
Benchmark Tests on the New IBM RISC

System/6000 590 W orl~station

HARVEY J. WASSERMAN

Computer Research Group, Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

The results of benchmark tests on the superscalar IBM RISC System/ 6000 Model 590 are

presented. A set of well-characterized Fortran benchmarks spanning a range of compu­

tational characteristics was used for the study. The data from the 590 system are com­

pared with those from a single-processor CRAY C90 system as well as with other micro­

processor-based systems, such as the Digital Equipment Corporation AXP 3000/500X

and the Hewlett-Packard HP/735. © 1995 John Wiley & Sons, Inc.

1 INTRODUCTION

The IBM RISC System/6000, first introduced in

1990, was an important step in the development

of high-performance microprocessor systems. Cs­

ing a superscalar architecture, the RS/6000

achieved performance on floating point intensive

applications that exceeded most other micropro­

cessor-based workstations and compared favor­

ably with vector processors as well [L 2].

Since 1 990 there have been several new RS/

6000 systems, all with the same design as the orig­

inal ones and with incrementally faster central

processing unit (CPC) clock speeds. !'\ow IB::\1 has

developed a new RISC System, with a more ad­

vanced architecture. The performance of the

RISC Svstem/6000 model 590, as it is known, is

the subject of this article. The performance of the

590 will be compared with the older model RlSC

Svstem 6000/560, with two other contemporarv

high-performance RISC workstations, and with ~
high-end vector processor as well.

Received Januarv 1994
Revised August i 994

e-mail: hjw@lanl.gov

© 1995 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 4, pp. 23-.34 (1995)

CCC 1058-9244/95/010023-12

2 RISC SYSTEM/6000 MODEL 590
ARCHITECTURE

For brevity, model 590 is referred to as the RIOS-

2 and the older system as the RIOS-1. Supersca­

lar means that the RIOS-1 proce,;sor is capable of

issuing four different instructions: a branch, a

conditional, an integer operation, and a floating

point operation each clock period (CP) [3]. Addi­

tionally, RIOS-1 has several floating point instruc­

tions that carry out multiplication and addition

simultaneouslv. The most recent version of RlOS-

1, called the RISC System/6000 model .580, runs

at 62.5 :\1Hz, which implies a theoretical peak

performance of 125 ::\IFLOPS. The most recent

version of RIOS-1 installed at Los Alamos 1'\a­

tional Laboratory at the time of this writing is the

model560, which runs at 50 :\1Hz and has a theo­

retical peak performance of 100 ::\tFLOPS.

The RIOS-2 architecture has basicallv the

same structure as the RIOS-1 but several kev en­

hancements are included. The RIOS-2 processor

chip set includes a second, independent. floating

point pipeline and a second. independent, fixed

point unit. The multiple issue rate has been in­

creased so that RIOS-2 is capable of issuing six

instructions per CP: a conditional. a branch. two

integer, and two floating point instructions. w-ith

the multiplv/add instructions this means a total of

24 WASSERMAN

four floating point operations (FLOPS) per CP.

The clock speed of the RIOS-2 tested is 66.7

MHz. At four FLOPS per CP .. this implies a theo­

retical peak rate of about 267 MFLOPS.

The memory subsystem of the RIOS-2 has also

been improved to keep up with the increased de­

mand caused by the second arithmetic pipeline.

The data bus that feeds both floating point pipe­

lines from the data cache is now four 64-bit words

wide and the compiler can issue "load­

quadword" instructions that will cause two 64-bit

operands to be loaded from memorv. Two such

load-quad (or store-quad or a co~bination of

both) instructions can be active simultaneouslv.

All the RIOS-1 systems could transfer two 64-bit

words from memory to the data cache each CP.

The RIOS-2 data cache can be either 128

Kbytes or 256 Kbytes, up from 32 or 64 Kbytes

for the RIOS-1. Data are loaded into the cache

from memory at the rate of four 64-bit words per

clock cycle for the 128-Kbyte cache and eight 64-

bit words per clock cycle for the 256-Kbyte cache.

The data cache is still four-wav set associative but

the RIOS-2 uses a 256-byte line size.

The instruction length on the RIOS-2 .. like the

RIOS-1, is 32 bits long. The functions of the

branch processor remain the same, except that

the instruction cache, from which the branch pro­

cessor gets its instructions, is now 32 Kbytes, in­

stead of 8 Kbytes as it was on the RIOS-1.

Each of the two floating point units in the

RIOS-2 performs IEEE standard arithmetic and

each has thirty-two 64-bit general purpose regis­

ters. There are thirty-two 32-bit general purpose

registers in each of the fixed point units, which

also support address translation and data protec­

tion.

The RIOS-2 can be equipped with up to 2

Gigabytes of main memory implemented on 16-

Mbit chips. The machine tested had 512 :\ibytes

of memory. Other important differences between

the RIOS-1 and RIOS-2 are floating point conver­

sion to integer in hardware, floating point square

root in hardware, and a new address translation

mechanism.

3 COMPARISON WITH OTHER
ARCHITECTURES

In later sections of this article the performance of

the RIOS-2 will be compared with that of several

other systems, and although detailed explanation

of these other architectures is not possible here, a

few important points are noted. The Digital

Equipment Corp. (DEC) AXP 3000/500X work­

station is based on the "Alpha" microprocessor

running at 200 ~1Hz [4]. The Alpha microproces­

sor is a full 64-bit implementation and is dual­

issue superscalar, but it cannot overlap floating

point additions and multiplies, so its theoretical

peak performance is 200 MFLOPS. Alpha micro­

processors contain an 8 KByte on-chip data cache

with a 32-bvte line size and the AXP 3000/500X

we used als~ has a 512 KByte secondary cache.

(There is no secondary cache in the IBM RISC

System/6000.) A recent article [5] has examined

in great detail the difference between the RIOS-1

and Alpha architectures; much of the discussion

still applies to RIOS-2. The Hewlett Packard

HP735 workstation, at least the second genera­

tion of the HP "Precision Architecture,'' is also

superscalar and can overlap adds and multiplies

[6]. It is currently available at a CPU speed of 99

MHz, which al~o corresponds ·to about 200

MFLOPS peak. The HP735 has a single, off-chip

direct-mapped data cache with a capacity of 256

KBvtes.

The CRA Y C90 is the most recent version of the

Cray Research Inc. line of parallel vector super­

computers [7]. It operates with a CP of 4.17 ns. In

this report only single processor results are in­

cluded, although the machine on which the

benchmarks were run (Serial J\'umber 4001, lo­

cated at Eagan, ::\1N) is a 16-CPC machine.

Within each C90 CPU there are dual floating

point pipelines (total capacity of four FLOPS/CP),

although they operate differently than the two

pipelines in the RIOS-2. The C90 issues a vector

instruction for vector registers of maximum length

128 and the two pipelines operate on every other

element of the vector(s). In the RIOS-2, two sepa­

rate floating point instructions must be issued to

use the dual pipe capability. All operations on the

C90 are carried out in 64-bit precision.

The DEC, HP, and CRAY systems included in

this article for comparison are all older than the

RIOS-2, and it is expected that follow-on prod­

ucts to each will be made available soon.

3.1 Benchmark Codes

As with previous reports, this performance evalu­

ation is based on a set of application benchmark

codes that, in one way or another, represent a por­

tion of the computational workload at the Los Al­

amos National Laboratory (LA]'I;L). Traditionally.

this set of codes has comprised both full applica-

BENCHMARK TESTS 25

Table 1. Characteristics of the Benchmark Codes as Determined by the CRAY

C90 Hardware Performance Monitor

Average Average Hardware Percent Vector

CODE MFLOPS

MCNP 11.6

TWODANT93 54.3

WAVE 77.5

TWODANT915 96.9

HYDRO 177.7

NEUT32 278.0

POP 362.1

PUEBL032 458.4

tion codes as well as smaller and simpler codes

containing selected basic routines or highly sim­

plified versions of applications [8, 9]. However,

this article concentrates largely on full applica­

tions as they might be run in production on tradi­

tional supercomputers. ~uch has been made re­

cently of the potential for high-performance

workstations to replace the conventional super­

computers in production environments [10].

Thus, it is important to compare performance of

such systems on representative application codes

as they might appear in those environments.

Such an approach has already been taken by

other workers. For example, Hendricks and Bries­

meister [11] have reported on workstation perfor­

mance of LAl\L's "YICNP code, a major produc­

tion code widely used for simulation of particle

transport. They reported that workstations com­

pared very favorably with CRAY supercomputers.

However, the computational characteristics of

MCNP are such that it represents but one element

of a spectrum of code characteristics and there-

Vector Length Operations

12.4 0.2

1.5.3 58.8

66.3 63.0

70.4 79.8

92.9 94.4

111.2 96.6

122.9 96.8

119.9 98.2

fore gives a somewhat incomplete picture of rela­

tive supercomputer/workstation performance. In

particular, MCNP is entirely nonvectorizable as

written. In this article we consider MCNP along

with a selection of codes that span a range of vec­

torizability as well as memory-access patterns.

See Table 1 for some relevant statistics and the

Appendix for brief descriptions of the benchmark

codes.

4 RESULTS

4.1 Performance on Elementary
Vector Operations

Table 2 lists performance of selected "vector" op­

erations as a function of "vector" length on the

RIOS-2. In Table 2, "R" and "V" represent array

quantities and S1 and S2 are scalars. Gsing these

relatively simple tests characteristics of the pro­

cessor may be revealed that more complicated ap­

plication benchmarks obscure. In theory these

Table 2. Rates (MFLOPS) for Selected Operations as a Function of Loop Length on

the RIOS-2

Loop Length

Operation 10 2.5 100 300

R = S * V1 38.9 .57.2 80.9 85.2
R = V1 + V2 3:3.1 46.1 67.5 73.8

R = V1 + S * V2 66.4 92.1 1.38.1 147.6

R = V1 * V2 + V3 53.1 72.0 95.4 99.0

R = S1 * V1 + S2 * V2 92.1 124.4 15.3.1 157.6

R = V1 * V2 + V3 * Y4 74.7 90.:3 109.9 113.0

R = \1 * V2 + V3 * V 4 + V5 98.3 1 08.7 118.4 121.2

R = V1 * V2 + Y.3 * V4 + V.S * V6 89.6 104.9 119.0 122.3

R = V(Il\"D) + S 21.4 26.7 27.6 27.8

R(IND) = V * V 17.4 25.9 29.2 29.9

26 WASSERMAN

tests seem straightforward and easy to carry out;

in practice, they are among the most difficult.

Typically we must defeat optimizations the com­

piler has introduced that remove, entirely, the

code we wish to time. ~With the RIOS-2 use of the

variety of compile-line options available caused

significant variations in the results. For example,

it was found that unrolling loops by a factor of four

gave optimal performance for loops involving at

most one FMA instruction (floating point multi­

ply-add) but poorer performance for those involv­

ing more than one FMA. Conversely, unrolling by

eight adversely affected single FMA operations but

increased performance, often substantially, for

multiple FMA operations. Thus, results for the

first four operations of Table 2 were obtained us­

ing one set of compiler options and those in the

lower portion were obtained using another.

It is important to note that these tests exercise

the floating point processor/memory system while

keeping data resident in cache, and thus they

present an upper-bound estimate of processor

performance. To obtain a measurable time for

each loop, it is repeated until one million total

operations are performed. In so doing, only the

first load instruction unconditionallv fetches from

memory; the rest may load from cache. This is

done to understand the maximum rate at which

the CPC can produce results using compiled code.

As an example, consider the SAXPY operation

(R = V1 + S * V2), which demonstrates the im­

portance of loop unrolling on a multi pipeline RISC

architecture. Without unrolling, the IR\1 Fortran

compiling system does not generate load­

quadword instructim;s. The sequence of pseu­

doinstructions for floating point operations gener­

ated is shown in Table 3 where "double" refers to

a 64-bit word. The instructions that occur on CP

0 are part of the loop start-up. This code se­

quence does not use the RIOS-2's second floating

Table 3. Sequence of Pseudo Instructions

CP Instruction Array Elements Processed

() Load Float Double \'1~1)

0 Load Float Double V2(1)

LABEL

1 Load Float Double \'1 (2)

1 ::\Iultiply I Add R(1;

2 Store Float Double R(1)

2 Load Float Double V2(2)

2 Branch to LABEL

point pipeline. It produces one multiply/add

result each two CPs, which corresponds to a rate

of 66 .MFLOPS. If SAXPY is timed on RIOS-2

without unrolling it about 65 ::\1FLOPS are ob­

served.

Now using a preprocessor directive the loop will

be unrolled to a depth of two. The code sequence

in this case is shown in Table 4. ~ow both floating

point pipelines are active. In CP 1 two F::\1A oper­

ations occur simultaneously with load operations

for four array elements to be used in the following

iteration. Two multiply/add results (four FLOPS)

are produced in two CPs corresponding to a rate

of 133 ~MFLOPS. About 127 .MFLOPS are ob­

served. However, this code sequence does not

fully utilize the memory bandwidth of the RIOS-2,

because CP 2 only stores two words. Cnrolling by

eight yields a code sequence in which 8 FLOPS

are produced in three CPs. for a predicted rate of

177 MFLOPS. However. only about 150

MFLOPS are observed. The disparity probably

results from a combination of register spilling and

insufficient store back buffer throughput.

For comparison purposes, Table 5 lists rates

for selected operations from a single processor of

the CRA Y C90. There is not much difference be­

tween the C90 and RIOS-2 performance on loops

with very short vector lengths: however. the ob­

served rates for these lengths (especially on the

C90) are subject to greater measurement errors

because the loop times are on the same order as

the timer overhead. Kote also the additional

column entry in Table 5. because C90 asymptotic

vector performance is not fully reached by vector

length 300, whereas this length is sufficient for

asymptotic performance on the RIOS-2.

The C90's memorv bandwidth is four loads

and two stores per CP and the RIOS-2's band­

width is four loads or four stores or two loads and

Table 4. Code Sequence

CP Instruction Arrav Elements Processed

0 Load Float Quad \'1(1), V1(2;

0 Load Float Quad V2(1), V2~2)

LABEL

1 Load Float Quad \1(3), \'1(4)

1 Multiply I Add R(1)

1 Load Float Quad V2(3), V2(4)

Multiply I Add R(2)

2 Store Float Quad R(1), R~2)

2 Branch to LABEL

BENCHMARK TESTS 27

Table 5. Rates (MFLOPS) for Selected Operations as a Function of Vector Length on the

CRAY C90

Operation 10

R = S * V1 33.1

R = V1 + V2 31.2

R = V1 + S * V2 58.9

R = V1 * V2 + V3 52.0

R = S1 * V1 + S2 * V2 65.2

R = V1 * V2 + V3 * V 4 62.8

R = V1 * V2 + V3 * V4 + V.S 91.1

R = V1 * V2 + V3 * V4 + V5 * V6 84.2

R = V1 * V2 + V3 * V 4 67.4

(I= 1,N,23)

R = V(I:'IID) + S 22.5

R(IND) = V * V 26.0

two stores per CP. The ratio of C90 performance

to RIOS-2 performance (at asymptotic vector

lengths) is generally (but not always) greatest on

operations with smaller compute intensities, i.e.,

smaller ratios of FLOPS to loads/stores.

The most significant performance difference

between a vector processor such as the C90 and a

cache-based architecture such as the RIOS-2 ap­

pears in operations in which memory is accessed

noncontiguously. In Tables 2 and 5 this is shown

for two operations using indirect addressing. On

both machines rates for the gather/scatter opera­

tions are considerably lower than the correspond-

80

70

Ui 60
11.
0
...I 50
IL

E§.
40

Stride-4

G)

-; 30
a:

20

10

0
0 200 400 600 BOO 1000 1200

Vector Length

FIGURE 1 Plot of rate (MFLOPS) vs. vector length for

the operation R(I) = V1(I) * V2(I) + V3(I) * V4(I), I=

1,N,ISTRIDE, for various values of ISTRIDE on the

IBM RISC System/6000 model 590 (RIOS-2).

Loop Length

25 100 300 1000

97.6 293.6 350.0 435.7

88.8 270.1 335.8 380.8

158.0 545.5 619.5 717.5

109.6 333.3 342.0 412.7

161.0 514.4 581.4 645.0

162.1 498.5 537.9 594.9

170.6 423.3 428.2 464.5

188.8 484.5 522.4 585.8

154.0 376.5 445.9 518.1

49.9 11":'.6 160.0 181.6

54.7 90.8 124.4 133.1

ing contiguous operations, although the RIOS-2

degradation is worse than that of the CRAY's.

More significant is the difference between the two

machines on operations involving constant, non­

unit stride through memory. For the RIOS-2, this

is shown in Figure 1, a plot of rate versus vector

length for the operation R = V1 * V2 + V3 * V 4

for several strides. Processing rates for this opera­

tion on the RIOS-2 can degrade from about 70

~FLOPS to about 1-2 YIFLOPS because of ex­

cessive data cache misses with strided access. The

C90 shows no such degradation with odd strides

(Table 5) because vector registers allow data to be

loaded with any constant separation in memory

without penalty.

4.2 Results Using Application
Benchmarks

Table 6 lists execution times for the application

benchmark codes. Data were obtained in dedi­

cated mode for the workstations but were ob­

tained measuring CPU time (function SECOND)

during regular timesharing conditions for the C90.

The timer used on the RISC System/6000s is one

that measures a real-time clock. For the HP and

Alpha systems, the routine SECNDS was used,

which measures user time. Compilers used were

as follows: RIOS-1: xlf version 1.01; RIOS-2: xlf

version 3.01; DEC: OSF/1 V1.3ARev 112 DEC

Fortran X3.3(C2); HP: FTl'\OPP/HP9000 ver­

sion 3.8; CRAY: cf77 version 6.0.0.4. Some of

the DEC AXP results were obtained in February

28 WASSERMAN

Table 6. Benchmark Execution Times (seconds)

Code C90 RIOS-560 RIOS-2 HP735 DEC AXP* DEC AXPt

MCNP 48.8 127.6 46.1 56.3 51.0

TWODANT93 32.7 77.8 61.0 100.2 108.5 104.4

WAVE 34.5 172.0 63.9 122.5 153.9 148.6

TWODANT915 6.2 119.3 37.9 68.2 70.0 45.2

HYDRO 5.2 94.3 43.7 51.4 55.3 46.1

NEUT32 118.9 3786.8 5011.8 3222.0 2602.1

POP 8.9 263.6 78.8 228.7 186.1 148.6

PUEBL032 4.8 114.7 52.5 93.2 104.8 83.4

*DEC 3000/500 (200-~Hz. 512-Kbyte Bcache: DEC Fortran X3.:3(C2).

t DEC 3000/800 (200-MHz, 2-,\lbyte Bcache; DEC Fortran T.3.4.

1993. All other data were obtained in August,

September, and October 1993.

4.3 Comparison of RIOS-2 and RIOS-1

The 66.5-YIHz RIOS-2 performance is compared

with that of the 50-MHz RIOS-1, also known as

RISC System/6000 model 560. Although the 560

is not the fastest existing RIOS-1 modeL it is in­

cluded because it is the type of processor currently

used in a 16-processor cluster at LA!\"L.

Figure 2 shows relative performance of the two

machines; the ordinate indicates how much faster

the RIOS-2 is on each code. Note that there is a

factor of 1.3 that comes from the difference in the

CPU speeds. It is interesting that all but one of the

codes exceed this factor rather substantiallv. The

exception is TWODANT93, which performs ex­

actly as the clock ratio, and this relatively poor

performance of the RIOS-2 seems to be compiler

related. The RIOS-2 "xlf" compiler fails to gener­

ate any load-quadword instructions for the com-

..
" c

'" E

~
G;
D.

"' cb
0
ii: MCNP lWODANT93 WAVE lWOOANT915 HYlR)

Code

FIGURE 2 Relative performance of IBM RISC Sys­

tem/6000 model 590 and IBM RlSC System/6000

model 560. The vertical axis shows how much faster the

590 is on each code.

pute-intensive loops in three subroutines in TWO­

DANT93, and the results from the simple vector

operations above showed the importance of the

load-quadword instruction in generating efficient

RIOS-2 code. Generally, these loops involve fairly

complicated array-index expressions.

On the other hand, the nonvectorizable code

:vlCNP derives some benefit from the RIOS-2 ar­

chitecture, even though it essentially has no loops

to unroll. Other architectural differences between

RIOS-1 and RIOS-2, such as faster instruction

pipeline flush on mispredicted branches and

higher memory bandwidth (two 64-bit words

loaded or stored per pipeline as opposed to one

word per pipeline on RIOS-1). contribute to

MC!\"P performance.

4.4 Comparison with Other Workstations

Figures 3 and 4 present comparisons of RIOS-2

performance with that of the HP735 and DEC

AXP 3000/500X, respectively. Again, the vertical

axis in each figure indicates how much faster the

RIOS-2 is on each code. Note that although both

of these other workstations use processors whose

CPU clock rate is 1.5 to 3 times faster than that of

the RIOS-2, the RIOS-2 runs the application

codes faster in the majority of cases. Additionally,

although the peak speed of the RIOS-2 is about

1.3 times that of the AXP and the HP735, the

RIOS-2 is more than 1.3 times faster on most of

the codes. There is only one instance in which the

RIOS-2's performance is exceeded: l\ECT runs

faster on the AXP system. Although it is difficult to

reconcile the exact performance ratios for each

code, the following points are noted.

All three machines provide nearly equivalent

performance on the nonvectorizable YICI\P code.

The comparison of floating point operation times

in Table 7 suggests comparable times on all three

Gl
u
c ..

4.0 E

~ 3.5
;;;

3.0
D.

It)
2.5 ..
2.0

D.
J: 1.5

..... 1.0

N 0.5
cb
0 0.0
a: MCNP TWODANT93 WAVE TWODANT915 H\liD NEUT32 fU' PUEBI.Cil2

Code

FIGURE 3 Relative performance of IBM RISC Sys­

teml6000 model 590 and IIP735. The vertical axis

shows how much faster the 590 is on each code.

Gl 4.0
u
c .. 3.5
E

~ 3.0

;;; 2.5
D.

D. 2.0
><
<(1.5

1.0
N

cb 0.5
0
a: 0.0

MCNP TWODANT93 WAVE TWODANT915 H\00:) NEUT32 fU' PUEBI.Cil2

Code

FIGURE 4 Relative performance of IBM RISC Svs­

teml6000 model 590 and DEC AXP 30001500X. The

vertical axis shows how much faster the 590 is on each
code.

machines for basic operations, although the

RIOS-2 is significantly slower on divide operations

and on loads involving cache misses. The times

listed in Table 7 are operation latencies, i.e.,

start-up periods, after which, assuming favorable

memory access conditions, results would appear

at the rate of one per CP.

BENCHMARK TESTS 29

The RIOS-2's dual floating point pipeline ar­

chitecture is optimized for repetitive array compu­

tation and so the RIOS-2 advantage over the other

workstations is best demonstrated on codes that

vectorize well. For example, the RIOS-2 is about

2.5 to 3 times faster than the other workstations

on the highly vectorizable parallel ocean program

(POP) ocean model benchmark .

A significant amount of time in the POP code

[12, 13] is consumed in two routines that com­

pute five-point and nine-point finite-difference

"stencils." The five-point stencil mav be ex­

pressed as follows:

R cci.j * X l.j I.J

+ CN· * xi.j+l l.j

+ csi.j * xi.j-1

+ CEi.i * xi+l.j

+ cwi.j * Xi-t.i

Csing the same grid size as in the benchmark code

the five- and nine-point stencils were timed sepa­

rately on the RIOS-2 and HP735. The results are

given in Table 8, with single-processor CRAY C90

data included for comparison. The stencil rates

suggest why the RIOS-2 is significantly faster than

the HP735 on the POP code. The rates obtained

for the RIOS-2 and HP735 are both significantly

below peak, but much more so for the HP735.

A significant difference between RIOS-2 and

the Alpha processor is that the Alpha uses a sec­

ondary, "off-chip" cache to back up its small,

primary data cache, whereas neither the HP735

nor the RIOS-2 employs a secondary cache. Thus,

the two memory latencies listed in Table 7 for the

AXP system are for data fetched from the primary

and secondary caches, and for RIOS-2 they are

for data fetched from the cache and from the main

memory. The secondary cache helps mitigate the

effect of large numbers of cache misses that might

Table 7. Comparison of Floating Point Operation Times

Add Multiply Divide*

AXP 30001500X 6 CP 6 CP 61 CP

30 ns 30 ns 305ns

HP735 2 CP 2 CP 15 CP

20 ns 20 ns 151.1ns

RIOS-2 2 CP 2 CP 17-19 CP

30 ns .30 ns 255-285 ns

CRAY C90 6 CP 6 CP 10 CP

25 ns 25 ns 41.7 ns

* The divide operation for the C90 is actuallv a reciprocal approximation.

t Cache hit/cache miss.

Load

3 CP/7 CPt

15 ns I 35 ns

2 CP

20 ns

1 CP I 12 CPt

15 ns I 180 ns

2.3 CP

96 ns

30 WASSERMAN

Table 8. Performance for Stencil Operations:

Rates (in MFLOPS) and Percentages of Peak

Stencil HP735 (%) RIOS-2 (%) C90 (%)

5-point 11.7 (6.9) 84.9 (32) 640.9 (64)

9-point 13.7 (6.9) 98.4 (37) 673.5 (67)

occur because of strided access to arrays (HYDRO

is an example) or because of poor mapping of very

large arrays to the primary data cache (NECT is

an example). HYDRO and 1\'EUT are the two vec­

torizable codes on which DEC AXP performance

is best relative to the RIOS-2.

Data from a more recent version of the AXP

workstation containing the same 200-MHz Alpha

processor with a larger secondary cache further

substantiate the effect of cache misses on perfor­

mance of vectorizable codes. The DEC model

3000/800, with a 2-:Yibyte external cache, was

announced in October 1993. With the larger

cache, the AXP and RIOS-2 times are about equal

for HYDRO and now the AXP is considerably

faster than the RIOS-2 on l\EUT.

4.5 Comparison with a Single Processor
of the CRA Y C90

Figure 5 presents a comparison of RIOS-2 perfor­

mance with that of a single CRA Y C90 processor,

but now the vertical axis shows how much faster

the C90 is on each code. The single C90 processor

and the RIOS-2 yield equivalent performance on

MCNP. Two other codes with low levels of vector­

izability run faster on the C90 but the ratio of

performance for these two codes is less than the

ratio of the machines' CPs. The remaining codes

run 6-30 times faster on the C90.

The relatively poor performance of the RIOS-2

Cll
0
1:

35

01

E 30

0
't: 25
Cll

11. 20
N

u, 15
0
a: 10

5
0

"' 0 (.)
I£NP TWOOANT93 WAVE TWODANT915 H'IIRl NEUT32 Fa' PUEB1.032

Code

FIGURE 5 Relative performance of IB~I RISC Sys­

tem/6000 model 590 and a single processor of the

CRA Y C90. The vertical axis shows how much faster

the C90 is on each code.

on NEUT is most likely due to excessive cache

misses on the RIOS-2. The time shown for 1'\EUT

on the RIOS-2 actually represents a tuned version

of the code. NEUT was originally written for the

Thinking Machines CM-2 and then translated

from CM Fortran, which is similar to Fortran 90,

into Fortran 77 [14]. The code vectorizes nearly

completely, and the predominant vector length is

about 32,000. On the RIOS-2, the code initially

ran in 6666.6 seconds, nearly 60 times slower

than the single C90 processor. The routine-level

profile on the RIOS-2 showed the most time-con­

suming routine to be one entirely based on rela­

tively straightforward, stride-1 computation.

However, the four loops in this routine each calcu­

late a series of array-based intermediates, each of

which is stored to memory, through the cache.

each loop iteration. By replacing these array inter­

mediates with scalar temporaries, the time to run

the code decreased by almost a factor of two, to

3787 seconds. In the restrur:tured version of the

code this same routine consumes 50% of the exe­

cution time. When measured separately on the

RIOS-2, the loops of the type found in this routine

run at about 100 ~FLOPS at short vector lengths

but performance degrades to about 8 MFLOPS at

vector length 32769.

The results for POP [12, 13] also demonstrate

the tuning process for codes ported from a vector

architecture to a cache-based architecture such as

the RIOS-2. POP was also written initially for the

CM-2 and then translated into Fortran 77. In the

CM Fortran code, longitude and latitude are dis­

tributed across processors and depth is an "in­

processor" dimension. The CM Fortran compiler

required that this in-processor array dimension be

the first of the three dimensions for what is the

majority of arrays in the code. When this code is

translated to Fortran 77, inner loops running over

latitude and longitude are thus nonunit stride

loops. This version of POP, which is not shown in

the tables in this article ran in 155 seconds, about

17 times slower than the single-processor CRA Y

C90 time. POP was then converted into an imple­

mentation in which the serial depth direction was

the last of the three. Performance on the RIOS-2

increased by a factor of two, to the time shown in

the tables. Of course, there is no difference in per­

formance on the C90 between these two versions

of the code because C90 performance of nonunit

stride vectors at asymptotic vector lengths is the

same as contiguous vector performance.

This converted version of POP still runs about

nine times faster on the C90 than on the RIOS-2,

a factor much larger than the fourfold difference

in the CPs of the two machines. The primary rea­

son for this is still cache interference, even with

the stride 1 version of the code. The stencil opera­

tions shown in Table ? above run seven times

faster on the C90, and this again is likely to be a

conservative estimate because of the way the sten­

cils are timed. The five-point stencil requires 11

arrays at about 32,000 words each, which just

exceeds the RIOS-2 cache capacity.

Note that the benchmark version of POP in­

cluded here uses a 255 X 12? grid. Actual pro­

duction runs of POP on parallel machines such as

the Thinking :\fachines CM-5 utilize much larger

grids (e.g., 1024 X 512) [12]. The 255 X 12? grid

problem uses about 430 :\ibytes on the RIOS-2

and is therefore the largest POP problem that can

be run without using virtual memory. Only one

code requiring virtual memory on the RIOS-2 was

timed. The larger version of PCEBLO (using a 64-

cubed grid) ran in about 1400 seconds, compared

with 52 seconds for the 32-cubed problem.

Finally, it is interesting to see how RISC Sys­

tem/6000 performance relative to CRAY proces­

sors has improved over the two generations of

RIOS chip sets. Table 9, which lists relative CRAY

Y -MP/RIOS-1 and CRAY C90/RIOS-2 perfor­

mance, suggests that there has not been over­

whelming improvement, although note that the

benchmark data are subject to factors other than

just processor differences. In particular, improve­

ments in compiler technology on both systems

probably play an important role.

5 DISCUSSION

The IBM RISC Svstem/6000 model 590 (RIOS-2)

processor includes several key architectural im-

BE~CHMARK TESTS 31

provements over the older RIOS-1 systems. The

RIOS-2 is a well-balanced pipelined processor

that generally yields better performance on our

application benchmarks than other high-perfor­

mance microprocessor-based workstations. The

superscalar nature of the RIOS-2 allows it to per­

form better than microprocessors operating at

three times its CPC clock speed. Certainly, this

shows why CPU clock speed alone is ineffective at

estimating the performance of a given processor

on real codes.

The design of microprocessors in the last two or

three years seems to be proceeding along two

rather different strategies, one that could be called

"fast/simple," the other "slow(er)/complex."

The DEC Alpha is an example of the former be­

cause it runs at very high clock speeds but does

not allow concurrent execution of more than on~

floating point operation. The IB:\1 RIOS is an ex­

ample of the latter; its superscalar nature, i.e., its

instruction-level parallelism, with a maximum of

four FLOPS/CP, allows it to achieve high pro­

cessing rates at relatively slower clock speeds. For

the time being, the RIOS-2 approach seems to be

best overall, although as shown above, the results

are highly sensitive to cache effects. Again, White

et al. [5] provide for a more detailed comparison

of the RIOS-2 and Alpha architectures.

The RIOS-2, and, indeed, the other micropro­

cessor-based workstations we tested. perfonned

as well as a single processor of the CRA Y C90 on

an important :\ionte Carlo code that does not vec­

torize at all. On codes that are partially vectoriza­

ble, the C90 processor is faster, but the RIOS-2 is

able to achieve performance that is greater than

the ratio of the CPs of the two machines. This is

probably due to lower overhead for short vector

loops on the RIOS-2.

On highly vectorizable codes with long vector

Table 9. Relative Performance of Two Generations of IBM RISC

System/6000 and CRAY Vector Processors*

Performance of Performance of

CRA Y Y -.\lP/1 Relative CRA Y C90/1 Relative to

Code to RIOS-1 (.\lode! 560) RIOS-2 ';.\lode! .')90)

MC:\P 1

TWODA:Vf9::3 1.5 1.9

WAVE 2.6 2.6

TWODA:\T915 10. () 6.1

HYDRO :.8 8.-t

POP 11.6 H.8

PCEBL032 9.9 10.9

* Sin§!le processor data.

32 WASSERMAN

lengths, the single CRAY C90 processor can be 10

to 30 times faster than the IB~ RIOS-2 processor.

On such codes, the RIOS-2 experiences low over­

all memory throughput due to poor data cache

reuse. All microprocessors we have tested suffer

from this problem to one extent or another. Vec­

torizable codes with nonunit strides through

memory, with random memory access (scatter/

gather), or with uniform, stride-one access to very

large arrays can reduce floating point perfor­

mance on the RIOS-2 to nearly 10% of its opti­

mal, cache-resident performance.

This article also suggested some of the changes

that must be made in existing vectorizable code to

better optimize for cache-based architectures.

The results for NEUT suggest that in some cases,

efforts devoted towards vectorization of codes over

the last few years must now be put towards "dis­

mantling" of vectorized code for optimal perfor­

mance on cache-based systems. It has been re­

ported that "stripmining" or "blocking"

optimization techniques may be used to improve

cache performance, and preprocessing tools now

attempt to apply these procedures automatically.

However, it appears at the present time that auto­

matic restructuring may be limited to programs

involving relatively simple loops, such as matrix

multiplication. The benchmarks employed here

contain very little of this.

The results from the DEC AXP systems also

show how using a hierarchical cache system can

improve data bandwidth. Presumably, users can

expect that the size of secondary caches will con­

tinue to grow (at least in workstation-based sys­

tems; in massively parallel processing systems,

which often use microprocessors as computa­

tional building blocks, this will not necessarily be

the case). However, for some codes, even this

multimegabyte cache is unable to supply data fast

enough to the 5-ns CP CPU.

It is interesting to compare the relative perfor­

mance of the C90 and the RIOS-2 by comparing

their efficiencies, their performance relative to

their respective peak (per-processor) rates. Such a

comparison eliminates differences in CPU clock

speed. To do this we assume that both machines

are carrying out the same number of FLOPS for

each code and we use the C90 hardware perfor­

mance monitor to count the FLOPS. These results

are shown in Table 10, where rates are given in

MFLOPS. For the C90, the ratio of its maximum

to minimum efficiency is about 30, and as ex­

pected, its efficiency varies directly with vectoriza­

tion level (see Table 1). The RIOS-2 efficiency is

not as predictable. It reaches a maximum for a

moderately vectorizable code but is not much

lower for a highly vectorizable, stride-1 code. Ne­

glecting the result for NECT32, its range is about

an order of magnitude lower than the C90, sug­

gesting that microprocessors provide a more con­

sistent level of performance than vector processors

over a range of vectorizability. For vectorization

levels of about 65% or lower, the RIOS-2 achieves

a higher percentage of peak performance than the

C90. For one long vector code, the C90 achieves

nearly 50% efficiency, more than twice the level of

the RIOS-2 on this code. Finally, less than 2%

efficiency is achieved on the RIOS-2 on 1\"ECT

because of poor data cache performance.

ACKNOWLEDGMENTS

The IBM RISC System/6000 model590 on which

these studies were performed was made available

through a beta-test agreement between Los Ala­

mos National Laboratory (LAJ\"L) and Interna­

tional Business Machines Corporation. We thank

Shirley Grider and Tung Nguyen of IBYI for insti­

tuting this agreement and for many helpful techni-

Table 10. Comparison of RIOS-2 and C90 Processing Efficiency

Estimated Observed

RIOS-2 C90 RIOS-2 C90

Code Rate (MFLOPS) Rate (MFLOPS) % Peak % Peak

MCNP 12.3 11.6 4.6 1.5

TWODANT93 29.9 54.3 11.2 5.4

WAVE 53.8 77.5 20.2 7.7

TWODANT915 18.7 96.9 7.0 9.7

HYDRO 20.5 177.7 7.7 17.8

NEUT 4.6 278.1 1.7 27.8

POP 39.1 362.1 14.7 36.2

PUEBLO 43.0 458.4 16.2 45.8

cal discussions. We also thank Ann Hayes, Jerry

Delapp, Dave Rich, and Andy White of the LANL

Advanced Computing Laboratory for making gen­

erous availability of ACL resources. We thank

Ciao Dau and John Shakshober of Digital Equip­

ment Corp. for making generous availability of

AXP workstation time and for their own efforts in

helping us run codes and explain the results. We

thank Stan Barr of Hewlett Packard for his efforts

in optimizing the codes for the HP735, Margaret

Simmons of LANL for measuring the time for

MCNP on the C90 and providing a detailed de­

scription of RIOS-2 architecture, and we thank

Olaf Lubeck and Jim Moore (LANL) for many

helpful discussions. Finally, we thank Mr. Samuel

Kortas of LANL for providing us with his version

of the POP code.

APPENDIX

Description of Benchmark Codes

POP: A global ocean model developed on the

Thinking Machines Inc. CM-2 and translated into

Fortran 77 [12, 13]. POP is based on the Bryan­

Cox-Semtner model but uses reformulated baro­

tropic equations to solve for surface-pressure field

rather than a volume-transport streamfunction. It

uses a preconditioned conjugate-gradient solver.

NEUT: A highly vectorizable Monte Carlo neu­

tron transport code [14]. Two problem sizes may

be run, one starting with 32K neutrons, the other

with 64K neutrons. NECT represents a Fortran

77 version of Eldon Linnebur's (LAl\L Group X-

7) Connection Machine Fortran code.

HYDRO: A two-dimensional Lagrangian hydro­

dynamics code based on an algorithm by W. D.

Schulz [15]. HYDRO is representative of a large

class of codes in use at the Laboratory. The code

is 1 00% vectorizable. A typical problem is run on

a 100 X 100 mesh for 100 timesteps. An impor­

tant characteristic of the code is that most arrays

are accessed with a stride equal to the length of

the grid.

WAVE: A two-dimensional, relativistic, electro­

magnetic particle-in-cell simulation code used to

study various plasma phenomena [16]. WAVE

solves Maxwell's equations and particle equations

of motion on a Cartesian mesh with a variety of

field and particle boundary conditions. The

benchmark problem involves 500,000 particles

BENCHMARK TESTS 33

on 50,000 grid points for 20 timesteps; about 4

MW of memory are required. One routine contain­

ing loops of length 256 and considerable indirect

addressing dominates the code's run-time.

TWODANT: A two-dimensional discrete ordi­

nates particle transport code used for neutral par­

ticle transport [17]. It includes a multigrid solver

and is vectorizable to some extent. Two different

problems are run that exercise different portions

of the code. Both problems are three-group source

multiplication tests. TWODANT915 runs a "k­

calc" computation and TWODANT93 runs a

source multiplication for a fixed value of k.

MCNP: A general purpose Monte Carlo particle

transport code widely used at LAl\L and else­

where [18]. The code treats an arbitrary three­

dimensional configuration of materials in geomet­

ric cells bounded by first-, second-, and

fourth-degree surfaces. The benchmark problem

transports 5000 source particles.

PUEBLO: A three-dimensional Lagrangian hy­

drodynamics code used to model point explosions

in space [19]. The code is highly vectorizable, al-

. though Cray compiler directives are currently in­

cluded. The most common loop length is on the

order of n·~, where n = 32 for PUEBL032 or 64 for

PUEBL064.

REFERENCES

[1] M. L. Simmons and H. J. Wasserman, "Los Ala­

mos experiences with the IB.\1 RISC System/6000

workstations," Los Alamos .\lational Laboratory

Report LA-11831-MS, March 1990.

[2] M. L. Simmons and H. J. Wasserman, Proceed­

ings of Supercomputing '90. Los Alamitos, CA:

IEEE Computer Society Press, 1990, pp. 142-

152.

[3] IBM RISC System/6000 Technology, Interna­

tional Business Machines Corp Book SA23-2619,

IBM, Austin, TX, 1990.

[4] R. Sites, ed. Alpha Architecture Reference Man­

ual. Burlington, MA: Digital Equipment Corp.

Press, 1992, Document :"io. EY -L520E-DP.

[5] S. W. White, P. D. Hester, J. W. Kemp, and G. J.
McWilliams, "How does processor .\1Hz relate to

end-user performance?" IEEE .Micro, pp. 8-16,

1993.

[6] .\1. Forsyth, S. Magebdorf, E. DeLano, C. Glea­

son, and J. Yetter, Compean Spring '91 Digest of

Papers. Los Alamitos, CA: IEEE Computer Soci­

ety.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

