
Benchmark Precision and Random Initial State

Tomas Kalibera1 Lubomir Bulej1,2 Petr Tuma1

1Faculty of Mathematics and Physics
Charles University in Prague

Malostranske nam. 25
118 00 Prague, Czech Republic

{tomas.kalibera,petr.tuma}@mff.cuni.cz

2Institute of Computer Science
Czech Academy of Sciences

Pod Vodarenskou vezi 2
182 07 Prague 8, Czech Republic

bulej@cs.cas.cz

Abstract

The applications of software benchmarks place an obvious
demand on the precision of the benchmark results. An intu
itive and frequently employed approach to obtaining precise
enough benchmark results is having the benchmark collect a
large number of samples that are simply averaged or other
wise statistically processed. We show that this approach
ignores an inherent and unavoidable nondeterminism in the
initial state of the system that is evaluated, often leading to an
implausible estimate of result precision. We proceed by out
lining the sources of nondeterminism in a typical system,
illustrating the impact of the nondeterminism on selected
classes of benchmarks. Finally, we suggest a method for
quantitatively assessing the influence of nondeterminism on a
benchmark, as well as approach that provides a plausible esti
mate of result precision in face of the nondeterminism.

Keywords Performance Evaluation, Random Initial State,
Statistical Analysis, Benchmark Precision.

1. INTRODUCTION

Software benchmarks are commonly used for empirical
evaluation of performance. Typical uses of benchmarks in
clude analysis of system behavior, evaluation of absolute
system performance on selected classes of applications, or
comparison of system performance on different implementa
tions of an application [2,3]. In contrast to analytical methods
or simulation, benchmarking provides results based on the be
havior of a real system in a real environment. The benchmark
results provide the values of various performance indicators
that characterize the behavior of the system under particular
workload, e.g. the typical duration of characteristic opera
tions, memory consumption, etc.

To obtain the typical value of a performance indicator, a
benchmark usually performs a number of measurements and
calculates the typical value as an average, or median of the
collected samples. Although this approach represents com

mon practice, it involves making several hidden assumptions
that are only rarely discussed explicitly.

The approach assumes that the values measured during a
benchmark run can be considered independent and identically
distributed samples of a random variable, which represents
the performance indicator of interest. The justification for the
assumption stems from the fact that due to complexity of con
temporary hardware and software, the duration of a nontrivial
operation is subject to frequently occurring but relatively
small changes due to inherent nondeterminism in operation
execution, as well as rarely occurring but relatively large
changes due to external disruptions. The slightly changing
values resulting from the nondeterminism in operation execu
tion are considered representative for the repeated execution
of the operation on a given hardware platform. The values
distorted by external disruptions are, depending on the pur
pose of the benchmarking experiment, considered either
extremal (with respect to the typical execution times of the
exercised operation) or a part of the overall behavior of the
system.

The typical value of a performance indicator would be
then a value representative of the distribution of the random
variable. Such values are usually the mean and the variance.
Based on the kind of data provided by the benchmark, we can
safely assume that they exist. The mean and the variance are
typically estimated using average and sample variance. The
typical value of a performance indicator is therefore a statisti
cal estimate of the mean, and as such has a limited precision.
Although the exact demands on the precision of the bench
mark results depend on the particular use of the benchmark,
we can safely state that a sufficient precision often needs to be
as good as units of percents, simply because the very use of a
benchmark suggests that a precise empirical evaluation,
rather than a simple offhand estimate, is needed [5,12].

As follows from the Central Limit Theorem, the probabili
ty statements about the average can be approximated using
the Normal distribution. The precision of the average can
then be determined using the length of confidence interval for

 This work was partially supported by the Grant Agency of the Czech Republic projects 201/03/0911 and 201/05/H014.

the mean, which can be estimated using a well known formu
la. To improve the precision of the benchmark results, a
benchmark usually collects and computes the typical values
using more samples. This approach can also be considered
common practice, and has a theoretical foundation in the
Weak Law of Large Numbers.

Consequently, a typical benchmark executes an operation
multiple times and reports an average calculated from thus
collected multiple samples as a result. The chance that the
result is distorted by a rare sample to a degree outside the
sufficient precision grows smaller with larger number of sam
ples. In presence of extreme values caused by external
disruptions, we can use robust statistic estimators such as me
dian to mitigate the influence of the outliers, yet with the use
of other estimators than average, the computations are more
complex and without the theoretical backing of the Weak
Law of Large Numbers and the Central Limit Theorem.

This model of a benchmark, however, fails to account for
distortions caused by factors other than the inherent non
determinism and external disruptions occurring during the
operation execution. Consequently, for some benchmarks, the
estimate of the mean and its precision calculated from thus
obtained data do not truly represent the typical value of a per
formance indicator within the calculated error margin.

In this paper, we focus on improving the plausibility of the
results by also accounting for distortions caused by a non
deterministic part of the initial state of the system that is
evaluated. In Section 2 we point out the discrepancies be
tween the common assumptions and the behavior observed on
a simple benchmark, which suggest that the initial state is
partially nondeterministic. Section 3 presents a measure of
the influence of the random initial state on benchmark results
and demonstrates the application of the measure on several
examples of typical benchmarks. Section 4 outlines the possi
ble sources of nondeterminism in the initial state and shows
their impact on further examples of benchmarks. In Sec
tion 5, we suggest an approach to dealing with the
nondeterministic part of the initial state and conclude the pa
per in Section 6.

2. SOMETHING IS ROTTEN

Consider the simple model of a benchmark introduced in
Section 1, which empirically evaluates the duration of a spe
cific operation execution. The duration is subject to random
changes both inherent and external to the benchmarked
operation. The simple model also assumes that apart from the
inherent nondeterminism during execution of the operations,
the duration of the operation depends only on the operation
being performed. We show that this assumption is not suffi
cient and provide an extension to the simple model, where the
duration of the operation execution also depends on the state
of the system that is evaluated just before the operation exe

cution. In itself, this extension is obvious rather than revolu
tionary, until the state is examined in more detail.

In a typical system, the state that can influence the dura
tion of the operation execution consists of many parts,
ranging from minute details such as the state of the processor
branch prediction logic or internal memory cache or the
paged state of the memory accessed during the operation exe
cution, to significant hardware and software settings such as
the bus clock speed or the virtual machine settings. Depend
ing on the impact of the operation execution, the individual
parts of the state can be broadly divided into two categories.
Parts such as the state of the processor branch prediction logic
or internal memory cache will most likely get changed by the
operation execution, and are here termed as the mutating
parts of the state. Parts such as the bus clock speed or the vir
tual machine settings will most likely stay unchanged by the
operation execution, and are here termed as the initial parts
of the state.

A benchmark typically handles the mutating and initial
parts of the state in different ways. The setting of the mutating
state is done by the benchmark itself, which introduces warm
up in addition to measurement. The operation execution is the
same during warmup and measurement, but samples are
only collected during measurement. A long enough warmup
will set the mutating state so that the collected samples are
representative for repetitive operation execution and indepen
dent of the mutating state before warmup. The setting of the
initial state is either hard coded in the benchmark or done out
side the benchmark, forming a part of the system
configuration to which the collected samples are representa
tive.

A generally accepted requirement is that benchmark re
sults should be reproducible. In terms of the mutating and
initial parts of the state, reproducibility means performing
long enough warmup to make sure the mutating state is re
producible, and describing configuration precisely enough to
make sure the initial state is reproducible, thus covering all
parts of the state that can influence the duration of the opera
tion execution [1, 4].

Before extending the simple model further, we can ex
amine the assumptions made so far on an example of the FFT
benchmark [10], which measures the duration of a Fast Fouri
er Transform of a predefined sequence.1 Figure 1 shows
individual samples collected by the benchmark during multi
ple runs, where a run is defined simply as a single execution
of the benchmark application by the operating system. The
horizontal axis is a sample index, the vertical axis is the sam
pled FFT computation time. Vertical lines denote new
benchmark runs.

1 The implementation of the FFT benchmark was run on Dell Precision 340
workstation with Intel Pentium 4 at 2.2 GHz and 512 MB RAM, running
Fedora Core 2 with kernel 2.6.5 and gcc 3.3.3.

Figure 1 shows that the samples collected during a single
run of the FFT benchmark are much closer to each other than
the samples collected during different runs of the benchmark.
The difference indicates that the initial state of the benchmark
was not the same for each run, even though each run of the
benchmark was executed on the same idle and isolated sys
tem, with disabled randomization of virtual memory address
allocation, immediately after a reboot into a dedicated run
level, using the same files and settings.

The extreme conditions of this experiment show that no
reasonable effort could guarantee the initial state of the
benchmark to be the same for each run. We have to cope with
the deceitful reality that the initial state is partly random for
each benchmark run.

As evidenced by the results of the FFT benchmark in
Figure 1, the impact of the random initial state can complete
ly overshadow the impact of the mutating state, so that taking
more than several samples in a benchmark cannot improve
the ability of the benchmark to describe real systems. This
contrasts with the assumptions made in the simple model,
where collecting more samples in a single run improves the
benchmark precision. We therefore introduce a new model
which recognizes the random initial state with a more realistic
concept of benchmark precision discussed in Section 5.

3. QUANTIFYING THE PROBLEM

Although the influence of the random initial state can be of
ten demonstrated graphically as shown in Figure 1, it can be
difficult to notice for large data sets or in less obvious cases.
Moreover, the graphical representation does not provide a
simple measure of the degree to which the random initial
state influences the benchmark results.

Considering the behavior of the FFT benchmark described
in Section 2, a simplistic approach to quantification of the
influence of random initial state would compare the standard
deviation of all samples collected in all benchmark runs
against the standard deviation of samples from individual
benchmark runs.

However, the simplistic approach does not take into ac
count the fact that the sample standard deviation calculated
from all collected samples depends on the number of samples
in each benchmark run and on the number of runs. This im
pairs the credibility of such a measure as it is unclear how to
choose the number of samples and the number of benchmark
runs.

An extreme choice would be to collect a high number of
samples from a single run, thus rendering the method unus
able. Instead, the choice of these numbers should be based on
the measure itself, collecting a few samples from a high num
ber of benchmark runs to reflect the impact of random initial
state as well as collecting a high number of samples from a
few runs to reflect the impact of the mutating state.

The dependency on the number of samples per run and the
number of benchmark runs can be avoided when comparing
standard deviation of samples taken from different runs
against the standard deviation of samples from individual
runs. Taking the above into account, we define the measure of
the influence of the random initial state, termed impact fac
tor, as the ratio of the standard deviation of samples from
different benchmark runs to standard deviation of samples
from individual benchmark runs. The value of impact factor
greater than 1 indicates the influence of the random initial
state on the benchmark results.

The calculation of the impact factor for a particular
benchmark requires samples from multiple runs of the bench
mark. To obtain plausible quantification of the influence of
the random initial state on benchmark results, the calculation

Input:
1. m data sets corresponding to m benchmark runs, each

containing n samples
2. number of samples c to choose randomly, c < min(m,n)
3. number of iterations k

Output:
1. estimate of the impact factor for the input data

Algorithm:
1. repeat k times

1. randomly choose c data sets corresponding to c
benchmark runs
1. randomly choose 1 sample from each of the c

selected data sets
2. compute standard deviation SD1 from the c

selected samples
2. randomly choose 1 data set from the input data

1. randomly choose c samples from the selected
data set

2. compute standard deviation SD2 from the c
selected samples

3. compute ratio SD1/SD2 of the two standard deviations
2. compute the impact factor as a median of the k ratios

Figure 2. Algorithm for estimating impact factor of
random initial state.

Figure 1. Impact of initial state on FFT benchmark
results.

of the impact factor requires relatively large amounts of data.
In order to save time and resources, we calculate the impact
factor using a bootstrap method described in Figure .

Table 1 shows the impact factor for several benchmarks
and systems, and demonstrates that the influence of the ran
dom initial state on the benchmark results exists in a wide
variety of benchmarks. The Marshaling benchmark measures
the duration of marshaling of a string constant during a sim
ple remote procedure call. The Ping benchmark measures the
duration of a simple remote procedure call. The RUBiS
benchmark measures the duration of an operation on an auc
tion website [4].2 We have used a modified version of the
RUBiS benchmark which allowed us to track the response
times of individual methods.

For each benchmark, we have executed a number of runs,
as indicated in Table 1. In each run, we have collected
between 2000 and 100000 samples, depending on the bench
mark. In case of the RUBiS benchmark, the number of
samples was determined by the default execution time limit.
Where possible, the numbers of runs and samples were inten
tionally set high to provide more than enough data for the
bootstrap. We have performed 10000 iterations of the boot
strap method on the input data, with the number of randomly
chosen samples c set to 0.75m for increased robustness. The
impact factor has been computed as the median of 10000 ra
tios of standard deviations of samples collected during
different runs of the benchmark to standard deviations of
samples collected during an individual run of the benchmark.

2 The Pentium 4 Linux and Windows systems were Dell Precision 340 work
station with Intel Pentium 4 at 2.2 GHz and 512 MB RAM. The Itanium
system was Dell PowerEdge 7150 server with two Intel Itanium processors
at 800 MHz and 1 GB RAM.

The results indicate that the impact factor is very large in
the FFT benchmark, except for DOS operating system where
it is negligible, significant for the Marshalling benchmark,
small for the Ping benchmark and negligible for the RUBiS
benchmark. These results agree with the analysis of the
sources of nondeterminism provided in Section 4.1.

4. SOURCES OF NONDETERMINISM

The influence of the random initial state on the benchmark
results is somewhat contrary to the common understanding of
a benchmark as, by and large, a reproducible process. To ex
clude the possibility of nonreproducible benchmark results
discussed in Section 2, which points to the existence of the
random initial state and its influence on the benchmark re
sults, we further trace and explain some causes of the
nondeterminism in the initial state. We also show that
attempts to eliminate the sources of nondeterminism do not
provide reliable, long term benefits.

4.1 Nondeterminism in Memory Allocation

One source of nondeterminism in the initial state is related to
memory allocation. Among the many activities an operating
system performs when starting a benchmark application is the
allocation of memory for the code and the data of the bench
mark. The allocation entails the selection of the virtual
addresses for the code and the data of the benchmark and the
assignment of physical pages to back the allocated virtual ad
dresses. Even though neither the selection of virtual addresses
nor the assignment of physical pages has to remain un
changed during the benchmark execution, it is likely to
remain so, especially when the system that executes the
benchmark has enough memory to avoid swapping. Even
when the operating system assigns physical pages on demand,
the assignment takes place during the warmup phase of the
benchmark and, again, is likely to remain unchanged during
the datacollection phase of the benchmark.

The selection of virtual addresses and the assignment of
physical pages can lead to a different distribution of cache
hits and misses during the execution of the benchmark. The
difference is mainly caused by the limited associativity of
TLB (Translation LookAside Buffer) and memory caches,
with the hardware mapping several physical addresses to the
same cache slot. Since programs do not access their virtual
pages in an uniform way, different assignment of physical
pages to virtual addresses leads to different numbers of cache
hits and misses, therefore influencing the benchmark results.
This influence can be verified by relating the benchmark
results with the values of processorspecific performance
counters that keep track of TLB and memory cache hits and
misses.

Figure 3 relates the counts of memory cache misses with
the results of the FFT benchmark from Figure 1 for execution
on two platforms, both with fixed selection of virtual address

Table 1. Impact factor of random process initial state.

Benchmark Runs Samples
per Run

Impact
Factor

(median)

FFT P4/FC2 150 2000 25.81

Marshaling
P4/FC2

100 100000 2.61

Ping P4/FC2 100 100000 1.10

FFT P4/DOS 100 2000 1.06

FFT P4/W2K 100 2000 94.74

FFT IA64/Sarge 100 2000 35.91

RUBiS P4/FC2 15 15 min. ~ 5500 1.01

es and random assignment of physical pages. The top plot in
the figure is for the Intel Itanium processor and shows a
strong positive linear dependency of measured times on
memory cache misses. The bottom plot in the figure is for the
Intel Pentium 4 processor and shows a weak positive correla
tion, however the results for this platform are only
approximate due to a bug in the processor which prevents
precise counting of memory cache events. The clear relation
ship visible in Figure 3, as well as the difference of impact
factor for systems with different TLB and memory cache ar
chitectures in Table 1, confirms the impact of the memory
cache misses on the benchmark results.

While the selection of virtual addresses by the operating
system can be made deterministic and therefore reproducible
at least on some operating systems, the assignment of physi
cal pages to virtual addresses is not reproducible without
nontrivial modifications of the operating system, which is ob
viously out of the question for many benchmarks.

4.2 Nondeterminism in Code Compilation

Another source of nondeterminism in the initial state is relat
ed to code compilation. The process of compilation and
linking of a benchmark application into a binary is not neces

sarily reproducible even when using the same compilation
and linking commands on the same benchmark sources.

Table 2 shows the effect of nondeterminism in compila
tion and linking on the Marshaling and Ping benchmarks
from Table 1. The cause of nondeterminism in this particular
example can be observed with the GNU C++ compiler [6]
since version 3.3.1. The compiler uses random name man
gling for symbols defined in anonymous name spaces. This
can result in the linker linking the symbols in different order
and placing them at different addresses in the binary. The
placement of the symbols on different addresses in the binary
is then reflected in placement of the symbols on different ad
dresses in memory during dynamic linking, which in turn
influences the benchmark results in a similar way as the non
determinism in memory allocation.

Although the cause of nondeterminism in this particular
example can be avoided by using certain compiler options, it
may not be possible for all benchmark sources. More impor
tantly, the causes of nondeterminism described both in
Section 4.1 and in Section 4.2 are difficult to avoid, which
also makes it difficult to prove that they are the only causes of
nondeterminism in the initial state [9]. In fact, more causes of
nondeterminism in the initial state can be found depending on
the benchmark and the system that executes the benchmark.

4.3 Nondeterminism is Unavoidable

The nondeterministic part of the initial state can be eliminated
either by removing the individual sources of nondeterminism
or by simulating the whole system. Both approaches have
their drawbacks.

As outlined in previous sections, removing the sources of
nondeterminism is not very feasible, mainly because we can
not ensure that all sources of nondeterminism in particular
benchmark experiment have been identified and eliminated.
Even though it may seem that the nondeterminism in memory
allocation described in Section 4.1 could be eliminated by
running a benchmark experiment immediately after system
reboot, this solution is not sufficient on contemporary sys
tems. Complex benchmarks, which require services such as
databases or web servers, will never start in a deterministic
fashion, even after system boot.

Table 2. Impact factor of random initial state in
compilation.

Benchmark Runs Impact Factor
(median)

Ping 100 1.13

Marshaling 100 1.06

Figure 3. Correspondence of result fluctuation of FFT
benchmark with memory cache misses.

In case of simple benchmarks, many system services, such
as page daemon, I/O daemons, or file system journaling
daemon, are often provided by the operating system kernel
and cannot be shut down. Moreover, these services are started
concurrently with the order of their execution determined by
the current hardware state, which will again result in nonde
terministic initial state for a benchmark executed during
system boot sequence.

The nondeterminism in code compilation described in
Section 4.2 can be eliminated for some benchmarks, but may
occasionally result in the compiler generating incorrect code.
Also, the only way to find out whether the benchmark is still
influenced by nondeterministic initial state is to run the
benchmark multiple times and observe the differences in the
results. Then it may actually be easier to obtain the results us
ing the approach we describe further, which is based on
analysis of the results from multiple runs of the same
benchmark.

Without a sound approach to eliminating the causes of
nondeterminism in the initial state, we may consider simulat
ing the whole system, which would be a deterministic process
and would allow setting identical initial conditions prior to
each execution of a benchmark. While simulation is consid
ered a useful tool in the area of performance evaluation, its
application to benchmarking would be time consuming at
best. Today's benchmarks, applications and system hardware
are so complex that simulating even a second of the bench
mark execution would consume an enormous amount of time
and resources. Creating a simpler model or actually simplify
ing the benchmark or the application for the purpose of
simulation defies the obvious goal to evaluate performance of
real systems in a realistic scenario. In addition to that, specifi
cation of software and hardware that would allow designing
such simulation would be hard to get for current systems
mostly for licensing reasons.

This further underscores the fact that a benchmark should
not be understood as a fully reproducible process, which has
been the practice so far, but rather as a process that is
inherently and unavoidably nondeterministic because of the
existence of the random initial state and its influence on the
benchmark results.

5. LIVING WITH NONDETERMINISM

The presence of nondeterminism in the initial state forces us
to reconsider and ask what is the result and the precision of a
benchmarking experiment.

Without considering the nondeterminism in the initial
state, the answer to the question is rather straightforward. The
benchmarking experiment consists of a single run of a bench
mark, which collects a number of samples to determine the
value of a performance indicator. These samples are repre
sentative for the repetitive execution of the measured
operation as described in Section 1. The samples are consid

ered independent and identically distributed, but the
distribution is typically unknown. To estimate a single value
which is a representative of the repeated execution of the
measured operation, an average of the samples is typically
used, for reasons outlined in Section 1. From the weak law of
large numbers, even though the distribution is unknown, the
average of the samples is a good estimate of the mean value
of the underlying distribution, which is usually considered a
representative value for the distribution. The precision of a
benchmark is identical to the precision of the estimate of the
mean value and can be assessed using the central limit theo
rem.

In presence of nondeterminism in the initial state, we can
either attempt to eliminate the nondeterminism and thus
achieve the deterministic initial conditions that have been so
far silently assumed in common practice, or we can accept
the nondeterminism as a trait of a real system and focus our
effort towards obtaining meaningful results in presence of
nondeterminism in initial state.

As discussed in Section 4.3, all sources of nondeterminism
in a particular benchmark cannot be always reliably
eliminated, not even considering the time and resources re
quired for a detailed analysis of a system in order to identify
the sources of nondeterminism. The other approach is to ac
cept the influence of the nondeterministic initial state as a part
of a real system and take it into account when benchmarking.
For a performance indicator of interest, this requires deter
mining the value and precision that are representative of both
the repeated execution of the measured operation and the im
pact of the nondeterministic initial state.

5.1 Measuring with Nondeterminism

We have shown that the random initial state influences the
benchmark results when benchmarking on real systems and
that this influence cannot be easily eliminated. Because of the
random initial state, multiple runs of a benchmark will yield
different values of the performance indicator of interest as
benchmark results. The value of the performance indicator
reported by a single benchmark run is therefore a representa
tive of the sampled values in a system with a particular
realization of the random initial state, which includes the state
of the operating system process with respect to assignment of
physical to virtual pages as described in Section 4.1 and Sec
tion 4.2, and possibly other components.

In face of the described nondeterminism, an ideal bench
marking experiment would be set up so that the benchmark
would be recompiled, restarted and warmed up before col
lecting each individual sample. In this setup, the collected
samples would still be independent and identically distribut
ed, therefore the average of all collected samples would still
be a good estimate of the mean. This setup would ensure the
repeatability of benchmarking experiments and the precision
of the estimate of the mean would better reflect the behavior
of the real system in a real environment.

However, there are two issues with the above scenario.
First, if we only collect a single sample after warmup phase
during each benchmark run, we risk collecting a more or less
distorted sample, caused by the inherent nondeterminism in
operation execution or by an external disruption. To reduce
the chance of invalidating the results because of a single dis
torted sample, we would have to collect a large number of
samples. This leads us to the second issue related to the ideal
scenario, which is efficiency of the benchmark experiment.

Described as it was, the ideal setup of the benchmarking
experiment is very expensive to run. Imagine a Ping bench
mark which uses CORBA (Common Object Request Broker
Architecture) for remote communication. The compilation of
the benchmark including the ORB (Object Request Broker)
takes about 30 minutes, starting and warming up a benchmark
takes several seconds and measuring one Ping request takes
tens of microseconds.

Under such circumstances, collecting more than a few
samples to obtain the sufficient precision of the estimate of
the median would require an enormous amount of time. Or
the other way around, the number of samples collected in a
reasonable time may be far too low to obtain the sufficient
precision.

Obviously, our goal is to reduce the number of runs to save
time, but not so as to lower the precision by increasing the
chance of collecting a distorted sample. With the knowledge
of the influence of the random initial state on the benchmark
results, we may save time by repeating the measured
operation several times in each run to improve the precision
of the result of a single run, which consequently allows us to
reduce the required number of runs.

5.2 Efficient Benchmarking with
Nondeterminism

Although the ideal setup of benchmarking in the face of non
determinism outlined in Sections 4.1 and 4.2 requires
rebuilding and restarting each benchmark to get precise and
repeatable results, it is not always necessary to restart a
benchmark run to obtain a new sample. The impact factor for
a benchmark is not always so high as for the FFT benchmark
and therefore there can be overlap between possible values of
samples in different benchmark runs. Consequently, each
benchmark run can contribute more than one sample to the
estimate of the mean that is representative for both the repeat
ed execution of the measured operation and the impact of the
nondeterministic initial state.

In the following paragraphs we show that for an additive
dependency of a sample on the random initial state, using this
approach provides the same estimate of the mean as the one
described in the model experiment from Section 5.1. More
over, we can calculate the precision of the estimate and, given
the number of samples required for benchmark warmup, de
termine the optimal number of samples per benchmark run to
obtain the most precise estimate of the mean. Concluding the

section, we show how the additive dependency explains the
influence of random initial state on benchmarks described in
Section 3.

The additive model of dependency of a sample on the
random initial state is defined as follows3:

1. the random initial state for each benchmark run is rep
resented by a random sample a of a random variable
A with finite variance and mean value

2. samples collected in a benchmark run with random
initial state a (a is fixed) are independent, identically
distributed samples of random variable R(a), where
R(a) = a + X, and X is a random variable with finite
variance and mean value

The model applies only to samples after the warmup
phase of a benchmark. In the scope of this model, the ideal
benchmarking experiment from Section 5.1 has the following
interpretation:

1. for each benchmark run i, where i = 1..k, a single
sample ri = ai + xi of random variable (A+X) is col
lected

2. the average r k of samples ri estimates the mean value
E(A+X) of random variable (A+X), which is
representative for the repeated execution of the mea
sured operation and the influence of the random initial
state on benchmark results

The additive model of dependency is very similar to a
random effect model with oneway specification from [11],
which is based on normal distribution. The additive model we
present here, however, does not assume the normal distri
bution of X and A. The distributions of X and R(a) in our
experiments were rightskewed, and thus could not be as
sumed normal.

For the additive model of dependency, we can show that
the same estimate of the mean of the random variable (A+X)
can be obtained even when each benchmark run contributes
more than one sample to the estimate. Consider a benchmark
ing experiment that consists of k benchmark runs, each
collecting n samples of the performance indicator of interest.
The ith sample in jth benchmark run is labeled rj,i,
rj,i = aj + xj,i.

The average of all samples from all runs

r k ,n=
1

k⋅n
⋅∑

j=1

k

∑
i=1

n

r j , i

can be expressed as r k ,n=a kxk ,n .

3 For better readability, we use a relaxed notation, where random variables are
sometimes denoted by lowercase letters, which is a common approach in lit
erature on hierarchical models, such as [11]. We also use the word sample in
a broader sense, not distinguishing rigorously between realizations and ran
dom variables; the precise meaning is always clear from the context.

From the central limit theorem, the distributions of a k and

x k ,n can be approximated as

a k≈ E AN 0,
var A

k and xk ,n≈ E XN 0,
var X

k⋅n .

From the properties of the normal distribution it follows that

r k ,n≈ E AE X N 0,
var A

k
 var X

k⋅n =
= E AE X N 0,1 n⋅var Avar X

k⋅n

. (1)

Therefore the mean value E rk of the average r k is the
mean value E(A+X) of random variable (A+X), which is rep
resentative for the repeated execution of the measured
operation and the influence of the random initial state on
benchmark results. The confidence interval for E(A+X) can
be constructed as follows

r k , n± z
1−

2 n⋅var Avar X
k⋅n

, (2)

where z1δ/2 is a 1δ/2 quantile of the normal distribution. With
probability 1δ, the interval contains the true value of
E(A+X), which is the representative value of the performance
indicator of interest and the correct result of a benchmark ex
periment. Even though the distributions of A and X are
unknown, we can estimate their variances var(A) and var(X)
because

var (R(a)) = var (a+X) = var (X),

and thus by estimating variance of samples in any benchmark
run we are also estimating the variance var(X) of the random
variable X. Since we need to perform multiple runs of the
benchmark, we can estimate the variance of each benchmark
run and calculate the average of these estimates:

S X k⋅n
2 =

1
k
∑
j=1

k

S j Rk
2=

1
k

1
n−1

∑
j=1

k

∑
i=1

n

 r j , i−r j ,k
2

. (3)

In addition, the following also holds

E(R(a)) = E(a+X) = a + E(X).

To estimate the variance var(A), let us consider a random
variable M, the values of which are the mean values of the
performance indicator in benchmark runs with different val
ues of the sample a of the random variable A,

M = EA(R(a)) = A + E(X).

Since the following holds

var (M) = var (A + E(X)) = var (A),

the estimate of variance var(M) also estimates the variance
var(A). As already mentioned, the samples of the random
variable M are the mean values of different benchmark runs,

and can be therefore estimated by the average of samples
from the respective benchmark run.

We then estimate the variance var(A) as

S Ak
2=

1
k−1

∑
j=1

k

r j , n−r k , n
2

. (4)

Substituting the estimates of variance (3) and (4) for the true
but unknown variances in (2), the confidence interval for the
mean value of the performance indicator of interest is then

r k , n± z
1−

2 n⋅S Ak
2S Xk⋅n

2

k⋅n
. (5)

When the number of collected samples kn is small, the quan
tiles z of the normal distribution are replaced with quantiles of
the tdistribution with k(n 1) degrees of freedom, because
the true but unknown variances were replaced by sample vari
ances.

Under the assumption of the additive model of depen
dency on the random initial state, the confidence interval (5)
allows determining the precision of the benchmark result.
The formula for constructing the confidence interval can also
be used to determine the optimal number of samples that
should be collected in each benchmark run.

To minimize the error of the estimate of the mean value of a
performance indicator, we have to minimize the factor

 n⋅var Avar X
k⋅n

. (6)

We can define the cost of the benchmark experiment in terms
of the total number of samples that need to be collected as

cost = k(w + n), (7)

where w is the number of warmup samples that have to be
collected at startup of each benchmark run, but cannot be in
cluded into the evaluation; w also includes the price of
starting a new benchmark run. By expressing k from (7), sub
stituting it into (6), deriving by n and finding roots, we get the
optimal value of n for the given cost and warmup w

n=⌈ w⋅S X 2

S A2 ⌉ . (8)

Of particular interest should be the fact that the optimal num
ber of samples does not depend on the value of cost, but only
on the number of warmup samples w and the values of

S A2 and S X 2 . It is therefore possible to obtain bench

mark results with better precision using existing results
without a loss of efficiency with respect to the cost of the
benchmarking experiment.

The formula also suggests that, for benchmarks where the
variance of samples from different runs is much greater than
the variance of samples from individual runs, increasing
number of samples in runs does not help, which is the case of
FFT benchmark (Figure 1). Also, we should note that the pre
cision of the result obtained from (8) depends on the precision

of the estimates of variances S X
k⋅n
2 and S A

k
2 .

Even though the additive model of the dependency on the
random initial state allows for more efficient measurement
(in contrast to the ideal benchmarking experiment described
in Section 5.1) and determining the precision of the
benchmark results, it remains to be decided how well can be a
particular benchmark modeled under the assumption of addi
tive dependency.

For this purpose, we can use the impact factor defined in
Section 3. The additive dependency model is characteristic by
shifting all the samples in a benchmark run by a constant. For
each benchmark run with a different sample a of the random
variable A the following holds

R(a) – E(R(a)) = a + X (EX + a) = X – EX.

Under the assumption of the additive dependency model,
(R(a) – E(R(a)) has the same distribution with variance
var(X) and mean value EX = 0 for every sample a, which
means that it does not depend on a particular benchmark run.

Remember the impact factor defined in Section 3, which
provides a measure of difference between samples in differ
ent runs and samples in individual runs. We can apply the
impact factor calculation on transformed data, in which we
have subtracted the average of samples in one run from all
samples in the run. If the impact factor for the transformed
data is smaller than for the original data, we can consider the
influence of the random initial state on that particular bench
mark to follow the additive dependency model. If the value of
the new impact factor tends to 1, we can say that the additive
dependency model describes the influence of the random ini
tial state on that particular benchmark well.

Table 3 shows the result of applying the impact factor
calculation on transformed data of benchmarks described in
Section 3. We can see that while on certain platforms the ran
dom initial state influences the results of the FFT benchmark
to a very high degree (impact factor nearly 90), the additive
dependency model describes the influence very well (impact
factor calculated from transformed data tends to 1).

6. CONCLUSION

We have shown that the results of software benchmarks exe
cuted on contemporary computer architectures and operating
systems are likely to be influenced by a random initial state of
the system. Depending on the benchmark and the system that
executes the benchmark, the influence of the random initial
state can lead to nonrealistic and nonrepeatable benchmark

results and an implausible estimate of the precision of the
results. Due to its somewhat counterintuitive nature, this
situation can remain unnoticed, especially when the
benchmark is incorrectly understood as a deterministic and
therefore reproducible process.

Experiments with different benchmarks representing the
classes of scientific computation benchmarks, distributed
middleware benchmarks and microbenchmarks show that in
presence of the random initial state, the traditional approach
of providing a representative value of a performance indicator
based on a single benchmark run provides results that are rep
resentative only for that particular run. Improving the
precision by collecting more samples during a single run is
counterproductive, because it consumes more time and re
sources and only improves the precision of the result with
respect to that run.

Using a bootstrap method to calculate an impact factor of
the random initial state on a benchmark, we can quantify how
much a particular benchmark is susceptible to the influence
of the random initial state. We point out that while the influ
ence of the random initial state on the benchmark results can
be traced and explained in detail, it may be unavoidable. We
show that in such a case, it is possible to obtain a value of a
performance indicator that is representative for the bench
marked application and the system it runs on using samples
from multiple runs of the benchmark. Balancing the number
of runs and the number of samples collected in each run al
lows us to increase the efficiency of the benchmarking
experiment and achieve sufficient precision within given
time.

References

[1] Buble, A.; L. Bulej; P. Tuma. 2003. “CORBA
Benchmarking: A Course With Hidden Obstacles.” In

Table 3. Difference in impact factor calculated from
transformed data.

Benchmark Impact factor

(original data)

Impact Factor

(transformed data)

FFT P4/FC2 25.81 1.00

FFT P4/DOS 1.06 1.00

FFT IA64/Sarge 31.78 1.01

FFT P4/W2K 87.48 1.01

Marshaling P4/FC2 2.61 1.20

Ping P4/FC2 1.09 1.00

Proceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS 2003)
Workshop on Performance Modeling, Evaluation and
Optimization of Parallel and Distributed Systems
(Nice, France, April 2226). IEEE, Piscataway, NJ.

[2] Bulej, L.; T. Kalibera; P. Tuma. 2005. “Repeated Results
Analysis for Middleware Regression Benchmarking.”
Performance Evaluation 60, No. 14, May: 345358.

[3] Bulej, L.; T. Kalibera; P. Tuma. 2004. “Regression
Benchmarking with Simple Middleware Benchmarks.”
In Proceedings of IPCCC 2004 Workshop on
Middleware Performance (Phoenix, AZ, USA, April
1517). IEEE, Piscataway, NJ, 771776.

[4] Cecchet, E.; A. Chanda; S. Elnikety; J. Marguerite; W.
Zwaenepoel. 2003. “Performance Comparison of
Middleware Architectures for Generating Dynamic Web
Content.” In Proceedings of the 4th ACM/IFIP/USENIX
International Middleware Conference (Rio de Janeiro,
Brazil, June 1620).

[5] Distributed Object Computing Group. Continuous
Metrics for ACE+TAO+CIAO.
http://www.dre.vanderbilt.edu/Stats.

[6] Free Software Foundation. The GNU Compiler
Collection. http://gcc.gnu.org.

[7] Frigo, M.; S.G. Johnson. BenchFFT – A Program to
Benchmark FFT Software. http://www.fftw.org/benchfft.

[8] Giladi, R. and N. Ahituv. 1995. “SPEC as a Performance
Evaluation Measure.” Computer 28, No. 8, August: 33
42.

[9] Gu, D.; D. Verbrugge; E. Gagnon. 2004. “Code Layout as
a Source of Noise in JVM Performance.” In Object
Oriented Programming, Systems, Languages, and
Applications(OOPSLA 2004) Workshop on Middleware
Benchmarking (Vancouver, Canada, Oct. 2428).

[10] Mayer, R. and O. Buneman. FFT Benchmark.
ftp://ftp.nosc.mil/pub/aburto/fft.

[11] McCulloch, C.E. and S.R. Searle. 2000. Generalized,
Linear and Mixed Models. WileyInterscience, New
York, NY.

[12] OVM Predictability and Performance Benchmarking.
2004. http://www.ovmj.org/bench.

Biography

Tomas Kalibera is a doctoral student at the Department of
Software Engineering, Faculty of Mathematics and Physics,
Charles University in Prague, Czech Republic. He received
his master degree in computer science from the Charles
University in 2002. His primary interests are design of com
ponent systems and performance evaluation of middleware.
He is a member of the Distributed Systems Research Group
of Charles University.

Lubomir Bulej received his master degree in electrical engi
neering from the Czech Technical University, Prague, Czech
Republic in 2002 and is currently pursuing doctoral degree at
the Department of Software Engineering, Faculty of
Mathematics and Physics, Charles University in Prague.
Since 2002 he also holds a research assistant position at the
Institute of Computer Science, Academy of Sciences of the
Czech Republic. He is a member of the Distributed Systems
Research Group of Charles University and his primary re
search interests include performance evaluation of
middleware technologies and connectors in componentbased
software architectures.

Petr Tuma is a senior assistant professor with the Department
of Software Engineering, Faculty of Mathematics and
Physics, Charles University in Prague, Czech Republic. He
received his master degree in electrical engineering from the
Czech Technical University in 1994 and his doctoral degree
in software systems from the Charles University in 1998.
From 1998 to 1999, he worked as a researcher at INRIA
Rennes in France. His primary interests include operating
systems, component systems and middleware, with focus es
pecially on design and performance evaluation. He is a
member of the Distributed Systems Research Group of
Charles University.

	1.INTRODUCTION
	2.SOMETHING IS ROTTEN
	3.QUANTIFYING THE PROBLEM
	4.SOURCES OF NONDETERMINISM
	4.1Nondeterminism in Memory Allocation
	4.2Nondeterminism in Code Compilation
	4.3Nondeterminism is Unavoidable

	5.LIVING WITH NONDETERMINISM
	5.1Measuring with Nondeterminism
	5.2Efficient Benchmarking with Nondeterminism

	6.CONCLUSION

