
Benchmark Precision and Random Initial State 

Tomas Kalibera1 Lubomir Bulej1,2 Petr Tuma1

1Faculty of Mathematics and Physics
Charles University in Prague

Malostranske nam. 25
118 00 Prague, Czech Republic

{tomas.kalibera,petr.tuma}@mff.cuni.cz

2Institute of Computer Science
Czech Academy of Sciences

Pod Vodarenskou vezi 2
182 07 Prague 8, Czech Republic

bulej@cs.cas.cz

Abstract

The applications of software benchmarks place an obvious 
demand on the precision of the benchmark results. An intu
itive and frequently employed approach to obtaining precise 
enough benchmark results is having the benchmark collect a 
large number of samples that are simply averaged or other
wise  statistically  processed.  We  show  that  this  approach 
ignores an inherent and unavoidable nondeterminism in the 
initial state of the system that is evaluated, often leading to an 
implausible estimate of result precision. We proceed by out
lining  the  sources  of  nondeterminism in  a  typical  system, 
illustrating  the  impact  of  the  nondeterminism  on  selected 
classes  of  benchmarks.  Finally,  we  suggest  a  method  for 
quantitatively assessing the influence of nondeterminism on a 
benchmark, as well as approach that provides a plausible esti
mate of result precision in face of the nondeterminism.

Keywords  Performance Evaluation, Random Initial State, 
Statistical Analysis, Benchmark Precision.

1. INTRODUCTION

Software  benchmarks  are  commonly  used  for  empirical 
evaluation of performance. Typical  uses of benchmarks in
clude  analysis  of  system  behavior,  evaluation  of  absolute 
system performance  on selected classes of  applications,  or 
comparison of system performance on different implementa
tions of an application [2,3]. In contrast to analytical methods 
or simulation, benchmarking provides results based on the be
havior of a real system in a real environment. The benchmark 
results provide the values of various performance indicators 
that characterize the behavior of the system under particular 
workload,  e.g.  the  typical  duration  of  characteristic  opera
tions, memory consumption, etc.

To obtain the typical value of a performance indicator, a 
benchmark usually performs a number of measurements and 
calculates the typical value as an average, or median of the 
collected samples. Although this approach represents com

mon practice, it involves making several hidden assumptions 
that are only rarely discussed explicitly.

The approach assumes that the values measured during a 
benchmark run can be considered independent and identically 
distributed samples of a random variable,  which represents 
the performance indicator of interest. The justification for the 
assumption stems from the fact that due to complexity of con
temporary hardware and software, the duration of a nontrivial 
operation  is  subject  to  frequently  occurring  but  relatively 
small changes due to inherent nondeterminism in operation 
execution,  as  well  as  rarely  occurring  but  relatively  large 
changes due to external  disruptions. The  slightly  changing 
values resulting from the nondeterminism in operation execu
tion are considered representative for the repeated execution 
of the operation on a given hardware platform. The values 
distorted by external disruptions are, depending on the pur
pose  of  the  benchmarking  experiment,  considered  either 
extremal (with respect to the typical execution times of the 
exercised operation) or a part of the overall behavior of the 
system.

The typical  value of  a  performance  indicator would be 
then a value representative of the distribution of the random 
variable. Such values are usually the mean and the variance. 
Based on the kind of data provided by the benchmark, we can 
safely assume that they exist. The mean and the variance are 
typically estimated using average and sample variance. The 
typical value of a performance indicator is therefore a statisti
cal estimate of the mean, and as such has a limited precision. 
Although the exact demands on the precision of the bench
mark results depend on the particular use of the benchmark, 
we can safely state that a sufficient precision often needs to be 
as good as units of percents, simply because the very use of a 
benchmark  suggests  that  a  precise  empirical  evaluation, 
rather than a simple offhand estimate, is needed [5,12].

As follows from the Central Limit Theorem, the probabili
ty statements about the average can be approximated using 
the Normal  distribution.  The  precision of  the  average can 
then be determined using the length of confidence interval for 
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the mean, which can be estimated using a well known formu
la.  To  improve  the  precision  of  the  benchmark  results,  a 
benchmark usually collects and computes the typical values 
using more samples. This approach can also be considered 
common  practice,  and  has  a  theoretical  foundation in  the 
Weak Law of Large Numbers.

Consequently, a typical benchmark executes an operation 
multiple times and reports an average calculated from thus 
collected multiple samples as a result. The chance that the 
result is distorted by a rare sample to a degree outside the 
sufficient precision grows smaller with larger number of sam
ples.  In  presence  of  extreme  values  caused  by  external 
disruptions, we can use robust statistic estimators such as me
dian to mitigate the influence of the outliers, yet with the use 
of other estimators than average, the computations are more 
complex  and without the theoretical  backing of  the  Weak 
Law of Large Numbers and the Central Limit Theorem.

This model of a benchmark, however, fails to account for 
distortions caused by factors  other  than  the  inherent  non
determinism and  external  disruptions  occurring  during the 
operation execution. Consequently, for some benchmarks, the 
estimate of the mean and its precision calculated from thus 
obtained data do not truly represent the typical value of a per
formance indicator within the calculated error margin.

In this paper, we focus on improving the plausibility of the 
results by also accounting for distortions caused by a non
deterministic part  of  the  initial  state of  the  system that  is 
evaluated.  In  Section 2 we point  out the  discrepancies be
tween the common assumptions and the behavior observed on 
a simple benchmark,  which suggest that the initial  state is 
partially  nondeterministic. Section 3 presents a  measure of 
the influence of the random initial state on benchmark results 
and demonstrates the application of the measure on several 
examples of typical benchmarks. Section 4 outlines the possi
ble sources of nondeterminism in the initial state and shows 
their  impact  on  further  examples  of  benchmarks.  In  Sec
tion 5,  we  suggest  an  approach  to  dealing  with  the 
nondeterministic part of the initial state and conclude the pa
per in Section 6.

2. SOMETHING IS ROTTEN

Consider  the  simple  model  of  a  benchmark  introduced  in 
Section 1, which empirically evaluates the duration of a spe
cific operation execution. The duration is subject to random 
changes  both  inherent  and  external  to  the  benchmarked 
operation. The simple model also assumes that apart from the 
inherent nondeterminism during execution of the operations, 
the duration of the operation depends only on the operation 
being performed. We show that this assumption is not suffi
cient and provide an extension to the simple model, where the 
duration of the operation execution also depends on the state 
of the system that is evaluated just before the operation exe

cution. In itself, this extension is obvious rather than revolu
tionary, until the state is examined in more detail.

In a typical system, the state that can influence the dura
tion  of  the  operation  execution  consists  of  many  parts, 
ranging from minute details such as the state of the processor 
branch  prediction  logic  or  internal  memory  cache  or  the 
paged state of the memory accessed during the operation exe
cution, to significant hardware and software settings such as 
the bus clock speed or the virtual machine settings. Depend
ing on the impact of the operation execution, the individual 
parts of the state can be broadly divided into two categories. 
Parts such as the state of the processor branch prediction logic 
or internal memory cache will most likely get changed by the 
operation execution,  and are  here  termed as the  mutating  
parts of the state. Parts such as the bus clock speed or the vir
tual machine settings will most likely stay unchanged by the 
operation execution, and are here termed as the initial  parts 
of the state.

A benchmark  typically handles the mutating and initial 
parts of the state in different ways. The setting of the mutating 
state is done by the benchmark itself, which introduces warm
up in addition to measurement. The operation execution is the 
same  during  warmup and  measurement,  but  samples  are 
only collected during measurement. A long enough warmup 
will set the mutating state so that the collected samples are 
representative for repetitive operation execution and indepen
dent of the mutating state before warmup. The setting of the 
initial state is either hard coded in the benchmark or done out
side  the  benchmark,  forming  a  part  of  the  system 
configuration to which the collected samples are representa
tive.

A generally accepted requirement is that benchmark re
sults should be reproducible. In  terms of the mutating and 
initial  parts of  the  state,  reproducibility means performing 
long enough warmup to make sure the mutating state is re
producible, and describing configuration precisely enough to 
make sure the initial state is reproducible, thus covering all 
parts of the state that can influence the duration of the opera
tion execution [1, 4].

Before extending the simple model further,  we can ex
amine the assumptions made so far on an example of the FFT 
benchmark [10], which measures the duration of a Fast Fouri
er  Transform  of  a  predefined  sequence.1 Figure 1 shows 
individual samples collected by the benchmark during multi
ple runs, where a run is defined simply as a single execution 
of the benchmark application by the operating system. The 
horizontal axis is a sample index, the vertical axis is the sam
pled  FFT  computation  time.  Vertical  lines  denote  new 
benchmark runs.

1 The implementation of the FFT benchmark was run on Dell Precision 340 
workstation with Intel Pentium 4 at 2.2 GHz and 512 MB RAM, running 
Fedora Core 2 with kernel 2.6.5 and gcc 3.3.3.



Figure 1 shows that the samples collected during a single 
run of the FFT benchmark are much closer to each other than 
the samples collected during different runs of the benchmark. 
The difference indicates that the initial state of the benchmark 
was not the same for each run, even though each run of the 
benchmark was executed on the same idle and isolated sys
tem, with disabled randomization of virtual memory address 
allocation,  immediately after a reboot into a dedicated run 
level, using the same files and settings.

The extreme conditions of this experiment show that no 
reasonable  effort  could  guarantee  the  initial  state  of  the 
benchmark to be the same for each run. We have to cope with 
the deceitful reality that the initial state is partly random for 
each benchmark run. 

As evidenced by the  results  of  the  FFT benchmark  in 
Figure 1, the impact of the random initial state can complete
ly overshadow the impact of the mutating state, so that taking 
more than several samples in a benchmark cannot improve 
the ability of the benchmark to describe real  systems. This 
contrasts with the assumptions made in  the simple  model, 
where collecting more samples in a single run improves the 
benchmark precision. We therefore introduce a new model 
which recognizes the random initial state with a more realistic 
concept of benchmark precision discussed in Section 5.

3. QUANTIFYING THE PROBLEM

Although the influence of the random initial state can be of
ten demonstrated graphically as shown in Figure 1, it can be 
difficult to notice for large data sets or in less obvious cases. 
Moreover,  the  graphical  representation  does  not  provide  a 
simple  measure  of  the degree to  which  the  random initial 
state influences the benchmark results.

Considering the behavior of the FFT benchmark described 
in Section 2,  a simplistic approach to quantification of the 
influence of random initial state would compare the standard 
deviation  of  all  samples  collected  in  all  benchmark  runs 
against  the  standard  deviation  of  samples  from  individual 
benchmark runs. 

However,  the simplistic approach does not take into ac
count the fact that the sample standard deviation calculated 
from all collected samples depends on the number of samples 
in each benchmark run and on the number of runs. This im
pairs the credibility of such a measure as it is unclear how to 
choose the number of samples and the number of benchmark 
runs. 

An extreme choice would be to collect a high number of 
samples from a single run, thus rendering the method unus
able. Instead, the choice of these numbers should be based on 
the measure itself, collecting a few samples from a high num
ber of benchmark runs to reflect the impact of random initial 
state as well as collecting a high number of samples from a 
few runs to reflect the impact of the mutating state.

The dependency on the number of samples per run and the 
number of benchmark runs can be avoided when comparing 
standard  deviation  of  samples  taken  from  different  runs 
against  the  standard  deviation  of  samples  from  individual 
runs. Taking the above into account, we define the measure of 
the influence of the random initial state, termed impact fac
tor,  as the ratio of the standard deviation of samples from 
different  benchmark  runs to standard deviation of  samples 
from individual benchmark runs. The value of impact factor 
greater than 1 indicates the influence of the random initial 
state on the benchmark results.

The  calculation  of  the  impact  factor  for  a  particular 
benchmark requires samples from multiple runs of the bench
mark. To obtain plausible quantification of the influence of 
the random initial state on benchmark results, the calculation 

Input:
1. m data sets corresponding to m benchmark runs, each

containing n samples
2. number of samples c to choose randomly, c < min(m,n)
3. number of iterations k

Output:
1. estimate of the impact factor for the input data

Algorithm:
1. repeat k times

1. randomly choose c data sets corresponding to c
benchmark runs
1. randomly choose 1 sample from each of the c

selected data sets
2. compute standard deviation SD1 from the c

selected samples
2. randomly choose 1 data set from the input data

1. randomly choose c samples from the selected
data set

2. compute standard deviation SD2 from the c 
selected samples

3. compute ratio SD1/SD2 of the two standard deviations
2. compute the impact factor as a median of the k ratios

Figure 2. Algorithm for estimating impact factor of 
random initial state.

Figure 1. Impact of initial state on FFT benchmark 
results.



of the impact factor requires relatively large amounts of data. 
In order to save time and resources, we calculate the impact 
factor using a bootstrap method described in Figure .

Table 1 shows the impact factor for several benchmarks 
and systems, and demonstrates that the influence of the ran
dom initial state on the benchmark results exists in a wide 
variety of benchmarks. The Marshaling benchmark measures 
the duration of marshaling of a string constant during a sim
ple remote procedure call. The Ping benchmark measures the 
duration  of  a  simple  remote  procedure  call.  The  RUBiS 
benchmark measures the duration of an operation on an auc
tion website [4].2 We have used a modified version of the 
RUBiS benchmark which allowed us to track the response 
times of individual methods.

For each benchmark, we have executed a number of runs, 
as  indicated  in  Table 1.  In  each  run,  we  have  collected 
between 2000 and 100000 samples, depending on the bench
mark.  In  case  of  the  RUBiS  benchmark,  the  number  of 
samples was determined by the default execution time limit. 
Where possible, the numbers of runs and samples were inten
tionally set high to provide more than enough data for the 
bootstrap. We have performed 10000 iterations of the boot
strap method on the input data, with the number of randomly 
chosen samples c  set to 0.75m for increased robustness. The 
impact factor has been computed as the median of 10000 ra
tios  of  standard  deviations  of  samples  collected  during 
different  runs  of  the  benchmark  to  standard deviations of 
samples collected during an individual run of the benchmark.

2 The Pentium 4 Linux and Windows systems were Dell Precision 340 work
station with Intel Pentium 4 at 2.2 GHz and 512 MB RAM. The Itanium 
system was Dell PowerEdge 7150 server with two Intel Itanium processors 
at 800 MHz and 1 GB RAM.

The results indicate that the impact factor is very large in 
the FFT benchmark, except for DOS operating system where 
it is negligible,  significant for  the Marshalling benchmark, 
small for the Ping benchmark and negligible for the RUBiS 
benchmark.  These  results  agree  with  the  analysis  of  the 
sources of nondeterminism provided in Section 4.1.

4. SOURCES OF NONDETERMINISM

The influence of the random initial state on the benchmark 
results is somewhat contrary to the common understanding of 
a benchmark as, by and large, a reproducible process. To ex
clude the possibility of nonreproducible benchmark results 
discussed in Section 2,  which points to the existence of the 
random initial state and its influence on the benchmark re
sults,  we  further  trace  and  explain  some  causes  of  the 
nondeterminism  in  the  initial  state.  We  also  show  that 
attempts to eliminate the sources of nondeterminism do not 
provide reliable, long term benefits.

4.1 Nondeterminism in Memory Allocation

One source of nondeterminism in the initial state is related to 
memory allocation. Among the many activities an operating 
system performs when starting a benchmark application is the 
allocation of memory for the code and the data of the bench
mark.  The  allocation  entails  the  selection  of  the  virtual 
addresses for the code and the data of the benchmark and the 
assignment of physical pages to back the allocated virtual ad
dresses. Even though neither the selection of virtual addresses 
nor  the  assignment  of  physical  pages  has  to  remain  un
changed  during  the  benchmark  execution,  it  is  likely  to 
remain  so,  especially  when  the  system  that  executes  the 
benchmark  has  enough  memory  to  avoid  swapping.  Even 
when the operating system assigns physical pages on demand, 
the assignment takes place during the warmup phase of the 
benchmark and, again, is likely to remain unchanged during 
the datacollection phase of the benchmark.

The selection of virtual addresses and the assignment of 
physical pages can lead to a different distribution of cache 
hits and misses during the execution of the benchmark. The 
difference is mainly  caused by the  limited associativity of 
TLB (Translation  LookAside Buffer) and memory caches, 
with the hardware mapping several physical addresses to the 
same cache slot. Since programs do not access their virtual 
pages in an uniform way, different assignment of physical 
pages to virtual addresses leads to different numbers of cache 
hits and misses, therefore influencing the benchmark results. 
This  influence  can  be  verified by relating  the  benchmark 
results  with  the  values  of  processorspecific  performance 
counters that keep track of TLB and memory cache hits and 
misses.

Figure 3 relates the counts of memory cache misses with 
the results of the FFT benchmark from Figure 1 for execution 
on two platforms, both with fixed selection of virtual address

Table 1. Impact factor of random process initial state.

Benchmark Runs Samples
per Run

Impact 
Factor 

(median)

FFT P4/FC2 150 2000 25.81

Marshaling 
P4/FC2

100 100000 2.61

Ping P4/FC2 100 100000 1.10

FFT P4/DOS 100 2000 1.06

FFT P4/W2K 100 2000 94.74

FFT IA64/Sarge 100 2000 35.91

RUBiS P4/FC2 15 15 min. ~ 5500 1.01



es and random assignment of physical pages. The top plot in 
the  figure  is  for  the  Intel  Itanium processor and  shows a 
strong  positive  linear  dependency  of  measured  times  on 
memory cache misses. The bottom plot in the figure is for the 
Intel Pentium 4 processor and shows a weak positive correla
tion,  however  the  results  for  this  platform  are  only 
approximate due to a bug in the processor which prevents 
precise counting of memory cache events. The clear relation
ship visible in Figure 3,  as well as the difference of impact 
factor for systems with different TLB and memory cache ar
chitectures in Table 1,  confirms the impact of the memory 
cache misses on the benchmark results.

While the selection of virtual addresses by the operating 
system can be made deterministic and therefore reproducible 
at least on some operating systems, the assignment of physi
cal  pages  to  virtual  addresses is  not  reproducible  without 
nontrivial modifications of the operating system, which is ob
viously out of the question for many benchmarks.

4.2 Nondeterminism in Code Compilation

Another source of nondeterminism in the initial state is relat
ed  to  code  compilation.  The  process  of  compilation  and 
linking of a benchmark application into a binary is not neces

sarily  reproducible even when using the same compilation 
and linking commands on the same benchmark sources.

Table 2 shows the effect of nondeterminism in compila
tion  and linking on  the  Marshaling and Ping  benchmarks 
from Table 1. The cause of nondeterminism in this particular 
example can be observed with the GNU C++ compiler [6] 
since version 3.3.1. The compiler uses random name man
gling for symbols defined in anonymous name spaces. This 
can result in the linker linking the symbols in different order 
and placing them at different  addresses in the binary.  The 
placement of the symbols on different addresses in the binary 
is then reflected in placement of the symbols on different ad
dresses in  memory during dynamic  linking,  which in  turn 
influences the benchmark results in a similar way as the non
determinism in memory allocation.

Although the cause of nondeterminism in this particular 
example can be avoided by using certain compiler options, it 
may not be possible for all benchmark sources. More impor
tantly,  the  causes  of  nondeterminism  described  both  in 
Section 4.1 and in Section 4.2 are difficult to avoid, which 
also makes it difficult to prove that they are the only causes of 
nondeterminism in the initial state [9]. In fact, more causes of 
nondeterminism in the initial state can be found depending on 
the benchmark and the system that executes the benchmark.

4.3 Nondeterminism is Unavoidable

The nondeterministic part of the initial state can be eliminated 
either by removing the individual sources of nondeterminism 
or  by simulating the  whole  system.  Both  approaches have 
their drawbacks.

As outlined in previous sections, removing the sources of 
nondeterminism is not very feasible, mainly because we can
not ensure that all  sources of nondeterminism in particular 
benchmark experiment have been identified and eliminated. 
Even though it may seem that the nondeterminism in memory 
allocation described in  Section 4.1 could be eliminated by 
running a benchmark experiment immediately after system 
reboot, this solution is not  sufficient on contemporary sys
tems. Complex benchmarks, which require services such as 
databases or web servers, will never start in a deterministic 
fashion, even after system boot.

Table 2. Impact factor of random initial state in 
compilation.

Benchmark Runs Impact Factor 
(median)

Ping 100 1.13

Marshaling 100 1.06

Figure 3. Correspondence of result fluctuation of FFT 
benchmark with memory cache misses.



In case of simple benchmarks, many system services, such 
as  page  daemon,  I/O  daemons,  or  file  system  journaling 
daemon, are often provided by the operating system kernel 
and cannot be shut down. Moreover, these services are started 
concurrently with the order of their execution determined by 
the current hardware state, which will again result in nonde
terministic  initial  state  for  a  benchmark  executed  during 
system boot sequence.

The  nondeterminism  in  code  compilation  described  in 
Section 4.2 can be eliminated for some benchmarks, but may 
occasionally result in the compiler generating incorrect code. 
Also, the only way to find out whether the benchmark is still 
influenced  by  nondeterministic  initial  state  is  to  run  the 
benchmark multiple times and observe the differences in the 
results. Then it may actually be easier to obtain the results us
ing  the  approach  we  describe  further,  which  is  based  on 
analysis  of  the  results  from  multiple  runs  of  the  same 
benchmark.

Without a  sound approach to eliminating the  causes of 
nondeterminism in the initial state, we may consider simulat
ing the whole system, which would be a deterministic process 
and would allow setting identical initial conditions prior to 
each execution of a benchmark. While simulation is consid
ered a useful tool in the area of performance evaluation, its 
application  to  benchmarking  would be  time  consuming at 
best. Today's benchmarks, applications and system hardware 
are so complex that simulating even a second of the bench
mark execution would consume an enormous amount of time 
and resources. Creating a simpler model or actually simplify
ing  the  benchmark  or  the  application  for  the  purpose  of 
simulation defies the obvious goal to evaluate performance of 
real systems in a realistic scenario. In addition to that, specifi
cation of software and hardware that would allow designing 
such simulation would be hard to  get  for  current  systems 
mostly for licensing reasons.

This further underscores the fact that a benchmark should 
not be understood as a fully reproducible process, which has 
been  the  practice  so  far,  but  rather  as  a  process  that  is 
inherently and unavoidably nondeterministic because of the 
existence of the random initial state and its influence on the 
benchmark results.

5. LIVING WITH NONDETERMINISM

The presence of nondeterminism in the initial state forces us 
to reconsider and ask what is the result and the precision of a 
benchmarking experiment.

Without  considering  the  nondeterminism  in  the  initial 
state, the answer to the question is rather straightforward. The 
benchmarking experiment consists of a single run of a bench
mark, which collects a number of samples to determine the 
value of a performance indicator. These samples are repre
sentative  for  the  repetitive  execution  of  the  measured 
operation as described in Section 1. The samples are consid

ered  independent  and  identically  distributed,  but  the 
distribution is typically unknown. To estimate a single value 
which is  a  representative of  the  repeated execution of  the 
measured operation, an average of the samples is typically 
used, for reasons outlined in Section 1. From the weak law of 
large numbers, even though the distribution is unknown, the 
average of the samples is a good estimate of the mean value 
of the underlying distribution, which is usually considered a 
representative value for the distribution. The precision of a 
benchmark is identical to the precision of the estimate of the 
mean value and can be assessed using the central limit theo
rem.

In presence of nondeterminism in the initial state, we can 
either  attempt  to  eliminate  the  nondeterminism  and  thus 
achieve the deterministic initial conditions that have been so 
far silently assumed in common practice, or we can accept 
the nondeterminism as a trait of a real system and focus our 
effort  towards obtaining meaningful  results  in  presence of 
nondeterminism in initial state.

As discussed in Section 4.3, all sources of nondeterminism 
in  a  particular  benchmark  cannot  be  always  reliably 
eliminated, not even considering the time and resources re
quired for a detailed analysis of a system in order to identify 
the sources of nondeterminism. The other approach is to ac
cept the influence of the nondeterministic initial state as a part 
of a real system and take it into account when benchmarking. 
For a performance indicator of interest, this requires deter
mining the value and precision that are representative of both 
the repeated execution of the measured operation and the im
pact of the nondeterministic initial state.

5.1 Measuring with Nondeterminism

We have shown that the random initial state influences the 
benchmark results when benchmarking on real systems and 
that this influence cannot be easily eliminated. Because of the 
random initial state, multiple runs of a benchmark will yield 
different  values of  the performance indicator  of interest as 
benchmark results.  The value of the performance indicator 
reported by a single benchmark run is therefore a representa
tive  of  the  sampled  values  in  a  system  with  a  particular 
realization of the random initial state, which includes the state 
of the operating system process with respect to assignment of 
physical to virtual pages as described in Section 4.1 and Sec
tion 4.2, and possibly other components.

In face of the described nondeterminism, an ideal bench
marking experiment would be set up so that the benchmark 
would be recompiled, restarted and warmed up before col
lecting each individual  sample.  In  this setup,  the collected 
samples would still be independent and identically distribut
ed, therefore the average of all collected samples would still 
be a good estimate of the mean. This setup would ensure the 
repeatability of benchmarking experiments and the precision 
of the estimate of the mean would better reflect the behavior 
of the real system in a real environment.



However,  there are two issues with the above scenario. 
First, if we only collect a single sample after warmup phase 
during each benchmark run, we risk collecting a more or less 
distorted sample, caused by the inherent nondeterminism in 
operation execution or by an external disruption. To reduce 
the chance of invalidating the results because of a single dis
torted sample,  we would have to collect a large number of 
samples. This leads us to the second issue related to the ideal 
scenario, which is efficiency of the benchmark experiment.

Described as it was, the ideal setup of the benchmarking 
experiment is very expensive to run. Imagine a Ping bench
mark which uses CORBA (Common Object Request Broker 
Architecture) for remote communication. The compilation of 
the benchmark including the ORB (Object Request Broker) 
takes about 30 minutes, starting and warming up a benchmark 
takes several seconds and measuring one Ping request takes 
tens of microseconds. 

Under  such  circumstances,  collecting  more  than  a  few 
samples to obtain the sufficient precision of the estimate of 
the median would require an enormous amount of time. Or 
the other way around, the number of samples collected in a 
reasonable time may be far too low to obtain the sufficient 
precision.

Obviously, our goal is to reduce the number of runs to save 
time, but not so as to lower the precision by increasing the 
chance of collecting a distorted sample. With the knowledge 
of the influence of the random initial state on the benchmark 
results,  we  may  save  time  by  repeating  the  measured 
operation several times in each run to improve the precision 
of the result of a single run, which consequently allows us to 
reduce the required number of runs.

5.2 Efficient Benchmarking with 
Nondeterminism

Although the ideal setup of benchmarking in the face of non
determinism  outlined  in  Sections 4.1 and  4.2 requires 
rebuilding and restarting each benchmark to get precise and 
repeatable  results,  it  is  not  always  necessary  to  restart  a 
benchmark run to obtain a new sample. The impact factor for 
a benchmark is not always so high as for the FFT benchmark 
and therefore there can be overlap between possible values of 
samples  in  different  benchmark  runs.  Consequently,  each 
benchmark run can contribute more than one sample to the 
estimate of the mean that is representative for both the repeat
ed execution of the measured operation and the impact of the 
nondeterministic initial state.

In the following paragraphs we show that for an additive 
dependency of a sample on the random initial state, using this 
approach provides the same estimate of the mean as the one 
described in the model experiment from Section 5.1. More
over, we can calculate the precision of the estimate and, given 
the number of samples required for benchmark warmup, de
termine the optimal number of samples per benchmark run to 
obtain the most precise estimate of the mean. Concluding the 

section, we show how the additive dependency explains the 
influence of random initial state on benchmarks described in 
Section 3.

The additive model  of  dependency of  a  sample  on  the 
random initial state is defined as follows3:

1. the random initial state for each benchmark run is rep
resented by a random sample a of a random variable 
A with finite variance and mean value

2. samples collected in  a benchmark run with random 
initial state a (a is fixed) are independent, identically 
distributed samples of  random variable  R(a),  where 
R(a) = a + X,  and X is a random variable with finite 
variance and mean value

The  model  applies  only  to  samples  after  the  warmup 
phase of a benchmark. In the scope of this model, the ideal 
benchmarking experiment from Section 5.1 has the following 
interpretation:

1. for  each  benchmark  run  i,  where  i = 1..k,  a  single 
sample  ri   = ai + xi of random variable (A+X) is col
lected

2. the average r k  of samples ri estimates the mean value 
E(A+X)  of  random  variable  (A+X),  which  is 
representative for the repeated execution of the mea
sured operation and the influence of the random initial 
state on benchmark results

The additive model  of  dependency is very similar  to a 
random effect model with oneway specification from [11], 
which is based on normal distribution. The additive model we 
present  here,  however,  does not  assume the  normal  distri
bution of  X and  A.  The distributions of  X and  R(a)  in our 
experiments were rightskewed,  and thus could not  be as
sumed normal.

For the additive model of dependency, we can show that 
the same estimate of the mean of the random variable (A+X) 
can be obtained even when each benchmark run contributes 
more than one sample to the estimate. Consider a benchmark
ing  experiment  that  consists  of  k benchmark  runs,  each 
collecting n samples of the performance indicator of interest. 
The  ith  sample  in  jth  benchmark  run  is  labeled  rj,i, 
rj,i = aj + xj,i.

The average of all samples from all runs

r k ,n=
1

k⋅n
⋅∑

j=1

k

∑
i=1

n

r j , i

can be expressed as r k ,n=a kxk ,n .

3 For better readability, we use a relaxed notation, where random variables are 
sometimes denoted by lowercase letters, which is a common approach in lit
erature on hierarchical models, such as [11]. We also use the word sample in 
a broader sense, not distinguishing rigorously between realizations and ran
dom variables; the precise meaning is always clear from the context.



From the central limit theorem, the distributions of  a k  and 

x k ,n  can be approximated as

a k≈ E AN 0,
var A

k   and xk ,n≈ E XN 0,
var X

k⋅n  .

From the properties of the normal distribution it follows that

r k ,n≈ E AE X N 0,
var A

k
 var X

k⋅n =
= E AE X N  0,1 n⋅var Avar X

k⋅n

. (1)

Therefore the mean value  E rk  of the average  r k  is the 
mean value E(A+X) of random variable (A+X), which is rep
resentative  for  the  repeated  execution  of  the  measured 
operation  and  the  influence  of  the  random initial  state  on 
benchmark results. The confidence interval for E(A+X) can 
be constructed as follows

r k , n± z
1−

2  n⋅var Avar X
k⋅n

, (2)

where z1δ/2 is a 1δ/2 quantile of the normal distribution. With 
probability  1δ,  the  interval  contains  the  true  value  of 
E(A+X), which is the representative value of the performance 
indicator of interest and the correct result of a benchmark ex
periment.  Even  though  the  distributions  of  A  and  X  are 
unknown, we can estimate their variances var(A) and var(X) 
because

var (R(a)) = var (a+X) = var (X),

and thus by estimating variance of samples in any benchmark 
run we are also estimating the variance var(X) of the random 
variable X.  Since we need to perform multiple  runs of  the 
benchmark, we can estimate the variance of each benchmark 
run and calculate the average of these estimates:

S  X k⋅n
2 =

1
k
∑
j=1

k

S j  Rk
2=

1
k

1
n−1

∑
j=1

k

∑
i=1

n

 r j , i−r j ,k 
2

. (3)

In addition, the following also holds

E(R(a)) = E(a+X) = a + E(X).

To estimate the variance  var(A),  let  us consider  a  random 
variable  M,  the values of which are the mean values of the 
performance indicator in benchmark runs with different val
ues of the sample a of the random variable A,

M = EA(R(a)) = A + E(X).

Since the following holds

var (M) = var (A + E(X)) = var (A),

the estimate of variance  var(M) also estimates the variance 
var(A).  As already mentioned,  the  samples of  the  random 
variable M are the mean values of different benchmark runs, 

and can  be therefore  estimated by the  average  of  samples 
from the respective benchmark run.

We then estimate the variance var(A) as

S  Ak
2=

1
k−1

∑
j=1

k

r j , n−r k , n
2

. (4)

Substituting the estimates of variance (3) and (4) for the true 
but unknown variances in (2), the confidence interval for the 
mean value of the performance indicator of interest is then

r k , n± z
1−

2  n⋅S  Ak
2S  Xk⋅n

2

k⋅n
. (5)

When the number of collected samples kn is small, the quan
tiles z of the normal distribution are replaced with quantiles of 
the tdistribution with  k(n  1) degrees of freedom, because 
the true but unknown variances were replaced by sample vari
ances.

Under  the  assumption of  the  additive model  of  depen
dency on the random initial state, the confidence interval (5) 
allows determining  the  precision of  the  benchmark  result. 
The formula for constructing the confidence interval can also 
be used to determine  the  optimal  number  of  samples  that 
should be collected in each benchmark run.

To minimize the error of the estimate of the mean value of a 
performance indicator, we have to minimize the factor 

 n⋅var Avar X
k⋅n

. (6)

We can define the cost of the benchmark experiment in terms 
of the total number of samples that need to be collected as

cost = k(w + n), (7)

where w is the number of  warmup samples that have to be 
collected at startup of each benchmark run, but cannot be in
cluded  into  the  evaluation;  w also  includes  the  price  of 
starting a new benchmark run. By expressing k from (7), sub
stituting it into (6), deriving by n and finding roots, we get the 
optimal value of n for the given cost and warmup w

n=⌈ w⋅S  X 2

S  A2 ⌉ . (8)

Of particular interest should be the fact that the optimal num
ber of samples does not depend on the value of cost, but only 
on  the  number  of  warmup samples  w and  the  values  of 

S  A2  and S  X 2 . It is therefore possible to obtain bench

mark  results  with  better  precision  using  existing  results 
without a loss of efficiency with respect  to the cost of the 
benchmarking experiment.



The formula also suggests that, for benchmarks where the 
variance of samples from different runs is much greater than 
the  variance  of  samples  from  individual  runs,  increasing 
number of samples in runs does not help, which is the case of 
FFT benchmark (Figure 1). Also, we should note that the pre
cision of the result obtained from (8) depends on the precision 

of the estimates of variances S  X 
k⋅n
2  and S  A

k
2 .

Even though the additive model of the dependency on the 
random initial state allows for more efficient measurement 
(in contrast to the ideal benchmarking experiment described 
in  Section 5.1)  and  determining  the  precision  of  the 
benchmark results, it remains to be decided how well can be a 
particular benchmark modeled under the assumption of addi
tive dependency.

For this purpose, we can use the impact factor defined in 
Section 3. The additive dependency model is characteristic by 
shifting all the samples in a benchmark run by a constant. For 
each benchmark run with a different sample a of the random 
variable A the following holds

R(a) – E(R(a)) = a + X  (EX + a) = X – EX.

Under  the  assumption  of  the  additive  dependency  model, 
(R(a) – E(R(a))  has  the  same  distribution  with  variance 
var(X)  and mean value EX = 0  for every sample  a,  which 
means that it does not depend on a particular benchmark run. 

Remember the impact factor defined in Section 3, which 
provides a measure of difference between samples in differ
ent runs and samples in individual runs. We can apply the 
impact factor calculation on transformed data, in which we 
have subtracted the average of samples in one run from all 
samples in the run. If the impact factor for the transformed 
data is smaller than for the original data, we can consider the 
influence of the random initial state on that particular bench
mark to follow the additive dependency model. If the value of 
the new impact factor tends to 1, we can say that the additive 
dependency model describes the influence of the random ini
tial state on that particular benchmark well.

Table 3 shows the  result  of  applying  the  impact  factor 
calculation on transformed data of benchmarks described in 
Section 3. We can see that while on certain platforms the ran
dom initial state influences the results of the FFT benchmark 
to a very high degree (impact factor nearly 90), the additive 
dependency model describes the influence very well (impact 
factor calculated from transformed data tends to 1).

6. CONCLUSION

We have shown that the results of software benchmarks exe
cuted on contemporary computer architectures and operating 
systems are likely to be influenced by a random initial state of 
the system. Depending on the benchmark and the system that 
executes the benchmark, the influence of the random initial 
state can lead to nonrealistic and nonrepeatable benchmark 

results and an implausible estimate of the precision of the 
results.  Due  to  its  somewhat  counterintuitive  nature,  this 
situation  can  remain  unnoticed,  especially  when  the 
benchmark is incorrectly understood as a deterministic and 
therefore reproducible process.

Experiments with different benchmarks representing the 
classes  of  scientific  computation  benchmarks,  distributed 
middleware benchmarks and microbenchmarks show that in 
presence of the random initial state, the traditional approach 
of providing a representative value of a performance indicator 
based on a single benchmark run provides results that are rep
resentative  only  for  that  particular  run.  Improving  the 
precision by collecting more samples during a single run is 
counterproductive,  because it  consumes more  time and re
sources and only improves the precision of the result with 
respect to that run.

Using a bootstrap method to calculate an impact factor of 
the random initial state on a benchmark, we can quantify how 
much a particular benchmark is susceptible to the influence 
of the random initial state. We point out that while the influ
ence of the random initial state on the benchmark results can 
be traced and explained in detail, it may be unavoidable. We 
show that in such a case, it is possible to obtain a value of a 
performance indicator that  is representative for  the bench
marked application and the system it runs on using samples 
from multiple runs of the benchmark. Balancing the number 
of runs and the number of samples collected in each run al
lows  us  to  increase  the  efficiency  of  the  benchmarking 
experiment  and  achieve  sufficient  precision  within  given 
time.
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