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ABSTRACT 

The results of benchmark tests on the superscalar IBM RISC System/ 6000 Model 590 are 

presented. A set of well-characterized Fortran benchmarks spanning a range of compu­

tational characteristics was used for the study. The data from the 590 system are com­

pared with those from a single-processor CRAY C90 system as well as with other micro­

processor-based systems, such as the Digital Equipment Corporation AXP 3000/500X 

and the Hewlett-Packard HP/735. © 1995 John Wiley & Sons, Inc. 

1 INTRODUCTION 

The IBM RISC System/6000, first introduced in 

1990, was an important step in the development 

of high-performance microprocessor systems. Cs­

ing a superscalar architecture, the RS/6000 

achieved performance on floating point intensive 

applications that exceeded most other micropro­

cessor-based workstations and compared favor­

ably with vector processors as well [L 2]. 

Since 1 990 there have been several new RS/ 

6000 systems, all with the same design as the orig­

inal ones and with incrementally faster central 

processing unit (CPC) clock speeds. !'\ow IB::\1 has 

developed a new RISC System, with a more ad­

vanced architecture. The performance of the 

RISC Svstem/6000 model 590, as it is known, is 

the subject of this article. The performance of the 

590 will be compared with the older model RlSC 

Svstem 6000/560, with two other contemporarv 

high-performance RISC workstations, and with ~ 
high-end vector processor as well. 
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2 RISC SYSTEM/6000 MODEL 590 
ARCHITECTURE 

For brevity, model 590 is referred to as the RIOS-

2 and the older system as the RIOS-1. Supersca­

lar means that the RIOS-1 proce,;sor is capable of 

issuing four different instructions: a branch, a 

conditional, an integer operation, and a floating 

point operation each clock period (CP) [3]. Addi­

tionally, RIOS-1 has several floating point instruc­

tions that carry out multiplication and addition 

simultaneouslv. The most recent version of RlOS-

1, called the RISC System/6000 model .580, runs 

at 62.5 :\1Hz, which implies a theoretical peak 

performance of 125 ::\IFLOPS. The most recent 

version of RIOS-1 installed at Los Alamos 1'\a­

tional Laboratory at the time of this writing is the 

model560, which runs at 50 :\1Hz and has a theo­

retical peak performance of 100 ::\tFLOPS. 

The RIOS-2 architecture has basicallv the 

same structure as the RIOS-1 but several kev en­

hancements are included. The RIOS-2 processor 

chip set includes a second, independent. floating 

point pipeline and a second. independent, fixed 

point unit. The multiple issue rate has been in­

creased so that RIOS-2 is capable of issuing six 

instructions per CP: a conditional. a branch. two 

integer, and two floating point instructions. w-ith 

the multiplv/add instructions this means a total of 
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four floating point operations (FLOPS) per CP. 

The clock speed of the RIOS-2 tested is 66.7 

MHz. At four FLOPS per CP .. this implies a theo­

retical peak rate of about 267 MFLOPS. 

The memory subsystem of the RIOS-2 has also 

been improved to keep up with the increased de­

mand caused by the second arithmetic pipeline. 

The data bus that feeds both floating point pipe­

lines from the data cache is now four 64-bit words 

wide and the compiler can issue "load­

quadword" instructions that will cause two 64-bit 

operands to be loaded from memorv. Two such 

load-quad (or store-quad or a co~bination of 

both) instructions can be active simultaneouslv. 

All the RIOS-1 systems could transfer two 64-bit 

words from memory to the data cache each CP. 

The RIOS-2 data cache can be either 128 

Kbytes or 256 Kbytes, up from 32 or 64 Kbytes 

for the RIOS-1. Data are loaded into the cache 

from memory at the rate of four 64-bit words per 

clock cycle for the 128-Kbyte cache and eight 64-

bit words per clock cycle for the 256-Kbyte cache. 

The data cache is still four-wav set associative but 

the RIOS-2 uses a 256-byte line size. 

The instruction length on the RIOS-2 .. like the 

RIOS-1, is 32 bits long. The functions of the 

branch processor remain the same, except that 

the instruction cache, from which the branch pro­

cessor gets its instructions, is now 32 Kbytes, in­

stead of 8 Kbytes as it was on the RIOS-1. 

Each of the two floating point units in the 

RIOS-2 performs IEEE standard arithmetic and 

each has thirty-two 64-bit general purpose regis­

ters. There are thirty-two 32-bit general purpose 

registers in each of the fixed point units, which 

also support address translation and data protec­

tion. 

The RIOS-2 can be equipped with up to 2 

Gigabytes of main memory implemented on 16-

Mbit chips. The machine tested had 512 :\ibytes 

of memory. Other important differences between 

the RIOS-1 and RIOS-2 are floating point conver­

sion to integer in hardware, floating point square 

root in hardware, and a new address translation 

mechanism. 

3 COMPARISON WITH OTHER 
ARCHITECTURES 

In later sections of this article the performance of 

the RIOS-2 will be compared with that of several 

other systems, and although detailed explanation 

of these other architectures is not possible here, a 

few important points are noted. The Digital 

Equipment Corp. (DEC) AXP 3000/500X work­

station is based on the "Alpha" microprocessor 

running at 200 ~1Hz [ 4]. The Alpha microproces­

sor is a full 64-bit implementation and is dual­

issue superscalar, but it cannot overlap floating 

point additions and multiplies, so its theoretical 

peak performance is 200 MFLOPS. Alpha micro­

processors contain an 8 KByte on-chip data cache 

with a 32-bvte line size and the AXP 3000/500X 

we used als~ has a 512 KByte secondary cache. 

(There is no secondary cache in the IBM RISC 

System/6000.) A recent article [5] has examined 

in great detail the difference between the RIOS-1 

and Alpha architectures; much of the discussion 

still applies to RIOS-2. The Hewlett Packard 

HP735 workstation, at least the second genera­

tion of the HP "Precision Architecture,'' is also 

superscalar and can overlap adds and multiplies 

[ 6]. It is currently available at a CPU speed of 99 

MHz, which al~o corresponds ·to about 200 

MFLOPS peak. The HP735 has a single, off-chip 

direct-mapped data cache with a capacity of 256 

KBvtes. 

The CRA Y C90 is the most recent version of the 

Cray Research Inc. line of parallel vector super­

computers [7]. It operates with a CP of 4.17 ns. In 

this report only single processor results are in­

cluded, although the machine on which the 

benchmarks were run (Serial J\'umber 4001, lo­

cated at Eagan, ::\1N) is a 16-CPC machine. 

Within each C90 CPU there are dual floating 

point pipelines (total capacity of four FLOPS/CP), 

although they operate differently than the two 

pipelines in the RIOS-2. The C90 issues a vector 

instruction for vector registers of maximum length 

128 and the two pipelines operate on every other 

element of the vector(s). In the RIOS-2, two sepa­

rate floating point instructions must be issued to 

use the dual pipe capability. All operations on the 

C90 are carried out in 64-bit precision. 

The DEC, HP, and CRAY systems included in 

this article for comparison are all older than the 

RIOS-2, and it is expected that follow-on prod­

ucts to each will be made available soon. 

3.1 Benchmark Codes 

As with previous reports, this performance evalu­

ation is based on a set of application benchmark 

codes that, in one way or another, represent a por­

tion of the computational workload at the Los Al­

amos National Laboratory (LA]'I;L). Traditionally. 

this set of codes has comprised both full applica-
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Table 1. Characteristics of the Benchmark Codes as Determined by the CRAY 

C90 Hardware Performance Monitor 

Average Average Hardware Percent Vector 

CODE MFLOPS 

MCNP 11.6 

TWODANT93 54.3 

WAVE 77.5 

TWODANT915 96.9 

HYDRO 177.7 

NEUT32 278.0 

POP 362.1 

PUEBL032 458.4 

tion codes as well as smaller and simpler codes 

containing selected basic routines or highly sim­

plified versions of applications [8, 9]. However, 

this article concentrates largely on full applica­

tions as they might be run in production on tradi­

tional supercomputers. ~uch has been made re­

cently of the potential for high-performance 

workstations to replace the conventional super­

computers in production environments [10]. 

Thus, it is important to compare performance of 

such systems on representative application codes 

as they might appear in those environments. 

Such an approach has already been taken by 

other workers. For example, Hendricks and Bries­

meister [ 11] have reported on workstation perfor­

mance of LAl\L's "YICNP code, a major produc­

tion code widely used for simulation of particle 

transport. They reported that workstations com­

pared very favorably with CRAY supercomputers. 

However, the computational characteristics of 

MCNP are such that it represents but one element 

of a spectrum of code characteristics and there-

Vector Length Operations 

12.4 0.2 

1.5.3 58.8 

66.3 63.0 

70.4 79.8 

92.9 94.4 

111.2 96.6 

122.9 96.8 

119.9 98.2 

fore gives a somewhat incomplete picture of rela­

tive supercomputer/workstation performance. In 

particular, MCNP is entirely nonvectorizable as 

written. In this article we consider MCNP along 

with a selection of codes that span a range of vec­

torizability as well as memory-access patterns. 

See Table 1 for some relevant statistics and the 

Appendix for brief descriptions of the benchmark 

codes. 

4 RESULTS 

4.1 Performance on Elementary 
Vector Operations 

Table 2 lists performance of selected "vector" op­

erations as a function of "vector" length on the 

RIOS-2. In Table 2, "R" and "V" represent array 

quantities and S1 and S2 are scalars. Gsing these 

relatively simple tests characteristics of the pro­

cessor may be revealed that more complicated ap­

plication benchmarks obscure. In theory these 

Table 2. Rates (MFLOPS) for Selected Operations as a Function of Loop Length on 

the RIOS-2 

Loop Length 

Operation 10 2.5 100 300 

R = S * V1 38.9 .57.2 80.9 85.2 
R = V1 + V2 3:3.1 46.1 67.5 73.8 

R = V1 + S * V2 66.4 92.1 1.38.1 147.6 

R = V1 * V2 + V3 53.1 72.0 95.4 99.0 

R = S1 * V1 + S2 * V2 92.1 124.4 15.3.1 157.6 

R = V1 * V2 + V3 * Y4 74.7 90.:3 109.9 113.0 

R = \1 * V2 + V3 * V 4 + V5 98.3 1 08.7 118.4 121.2 

R = V1 * V2 + Y.3 * V4 + V.S * V6 89.6 104.9 119.0 122.3 

R = V(Il\"D) + S 21.4 26.7 27.6 27.8 

R(IND) = V * V 17.4 25.9 29.2 29.9 
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tests seem straightforward and easy to carry out; 

in practice, they are among the most difficult. 

Typically we must defeat optimizations the com­

piler has introduced that remove, entirely, the 

code we wish to time. ~With the RIOS-2 use of the 

variety of compile-line options available caused 

significant variations in the results. For example, 

it was found that unrolling loops by a factor of four 

gave optimal performance for loops involving at 

most one FMA instruction (floating point multi­

ply-add) but poorer performance for those involv­

ing more than one FMA. Conversely, unrolling by 

eight adversely affected single FMA operations but 

increased performance, often substantially, for 

multiple FMA operations. Thus, results for the 

first four operations of Table 2 were obtained us­

ing one set of compiler options and those in the 

lower portion were obtained using another. 

It is important to note that these tests exercise 

the floating point processor/memory system while 

keeping data resident in cache, and thus they 

present an upper-bound estimate of processor 

performance. To obtain a measurable time for 

each loop, it is repeated until one million total 

operations are performed. In so doing, only the 

first load instruction unconditionallv fetches from 

memory; the rest may load from cache. This is 

done to understand the maximum rate at which 

the CPC can produce results using compiled code. 

As an example, consider the SAXPY operation 

(R = V1 + S * V2), which demonstrates the im­

portance of loop unrolling on a multi pipeline RISC 

architecture. Without unrolling, the IR\1 Fortran 

compiling system does not generate load­

quadword instructim;s. The sequence of pseu­

doinstructions for floating point operations gener­

ated is shown in Table 3 where "double" refers to 

a 64-bit word. The instructions that occur on CP 

0 are part of the loop start-up. This code se­

quence does not use the RIOS-2's second floating 

Table 3. Sequence of Pseudo Instructions 

CP Instruction Array Elements Processed 

() Load Float Double \'1~1) 

0 Load Float Double V2(1) 

LABEL 

1 Load Float Double \'1 (2) 

1 ::\Iultiply I Add R(1; 

2 Store Float Double R(1) 

2 Load Float Double V2(2) 

2 Branch to LABEL 

point pipeline. It produces one multiply/add 

result each two CPs, which corresponds to a rate 

of 66 .MFLOPS. If SAXPY is timed on RIOS-2 

without unrolling it about 65 ::\1FLOPS are ob­

served. 

Now using a preprocessor directive the loop will 

be unrolled to a depth of two. The code sequence 

in this case is shown in Table 4. ~ow both floating 

point pipelines are active. In CP 1 two F::\1A oper­

ations occur simultaneously with load operations 

for four array elements to be used in the following 

iteration. Two multiply/add results (four FLOPS) 

are produced in two CPs corresponding to a rate 

of 133 ~MFLOPS. About 127 .MFLOPS are ob­

served. However, this code sequence does not 

fully utilize the memory bandwidth of the RIOS-2, 

because CP 2 only stores two words. Cnrolling by 

eight yields a code sequence in which 8 FLOPS 

are produced in three CPs. for a predicted rate of 

177 MFLOPS. However. only about 150 

MFLOPS are observed. The disparity probably 

results from a combination of register spilling and 

insufficient store back buffer throughput. 

For comparison purposes, Table 5 lists rates 

for selected operations from a single processor of 

the CRA Y C90. There is not much difference be­

tween the C90 and RIOS-2 performance on loops 

with very short vector lengths: however. the ob­

served rates for these lengths (especially on the 

C90) are subject to greater measurement errors 

because the loop times are on the same order as 

the timer overhead. Kote also the additional 

column entry in Table 5. because C90 asymptotic 

vector performance is not fully reached by vector 

length 300, whereas this length is sufficient for 

asymptotic performance on the RIOS-2. 

The C90's memorv bandwidth is four loads 

and two stores per CP and the RIOS-2's band­

width is four loads or four stores or two loads and 

Table 4. Code Sequence 

CP Instruction Arrav Elements Processed 

0 Load Float Quad \'1(1), V1(2; 

0 Load Float Quad V2(1 ), V2~2) 

LABEL 

1 Load Float Quad \1(3), \'1(4) 

1 Multiply I Add R(1) 

1 Load Float Quad V2(3), V2(4) 

Multiply I Add R(2) 

2 Store Float Quad R(1), R~2) 

2 Branch to LABEL 
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Table 5. Rates (MFLOPS) for Selected Operations as a Function of Vector Length on the 

CRAY C90 

Operation 10 

R = S * V1 33.1 

R = V1 + V2 31.2 

R = V1 + S * V2 58.9 

R = V1 * V2 + V3 52.0 

R = S1 * V1 + S2 * V2 65.2 

R = V1 * V2 + V3 * V 4 62.8 

R = V1 * V2 + V3 * V4 + V.S 91.1 

R = V1 * V2 + V3 * V4 + V5 * V6 84.2 

R = V1 * V2 + V3 * V 4 67.4 

(I= 1,N,23) 

R = V(I:'IID) + S 22.5 

R(IND) = V * V 26.0 

two stores per CP. The ratio of C90 performance 

to RIOS-2 performance (at asymptotic vector 

lengths) is generally (but not always) greatest on 

operations with smaller compute intensities, i.e., 

smaller ratios of FLOPS to loads/stores. 

The most significant performance difference 

between a vector processor such as the C90 and a 

cache-based architecture such as the RIOS-2 ap­

pears in operations in which memory is accessed 

noncontiguously. In Tables 2 and 5 this is shown 

for two operations using indirect addressing. On 

both machines rates for the gather/scatter opera­

tions are considerably lower than the correspond-

80 
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FIGURE 1 Plot of rate (MFLOPS) vs. vector length for 

the operation R(I) = V1(I) * V2(I) + V3(I) * V4(I), I= 

1,N,ISTRIDE, for various values of ISTRIDE on the 

IBM RISC System/6000 model 590 (RIOS-2). 

Loop Length 

25 100 300 1000 

97.6 293.6 350.0 435.7 

88.8 270.1 335.8 380.8 

158.0 545.5 619.5 717.5 

109.6 333.3 342.0 412.7 

161.0 514.4 581.4 645.0 

162.1 498.5 537.9 594.9 

170.6 423.3 428.2 464.5 

188.8 484.5 522.4 585.8 

154.0 376.5 445.9 518.1 

49.9 11":'.6 160.0 181.6 

54.7 90.8 124.4 133.1 

ing contiguous operations, although the RIOS-2 

degradation is worse than that of the CRAY's. 

More significant is the difference between the two 

machines on operations involving constant, non­

unit stride through memory. For the RIOS-2, this 

is shown in Figure 1, a plot of rate versus vector 

length for the operation R = V1 * V2 + V3 * V 4 

for several strides. Processing rates for this opera­

tion on the RIOS-2 can degrade from about 70 

~FLOPS to about 1-2 YIFLOPS because of ex­

cessive data cache misses with strided access. The 

C90 shows no such degradation with odd strides 

(Table 5) because vector registers allow data to be 

loaded with any constant separation in memory 

without penalty. 

4.2 Results Using Application 
Benchmarks 

Table 6 lists execution times for the application 

benchmark codes. Data were obtained in dedi­

cated mode for the workstations but were ob­

tained measuring CPU time (function SECOND) 

during regular timesharing conditions for the C90. 

The timer used on the RISC System/6000s is one 

that measures a real-time clock. For the HP and 

Alpha systems, the routine SECNDS was used, 

which measures user time. Compilers used were 

as follows: RIOS-1: xlf version 1.01; RIOS-2: xlf 

version 3.01; DEC: OSF/1 V1.3ARev 112 DEC 

Fortran X3.3(C2); HP: FTl'\OPP/HP9000 ver­

sion 3.8; CRAY: cf77 version 6.0.0.4. Some of 

the DEC AXP results were obtained in February 
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Table 6. Benchmark Execution Times (seconds) 

Code C90 RIOS-560 RIOS-2 HP735 DEC AXP* DEC AXPt 

MCNP 48.8 127.6 46.1 56.3 51.0 

TWODANT93 32.7 77.8 61.0 100.2 108.5 104.4 

WAVE 34.5 172.0 63.9 122.5 153.9 148.6 

TWODANT915 6.2 119.3 37.9 68.2 70.0 45.2 

HYDRO 5.2 94.3 43.7 51.4 55.3 46.1 

NEUT32 118.9 3786.8 5011.8 3222.0 2602.1 

POP 8.9 263.6 78.8 228.7 186.1 148.6 

PUEBL032 4.8 114.7 52.5 93.2 104.8 83.4 

*DEC 3000/500 (200-~Hz. 512-Kbyte Bcache: DEC Fortran X3.:3(C2). 

t DEC 3000/800 (200-MHz, 2-,\lbyte Bcache; DEC Fortran T.3.4. 

1993. All other data were obtained in August, 

September, and October 1993. 

4.3 Comparison of RIOS-2 and RIOS-1 

The 66.5-YIHz RIOS-2 performance is compared 

with that of the 50-MHz RIOS-1, also known as 

RISC System/6000 model 560. Although the 560 

is not the fastest existing RIOS-1 modeL it is in­

cluded because it is the type of processor currently 

used in a 16-processor cluster at LA!\"L. 

Figure 2 shows relative performance of the two 

machines; the ordinate indicates how much faster 

the RIOS-2 is on each code. Note that there is a 

factor of 1.3 that comes from the difference in the 

CPU speeds. It is interesting that all but one of the 

codes exceed this factor rather substantiallv. The 

exception is TWODANT93, which performs ex­

actly as the clock ratio, and this relatively poor 

performance of the RIOS-2 seems to be compiler 

related. The RIOS-2 "xlf" compiler fails to gener­

ate any load-quadword instructions for the com-

.. 
" c 

'" E 

~ 
G; 
D. 

"' cb 
0 
ii: MCNP lWODANT93 WAVE lWOOANT915 HYlR) 

Code 

FIGURE 2 Relative performance of IBM RISC Sys­

tem/6000 model 590 and IBM RlSC System/6000 

model 560. The vertical axis shows how much faster the 

590 is on each code. 

pute-intensive loops in three subroutines in TWO­

DANT93, and the results from the simple vector 

operations above showed the importance of the 

load-quadword instruction in generating efficient 

RIOS-2 code. Generally, these loops involve fairly 

complicated array-index expressions. 

On the other hand, the nonvectorizable code 

:vlCNP derives some benefit from the RIOS-2 ar­

chitecture, even though it essentially has no loops 

to unroll. Other architectural differences between 

RIOS-1 and RIOS-2, such as faster instruction 

pipeline flush on mispredicted branches and 

higher memory bandwidth (two 64-bit words 

loaded or stored per pipeline as opposed to one 

word per pipeline on RIOS-1 ). contribute to 

MC!\"P performance. 

4.4 Comparison with Other Workstations 

Figures 3 and 4 present comparisons of RIOS-2 

performance with that of the HP735 and DEC 

AXP 3000/500X, respectively. Again, the vertical 

axis in each figure indicates how much faster the 

RIOS-2 is on each code. Note that although both 

of these other workstations use processors whose 

CPU clock rate is 1.5 to 3 times faster than that of 

the RIOS-2, the RIOS-2 runs the application 

codes faster in the majority of cases. Additionally, 

although the peak speed of the RIOS-2 is about 

1.3 times that of the AXP and the HP735, the 

RIOS-2 is more than 1.3 times faster on most of 

the codes. There is only one instance in which the 

RIOS-2's performance is exceeded: l\ECT runs 

faster on the AXP system. Although it is difficult to 

reconcile the exact performance ratios for each 

code, the following points are noted. 

All three machines provide nearly equivalent 

performance on the nonvectorizable YICI\P code. 

The comparison of floating point operation times 

in Table 7 suggests comparable times on all three 
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FIGURE 4 Relative performance of IBM RISC Svs­

teml6000 model 590 and DEC AXP 30001500X. The 

vertical axis shows how much faster the 590 is on each 
code. 

machines for basic operations, although the 

RIOS-2 is significantly slower on divide operations 

and on loads involving cache misses. The times 

listed in Table 7 are operation latencies, i.e., 

start-up periods, after which, assuming favorable 

memory access conditions, results would appear 

at the rate of one per CP. 
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The RIOS-2's dual floating point pipeline ar­

chitecture is optimized for repetitive array compu­

tation and so the RIOS-2 advantage over the other 

workstations is best demonstrated on codes that 

vectorize well. For example, the RIOS-2 is about 

2.5 to 3 times faster than the other workstations 

on the highly vectorizable parallel ocean program 

(POP) ocean model benchmark . 

A significant amount of time in the POP code 

[12, 13] is consumed in two routines that com­

pute five-point and nine-point finite-difference 

"stencils." The five-point stencil mav be ex­

pressed as follows: 

R cci.j * X l.j I.J 

+ CN· * xi.j+l l.j 

+ csi.j * xi.j-1 

+ CEi.i * xi+l.j 

+ cwi.j * Xi-t.i 

Csing the same grid size as in the benchmark code 

the five- and nine-point stencils were timed sepa­

rately on the RIOS-2 and HP735. The results are 

given in Table 8, with single-processor CRAY C90 

data included for comparison. The stencil rates 

suggest why the RIOS-2 is significantly faster than 

the HP735 on the POP code. The rates obtained 

for the RIOS-2 and HP735 are both significantly 

below peak, but much more so for the HP735. 

A significant difference between RIOS-2 and 

the Alpha processor is that the Alpha uses a sec­

ondary, "off-chip" cache to back up its small, 

primary data cache, whereas neither the HP735 

nor the RIOS-2 employs a secondary cache. Thus, 

the two memory latencies listed in Table 7 for the 

AXP system are for data fetched from the primary 

and secondary caches, and for RIOS-2 they are 

for data fetched from the cache and from the main 

memory. The secondary cache helps mitigate the 

effect of large numbers of cache misses that might 

Table 7. Comparison of Floating Point Operation Times 

Add Multiply Divide* 

AXP 30001500X 6 CP 6 CP 61 CP 

30 ns 30 ns 305ns 

HP735 2 CP 2 CP 15 CP 

20 ns 20 ns 151.1ns 

RIOS-2 2 CP 2 CP 17-19 CP 

30 ns .30 ns 255-285 ns 

CRAY C90 6 CP 6 CP 10 CP 

25 ns 25 ns 41.7 ns 

* The divide operation for the C90 is actuallv a reciprocal approximation. 

t Cache hit/cache miss. 

Load 

3 CP/7 CPt 

15 ns I 35 ns 

2 CP 

20 ns 

1 CP I 12 CPt 

15 ns I 180 ns 

2.3 CP 

96 ns 
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Table 8. Performance for Stencil Operations: 

Rates (in MFLOPS) and Percentages of Peak 

Stencil HP735 (%) RIOS-2 (%) C90 (%) 

5-point 11.7 (6.9) 84.9 (32) 640.9 (64) 

9-point 13.7 (6.9) 98.4 (37) 673.5 (67) 

occur because of strided access to arrays (HYDRO 

is an example) or because of poor mapping of very 

large arrays to the primary data cache (NECT is 

an example). HYDRO and 1\'EUT are the two vec­

torizable codes on which DEC AXP performance 

is best relative to the RIOS-2. 

Data from a more recent version of the AXP 

workstation containing the same 200-MHz Alpha 

processor with a larger secondary cache further 

substantiate the effect of cache misses on perfor­

mance of vectorizable codes. The DEC model 

3000/800, with a 2-:Yibyte external cache, was 

announced in October 1993. With the larger 

cache, the AXP and RIOS-2 times are about equal 

for HYDRO and now the AXP is considerably 

faster than the RIOS-2 on l\EUT. 

4.5 Comparison with a Single Processor 
of the CRA Y C90 

Figure 5 presents a comparison of RIOS-2 perfor­

mance with that of a single CRA Y C90 processor, 

but now the vertical axis shows how much faster 

the C90 is on each code. The single C90 processor 

and the RIOS-2 yield equivalent performance on 

MCNP. Two other codes with low levels of vector­

izability run faster on the C90 but the ratio of 

performance for these two codes is less than the 

ratio of the machines' CPs. The remaining codes 

run 6-30 times faster on the C90. 

The relatively poor performance of the RIOS-2 
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FIGURE 5 Relative performance of IB~I RISC Sys­

tem/6000 model 590 and a single processor of the 

CRA Y C90. The vertical axis shows how much faster 

the C90 is on each code. 

on NEUT is most likely due to excessive cache 

misses on the RIOS-2. The time shown for 1'\EUT 

on the RIOS-2 actually represents a tuned version 

of the code. NEUT was originally written for the 

Thinking Machines CM-2 and then translated 

from CM Fortran, which is similar to Fortran 90, 

into Fortran 77 [ 14]. The code vectorizes nearly 

completely, and the predominant vector length is 

about 32,000. On the RIOS-2, the code initially 

ran in 6666.6 seconds, nearly 60 times slower 

than the single C90 processor. The routine-level 

profile on the RIOS-2 showed the most time-con­

suming routine to be one entirely based on rela­

tively straightforward, stride-1 computation. 

However, the four loops in this routine each calcu­

late a series of array-based intermediates, each of 

which is stored to memory, through the cache. 

each loop iteration. By replacing these array inter­

mediates with scalar temporaries, the time to run 

the code decreased by almost a factor of two, to 

3787 seconds. In the restrur:tured version of the 

code this same routine consumes 50% of the exe­

cution time. When measured separately on the 

RIOS-2, the loops of the type found in this routine 

run at about 100 ~FLOPS at short vector lengths 

but performance degrades to about 8 MFLOPS at 

vector length 32769. 

The results for POP [12, 13] also demonstrate 

the tuning process for codes ported from a vector 

architecture to a cache-based architecture such as 

the RIOS-2. POP was also written initially for the 

CM-2 and then translated into Fortran 77. In the 

CM Fortran code, longitude and latitude are dis­

tributed across processors and depth is an "in­

processor" dimension. The CM Fortran compiler 

required that this in-processor array dimension be 

the first of the three dimensions for what is the 

majority of arrays in the code. When this code is 

translated to Fortran 77, inner loops running over 

latitude and longitude are thus nonunit stride 

loops. This version of POP, which is not shown in 

the tables in this article ran in 155 seconds, about 

17 times slower than the single-processor CRA Y 

C90 time. POP was then converted into an imple­

mentation in which the serial depth direction was 

the last of the three. Performance on the RIOS-2 

increased by a factor of two, to the time shown in 

the tables. Of course, there is no difference in per­

formance on the C90 between these two versions 

of the code because C90 performance of nonunit 

stride vectors at asymptotic vector lengths is the 

same as contiguous vector performance. 

This converted version of POP still runs about 

nine times faster on the C90 than on the RIOS-2, 



a factor much larger than the fourfold difference 

in the CPs of the two machines. The primary rea­

son for this is still cache interference, even with 

the stride 1 version of the code. The stencil opera­

tions shown in Table ? above run seven times 

faster on the C90, and this again is likely to be a 

conservative estimate because of the way the sten­

cils are timed. The five-point stencil requires 11 

arrays at about 32,000 words each, which just 

exceeds the RIOS-2 cache capacity. 

Note that the benchmark version of POP in­

cluded here uses a 255 X 12? grid. Actual pro­

duction runs of POP on parallel machines such as 

the Thinking :\fachines CM-5 utilize much larger 

grids (e.g., 1024 X 512) [12]. The 255 X 12? grid 

problem uses about 430 :\ibytes on the RIOS-2 

and is therefore the largest POP problem that can 

be run without using virtual memory. Only one 

code requiring virtual memory on the RIOS-2 was 

timed. The larger version of PCEBLO (using a 64-

cubed grid) ran in about 1400 seconds, compared 

with 52 seconds for the 32-cubed problem. 

Finally, it is interesting to see how RISC Sys­

tem/6000 performance relative to CRAY proces­

sors has improved over the two generations of 

RIOS chip sets. Table 9, which lists relative CRAY 

Y -MP/RIOS-1 and CRAY C90/RIOS-2 perfor­

mance, suggests that there has not been over­

whelming improvement, although note that the 

benchmark data are subject to factors other than 

just processor differences. In particular, improve­

ments in compiler technology on both systems 

probably play an important role. 

5 DISCUSSION 

The IBM RISC Svstem/6000 model 590 ( RIOS-2) 

processor includes several key architectural im-
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provements over the older RIOS-1 systems. The 

RIOS-2 is a well-balanced pipelined processor 

that generally yields better performance on our 

application benchmarks than other high-perfor­

mance microprocessor-based workstations. The 

superscalar nature of the RIOS-2 allows it to per­

form better than microprocessors operating at 

three times its CPC clock speed. Certainly, this 

shows why CPU clock speed alone is ineffective at 

estimating the performance of a given processor 

on real codes. 

The design of microprocessors in the last two or 

three years seems to be proceeding along two 

rather different strategies, one that could be called 

"fast/simple," the other "slow(er)/complex." 

The DEC Alpha is an example of the former be­

cause it runs at very high clock speeds but does 

not allow concurrent execution of more than on~ 

floating point operation. The IB:\1 RIOS is an ex­

ample of the latter; its superscalar nature, i.e., its 

instruction-level parallelism, with a maximum of 

four FLOPS/CP, allows it to achieve high pro­

cessing rates at relatively slower clock speeds. For 

the time being, the RIOS-2 approach seems to be 

best overall, although as shown above, the results 

are highly sensitive to cache effects. Again, White 

et al. [ 5] provide for a more detailed comparison 

of the RIOS-2 and Alpha architectures. 

The RIOS-2, and, indeed, the other micropro­

cessor-based workstations we tested. perfonned 

as well as a single processor of the CRA Y C90 on 

an important :\ionte Carlo code that does not vec­

torize at all. On codes that are partially vectoriza­

ble, the C90 processor is faster, but the RIOS-2 is 

able to achieve performance that is greater than 

the ratio of the CPs of the two machines. This is 

probably due to lower overhead for short vector 

loops on the RIOS-2. 

On highly vectorizable codes with long vector 

Table 9. Relative Performance of Two Generations of IBM RISC 

System/6000 and CRAY Vector Processors* 

Performance of Performance of 

CRA Y Y -.\lP/1 Relative CRA Y C90/1 Relative to 

Code to RIOS-1 (.\lode! 560) RIOS-2 ';.\lode! .')90) 

MC:\P 1 

TWODA:Vf9::3 1.5 1.9 

WAVE 2.6 2.6 

TWODA:\T915 10. () 6.1 

HYDRO :.8 8.-t 

POP 11.6 H.8 

PCEBL032 9.9 10.9 

* Sin§!le processor data. 
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lengths, the single CRAY C90 processor can be 10 

to 30 times faster than the IB~ RIOS-2 processor. 

On such codes, the RIOS-2 experiences low over­

all memory throughput due to poor data cache 

reuse. All microprocessors we have tested suffer 

from this problem to one extent or another. Vec­

torizable codes with nonunit strides through 

memory, with random memory access (scatter/ 

gather), or with uniform, stride-one access to very 

large arrays can reduce floating point perfor­

mance on the RIOS-2 to nearly 10% of its opti­

mal, cache-resident performance. 

This article also suggested some of the changes 

that must be made in existing vectorizable code to 

better optimize for cache-based architectures. 

The results for NEUT suggest that in some cases, 

efforts devoted towards vectorization of codes over 

the last few years must now be put towards "dis­

mantling" of vectorized code for optimal perfor­

mance on cache-based systems. It has been re­

ported that "stripmining" or "blocking" 

optimization techniques may be used to improve 

cache performance, and preprocessing tools now 

attempt to apply these procedures automatically. 

However, it appears at the present time that auto­

matic restructuring may be limited to programs 

involving relatively simple loops, such as matrix 

multiplication. The benchmarks employed here 

contain very little of this. 

The results from the DEC AXP systems also 

show how using a hierarchical cache system can 

improve data bandwidth. Presumably, users can 

expect that the size of secondary caches will con­

tinue to grow (at least in workstation-based sys­

tems; in massively parallel processing systems, 

which often use microprocessors as computa­

tional building blocks, this will not necessarily be 

the case). However, for some codes, even this 

multimegabyte cache is unable to supply data fast 

enough to the 5-ns CP CPU. 

It is interesting to compare the relative perfor­

mance of the C90 and the RIOS-2 by comparing 

their efficiencies, their performance relative to 

their respective peak (per-processor) rates. Such a 

comparison eliminates differences in CPU clock 

speed. To do this we assume that both machines 

are carrying out the same number of FLOPS for 

each code and we use the C90 hardware perfor­

mance monitor to count the FLOPS. These results 

are shown in Table 10, where rates are given in 

MFLOPS. For the C90, the ratio of its maximum 

to minimum efficiency is about 30, and as ex­

pected, its efficiency varies directly with vectoriza­

tion level (see Table 1 ). The RIOS-2 efficiency is 

not as predictable. It reaches a maximum for a 

moderately vectorizable code but is not much 

lower for a highly vectorizable, stride-1 code. Ne­

glecting the result for NECT32, its range is about 

an order of magnitude lower than the C90, sug­

gesting that microprocessors provide a more con­

sistent level of performance than vector processors 

over a range of vectorizability. For vectorization 

levels of about 65% or lower, the RIOS-2 achieves 

a higher percentage of peak performance than the 

C90. For one long vector code, the C90 achieves 

nearly 50% efficiency, more than twice the level of 

the RIOS-2 on this code. Finally, less than 2% 

efficiency is achieved on the RIOS-2 on 1\"ECT 

because of poor data cache performance. 
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APPENDIX 

Description of Benchmark Codes 

POP: A global ocean model developed on the 

Thinking Machines Inc. CM-2 and translated into 

Fortran 77 [12, 13]. POP is based on the Bryan­

Cox-Semtner model but uses reformulated baro­

tropic equations to solve for surface-pressure field 

rather than a volume-transport streamfunction. It 

uses a preconditioned conjugate-gradient solver. 

NEUT: A highly vectorizable Monte Carlo neu­

tron transport code [ 14]. Two problem sizes may 

be run, one starting with 32K neutrons, the other 

with 64K neutrons. NECT represents a Fortran 

77 version of Eldon Linnebur's (LAl\L Group X-

7) Connection Machine Fortran code. 

HYDRO: A two-dimensional Lagrangian hydro­

dynamics code based on an algorithm by W. D. 

Schulz [15]. HYDRO is representative of a large 

class of codes in use at the Laboratory. The code 

is 1 00% vectorizable. A typical problem is run on 

a 100 X 100 mesh for 100 timesteps. An impor­

tant characteristic of the code is that most arrays 

are accessed with a stride equal to the length of 

the grid. 

WAVE: A two-dimensional, relativistic, electro­

magnetic particle-in-cell simulation code used to 

study various plasma phenomena [ 16]. WAVE 

solves Maxwell's equations and particle equations 

of motion on a Cartesian mesh with a variety of 

field and particle boundary conditions. The 

benchmark problem involves 500,000 particles 
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on 50,000 grid points for 20 timesteps; about 4 

MW of memory are required. One routine contain­

ing loops of length 256 and considerable indirect 

addressing dominates the code's run-time. 

TWODANT: A two-dimensional discrete ordi­

nates particle transport code used for neutral par­

ticle transport [17]. It includes a multigrid solver 

and is vectorizable to some extent. Two different 

problems are run that exercise different portions 

of the code. Both problems are three-group source 

multiplication tests. TWODANT915 runs a "k­

calc" computation and TWODANT93 runs a 

source multiplication for a fixed value of k. 

MCNP: A general purpose Monte Carlo particle 

transport code widely used at LAl\L and else­

where [ 18]. The code treats an arbitrary three­

dimensional configuration of materials in geomet­

ric cells bounded by first-, second-, and 

fourth-degree surfaces. The benchmark problem 

transports 5000 source particles. 

PUEBLO: A three-dimensional Lagrangian hy­

drodynamics code used to model point explosions 

in space [19]. The code is highly vectorizable, al-

. though Cray compiler directives are currently in­

cluded. The most common loop length is on the 

order of n·~, where n = 32 for PUEBL032 or 64 for 

PUEBL064. 
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