and computationally, respectively, for one tissue class of a 

subject. ℎ(I,J) is given by: 

ℎ(I,J) = maxP∈Q maxR∈S ‖U − :‖ 

The modified Hausdorff distance is defined as the 

95th-percentile Hausdorff distance (HD95). 

IV.! METHODS AND IMPLEMENTATIONS 

First, we give an overview of all the participants of the 
iSeg-2017 Challenge, along with a very short description of 
each participating approach. A total of 21 teams successfully 
submitted their results to iSeg-2017 before the official 
deadline. Please refer to Appendix A Table I8, in which we 
describe all the participating teams with affiliations and 
features used in their methods. In Appendix A Table II8, we 
summarize the performance of all these teams in terms of 
DICE, ASD and HD95. An interesting finding is that 20 out of 
21 teams employed convolutional neural networks for 
segmentation, while only 1 team utilized a classic atlas-based 
segmentation method. Among those 20 teams using 
convolutional neural networks, 8 teams adopted the U-Net 
architecture [19]. As explained earlier, we will review only the 
8 top-ranked methods according to these metrics. 

A.! MSL_SKKU: Media System Laboratory at 
Sungkyunkwan University (SKKU), Korea [20] 

Bui et al. extended the densely connected convolutional 
network [21] to deal with segmentation of 6-month infant 
brain MRI [20]. By concatenating information from shallow to 
deep dense blocks, the proposed network allows capturing 
multiple contextual information and yields accurate 
segmentation results. Their proposed network architecture for 
infant brain segmentation is shown in Fig. 3. 

 
Fig. 3. 3D densely convolutional network architecture for infant brain 
segmentation. 

The network consists of two paths: 1) the down-sampling 
path and 2) the up-sampling path. The down-sampling path 
includes four dense blocks. Each dense block comprises of 
four 3×3×3 convolutional kernels, each of which is preceded 
by a batch normalization (BN) layer [22] and a rectified linear 
unit (ReLU) nonlinearity [23]. A bottleneck layer is 
introduced before each 3×3×3 convolution to improve 
computational efficiency. They use a dropout layer [24] with 
the dropout rate of 0.2 after each 3×3×3 convolution layer to 
avoid over-fitting. Between two contiguous dense blocks, a 
transition block that has 1×1×1 convolution with the 
compression rate of half and a convolution layer of stride 2 is 
used to reduce the feature map resolutions while preserving 
the spatial information. In the up-sampling path, the 
3D-upsampling operators are used to recover the input 
resolution. In particular, the shallower layers provide fine 

 
8   Supplementary materials are available in Appendix A.  
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output maps, while the deeper layers contain the coarse output 
maps [25]. To combine multiple levels of contextual 
information, up-sampling is performed after each dense block 
and then those up-sampled feature maps are concatenated. A 
classifier consisting of a 1×1×1 convolution is used to classify 
the concatenated feature maps into target classes. In total, this 
network has 47 layers with 1.55 million learnable parameters. 

In the implementation, T1w and T2w images were 
normalized to zero mean and unit variance before inputting 
them into the network. Due to the limited GPU memory, 
sub-volume samples of size 64×64×64 were used as input of 
the network. The network was trained with Adam [26] with a 
mini-batch size of 4. The weights were initialized as in He et 
al. [27]. The learning rate was initially set to 0.0002 and was 
decreased by a factor of W  =0.1 every 50,000 iterations. 
Weight decay of 0.0005 and a momentum of 0.97 were set up 
for the network. The final segmentation results were obtained 
using the majority voting strategy from the predictions of the 
overlapped sub-volumes with stride of 8×8×8. It took about 2 
days for training and 5 minutes for segmenting each subject on 
a TitanX Pascal GPU and Caffe framework [19, 28]. 

B.! LIVIA: Laboratory for Image, Vision and Artificial 
Intelligence (LIVIA), at the École de technologie supérieure 
(ETS) in Montreal [29] 

Inspired by the recent success of dense networks in image 
segmentation problems, Dolz et al. proposed an ensemble of 
semi-dense deep architectures to segment 6-month infant brain 
MRI [29]. In this novel architecture called SemiDenseNet, the 
outputs of all convolutional layers are connected directly to 
the last block of the network. This semi-dense connectivity 
brings some advantages: 1) efficient propagation of gradients 
during training, and 2) reducing the number of trainable 
parameters. 

Their proposed method (Fig. 4) extends the recent deep 
architecture proposed in [30], which is composed of many 
convolutional layers, each containing several 3D convolution 
filters. To avoid losing resolution when down-sampling the 
data, the proposed architecture is a fully convolutional 
network (FCN) without any pooling operations. In addition, 
multi-scale context is modeled by embedding outputs from all 
the layers into a dense feature map that is provided to the first 
fully connected layer, which gives to the architecture the 
appearance of a semi-dense CNN. A notable difference of the 
proposed approach with respect to the most existing works is 
the adopted sampling strategy. Instead of employing a whole 
3D MR scan as the input, they sub-sample the whole image 
into smaller sub-volumes, which are then fed into the network. 
This allows: 1) avoiding memory issue if pooling is not 
employed and 2) removing data augmentation for training, 
since a high number of samples can be extracted from each 
image. Further, to achieve a more robust segmentation, an 
ensemble of several architectures is employed to combine 
their outputs via a majority voting strategy. 

The proposed SemiDenseNet is composed of 13 layers in 
total: 9 convolutional layers in each path, 3 fully-connected 
layers, and the classification layer. The number of kernels 

(with the size of 3×3×3) in each convolutional layer, from 
shallow to deeper, is 25, 25, 25, 50, 50, 50, 75, 75 and 75, 
respectively. The fully-connected layers are composed of 400, 
200 and 150 hidden units, respectively, followed by a final 
classification layer. To preserve spatial resolution, a unit stride 
is used for all convolutional layers. Each convolutional block 
is composed by a batch normalization step followed by a 
Parametric Rectified Linear Unit (PReLU) and several 
convolutional filters in the convolutional layers. Further, in the 
fully convolutional connected layers, dropout is employed 
right after PReLU activations. The optimization of network 
parameters is performed via RMSprop optimizer. Momentum 
was set to 0.6 and the initial learning rate to 0.001, reduced by 
a factor of 2 after every 5 epochs (starting from epoch 10). 
Weights in layer l were initialized based on a zero-mean 
Gaussian distribution of standard deviation 2/nl, where nl 
denotes the number of connections to units in that layer. The 
proposed 3D FCN was trained for 30 epochs, each composed 
of 20 subepochs. At each subepoch, a total of 1000 samples 
were randomly selected from the training images, and 
processed in batches of size 20. An ensemble composed by 10 
identical CNNs was employed, each trained with a different 
combination of subjects. No data augmentation was employed 
to increase the size of the dataset. Experiments were 
performed in a computational server equipped with a NVIDIA 
Tesla P100 GPU with 16 GB of RAM memory. Training the 
proposed network took around 25 min per epoch, and around 
13 hours to have a single CNN. Segmentation of a whole 3D 
MR scan was performed in 10 seconds per CNN model in 
average.  

     
Fig. 4.  Architecture of the proposed SemiDenseNet, which takes as the input 
sub-patches of size 27×27×27 from T1w and T2w images and provides 
segmentation maps of size 9×9×9. 

C.! Bern_IPMI: Information Processing in Medical 
Intervention Lab., University of Bern, Switzerland [31] 

Zeng and Zheng proposed a two-stage, 3D fully 
convolutional networks (3DFCN)-based method for 
segmentation of 6-month infant brain MRI [31]. In order to 
alleviate the potential gradient vanishing problem during 
training, they designed multi-scale deep supervision. 
Moreover, context information was used to further improve 
the performance. 

Fig. 5 illustrates their proposed two-stage method. Both 
3DFCN-1 and 3DFCN-2 adopt an encoder (contracting 
path)-decoder (expansive path) structure [32]. More 
specifically, 3DFCN-1 is used in the first stage to learn the 
probability map of each brain tissue from multimodal MR 
images (T1w and T2w images). An initial segmentation of 
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different brain tissues is then obtained from the probability 
map, which further allows us to compute a distance map for 
each tissue [33]. The computed distance maps can be used to 
model the spatial context information. At the second stage, 
3DFCN-2 is employed to get the final segmentation by using 
both the spatial context information and the multimodal MR 
images. To effectively integrate multimodal information, 
separate encoder paths are constructed for different modalities 
and then their outputs of the encoder paths are concatenated at 
the beginning of the expansive path such that the decoder can 
fuse complementary information from different sources. At 
both stages, long and short skip connections are employed to 
recover spatial context lose in the contracting encoder. See 
Fig. 5 for details. For 3DFCN-2, two down-scaled branch 
classifiers are further injected into the networks in addition to 
the classifier of the main network. By doing this, segmentation 
is performed at multiple output layers. As a result, classifiers 
in different scales can take advantage of multi-scale context. 

Their proposed method was implemented in Python using 
TensorFlow framework and trained on a desktop with a 3.6 
GHz Intel® i7 CPU and a GTX 1080 Ti graphics card with 11 
GB GPU memory. In order to enlarge the training samples, 
data augmentation was utilized. Specifically, each training 
data was rotated for (90, 180, 270) degrees around the y-axis 
of the image and flipped horizontally (by taking the z axis as 
the vertical direction). The network was trained for 10,000 
iterations. All weights were updated by the stochastic gradient 
descent algorithm (momentum=0.9, weight_decay=0.005). 
Learning rate was initialized as 1×10-3 and halved by every 
3,000 times. After training, the proposed method took about 8 
seconds in average to segment one subject. 

 
(a) A schematic illustration of the network architecture of 3DFCN-1 

 
(b) A schematic illustration of the network architecture of 3DFCN-2 

Fig. 5. A schematic illustration of the proposed two-stage method, consisting 
of (a) 3DFCN-1 at stage one and (b) 3DFCN-2 at stage two. For each block, 
the numbers above represent the number of feature stacks, and the numbers at 
the left side indicate data size. 

D.! TU/e IMAG/e: author list; Medical Image Analysis 
Group (IMAG/e) of Eindhoven University of Technology 
(TU/e) [34] 

A convolutional neuronal network was used for the 
segmentation of 6-month infant brain MRI into WM, GM and 
CSF [34]. Unlike previous work [35], the network does not 
include pooling layers, but uses dilated convolutions to 
achieve a large receptive field using a limited number of 
trainable weights.  

The method combines 2D triplanar and 3D input using four 
network branches (Fig. 6). All network branches use the T1w 
and T2w images as 2-channel input. The triplanar input is 
included in three branches with dilated 2D convolutions. Each 
of these branches consists of 7 layers of 3×3 convolutions with 
increasing dilation factors, resulting in a receptive field of 
67×67 [36], as previously also used for cardiac segmentation 
[37] and adult brain MRI segmentation [34]. The 3D input is 
included in the fourth branch that consists of 12 layers of 
3×3×3 convolutions, resulting in a receptive field of 
25×25×25. The output features from the four branches are 
concatenated and combined in the output layer with 1×1 
convolutions.  

Batch normalization and ReLUs were used throughout. 
Dropout was used before the output layer. The network was 
trained with Adam based on the cross-entropy loss, using 
mini-batches of 200 or 300 samples in 10 epochs of 50,000 
random samples per class per training image. The network 
was trained with a patch-based approach, randomly sampling 
from all images in the training set. During the testing, 
arbitrarily sized inputs can be used, because of the fully 
convolutional nature of all four branches. The method took 
about 1 minute to segment a full image on a NVIDIA Titan X 
Pascal GPU. The segmentation results were obtained without 
any data augmentation. Data augmentation could possibly 
improve the results in scenarios not well represented in the 
training set. 

          
Fig. 6. Network architecture. The colors of the arrows indicate, from left to 
right: 3×3 or 3×3×3 convolutions, concatenation, and 1×1 convolutions. 
Dilation factors are shown above the arrows. During the training, single 
voxels are used as output. During the testing, arbitrarily sized outputs can be 
used, because of the fully convolutional nature of the network. 
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E.! UPF_Simbiosys: Simbiosys research lab at Universitat 
Pompeu Fabra (UPF), Barcelona [38]  

There exist many segmentation approaches, such as 
multi-atlas label fusion [39] and learning-based methods [40, 
41]. Each method has its own strength, and different 
segmentation approaches may potentially complement each 
other. The motivation for the proposed method is to combine 
the strengths of complementary methods in a cascaded 
fashion. 

The pipeline of the method is shown in Fig. 7. The 0-level 
of the cascade segments the multi-modal (T1w and T2w) input 
images independently with joint label fusion (JLF) [39]. The 
estimated probability maps in level-0, along with the original 
images, are inputted to the level-1 of the cascade. In level-1, 
first, multi-scale features are extracted from both input images 
and probability maps of level-0. Image features consist of 1) 
Gaussian, 2) Laplacian-of-Gaussian, and 3) gradient 
magnitude images convolved with Gaussians at multiple 
scales for each modality. Probability features are obtained by 
convolving the level-0 probability maps with Gaussians at 
multiple scales. The multi-scale image and probability-map 
features are fed into a SVM classifier for outputting the final 
estimated label map. Each sample of the SVM classifier is 
composed of the features extracted from each voxel. The SVM 
classifier is trained during the training phase using the features 
extracted from the training set. 

 
Fig. 7. Dashed blocks correspond to the different levels of the cascade. Blue 
columns denote input, intermediate output, and final results. Rounded 
rectangles denote segmentation methods (orange) and feature extraction 
processes (green), respectively. 

Pre-processing steps include 1) histogram matching of all 
the images to the UNC 1-year-old infant template [11], and 2) 
non-rigid registration to the same template using ANTs [42]. 
Pair-wise registrations for multi-atlas JLF are computed by 
concatenating registrations through the template. No 
post-processing steps are applied. The parameters for the 
segmentation methods in each level (i.e., JLF and SVM) are 
chosen by cross-validation in the training set. Specifically, for 
JLF, the patch radius is set to be 2 for both modalities and the 
search window is set to be 7 and 5 for T1w and T2w images, 
respectively. For SVM, we set the regularization constant to 
C=5, use an RBF kernel, and normalize the features to 
zero-mean and unit standard deviation. The computational 
time for segmenting each subject is ~30 minutes. 
     The performance of the SVM classifier in level-1 is highly 
influenced by the features derived from JLF in level-0. This 
suggests the advantage of combining multiple complementary 
methods in the proposed cascaded scheme. A slight drop in 

performance is experienced by adding an extra layer in the 
cascade by the level-1 outputs using as the input, so the 
two-levels scheme is kept as the final model. Among different 
combination strategies, the proposed cascaded scheme 
performed better than an alternative ensembling strategy [43]. 

F.! NeuroMTL: Montreal Neurological Institute, McGill 
University, Montreal QC Canada9[44] 

First, an extended training dataset was created by applying 
existing tissue classification to scans from the longitudinal 
dataset of infants at-risk of autism and control subject in the 
Infant Brain Imaging Study (IBIS) [45] where scans of 
24-month old infants for whom 6 and 12 month scans were 
available and had T1w and T2w scans acquired at all time 
points (n=216).  

Tissue classification method is shown in Fig. 8: i) An 
unbiased population average of T1w scans for each age group 
(6 months, 12 months and 24 months) was created [46]. ii) 
The group average for the 24-month old scans was manually 
segmented into areas of high probability of WM, GM and 
CSF. iii) All 24-month-old T1w scans were non-linearly 
registered to the template, and tissue priors from the template 
were transformed to the space of each subject’s scan. iv) An 
expectation-maximization algorithm was run to obtain tissue 
classification. v) Longitudinal non-linear registrations between 
scans at 6 and 12 months and then between 12 and 24 months 
were performed using ANTs with mutual information [42], 
using both T1w and T2w scans. Using these registration 
transformations, tissue classification maps from 24 months 
were transformed to the 6-month scans. Segmentations from 
the 24-month scans were propagated back to the 6-month 
scans via non-linear registration. Then, a 3D U-Net [19] was 
trained in two stages with the extra dataset to automatically 
segment healthy tissues. U-Net with 5 downsampling and 
upsampling blocks with skip connections was trained on 803 
image patches for tissue classification, with the parameters 
listed in Table I. Each block contained two convolutional 
layers with ReLU activations, with 5×5×5 convolution layers 
in the first two blocks, 3×3×3 convolution layers in the next 
two blocks, and a combination of 3×3×3  and 1×1×1 
convolution layers in the fifth block, with max pooling at each 
block. Additionally, a 3×3×3 convolution layer with 64 input 
and output channels was added, followed by a 1×1×1 
convolutional layer with 64 input and 32 output channels and 
then another 1×1×1 layer with 32 input and 4 output channels 
with dropout, optimizing categorical cross-entropy with 
Adam. The output patch was cropped to 643 to remove edge 
effects. Training was done in two stages, first on the IBIS 
dataset, and then fine-tuned on the iSeg-2017 challenge data 
(n=10). 

 
9 Fonov et al. acknowledged imaging data was collected as part of the 

Infant Brain Imaging Study (IBIS). Fonov et al. also thank IBIS children and 
families for their ongoing participation in this longitudinal study. 
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Fig. 8. Automatic segmentation of 6-month old infant MRI data. 

All experiments were performed on a computer with Xeon 
CPU E5-2620 v4 @ 2.10GHz with 64GB of ram and NVIDIA 
Titan-X GPU, with deep-net implemented in Torch7. Training 
on ACE-IBIS dataset took approximately 32 hours (10000 
mini-batches), and final training on iSeg-2017 data took 11 
hours (4000 mini-batches). Application on a single subject, 
using GPU, took 8 seconds.  

TABLE I. PARAMETERS OF 3D U-NET. 

Layer Input Channels 
Output 

 Channels 

Convolution 

kernel 2 

Convolution 

kernel 2 

Upsampling 

kernel 

1 4 64 5x5x5 5x5x5 5x5x5 

2 16 64 5x5x5 5x5x5 3x3x3 

3 16 64 3x3x3 3x3x3 3x3x3 

4 16 64 3x3x3 3x3x3 3x3x3 

5 32 64 1x1x1 3x3x3 - 

G.! UPC_DLMI: Signal Theory and Communications 
Department, Universitat Politècnica de Catalunya, Barcelona 

Casamitjana et al. proposed a convolutional neural 
network, named Augmented V-Net (Fig. 9), which is an 
extension of the V-Net architecture [47]. The main changes 
with respect to the original V-Net model can be summarized 
as follows:  
•! Augmented path: An upsampled version of the input is used 

to exploit high resolution features. This is done by 
upsampling by repetition the input (factor of 2) and stacking 
several convolutional layers after the upsampling. The 
resultant features are concatenated in the last layers.  

•! Modified residual connections: The residual connections are 
reformulated such that the propagation of the input signal 
through the network is minimally modified.  

•! Mask: A mask is used before the final prediction in order to 
constrain the network to train on relevant voxels.  

•! Input concatenation: The raw input image is used as feature 
map in the last stages of the network.  
The key part of the network is the augmented path, which 

has been shown to boost the performance of the standard 
V-Net for the infant brain segmentation task. It provides 
high-resolution features by keeping small filter sizes and 
adding redundancy in the input, helping to detect finer regions 
such as boundaries. Later in the network, the authors use the 
input image as raw features, since voxel’s intensities already 
contain valuable information. Finally, the mask is used to 
train/predict only on voxels of brain tissue.  

 
Fig. 9. Augmented V-Net. It builds upon the concatenation of the V-Net core 
network [47] with an augmented path with higher resolution. Augmented 
V-Net uses a ROI-mask to train only in brain tissue voxels. Layer types are 
color-coded as shown in the top-right corner. 

T1w and T2w MRIs are used as input images. Both are 
normalized to zero mean and unit variance. From the 
normalized T1w image, a mask is created to mask out 
background voxels. When training such a big and deep 
network, there are two main problems: GPU memory 
constraints and the scarcity of data. Patch-wise training arises 
as a possible solution for the first issue. The memory required 
to train Augmented V-Net does not allow using 
dense-training, which is also discouraged when data is scarce. 
Then, patch-wise training is the only solution. Larger patches 
are preferred because they can encode localization features 
(brain structures) across the network, while smaller patches 
allow increasing the batch size in the optimization process. 
The authors finally choose patches of size 64×64×64 and 
sample uniformly across the brain, forcing the central voxel to 
belong to brain tissue (WM, GM and CSF). 

Interestingly, faster and better convergence was obtained 
with lower generalization error, since batch sizes were 
composed of more subjects, relaxing the problem of data 
scarcity. The authors used data augmentation to increase the 
size of the training set, by making sagittal reflections of each 
subject. Other reflections have been shown to produce worse 
results, and no other datasets were used to train the network. 
In the optimization process, they used Adam optimizer with 
initial learning rate of lr=0.0005. The loss function used was 
the weighted cross-entropy, where loss weights were 
computed as the normalized inverse of the class frequency. At 
inference time, the whole subject can be used as input for the 
trained model, performing dense inference and using the mask 
to indicate brain tissue voxels. The method is fully automatic, 
taking from 5 to 7 seconds to process one subject. 

H.! LRDE: EPITA Research & Development Laboratory 
[48] 

Xu et al.’s method is an extension from single modality to 
multi-modality of the authors' previous work on neonatal 
infant brain MRI segmentation [48]. This automatic method 
uses fully convolutional network (FCN) and transfer learning 
(see details in Fig. 10), and is very fast: the segmentation of a 
whole volume only takes a few seconds. The core part of the 
16 layers VGG network [43] is used. This very efficient 
network, pre-trained on millions of 2D color natural images in 
ImageNet (for image classification purpose), and fine-tuned 
with the MRI training dataset. The key contribution is to show 
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how to build 2D color images from a 3D MRI volume, so that 
VGG effectively gives state-of-the-art segmentation results. 

 
Fig. 10. Visualization of the proposed segmentation network 

The combination of the T1w and T2w slices to obtain a set 
of 2D color (RGB) images is very simple. For each slice 
(indexed by n), the fake color image is constructed in such a 
way that the “green” channel is the T2w slice n, and the red 
and the blue are T1w slices respectively at indices n-1 and 
n+1. Each 2D color image thus forms a 3D-like representation 
of a part (3 consecutive slices) of the MR volume. This 
representation enables incorporating some 3D information, 
while avoiding the expensive computational and memory 
requirements of fully 3D CNN. For this specific application, 
the fully connected layers at the end of VGG network are 
discarded; only the 4 stages of convolutional parts called “base 
network” are retained. This base network is composed of 
convolutional layers, ReLU layers and max pooling layers 
between two successive stages.  The three max pooling layers 
divide the base network into four stages of fine to coarse 
feature maps. A stack of specialized layers is obtained, 1 from 
each stage, and a softmax function yields the segmentation 
result. 

Before creating the set of 2D color images, a pre-processing 
of the T1w and T2w sequences was performed, which consists 
of: 1) shifting the voxel values of the MRI volumes to center 
their histograms on their maximal histogram value, and 2) 
requantizing the voxel values on 8bit (values lower than 0 and 
greater than 255 are saturated). For the training, the classical 
data augmentation strategy by scaling and rotating images 
were adopted. 2D images were then computed for each 
volume of the augmented training base using the 
pre-processed T1w and T2w slices as described before. The 
network was fine-tuned for the first 50K iterations with a 
learning rate of lr=10-8, and the last 100K with a smaller 
learning rate (lr=10-10). Stochastic gradient descent was 
employed to minimize the loss function with momentum=0.99 
for the first 50K iterations and 0.999 for the next 100k, and 
weight_decay=0.0005. The loss function was averaged over 20 
images. During test, the runtime on a 3D volume was 1.8 
seconds on average; note that this included the pre-processing 
step, the computation of the set of 2D color input images, and 
after inference, the reconstruction of a 3D volume (the 
expected segmentation output) by stacking the set of 2D 
output images. 

I.! Source Codes 

A proactive goal of this paper is to encourage authors to 
make their codes publicly available for reproducible research. 
By far, most of teams have shared their codes, as summarized 
in Table. II. For readers who seek to come up to speed with 
deep learning, these codes can be also served as good starting 
points to understand how deep learning algorithms can be 
implemented for image segmentation. 

TABLE II. SOURCE CODES FROM TOP TEAMS IN ISEG-2017. 

TEAM METHOD LINK 

MSL_SKKU 3D, DenseNet https://github.com/tbuikr/3D_DenseSeg 

LIVIA 3D, CNN+FC https://github.com/josedolz/SemiDenseNet 

Bern_IPMI 3D, Two stages, double-armed U-Net https://github.com/zengguodong/iSeg_Bern_IPMI 

TU/e IMAG/e 3D, CNN with dilated convolutions https://github.com/pimmoeskops/iSeg_dilatedCNN 

NeuroMTL 3D, U-Net https://github.com/vfonov/NeuroMTL_iSEG 

UPC_DLMI 3D, Augmented U-Net https://github.com/imatge-upc/segmentation_DLMI/ 

LRDE 2D, Pretrained VGG16+FCN https://www.lrde.epita.fr/wiki/NeoBrainSeg 

 

V.! DISCUSSION 

Based on Section IV, most of the well-performed teams (7 
teams out of 8) adopted deep learning based algorithms. 
Moreover, most of the deep learning related algorithms are 
based on 3D U-Net (or U-Net-like structures). Thanks to the 
use of GPUs, most of these algorithms have inference times 
between 5-10 seconds for a whole MRI scan. The only 
non-deep learning based method is developed by Sanroma et 
al. (UPF_simbiosys), which employs a multi-atlas based 
method followed by an SVM to design a cascade learning 
segmentation algorithm.  

V.I. Evaluation on the whole brain 
We first evaluate the performance in terms of the whole brain. 
Fig. 11 reports performances of 8 teams using DICE, HD95 
and ASD, with box-plots. Besides medians, means are also 
indicated by the black diamonds. To see if any method 
produces a significantly better result, we calculated Wilcoxon 
two tailed-test, as shown in Table. III with all-against-all 
diagram in terms of metrics (DICE, HD95 and ASD). 
Interesting, we did not find any method could achieve a strong 
statistically significant difference (p-value<0.01) with other 
methods, in terms of WM, GM and CSF using any metric 
(DICE, HD95 and ASD). For example, in terms of WM DICE, 
we found MSL_SKKU has the highest median, but there are no 
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strong statistically significant difference with LIVIA, and also 
with Bern_IPMI. In terms of WM HD95, LRDE has the lowest 
median, but there is no any statistically significant difference 
with any other methods. For WM ASD, MSL_SKKU has the 
lowest median, but there is no statistically significant 
difference with LIVIA and Bern_IPMI. For GM DICE, we 
found MSL_SKKU has the highest median, but there is no 

statistically significant difference with MSL_SKKU and 
Bern_IPMI. For GM HD95, MSL_SKKU has the lowest 
median, but there is no strong statistical significance with any 
other methods. For GM ASD, MSK_SKKU has the lowest 
median, but there is no statistically significant difference with 
LIVIA. 

 
Fig. 11. Performances of 8 teams in terms of DICE, HD95 and ASD, with box-plots. Besides medians, means are also indicated by the dark 
dots.

TABLE III. P-VALUES BY PERFORMING WILCOXON SIGNED-RANK TEST 
! Denotes weak statistical significance (p-value < 0.05). 

!! Denotes strong statistical significance (p-value < 0.01). 
 

WM/DICE 

TEAM MSL_SKKU LIVIA  Bern_IPMI   TU/e IMAG/e   UPF_simbiosys   NeuroMTL  UPC_DLMI LRDE 

MSL_SKKU N/A 0.033! 0.023! 0.001!! 0.002!! 0.001!! 0.001!! 0.001!! 

LIVIA 0.033! N/A 0.507 0.005 0.001! 0.002!! 0.001!! 0.001!! 

Bern_IPMI 0.023! 0.507 N/A 0.028 0.002!! 0.001!! 0.002!! 0.001!! 

TU/e IMAG/e 0.001!! 0.005!! 0.028! N/A 0.221 0.075 0.023! 0.001!! 

UPF_simbiosys 0.002!! 0.001!! 0.002!! 0.221 N/A 0.917 0.033! 0.001!! 

NeuroMTL 0.001!! 0.002!! 0.001!! 0.075 0.917 N/A 0.249 0.001!! 

UPC_DLMI 0.001!! 0.001!! 0.002!! 0.023! 0.033! 0.249 N/A 0.001!! 

LRDE 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! N/A 

 
 

WM/HD95 (mm) 

TEAM MSL_SKKU LIVIA  Bern_IPMI  TU/e IMAG/e  UPF_simbiosys  NeuroMTL UPC_DLMI LRDE 

MSL_SKKU N/A 0.347 0.182 0.311 0.019! 0.196 0.534 0.753 

LIVIA 0.347 0.000 0.507 0.530 0.972 0.480 0.388 0.117 

Bern_IPMI 0.182 0.507 N/A 0.807 0.480 0.638 0.753 0.695 

TU/e IMAG/e 0.311 0.530 0.807 N/A 0.917 0.917 0.345 0.158 

UPF_simbiosys 0.019! 0.972 0.480 0.917 N/A 0.530 0.374 0.221 

NeuroMTL 0.196 0.480 0.638 0.917 0.530 N/A 0.221 0.131 

UPC_DLMI 0.534 0.388 0.753 0.345 0.374 0.221 N/A 0.916 

MSL_SKKU

LIVIA

Bern_IPMI

TU/e	IMAG/e

UPF_simbiosys

NeuroMTL

UPC_DLMI

LRDE

DICE, HD95 and ASD values for 8 teams.
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LRDE 0.753 0.117 0.695 0.158 0.221 0.131 0.916 N/A 

 
 

WM/ASD (mm) 

TEAM MSL_SKKU LIVIA  Bern_IPMI   TU/e IMAG/e   UPF_simbiosys   NeuroMTL UPC_DLMI LRDE 

MSL_SKKU N/A 0.173 0.311 0.001!! 0.006!! 0.001!! 0.002!! 0.001!! 

LIVIA 0.173 N/A 0.917 0.003!! 0.003!! 0.002!! 0.001!! 0.001!! 

Bern_IPMI 0.311 0.917 N/A 0.004!! 0.002!! 0.001!! 0.002!! 0.001!! 

TU/e IMAG/e 0.001!! 0.003!! 0.004!! N/A 0.807 0.016! 0.196 0.001!! 

UPF_simbiosys 0.006!! 0.003!! 0.002!! 0.807 N/A 0.196 0.023! 0.001!! 

NeuroMTL 0.001!! 0.002!! 0.001!! 0.016! 0.196 N/A 0.221 0.001!! 

UPC_DLMI 0.002!! 0.001!! 0.002!! 0.196 0.023! 0.221 N/A 0.001!! 

LRDE 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! N/A 

 
 

GM/DICE 

TEAM MSL_SKKU LIVIA  Bern_IPMI   TU/e IMAG/e   UPF_simbiosys   NeuroMTL UPC_DLMI LRDE 

MSL_SKKU N/A 0.650 0.055 0.001!! 0.001!! 0.001!! 0.002!! 0.001!! 

LIVIA 0.650 N/A 0.087 0.001!! 0.001!! 0.002!! 0.001!! 0.001!! 

Bern_IPMI 0.055 0.087 N/A 0.001!! 0.001!! 0.001!! 0.002!! 0.001!! 

TU/e IMAG/e 0.001!! 0.001!! 0.001!! N/A 0.311 0.422 0.249 0.002!! 

UPF_simbiosys 0.001!! 0.001!! 0.001!! 0.311 N/A 0.861 0.005!! 0.001!! 

NeuroMTL 0.001!! 0.002!! 0.001!! 0.422 0.861 N/A 0.133 0.002!! 

UPC_DLMI 0.002!! 0.001!! 0.002!! 0.249 0.005!! 0.133 N/A 0.001!! 

LRDE 0.001!! 0.001!! 0.001!! 0.002!! 0.001!! 0.002!! 0.001!! N/A 

 
 

GM/HD95 (mm) 

TEAM MSL_SKKU LIVIA  Bern_IPMI   TU/e IMAG/e   UPF_simbiosys   NeuroMTL UPC_DLMI LRDE 

MSL_SKKU N/A 0.600 0.169 0.033! 0.093 0.101 0.028! 0.442 

LIVIA 0.600 N/A 0.421 0.158 0.937 0.071 0.173 0.074 

Bern_IPMI 0.169 0.421 N/A 0.382 0.814 0.650 0.182 0.081 

TU/e IMAG/e 0.033! 0.158 0.382 N/A 0.173 0.972 0.875 0.016! 

UPF_simbiosys 0.093 0.937 0.814 0.173 N/A 0.196 0.221 0.060 

NeuroMTL 0.101 0.071 0.650 0.972 0.196 N/A 1.000 0.008!! 

UPC_DLMI 0.028! 0.173 0.182 0.875 0.221 1.000 N/A 0.008!! 

LRDE 0.442 0.074 0.081 0.016b 0.060 0.008!! 0.008!! N/A 

 
 

GM/ASD (mm) 

TEAM MSL_SKKU LIVIA  Bern_IPMI   TU/e IMAG/e   UPF_simbiosys   NeuroMTL UPC_DLMI LRDE 

MSL_SKKU N/A 0.116 0.028! 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! 

LIVIA 0.116 N/A 0.463 0.004!! 0.001!! 0.002!! 0.001!! 0.001!! 

Bern_IPMI 0.028! 0.463 N/A 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! 

TU/e IMAG/e 0.001!! 0.004!! 0.001!! N/A 0.013! 0.075 0.173 0.001!! 

UPF_simbiosys 0.001!! 0.001!! 0.001!! 0.013! N/A 0.064 0.002!! 0.001!! 

NeuroMTL 0.001!! 0.002!! 0.001!! 0.075 0.064 N/A 0.507 0.001!! 

UPC_DLMI 0.001!! 0.001!! 0.001!! 0.173 0.002!! 0.507 N/A 0.001!! 

LRDE 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! N/A 

 
 

CSF/DICE 



 

 11 

TEAM MSL_SKKU LIVIA  Bern_IPMI   TU/e IMAG/e   UPF_simbiosys   NeuroMTL UPC_DLMI LRDE 

MSL_SKKU N/A 0.552 0.002!! 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! 

LIVIA 0.552 N/A 0.009!! 0.007!! 0.001!! 0.001!! 0.001!! 0.001!! 

Bern_IPMI 0.002!! 0.009!! N/A 0.039! 0.001!! 0.001!! 0.002!! 0.001!! 

TU/e IMAG/e 0.001!! 0.007!! 0.039! N/A 0.001!! 0.033! 0.650 0.001!! 

UPF_simbiosys 0.001!! 0.001!! 0.001!! 0.001!! N/A 0.133 0.001!! 0.116 

NeuroMTL 0.001!! 0.001!! 0.001!! 0.033! 0.133 N/A 0.075 0.116 

UPC_DLMI 0.001!! 0.001!! 0.002!! 0.650 0.001!! 0.075 N/A 0.001!! 

LRDE 0.001!! 0.001!! 0.001!! 0.001!! 0.116 0.116 0.001!! N/A 

 
 

CSF/HD95 (mm) 

TEAM MSL_SKKU LIVIA  Bern_IPMI   TU/e IMAG/e   UPF_simbiosys   NeuroMTL UPC_DLMI LRDE 

MSL_SKKU N/A 0.972 0.169 0.477 0.221 0.041! 0.929 0.133 

LIVIA 0.972 N/A 0.064 0.117 0.050 0.011! 0.953 0.012! 

Bern_IPMI 0.169 0.064 N/A 0.401 0.196 0.050 0.041! 0.311 

TU/e IMAG/e 0.477 0.117 0.401 N/A 0.099 0.021! 0.249 0.173 

UPF_simbiosys 0.221 0.050 0.196 0.099 N/A 0.311 0.050 0.754 

NeuroMTL 0.041! 0.011! 0.050 0.021! 0.311 N/A 0.010! 0.209 

UPC_DLMI 0.929 0.953 0.041b 0.249 0.050 0.010! N/A 0.006!! 

LRDE 0.133 0.012! 0.311 0.173 0.754 0.209 0.006!! N/A 

 
 

CSF/ASD (mm) 

TEAM MSL_SKKU LIVIA  Bern_IPMI   TU/e IMAG/e   UPF_simbiosys   NeuroMTL UPC_DLMI LRDE 

MSL_SKKU N/A 0.861 0.002!! 0.001!! 0.001!! 0.001!! 0.001!! 0.001!! 

LIVIA 0.861 N/A 0.101 0.055 0.023! 0.019! 0.023! 0.023! 

Bern_IPMI 0.002!! 0.101 N/A 0.011! 0.001!! 0.001!! 0.001!! 0.001!! 

TU/e IMAG/e 0.001!! 0.055 0.011! N/A 0.001!! 0.039! 0.917 0.001!! 

UPF_simbiosys 0.001!! 0.023! 0.001!! 0.001!! N/A 0.701 0.001!! 0.033! 

NeuroMTL 0.001!! 0.019! 0.001!! 0.039! 0.701 N/A 0.046! 0.650 

UPC_DLMI 0.001!! 0.023! 0.001!! 0.917 0.001!! 0.046! N/A 0.001!! 

LRDE 0.001!! 0.023! 0.001!! 0.001!! 0.033! 0.650 0.001!! N/A 

 

V.II. Evaluation based on 80 ROIs 
Besides evaluation in terms of the whole brain, we further 
evaluate the performances based on 80 ROIs. Specifically, a 
total of 33 two-year-old subjects were employed as individual 
atlases (www.brain-development.org) [49]. Each atlas consists 
of a T1w MR image and a label image of 80 ROIs (excluding 
cerebellum and brainstem). We first employ FreeSurfer [50] to 
segment each T1w MR image into WM, GM, and CSF. Then, 
we register all atlases into each testing subject space based on 
their segmentations using ANTs [51]. Finally, we employ 
majority voting to parcellate each testing subject into 80 ROIs. 
For each ROI, we employed DICE to measure the 
performance between automatic segmentations and manual 
segmentation. Average ROI-based DICEs for 8 teams are 
shown in Table. IV. The large number of ROIs reduced the 
organizers' willingness to report p-values for each ROI. 
However, to better interpret these ROI-based evaluations, we 
have generated error maps for each method, as shown in Fig. 
12. They were estimated by aligning all the error maps from 
13 testing subjects to a 6-month template [52]. The higher 

value of error map, the higher probability for 
miss-classification. From all these error maps, we can see all 
methods consistently produce small errors in the subcortical 
regions while large errors in the cortical regions, which is 
actually consistent with the fact that tissue contrast is much 
lower in the cortical regions than subcortical regions. Average 
error map for all 8 methods were further generated, as shown 
in the right bottom of Fig. 12. The most error-prone ROI 
regions are straight gyrus, lingual gyrus, and medial orbital 
gyrus. These regions are also consistently confirmed with 
Table V, where DICEs of these ROIs were relatively low, with 
around 0.84. By contrast, the Dice ratios of subcortical 
regions, such as putamen and thalamus, are as high as 0.94. 
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Fig. 12. Error maps: All methods produce small errors in the subcortical 
regions while large errors in the cortical regions. The most error-prone regions 
are straight gyrus, lingual gyrus, and medial orbital gyrus. Average error map 
for all 8 teams is shown in the right bottom. 
 

V.III. Evaluation based on gyral landmark curves 
To better reflect the accuracy of the methods on the gyral 
crests, we further measure the distance of gyral landmark 
curves on the cortical surfaces. Large curve distance error 
indicates that the gyral crest is poorly resolved. We selected 
two major gyri, i.e., the superior temporal gyral curve and the 
postcentral gyral curve, as the landmarks to measure the 
accuracy. We manually labeled two sets of gyral curves on the 
inner cortical surfaces from different tissue segmentation 
results. One typical example is shown as in Fig. 13, in which 
the curves were delineated by the experts on the superior 
temporal gyrus and postcentral gyrus, the white curve indicate 
the ground truth, and the colored lines indicates different 
method respectively. We employed HD95 to calculate the 

curves distance, with median HD95 over 13 testing subjects 
shown in Fig. 14. P-values were calculated based on Wilcoxon 
two-tailed test, as shown in Table. III. We find that 
Bern_IPMI achieves the lowest median HD95, but there is no 
statistically significant difference with MSK_SKKU, LIVIA, 
UPF_simbiosys, and NeuroMTL. 

 

 
Fig. 13. Evaluations on gyri/sulci for 8 teams. The left one shows the 
manually labeled postcentral and superior temporal gyral landmark curves of 
ground truth, while the right one shows the curves of the segment results by 8 
different methods compared with ground truth. 

 
Fig. 14. The boxplot shows HD95 evaluations of 8 different methods on the 
superior temporal gyrus and the postcentral gyrus of 13 subjects. Besides 
medians, means are also indicated by the dark dots. 

 
Table. III. p-values for the two-sided Wilcoxon paired signed-rank test. 

! Denotes weak statistical significance (p-value < 0.05). 
!! Denotes strong statistical significance (p-value < 0.01). 

 
TEAM MSL_SKKU LIVIA Bern_IPMI TU/e IMAG/e UPF_simbiosys NeuroMTL UPC_DLMI LRDE 

MSL_SKKU N/A 0.6221 0.3804 0.2036 0.4697 0.8501 0.0068!! 0.0640 

LIVIA 0.6221 N/A 0.4238 0.0269 0.3804 0.3804 0.0068!! 0.0122! 

Bern_IPMI 0.3804 0.4238 N/A 0.0122 0.0522 0.2661 0.0015!! 0.0015!! 

TU/e IMAG/e 0.2036 0.0269 0.0122 N/A 0.6772 0.0342! 0.1294 0.0342! 

UPF_simbiosys 0.4697 0.3804 0.0522 0.6772 N/A 0.2661 0.1294 0.0923 

NeuroMTL 0.8501 0.3804 0.2661 0.0342! 0.2661 N/A 0.0015!! 0.0049!! 

UPC_DLMI 
0.0068!! 

0.0068!

! 
0.0015!! 0.1294 0.1294 0.0015!! N/A 0.8501 

LRDE 0.0640 !0.0122 !!0.0015 !0.0342 0.0923 !!0.0049 0.8501 N/A 

 
Based above evaluation in terms of whole brain, small ROIs, 
and gyral curves, we can see none of method has achieved a 
significantly better performance over any other method. 
Especially, from the error maps in Fig. 12, these methods 
consistently have a poor performance along the cortical 

regions. Therefore, these are still many spaces for 
improvement.  

First, all methods directly apply well-established models 
(e.g., U-Nets) on the challenge, without considering any prior 
knowledge of infant brain images, e.g., cortical thickness is 
within a certain range. Especially, due to low contrast between 

LRDE
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WM and GM in the 6-month infant brain images, WM voxels 
may be under/over segmented. Given a voxel with a resolution 
of 1×1×1 mm3, although one voxel error will have a negligible 
impact on DICE or HD95, it will result in ±1 mm estimation 
error of cortical thickness. Fig. 15 shows a segmentation result 
on a testing subject obtained by MSL_SKKU [20]. Without 
anatomical guidance, there are many missing gyri in the 
reconstructed inner surface by MSL_SKKU [20]. 
Consequently, the estimated cortical thickness is abnormally 
thicker. It is worth noting that this type of error should be paid 
more attention, especially for possible biomarker 
identification, since it might be difficult to accurately 
characterize)brain developmental attributes, such as cortical 
thickness, gyrification, and convexity. For example, the 
cortical thickness for the zoomed regions (last column of Fig. 
15) is abnormally larger than the ground truth.  

 

 
Fig. 15. Comparison with MSL_SKKU [13] in 2017 MICCAI Grand 
Segmentation Challenge (iSeg-2017). The results by MSL_SKKU [13] and 
manual segmentation are shown in the 1st and 2nd row, respectively. From 
left to right: segmentation overlaid on T1w and T2w images, inner surface, 
cortical thickness, zoomed views of inner surface and cortical thickness (in 
mm).  
 

Second, all methods ignore a fact between CSF and GM is 
much higher than that between GM and WM. Therefore, it 
might be reasonable to identify CSF firstly from infant brain 
images to reconstruct the outer cortical surface and use it as a 
guidance to estimate the inner cortical surface since cortical 
thickness is within a certain range. Preliminary work on 
6-month infant subjects with risk of autism demonstrates its 
effectiveness [53].  

Third, among 13 testing subjects, we find all methods 
consistently performed badly on the 20-th testing subject. One 
representative slice is shown in Fig. 16. It can be seen that the 
image was with severe motion artifacts. By contrast the other 
subjects have small or no motion effect. Another possible 
reason could be from the different scan pose for this subject. 
Therefore, the model that is robust to the motion/scan pose is 
highly desired, since these artifacts are inevitable during the 
scanning. Possible solution is to augment the training subjects 
by rotation, flipping, as well as enforcing motion artifacts. 

 

 
Fig. 16. The 20-th testing subject with motions and different scan pose. 

 

  Fourth, Table. V lists key highlights, time cost for training 
and testing, limitations, etc., for top-8 methods. All the 
methods typically randomly or gridly selected samples (2D/3D 
patches) from the training images, without realizing the 
importance of sample selection. For example, in conventional 
machine learning algorithms, ad-boosting is an effective 
strategy to learning features from these error-prone regions to 
improve the performance [54]. Similarly, the average error 
map shown in Fig. 12 could potentially provide guidance for 
samples selection. For example, by selecting more training 
samples from these error-prone regions, the performance of 
these deep learning algorithms could be further improved. In 
addition, from Table. V, we can see the patch sizes of deep 
learning models are varying from 24×24×24 to 80×80×80, 
which could be further optimized.   

There are also limitations for iSeg-2017. For example, the 
numbers of training subjects and testing subjects are limited. 
Another limitation is low image resolution, especially for T2w 
images with 1.25×1.25×1.95 mm3.  While currently, T1w and 
T2w images are usually acquired with 1.0×1.0×1.0 mm3, or 
even 0.8×0.8×0.8 mm3 in BCP imaging protocol [1]. These 
limitations will be alleviated by including more subjects from 
BCP in the 2019 iSeg Segmentation Grand Challenge 
(https://iseg2019.web.unc.edu).  

VI.! CONCLUSION 

In this paper, we have reviewed and summarized 21 
automatic segmentation methods participated in iSeg-2017. 
Especially, we have elaborated the details of the top 8 
methods: including the pipeline, implementation, and source 
code. We further pointed out limitations and possible future 
directions. The iSeg-2017 website is still open and we hope 
our manual labels in iSeg-2017, this review article and source 
codes could greatly advance methodological development in 
the community. 
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Table IV. AVERAGE DICE SCORES FOR 80 ROIS BY ALL THE COMPETING METHODS. L: LEFT; R: RIGHT.!

ROI\Method MSL_SKKU LIVIA Bern_IPMI TU/e IMAG/e UPF_simbiosys NeuroMTL UPC_DLMI LRDE Average'

L'hippocampus' 0.8932' 0.8851' 0.8944' 0.8606' 0.8838' 0.8774' 0.8676' 0.8374' 0.8749'

R'hippocampus' 0.8988' 0.9029' 0.9063' 0.8726' 0.9009' 0.8997' 0.9027' 0.8752' 0.8949'

L'amygdala' 0.9209' 0.8937' 0.9304' 0.9036' 0.8892' 0.8679' 0.8982' 0.8714' 0.8969'

R'amygdala' 0.9126' 0.8878' 0.9064' 0.8911' 0.8946' 0.9005' 0.8978' 0.8818' 0.8966'

L'anterior'temporal'lobe,'medial'part'' 0.9062' 0.8981' 0.8902' 0.8932' 0.8739' 0.8293' 0.8871' 0.8637' 0.8802'

R'anterior'temporal'lobe,'medial'part' 0.8993' 0.8902' 0.882' 0.8801' 0.8765' 0.8105' 0.8795' 0.8517' 0.8712'

L'anterior'temporal'lobe,'lateral'part' 0.9202' 0.9211' 0.9036' 0.9072' 0.8916' 0.8551' 0.8925' 0.8827' 0.8968'

R'anterior'temporal'lobe,'lateral'part' 0.9159' 0.9207' 0.8976' 0.9012' 0.8960' 0.8431' 0.8912' 0.8820' 0.8935'

L'parahippocampal'and'ambient'gyri' 0.8838' 0.8696' 0.8755' 0.8634' 0.8672' 0.8583' 0.8427' 0.8281' 0.8611'

R'parahippocampal'and'ambient'gyri' 0.8870' 0.8767' 0.8816' 0.8596' 0.8736' 0.8617' 0.8415' 0.8330' 0.8643'

L'superior'temporal'gyrus,'posterior'part' 0.9253' 0.9177' 0.9196' 0.9060' 0.9008' 0.9085' 0.9073' 0.8833' 0.9086'

R'superior'temporal'gyrus,'posterior'part' 0.9217' 0.9161' 0.9188' 0.9036' 0.9008' 0.9128' 0.9045' 0.8835' 0.9077'

L'middle'and'inferior'temporal'gyrus' 0.9100' 0.8988' 0.8874' 0.8899' 0.8775' 0.8629' 0.8777' 0.8610' 0.8832'

R'middle'and'inferior'temporal'gyrus' 0.9015' 0.9001' 0.8817' 0.8904' 0.8732' 0.8653' 0.8756' 0.8554' 0.8804'

L'fusiform'gyrus' 0.9034' 0.8969' 0.8693' 0.8859' 0.8766' 0.8028' 0.8721' 0.8539' 0.8701'

R'fusiform'gyrus' 0.8865' 0.8796' 0.8589' 0.8710' 0.8677' 0.7885' 0.8571' 0.8333' 0.8553'

L'insula' 0.8954' 0.8880' 0.8891' 0.8825' 0.8823' 0.8913' 0.8776' 0.8740' 0.8850'

R'insula' 0.9040' 0.8891' 0.8983' 0.8857' 0.8890' 0.8943' 0.8932' 0.8755' 0.8911'

L'lateral'remainder'of'occipital'lobe' 0.9000' 0.9040' 0.8908' 0.8883' 0.8837' 0.8915' 0.8979' 0.8617' 0.8897'

R'lateral'remainder'of'occipital'lobe' 0.9019' 0.8986' 0.8883' 0.8917' 0.8828' 0.8829' 0.8915' 0.8601' 0.8872'

L'cingulate'gyrus,'anterior'part' 0.9255' 0.9188' 0.9148' 0.9000' 0.9068' 0.9135' 0.9040' 0.8925' 0.9095'

R'cingulate'gyrus,'anterior'part' 0.9254' 0.9203' 0.9193' 0.9083' 0.9070' 0.9121' 0.9156' 0.8911' 0.9124'

L'cingulate'gyrus,'posterior'part' 0.9129' 0.9141' 0.9094' 0.8912' 0.9036' 0.9094' 0.8976' 0.8819' 0.9025'

R'cingulate'gyrus,'posterior'part' 0.9162' 0.9172' 0.9002' 0.8972' 0.9013' 0.8974' 0.9028' 0.8757' 0.9010'

L'middle'frontal'gyrus' 0.9349' 0.9308' 0.9235' 0.9273' 0.9136' 0.9208' 0.9228' 0.9077' 0.9227'

R'middle'frontal'gyrus' 0.9317' 0.9290' 0.9193' 0.9222' 0.9116' 0.9158' 0.9173' 0.9030' 0.9187'

L'Posterior'temporal'lobe' 0.9123' 0.9103' 0.8945' 0.9002' 0.8939' 0.8998' 0.8985' 0.8767' 0.8983'

R'posterior'temporal'lobe' 0.9176' 0.9138' 0.9016' 0.9013' 0.8974' 0.8916' 0.9015' 0.8797' 0.9006'

L'inferiolateral'remainder'of'parietal'lobe' 0.9258' 0.9269' 0.9111' 0.9181' 0.8970' 0.9151' 0.9164' 0.8942' 0.9131'

R'inferiolateral'remainder'of'parietal'lobe' 0.9276' 0.9219' 0.9124' 0.9131' 0.8943' 0.9086' 0.9103' 0.8902' 0.9098'

L'caudate'nucleus' 0.9282' 0.9310' 0.9360' 0.8972' 0.9374' 0.9066' 0.9219' 0.9094' 0.9210'

R'caudate'nucleus' 0.9261' 0.9284' 0.9311' 0.8739' 0.9335' 0.9096' 0.9276' 0.9119' 0.9178'

L'nucleus'accumbens' 0.8469' 0.8404' 0.8682' 0.8491' 0.9228' 0.7665' 0.8830' 0.8551' 0.8540'

R'nucleus'accumbens' 0.8648' 0.8949' 0.8588' 0.8549' 0.9409' 0.7330' 0.9058' 0.9080' 0.8701'

L'putamen' 0.9350' 0.9410' 0.9298' 0.9299' 0.9501' 0.9024' 0.9480' 0.9170' 0.9317'

R'putamen' 0.9330' 0.9499' 0.9420' 0.9520' 0.9568' 0.9138' 0.9453' 0.9382' 0.9414'

L'thalamus' 0.9249' 0.9303' 0.9418' 0.9081' 0.9438' 0.9345' 0.9337' 0.9236' 0.9301'

R'thalamus' 0.9241' 0.9270' 0.9457' 0.9203' 0.9417' 0.9400' 0.9352' 0.9294' 0.9329'

L'pallidum' 0.7410' 0.7529' 0.7577' 0.7343' 0.7756' 0.7429' 0.7631' 0.7193' 0.7484'

R'pallidum' 0.7354' 0.7679' 0.7658' 0.7671' 0.7440' 0.7657' 0.7432' 0.7639' 0.7566'

Corpus'callosum' 0.9469' 0.9385' 0.9412' 0.9378' 0.9364' 0.9377' 0.9394' 0.9231' 0.9376'

L'lateral'ventricle'(excluding'temporal'horn)' 0.9427' 0.9409' 0.9437' 0.9212' 0.9263' 0.9319' 0.9286' 0.9204' 0.9320'

R'lateral'ventricle'(excluding'temporal'horn)' 0.9216' 0.9243' 0.9234' 0.9004' 0.8987' 0.9099' 0.8925' 0.8912' 0.9078'
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L'lateral'ventricle,'temporal'horn'' 0.8077' 0.8275' 0.8014' 0.7836' 0.7949' 0.7800' 0.7703' 0.7552' 0.7901'

R'lateral'ventricle,'temporal'horn' 0.8155' 0.8576' 0.8373' 0.8257' 0.8197' 0.7756' 0.8005' 0.7724' 0.8130'

Third'ventricle' 0.9587' 0.9612' 0.9629' 0.9449' 0.9555' 0.9545' 0.9546' 0.9391' 0.9539'

L'precentral'gyrus' 0.9342' 0.9273' 0.9316' 0.9186' 0.9164' 0.9234' 0.9251' 0.9022' 0.9224'

R'precentral'gyrus' 0.9331' 0.9259' 0.929' 0.9166' 0.9154' 0.9165' 0.9204' 0.9013' 0.9198'

L'straight'gyrus' 0.8534' 0.8375' 0.8309' 0.8411' 0.8252' 0.8398' 0.8389' 0.7961' 0.8329'

R'straight'gyrus' 0.8672' 0.8703' 0.8552' 0.8715' 0.8308' 0.8417' 0.8594' 0.8131' 0.8512'

L'anterior'orbital'gyrus' 0.9023' 0.8898' 0.8765' 0.8923' 0.8768' 0.8733' 0.8762' 0.8519' 0.8799'

R'anterior'orbital'gyrus' 0.8975' 0.8867' 0.8746' 0.8864' 0.8778' 0.8720' 0.8738' 0.8485' 0.8772'

L'inferior'frontal'gyrus' 0.9251' 0.919' 0.9173' 0.9108' 0.8985' 0.9109' 0.9059' 0.8895' 0.9096'

R'inferior'frontal'gyrus' 0.9251' 0.9185' 0.9167' 0.9063' 0.9001' 0.9030' 0.9048' 0.8907' 0.9082'

L'superior'frontal'gyrus' 0.9281' 0.9247' 0.9193' 0.9157' 0.9118' 0.9171' 0.913' 0.8982' 0.916'

R'superior'frontal'gyrus' 0.9271' 0.9231' 0.9203' 0.9153' 0.9090' 0.9155' 0.9143' 0.8979' 0.9153'

L'postcentral'gyrus' 0.9252' 0.9175' 0.9191' 0.9037' 0.9045' 0.9116' 0.9081' 0.8885' 0.9098'

R'postcentral'gyrus' 0.9255' 0.9176' 0.9214' 0.9068' 0.9040' 0.9096' 0.9084' 0.8852' 0.9098'

L'superior'parietal'gyrus' 0.9213' 0.9155' 0.9128' 0.9093' 0.8968' 0.9078' 0.9107' 0.8808' 0.9069'

R'superior'parietal'gyrus' 0.9173' 0.9145' 0.9100' 0.9049' 0.8946' 0.9063' 0.9054' 0.8794' 0.9041'

L'lingual'gyrus' 0.8864' 0.8800' 0.8650' 0.8606' 0.8664' 0.8598' 0.8595' 0.8260' 0.8630'

R'lingual'gyrus' 0.8785' 0.8717' 0.8553' 0.8533' 0.8563' 0.8513' 0.8515' 0.8104' 0.8535'

L'cuneus' 0.8922' 0.8839' 0.8732' 0.8685' 0.8708' 0.8699' 0.8668' 0.8306' 0.8695'

R'cuneus' 0.8848' 0.8783' 0.8770' 0.8614' 0.8654' 0.8659' 0.8641' 0.8258' 0.8653'

L'medial'orbital'gyrus' 0.8959' 0.8809' 0.8685' 0.8771' 0.8828' 0.8593' 0.8645' 0.8466' 0.8720'

R'medial'orbital'gyrus' 0.8863' 0.8809' 0.866' 0.8768' 0.8798' 0.8632' 0.8668' 0.8376' 0.8697'

L'lateral'orbital'gyrus' 0.8992' 0.8883' 0.8863' 0.8924' 0.8744' 0.8766' 0.8649' 0.8596' 0.8802'

R'lateral'orbital'gyrus' 0.8963' 0.8918' 0.8807' 0.9004' 0.8791' 0.8777' 0.8645' 0.8527' 0.8804'

L'posterior'orbital'gyrus' 0.8925' 0.8804' 0.8789' 0.8835' 0.8717' 0.8661' 0.8583' 0.8490' 0.8726'

R'posterior'orbital'gyrus' 0.9035' 0.8970' 0.8935' 0.8906' 0.8830' 0.8721' 0.8684' 0.8569' 0.8831'

L'substantia'nigra' 0.9295' 0.9213' 0.9232' 0.9193' 0.9157' 0.9292' 0.8632' 0.8809' 0.9103'

R'substantia'nigra' 0.9225' 0.9150' 0.9208' 0.9121' 0.9178' 0.9076' 0.8735' 0.8860' 0.9069'

L'subgenual'frontal'cortex' 0.8700' 0.8452' 0.8531' 0.8482' 0.8575' 0.8648' 0.8550' 0.8454' 0.8549'

R'subgenual'frontal'cortex' 0.8739' 0.8667' 0.8476' 0.8680' 0.8486' 0.8694' 0.8617' 0.8386' 0.8593'

L'subcallosal'area' 0.9012' 0.8760' 0.8731' 0.8291' 0.8758' 0.8669' 0.8845' 0.8738' 0.8726'

R'subcallosal'area' 0.8376' 0.8551' 0.8626' 0.8200' 0.8437' 0.8576' 0.8563' 0.8465' 0.8474'

L'preKsubgenual'frontal'cortex' 0.8994' 0.8974' 0.8967' 0.8885' 0.8850' 0.9062' 0.8777' 0.8870' 0.8922'

R'preKsubgenual'frontal'cortex' 0.8801' 0.8824' 0.8520' 0.8772' 0.8544' 0.8757' 0.8815' 0.8683' 0.8715'

L'superior'temporal'gyrus,'anterior'part' 0.9127' 0.9024' 0.9106' 0.8908' 0.8969' 0.8991' 0.8878' 0.8787' 0.8974'

R'superior'temporal'gyrus,'anterior'part' 0.9126' 0.9018' 0.9028' 0.8903' 0.8807' 0.8874' 0.8881' 0.8697' 0.8917'
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TABLE V. PARAMETERS OF TOP-8 TEAMS IN TERMS OF ARCHITERTURE, TOOL, HIGHLIGHT, ETC. 

 

 

 

 

 

 

 

 

Team Architecture Tool Key highlights Augmentation 
Pretrain

ed? 
Training Loss 

Memory 

(training/testi

ng) 

Time 

(training/testin

g) 

2D/3D Patch size 

(training/testing) 
Patch selection Limitation 

MSL_SKKU DenseNet Caffe 
Skip&connectio

ns 
No No Cross-entropy 12 G/2G 

2 days/300 

seconds 

3D 

(64×64×64/64×64×64) 
Random 

No!prior/No!

augmentation/No!

ad&boosting 

LIVIA 
Semi-dense or 

quasi-dense FCN 
Theano 

Quasi-dense 

architecture; 

Ensemble 

No No Cross-entropy 6 G/2G 
2 days/~10 

seconds 

3D 

(27×27×27/35×35×35) 
Random 

No!prior/No!

augmentation/No!

ad&boosting 

Bern_IPMI 
Stacked 

U-Nets 

Tensorflo

w 

Multi-Scale, 

Two stages 

Rotation 

and flip, 

distance maps 

Yes Cross-entropy 11 G/11G 
8 hours/8 

seconds 

3D 

(64×64×64/64×64×64) 
Random No!prior/No!ad&boosting 

TU/e IMAG/e 

Dilated 

convolutional 

neural network 

Lasagne + 

Theano 

2.5D dilated 

CNN combined 

with 3D CNN 

No No Cross-entropy 12G/2G 
1 day/60 

seconds 

2.5D+3D 

(67×67+25×25×25/67×67

+25×25×25) 

Random 

No!prior/No!

augmentation/No!

ad&boosting 

UPF_simbiosys 

Cascading 

(multi-atlas label 

fusion + SVM) 

SVM+ ANTs 
Spatial priors + 

multi-scale+ SVM 

Registration 

priors from 

multi-atlas 

label fusion 

N/A N/A 4G/4G 
1 hour/30 

mins 

3D 

(5×5×5/5×5×5) 
Random 

High computational time 

required at testing 

NeuroMTL U-Net Torch 

Pre-training 

from another 

age-matched 

dataset 

No Yes Cross-entropy 12G/2.2G 
11 hours/8 

seconds 

3D 

(80×80×80/80×80×80) 
Grid No!prior/No!ad&boosting 

UPC_DLMI U-Net 
Tensorflow + 

Keras 

Augmented path 

for learning high 

resolution features 

Flipping No 
Weighted 

cross-entropy 
12G/8G 

1.5 days/7 

seconds 

3D 

(64*64*64/64*64*64) 
Random No!prior/No!ad&boosting 

LRDE 
VGG-like+FC

N 
Caffe 

VGG for brain 

segmentation;Buil

ding 2D color 

image from 3D 

MRI Volume 

Rotations, 

translation, 

scaling 

Yes Cross-entropy 8G/1G 
4 hours/1.8 

seconds 

3D 

(x*y*3/x*y*3, 3 

channels) 

Random 

Discontinuities between 

slices due to only 2D patch 

involved/No prior/No!

ad&boosting 




