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“ In the end, a theory is accepted not because it is confirmed by conventional em-

pirical tests, but because researchers persuade one another that the theory is correct and

relevant. ”

Fischer Black



Abstract

This work debates several approaches to solve the benchmark tracking problems and

introduces different orders of stochastic dominance constraints in the decisional process.

Portfolio managers usually address with the problem to compare their performance

with a given benchmark. In this work, we propose different solutions for index track-

ing, enhanced indexation and active managing strategies. Firstly, we introduce a linear

measure to deal with the passive strategy problem analyzing its impact in the index

tracking formulation. This measure results to be not only theoretically suitable but

also it empirically improves the solution the results. Then, proposing realistic enhanced

indexation strategies, we show how to solve this problem minimizing a linear dispersion

measure. Secondly, we generalize the idea to consider a functional in the tracking er-

ror problem considering the class of dilation, expected bounded risk measures and Lp

compound metric. We formulate different metrics for the benchmark tracking problem

and we introduce linear formulation constraints to construct portfolio which maximizes

the preference of non-satiable risk averse investors with positive skewness developing

the concept of stochastic investment chain. Thirdly, active strategies are proposed to

maximize the performances of portfolio managers according with different investor’s

preferences. Thus, we introduce linear programming portfolio selection models maxi-

mizing four performance measures and evaluate the impact of the stochastic dominance

constraints in the ex-post final wealth.

Keywords: Benchmark tracking problem, dispersion measure of tracking error,

performance measure, linear programming, stochstic dominance constraints.
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Chapter 1

Introduction

1.1 Motivation

The financial world is complex and cannot be easily understood. Getting out of it

becomes a demanding effort also for the best of the practitioner since financial markets

represent a thick and savage jungle for most of the people who work in the financial

industry. Economists have given great attention to test the concept of market efficiency

and rationality. However, agents have unstable and unpredictable preferences and they

do not make rational choices with them1. For this reason, the problem of choice is

still a challenging issue for the financial agents or investors since “it is often said that

investment management is an art, not a science” (Fabozzi, 2012).

The XXI century seems to represent a clear empirical example of the complexity

of financial markets and their imperfections. Since the introduction of the financial

modelling in the 1980s to price the financial derivatives (Schoutens, 2003), the level of

complexity of the markets has forcefully increased, generating the so called “Century

of crisis”. In fact, the first decade of XXI century will always be remembered as the

1Financial literature assume agents with constant preferences. However, empirical evidences in the

financial markets show the presence of contagious enthusiasm or worries among different kind of investors.

1



Chapter 1. Introduction 2

most dramatic economic and financial period in history. Three different crises marked

these years: the Dot-com speculative Bubble in 2001-2002 (started in March 2000), the

sub-prime mortage crisis in 2007-2009 and the following Eurozone sovereign debt crisis

and economic recession.

The Dot-com Bubble had already begun when people forged the term “information

superhighway” in the early 1990s. The Bubble was a stock market bubble created by a

period of investment and speculation in Internet firms that occurred between 1995 and

2001 and that popped with near-devastating effect in 2001, as broadly documented by

(Ofek and Richardson, 2003). The year 1995 marked the beginning of a major jump

in growth of Internet users who were seen by companies as potential consumers. As

a result, many Internet start-ups were born in the mid and late 1990s and their IPOs

emerged with ferocity and frequency, sweeping the nation up in euphoria. In 1999 there

were 457 IPOs in the US market, most of which were Internet and technology related.

Of these 457 IPOs, 117 doubled in price on the first day of trading. In 2001, the number

of IPOs dwindled to 76 and none of them doubled on the first day of trading (Ljungqvist

and Wilhelm, 2003). It is clear the presence of a significant bubble in the price of the

Dot-com price characterized by high volatility. Few months later the prices suddenly

slumped putting in jeopardy thousands of investors. This was only the first crisis of the

XXI century.

In 2007, another financial crisis was triggered by the U.S. subprime crisis and then

by the Lehman & Brothers default in September 2008 (Longstaff, 2010). These facts

proved the inefficiency not only of the financial system but also of the financial modellings

in their inability to price, forecast and model the complexity of the entire system2.

Moreover, the assertion “too big to fail” (Sorkin, 2010) was debunked and policy makers

and monetary authorities were not always willing to prevent financial institutions from

defaulting. The weakness of the economic and financial theories puts in jeopardy not

2The concept of efficiency related with financial modelling is defined as the ability to better forecast,

price and measure the stylized facts observed in financial markets such as clustering of the volatility

effect, heavy tails, and skewness. It is not possible to capture every feature of the financial market but

it is clear that some modelizations and tools are more corrected than others.
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only banks and industries but also governments (Demyanyk and Van Hemert, 2011).

As a consequence, countries with high debt levels began to face more stress on their

debt servicing capabilities and, hence, were penalized more. With the rescue of Greece

and Ireland in 2010 and of Portugal and Greece again in 2011, it became clear that

the origin of the sovereign and economic debt crisis in Europe was beyond the popular

belief that it was caused by the financial sector as a result of the sub–prime bubble.

The origin of the debt crisis in Greece, Italy and Ireland was the structural deficit in the

government sector. Greece and Italy had a large fiscal deficit and huge public debts due

to persistent imbalances, while in Ireland the crisis was mainly caused by a domestic

housing boom financed by foreign borrowers who did not require a risk premium related

to the probability of default (Lane, 2011).

The crises which characterized the first decade of the XXI century dictate the fee-

bleness of the modern financial models and instruments needed to describe the financial

sector and its features. The research of new concepts and diverse approaches is therefore

essential to guarantee and safeguard the stability of the entire system. Moreover, finan-

cial crises are not blimps but incentives to improve the knowledge of the markets and

the behavior of the agents. Crises represent an intrinsic feature of the financial world

that also a perfect modelization should consider. For this reason, the research of new

ways to built portfolio models is crucial to protect the investors’ wealth.

To synthesize the behavior of a given market, stock indexes are efficient financial

instruments to understand its trend and they allow to focus investment in a specific sector

or, generally, to compare the performance of an invested portfolio with a benchmark.

Analyzing the trends of two stock indexes plotted in Figure 1.1, the Nasdaq 100 and the

KBW Bank Index, during the period between April 1993 and October 2014, we observe

how differently they behave.

Firstly, these two indexes represent the financial sectors involved in the Dot-com

Bubble (Leger and Leone, 2008) and in the sub-prime mortgage crisis. The Nasdaq

100 dominates the KBW on the overall period. However, it is evident that there is no



Chapter 1. Introduction 4

Days
05-Apr-1993 14-Jun-2000 24-Aug-2007 02-Nov-2014

In
de

x 
P

ric
e

0

2

4

6

8

10

12

14
Comparison between Technological and Financial Indexes

Nasdaq 100
KBW Bank Index

Figure 1.1: Comparison between Technological and Financial Indexes

correlation between them during the first financial meltdown period and also during the

sub-prime crisis. In fact, at the end of the summer in 2007, their trend is inverted: it

starts to fall down with different timing and momenta.

Secondly, although the speculative bubble which originated the crisis in 2000 is

clearly evident analyzing the Nasdaq 100, it is not possible to observe the causes that

trigged the sub-prime crisis in 2007. Focusing on the panel of the 24 American financial

institutes that composes the KBW seems not to present a speculative behavior in 2000

and they are not affected and infected from the Dot-com era. However, differently from

the Nasdaq 100 components, financial institutes suffer the consequences of the financial

meltdown in 2007 and they had a long period of rescue to increase their market value.
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In fact, the Nasdaq 100 increased forcefully after the introduction of the first FED

quantitative easing in March 2009 while KBW remains stable for the following period.

This analysis stresses the importance to build portfolio models that are able to cap-

ture indexes with different behavior and number of assets. Since it is not possible to

literary hold a stock index, investors and portfolio manager focus their effort to replicate

or outperform the performances of these financial instruments. Nowadays, the continu-

ous evolution in the products, rules and technologies affects the financial markets and

portfolio managers are investigating different investment solutions with budget, policy

and risk constraints. The benchmarking of these indexes results to be very demanding

considering the behavior of assets where dimensionality and complexity represent an

important variable according with the development of the financial engineering.

Figure 1.2 shows three different assets for financial and technological sectors. In the

above chart, we report the three main weight components of the KBW Index (Citigroup

blue line, JP Morgan red line and Wells Fargo yellow line) while the below graph illus-

trates three different technological stocks where two of them are in the Nasdaq 100. In

the above chart of Figure 1.2 we notice the differences in the wealth paths of the three

stocks. In particular, a dynamic benchmarking problem to replicate or outperform the

related index should consider how they react to market movements. Whether Citi has

relevant gains before the sub-prime crisis then Wells Fargo captures market opportunity

in the following financial upturn and better synthesize the behavior of the stock index.

In fact, considering several combinations of the three assets it is possible to maximize

investors preferences in an active or passive framework.

The below chart of Figure 1.2 presents three technological stocks. In this sector, we

notice similar behavior in the wealth path of the three stocks but different amplitude

in response to financial inputs. In particular, Cisco outperforms the other two stocks

for the entire period but has strong shifts in the wealth path characterized from high

volatility. This graph stresses also the importance of the asset picking process to select

robust stocks which are not conditioned to period of financial euphoria. For this reason,



Chapter 1. Introduction 6

Days
05-Apr-1993 14-Jun-2000 24-Aug-2007 02-Nov-2014

S
to

ck
 P

ric
e

0

5

10

15
Comparison between 3 Financial Stocks

C
JPM
WFC

Days
05-Apr-1993 14-Jun-2000 24-Aug-2007 02-Nov-2014

S
to

ck
 P

ric
e

0

20

40

60

80
Comparison between 3 Technological Stocks

CSCO
EDIG
MSFT

Figure 1.2: Comparison between 3 Financial stocks: Citigroup, JP Morgan and Wells
Fargo; and 3 Technological stocks: Cisco, eDigital and Microsoft

strategies which aim to mimic or outperform benchmark returns maximizing different

investors preferences should be grounded not only on the attractive or conservative

returns of the stocks but also on their capability to reduce the risk with respect to the

selected benchmark.

The concept of creating portfolios capable to maximize investor’s utility can be ob-

tained optimizing different measures presented in the financial literature. In particular,

we observed the importance to mimic the behavior of a stock index or to replicate its

returns during different phases of the financial cycle. This problem which aim to select

the optimal portfolio composition in order to reduce the difference between its returns

and the given benchmark ones is called benchmark tracking problem and it is part of
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a more general framework and area of research known as the Modern Portfolio Theory.

A brief introduction of this theory is crucial to point out the state of art and its main

unsolved issues.

1.2 Literature survey

The Modern Portfolio Theory is a milestone in the financial literature and there have

been considerable advances starting with the pathbreaking works of Markowitz (1952).

The derivation of optimal rules for allocating wealth across risky assets in a mean-

variance analysis served as the beginning of several works which aimed to define the best

model to achieve relevant performances by controlling or reducing the risk. Markowitz’s

main idea was to propose variance as a risk measure and he introduced it in a compu-

tational model by measuring the risk of a portfolio via the covariance matrix associated

with individual asset returns. This leads to a quadratic programming formulation and

it was far from being the final answer to the problem of portfolio selection.

Tobin (1958) included the risk-free asset and showed that the set of efficient risk-

return combinations was in fact a straight line, consisting in an optimal portfolio of risky

and riskless assets. Sharpe (1963) simplified the computational burden of Markowitz’s

model using a single factor model. This model assumes that the return on each security is

linearly related to the market index and that Tobin and Markowitz’s optimal portfolio

of risky assets could be formulated as the market itself. This concept leads to the

development of Capital Asset Pricing Model (CAPM) (Fama and French, 1996).

Comparing the works of Markowitz and Sharpe, Affleck-Graves and Money (1976)

pointed out possible relations between them. In particular, they observed that the

results obtained with Sharpe’s model became progressively better adding more indexes

and diversifying the portfolio. Increasing the diversification grade, the model simulates

the Markowitz one. Their study also found that Markowitz’s model naturally limits

the maximum weight invested in any share to about 40% considering six active shares.
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This fact justify a natural diversification in the efficient portfolio. However, one of the

biggest criticisms of Markowitz’s model is that it does not produce portfolios that are

adequately diversified.

While Bowen (1984) focused on the complexity of the covariance estimation in the

case of small volumes of data pointing out the problem of the parameters estimation

error (DeMiguel et al., 2009; Fama and French, 2004) noted that portfolio managers

believed that Markowitz’s model lead to hold unrealistic portfolios; and they stressed

the weakness in the theory of the CAPM. In fact, they argue the model failure in

empirical tests implying that most applications of this model results invalid.

Recently, asymmetric risk measures have been proposed since symmetric ones do

not intuitively point to risk as an undesirable result. Symmetric risk measures penalize

upside deviations from the mean in the same way they penalize downside deviations.

Markowitz (1952) also suggests maximizing expected utility instead of expected returns

and compare several alternative measures of risk. Roy (1952) develops an equation

relating portfolio variance of return to the variance of the return of the constituent

securities. He advises choosing the single portfolio that maximizes
(µp−d)

σ2
p

where µp and

σ2
p are the mean and the variance of the portfolio and d is a “disaster level” return

the investor places a high priority of not falling below. Many authors have introduced

new risk measure. While lower partial moments of nth moment as a measure of risk

were introduced by Bawa (1975) and Bawa and Lindenberg (1977), Fishburn (1977)

introduced a new kind of risk measure where risk is defined by a probability–weighted

function of deviations below a specific target return.

An alternative to Markowitz model is the Mean–Absolute Deviation (MAD) model,

proposed by Konno and Yamazaki (1991) and pioneered by Yitzhaki (1982) that in-

troduced and analyzed the mean–risk model using the Gini’s mean difference as a risk

measure. While Markowitz model assumes normality of stock returns, the MAD model

does not make this assumption. The MAD model also minimizes a measure of risk,

where the measure is the mean absolute deviation (Kim et al., 2005; Konno, 2011). This
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new measure of risk and its formulation has been broadly applied in the financial field

(Zenios and Kang, 1993; Simaan, 1997; Ogryczak and Ruszczyński, 1999).

As the years go by different measures of risk have been proposed (Blume, 1971;

Silvers, 1973; Merton, 1974; Fong and Vasicek, 1984; Lakonishok and Shapiro, 1986) but

the acceptance of the Value at Risk (VaR) as a risk measure that focuses on the left

tail of the return distribution surely represents one of the most important contribution

for the financial literature in the 1990s. However, it was integrated by JP Morgan

into its risk-management system since the late 1980s. In this system, they developed

a service called RiskMetrics which was later spun off into a separate company called

RiskMetrics Group. It is usually thought that JP Morgan invented the VaR measure.

In fact, similar ideas had been used by large financial institutions in computing their

exposure to market risk. The contribution of JP Morgan was that the notion of VaR

was introduced to a wider audience. In the mid-1990s, the VaR measure was approved

by regulators as a valid approach to calculating capital reserves needed to cover market

risk (Morgan, 1996). The Basel Commettee on Banking Supervision released a package

of amendments to the requirements for banking institutions allowing them to use their

own internal systems for risk estimation.

In fact, the main criticism to the standard deviation was its feature to be a measure

of risk and not a measure of lost. In particular, it does not give any information about

the possible losses of my portfolio given a level of confidence. The Value at Risk aims

to solve this kind of problem and to introduce the importance of measuring risk for

regulatory purposes, not only as a parameter in a model of choice. However, VaR

measures the minimum loss corresponding to certain worst number of cases but does

not quantify how bad these worst losses are and it presents two fundamental drawbacks:

it is not sub–additive and it is not a convex function of the portfolio weights (Ortobelli

et al., 2005; Rachev et al., 2008b). To overcome these efforts, Artzner et al. (1999)

provide an axiomatic definition of a functional which they call a coherent risk measure.

These axioms are the monotonicity, positive homogeneity, sub–additivity and invariance
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and they are the fundamental structure of a new risk measure: the Conditional Value at

Risk (CVaR) (Rockafellar and Uryasev, 2002, 2000), or Expected Shortfall (Acerbi and

Tasche, 2002).

To conclude, we want discuss about two improvement in the vast portfolio selection

framework: the introduction of the higher moment in the portfolio problem and the dis-

tribution of the portfolio returns. Starting from the seminal paper of Samuelson (1970)

several works focus on the definition of portfolio selection with higher moments devel-

oping the idea that the description of the return distribution with only two parameters

involve significant losses of information (Malevergne and Sornette, 2005; Konno et al.,

1993; Rubinstein, 1973; Arditti, 1971).

In particular, Harvey et al. (2010) build on the Markowitz portfolio selection process

by incorporating higher order moments of the assets returns. They propose the skew

normal distribution as a characterization of the asset returns and using Bayesian meth-

ods they make a comparison with other optimization approaches concluding a higher

expected utility of this innovative portfolio selection problem. Bayesian methods allow to

create portfolio selection problems suitable for different type investor, model formulation

and parameters estimation. Garlappi et al. (2007) propose a formulation that consider

the uncertainty of the model and parameters building an ambiguity–averse portfolio that

deliver a higher out of sample Sharpe ratio with respect to the classical ones. Finally,

several paper discuss about the distribution of the portfolio returns proposing different

modelization of the problem (Adcock, 2010; Li et al., 2010; Maccheroni et al., 2009;

Ortobelli and Angelelli, 2009; Kole et al., 2007; Rachev et al., 2007).

The usual assumption given in several work is the Gaussianity or Normality of the

asset returns. This hypothesis implies several advantages in many fields of the mathe-

matical finance since the closed form solution of its probability density function gets it

suitable in many empirical applications. In particular, Tobin (1958) shows that if asset

returns are normally distributed then variance is the proper measure of risk. However,

as noted by Mandelbrot (1997), Fama (1965) and recently developed by a large part
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of the literature (Cont and Tankov, 2004; Carr et al., 2002; Rachev and Mittnik, 2000;

Sato, 1999), the asset returns exhibit heavy tails, leptokurtosis and they are subject to

volatility clustering phenomena (Rachev et al., 2011; Cont, 2001). For this reason the

introduction of different statistical hypotheses have done relevant advantages in the def-

inition of the asset returns distribution with benefits in the portfolio selection problems

(Rachev et al., 2008a, 2007; Stoyanov et al., 2007; Rachev et al., 2005; Embrechts et al.,

2003).

In particular, Ortobelli et al. (2010) tested the alpha stable distributional hypothesis

in the stock market comparing it with the Gaussian one. They dictate that heavy

tails of residuals can have a fundamental impact on the asset allocation decisions by

investors and the stable Paretian model dominates the moment–based model in terms

of expected utility and of the ex–post final wealth. Under the stability hypothesis,

the introduction on other parameters such as the skewness and kurtosis significantly

improve the description of the distributional behavior (Rachev et al., 2011). Moreover,

the Student–t distribution and the Stable distribution are very used model to describe

asset returns as proposed by Rachev and Mittnik (2000) and Blattberg and Gonedes

(1974).

In this case, the portfolio selection problem considering higher–order could present

significant improvements introducing estimators for coskewness and cokurtosis param-

eters as argued by Martellini and Ziemann (2010). In the financial markets, investors

solve the problem to select the optimum optimizing a reward/risk performance mea-

sure (Rachev et al., 2008b; Stoyanov et al., 2007). Thus, Biglova et al. (2004) propose

a different performance measure, the Rachev ratio, that maximize the utility of a not

satiable nor risk averse nor risk seeker investor. This performance measure differs from

the classical Sharpe ratio (Sharpe, 1994) that maximize the utility of a not satiable risk

averse investor since it consider as risk and return measures the CVaR at two different

percentiles of the return distribution. This work represents a starting point for others

performance measure based on the return distribution as the STARR introduced by
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Martin et al. (2005) and the Rachev ratio higher–moments presented by Ortobelli et al.

(2009) that combine tails behavior with the introduction of skeweness and kurtosis in

the decisional problem.

1.3 Aim of the thesis

The motivation for this study was based on several avenues in the literature on port-

folio selection. The pioneering work of Markowitz introduced the possibility to create

portfolios based on a reward and risk measure and although sixty years of research and

development have passed, it remains an unsolved puzzle in the financial literature. In

fact, with the recent economic crises came the necessity of new views and approaches to

improve the common financial models.

The main objective of this essay is to analyze the entire benchamrk tracking problem.

Facing this issue, portfolio managers want to find the optimal portfolio composition that

maximizes the management style. In particular, benchmark tracking portfolio strategies

could be divided into three main categories: passive, enhanced indexing and active.

This essay addresses with these three problems proposing theoretical and methodological

solution to maximize investors’ preferences. Empirical applications involving different

phases of the financial cycle during the last decade enforce the goodness of the proposed

methodology. In fact, comparison with common approaches highlights the importance of

innovative solutions and instruments to solve the portfolio selection problem. They are

necessary considering the continuous evolution of financial engineering and researchers

should provide tools to describe and modelize the complexity of the financial system.

According to Konno and Hatagi (2005), almost half the capital in the Tokyo Stock

exchange is subject to passive trading strategies, while Frino et al. (2005) report that

assets benchmarked against the S&P 500 exceed US$1 trillion. Over recent years, passive

portfolio management strategies have seen a remarkable renaissance. Assuming that the

market cannot be beaten on the long run, these strategies aim to mimic a given market
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index investing either into a replication of the benchmark, or selecting a portfolio which

exhibits a behavior as similar as possible to the benchmark one. The market share of

products such as exchange traded funds (ETFs) has increased significantly, and it is

argued that passive portfolio management is becoming predominant. If investments are

benchmarked against the index, a fund that aims to replicate this benchmark will, by

definition, has a lower likelihood to severely fall below it.

The most common approach in passive portfolio management is index tracking. In

this strategy, investors select portfolios that mimic the behavior of an index representing

the entire market, such as the MSCI Word Index, or one of its sector. To find the optimal

combination, the definition and minimization of a distance measure between tracking

portfolio and benchmark index is the crucial point to efficiently manage this problem.

In contrast, active portfolio management tries to generate excess returns picking stocks

which are expected to outperform the market and avoiding assets that are expected

to under-perform it. Both approaches have their advantages and disadvantages: ac-

tive strategies rely heavily on superior predictions while passive strategies require few

assumptions about future price movements. Passive strategies will also copy the bench-

mark’s poor behavior while active strategies can react more flexibly in bear markets;

etc. In the middle we find the enhanced indexing strategies that try to capture the

best feature of both approaches proposing a portfolio composition that minimizes risk

looking for extra-performances.

Thus, in Chapter 2 starting from the problem to mimic the performance of a finan-

cial index considering all its components or a subset only, we propose a new dispersion

measure of the tracking error. This measure, called tracking error quantile regression,

results to be suitable to track a given benchmark not only from a theoretical and but also

from an empirical point of view. In fact, it overcomes some drawbacks of the common

dispersion measures such as non-linearity and symmetry confirmed in an empirical ap-

plication. The contribution made by Chapter 2 is theoretical and methodological since

it describes the introduced dispersion measure based on the quantile regression with
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its theoretical structure. The methodological contribution is then developed proposing

a realistic LP model to solve the enhanced index problem. This problem represents a

hot topic of research since every portfolio manager aims not only to track an index from

above reducing the dispersion measure but also to obtain gains in the out of sample anal-

ysis. For this reason, we introduce stochastic dominance constraints in the minimization

problem of the tracking error to enhance the portfolio performances. An empirical ap-

plication is also developed showing the enhancement of portfolios wealth path in the out

of sample analyses.

Chapter 3 generalizes the concept of dispersion measure reviewing the class of the

coherent expectation bounded risk measures for the benchmark tracking problem. These

measures, like the class of Gini dispersion measures, represent a useful metric to improve

the decisional problem in the replication of the performances of an given index. Then,

we introduce the methodology of stochastic investment chain grounded on the concept to

create portfolio with stronger behavior derived from three consequent optimization steps

increasing the level of stochastic dominance where the dominant portfolio become the

benchmark. The contribution of this chapter is theoretical and methodological. On one

hand, we analyze the linearity of these measures proposing different portfolio problems

based on the dispersion component of coherent expectation bounded risk measures. In

particular, since this class of measures is consistent with Rothschild–Stiglitz ordering, we

could derive a tracking error problem consistent with this ordering. On the other hand,

we theoretically develop linear programming formulation to solve portfolio problems

with bounded third order stochastic dominance constraints. In this framework, we

considering an aggressive Rachev utility function which is consistent with the preference

of non-satiable nor risk seeking nor risk averse investors we develop the concept of

stochastic investment chain.

Finally in Chapter 4, we deal with portfolio strategies for active management. In

the Modern Portfolio Theory, the maximization of the investors’ future wealth is still

an relevant problem. Thus, we propose portfolio strategy which does not focus on
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the risk minimization but on the maximization of performance measures considering

different ratios. The contribution of this chapter is theoretical, methodological and

empirical. Since investors maximize their utility in a reward-risk sense, we implement

linear portfolio optimization problems maximizing four different performance measures.

In the theoretical part, we review the linear programming model of two performance

measures while we develop the theoretical formulation for the Sharpe Ratio and the

Mean Absolute Semideviation Ratio. Then, introducing first and second order stochastic

dominance constraints we propose different portfolio selection models to strengthen the

performances of invested portfolios. Finally, we empirically test the benefit to introduce

stochastic dominance in portfolio problems considering its impact in the maximization

of future wealth.



Chapter 2

Tracking Error Quantile

Regression.

A Dispersion Measure for the

Benchmark Tracking Problem.

2.1 Introduction

One of the most important objective that every fund manager has to achieve is the index

tracking problem. Many portfolios are managed to a benchmark or index and they are

expected to replicate, its returns (e.g., an index fund), while others are supposed to

be “actively managed” deviating slightly from the index in order to generate active

returns. The tracking problem has been broadly described in the financial literature

from different point of views. On the one hand, the research community focuses on

the identification of efficient algorithms to solve the optimization problem through the

development of a large diversity of heuristics and metaheuristics (Angelelli et al., 2012;

Guastaroba and Speranza, 2012; di Tollo and Maringer, 2009; Beasley et al., 2003; Gilli

16
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and Këllezi, 2002). On the other hand, several approaches have been introduced in order

to describe empirical evidences, to improve the decisional problem or to propose different

methodologies dealing with the index tracking problem (Krink et al., 2009; Barro and

Canestrelli, 2009; Maringer and Oyewumi, 2007; Dose and Cincotti, 2005; Pope and

Yadav, 1994).

In particular, Jorion (2003) introduces additional restrictions in the optimization

problem reducing the higher risk of the active portfolio with respect to the index as

empirically observed by Roll (1992), while Rudolf et al. (1999) illustrate the relation-

ship between the size of bounds on permissible tactical deviations from benchmark asset

class weights and their corresponding statistical tracking error measures. An interesting

methodology that could be applied to solve the index tracking problem is to take ad-

vantage of the positive correlation between the price fluctuations of stocks in the same

category building a stratified index portfolio Montfort et al. (2008). This portfolio is

obtained dividing the index components into a large number of categories such as, for

example, sectors or countries (Focardi and Fabozzi, 2004; Frino et al., 2004) and then by

putting together the categories so as that each one of them is represented in the index

portfolio with the same extent as in the tracked index.

These approaches are classically grounded on the minimization of a measure of dis-

persion of the tracking errors, i.e. the difference between the return of the replicating

portfolio and the benchmark that an investor was attempting to imitate. Commonly

three tracking error dispersion measures are used: 1. the mean absolute deviation (Con-

siglio and Zenios, 2001; Konno and Wijayanayake, 2001; Konno and Yamazaki, 1991);

2. the downside mean semideviation (Angelelli et al., 2008; Ogryczak and Ruszczyński,

1999; Kenyon et al., 1999; Harlow, 1991) which focus on the negative side of the tracking

error; 3. the tracking error volatility (Corielli and Marcellino, 2006; Roll, 1992), which

considers the variance of the difference between the tracked and the tracking portfolios.

The weights of the mimic portfolio can be easily determined using a least squared

linear regression. Since the errors are the deviation of the index from the expected value
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of the replicating portfolio, these measures mainly focus on understanding the central

tendency within a data set, but they are less effective and robust at describing the

behavior of data points that are distant from the line of best fit. In particular, returns

distributions of the financial series are characterized by the presence of asymmetry and

heavy tailness (Rachev et al., 2011; Mandelbrot, 1967; Fama, 1965) and it is interesting

to investigate a methodology that addresses these features.

The contribution of this chapter is twofold. Firstly, we introduce a dispersion mea-

sure of the tracking error which captures the difference between returns of the two

portfolios. This measure is suitable for this type of problem since it represents a theo-

retic ideal measure and empirically works better than three common dispersion measures

presented in the literature. Then, the possibility to linearly formulate the index tracking

problem with this measure allows to reduce the computational time and complexity of

the optimization problem.

Secondly, we introduce an enhanced indexation benchmark tracking problem to

guarantee extra-performances of the adopted strategy in the replication problem. For

this reason, we propose a realistic model formulation with transaction costs penalty

function and turnover threshold level in the minimization of the quantile regression

measure of the tracking error. Then, introducing two orders of stochastic dominance

constraints we enhance the performances of the invested portfolio in the out of sample

analysis. The main advantage of this approach is grounded around the control of the risk

source minimizing a dispersion measure of the tracking error while we try to outperform

the benchmark. The proposed model is linear which allow to efficiently solve the problem

also in the high dimensionality framework.

This chapter is organized as follow. In section 2.2, we introduce the classical bench-

mark tracking problem and we show how common measures used to solve the index

tracking problem deal with it. Section 2.3 discusses the quantile regression method and

we derive the related measure of dispersion for the tracking error. We theoretically for-

mulate this measure and its properties. In section 2.4, we present the enhanced index
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benchmark tracking problem with stochastic dominance constraints while in the last two

section we propose an empirical application and summarize the main results.

2.2 Index Tracking Problem

Index tracking problems is related with a benchmark portfolio against which the per-

formance of a managed one is compared. This comparison is based on the distribution

of the active portfolio return, defined as the difference X − Y , in which X = rβ is the

random variable of the invested portfolio returns with weights represented by the vector

β while Y denotes the benchmarks’ returns. Performance and risk of the portfolio man-

agers’ strategies are based on this difference. In particular, a measure of performance of

the invested portfolio relative to the benchmark is the average active return, also known

as portfolio alpha, which is calculated as the difference in the sample means:

α̂ = E [X]− E[Y ] (2.1)

Differently, a widely used risk measure of how close the portfolio returns are to the

benchmark is a deviation measure of the active return, also known as tracking error

(TE). The closer the tracking error is to zero, the closer the risk profile of the portfolio

matches the benchmark one. These two measures are the decisional parameters in the

problem of choice for portfolio managers. They compute the in sample analysis and make

decision to apply to the out of sample investment period. In this case, the portfolio alpha

is the expectation of the active return and the TE its standard deviation.

There exist several ways to built an index tracking portfolio since portfolio mangers

have different constraints and restrictions. However, it is possible to define three main

categories of strategies closely related with different levels of alpha and of the tracking

error. Active portfolio strategies, that are characterized by high alphas and TEs, aim to

outperform the tracked index and allow the portfolio manager to take a high risk moving
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away from the real index composition, while passive strategies that are characterized by

very small alphas and TEs want to replicate the index performances as close as possible

(Frino and Gallagher, 2001; Sharpe, 1992). In between, there are the enhanced indexing

strategies, with small to medium-sized alphas and TEs (Canakgoz and Beasley, 2009;

Scowcroft and Sefton, 2003).

Thus, let Y be the return of the benchmark portfolio with realization yt at time t

(for t = 1, . . . , T ) and X be the random variable of the invested portfolio’s returns such

that xt =
∑N

n=1 rt,nβn be the return of the invested portfolio, where rt,n is the return

of the n-th asset at time t and β is the vector of portfolio weight. We define a general

benchmark tracking problem as follow:

min
β

σ (X − Y )

s.t.
N
∑

n=1

βn = 1

E [X]− E[Y ] ≥ K∗

lb ≤ βn ≤ ub ∀n = 1, . . . , N

(2.2)

where βn for n = 1, . . . , N is the portfolio optimal solution of the minimization problem

and σ a dispersion measure generated from a given probability metric (Stoyanov et al.,

2008a). The first constraints is a budget constraint while the following ones is related to

institutional policy and it defines the minimum guaranteed return level K∗. Finally, the

last constraint bounds the upper and lower value of the portfolio weights. In particular,

it is important to define not only the maximum percentage invested in a single asset but

also the admissibility of short selling position in the portfolio problem.

Generally, portfolio managers want to minimize a dispersion measure of the tracking

error subject to several constraints. However, the most debatable problem is related

to the cardinality constraints and the institutional rules to avoid fractional positions

and a huge number of active assets to manage (Fernholz et al., 1998). On one hand,

several works propose heuristics and metaheuristics approaches to reduce the number
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of assets (Angelelli et al., 2012; di Tollo and Maringer, 2009; Beasley et al., 2003).

On the other hand, the problem is solved through the Lagrangian method switching

the discontinuity of the constraints in the optimization problem, setting the parameter

lambda and introducing a penalty function to reduce the sparsity (Fastrich et al., 2014;

Kopman et al., 2009; Jansen and Van Dijk, 2002). In this essay, we do not directly treat

this type of problem but we propose different modelizations that reduce the number of

active assets without imposing specific cardinality constraints.

2.2.1 Common Measure of Dispersion of Tracking Error

The tracking error is a measure of how closely a portfolio follows the index defined as

its benchmark. It can be captured in different ways by a variety of dispersion measures

σ(·) of the tracking error or by a class of convex dispersion measures that satisfies an

axiomatic structure and they are called deviation measures (Rockafellar et al., 2006).

Let Y be the log-return of equity index with realization yt, t = 1, . . . , T and let R be the

returns of its N components being R = r1, r2, . . . , rN . We define TE the tracking error

εt ∈ R for a single point in time t = 1, . . . , T where εt =
∑N

n=1 rt,nβn − yt and σ(ε) a

general dispersion measure. Then, the common used tracking error dispersion measures

could be easily defined.

The first common dispersion measure that we review is based on the mean absolute

deviation (MAD) dispersion measure (Konno and Yamazaki, 1991). Based on the Gini’s

measure, the MAD is used in several field of the finance (Kim et al., 2005; Consiglio and

Zenios, 2001) such as in the benchmark tracking problem (Konno and Wijayanayake,

2001) for its property to do not make assumption on the returns distribution (Yitzhaki,

1982). The respective dispersion measure to solve the index tracking problem is the

tracking error mean absolute deviation measure (TEMAD):

TEMAD σ(ε) =
1

T

T
∑

t=1

|εt| (2.3)
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This measure takes into account the absolute variation between portfolio and bench-

mark returns. However, it is a symmetric measure with an equal weight for positive and

negative εt while investors have different preferences and they show a diverse risk profile

according to their aversion to negative events.

For this reason also Markowitz in its seminal papers (Markowitz, 1968, 1952) pro-

posed to introduce in the mean-variance analysis a measure that consider only the down-

side risk. This measure known as downside mean semideviation (DMS) has been devel-

oped in several work (Angelelli et al., 2008; Ogryczak and Ruszczyński, 1999; Kenyon

et al., 1999; Harlow, 1991) and it is defined as:

TEDMS σ(ε) =
1

T

T
∑

t=1

|εt1[εt<0]| (2.4)

This measure is clearly asymmetric and it is suitable to capture only the downside

risk and averse events but theoretically speaking in the tracking error framework this

measure could leads to build portfolios with an intrinsic higher risk.

Finally, the tracking error volatility (TEV) (Corielli and Marcellino, 2006; Jorion,

2003; Roll, 1992) is the most used measure in the financial literature. It is defined as

the variance of the error and a forward-looking measure which could be interpreted in

terms of Value at Risk (Jorion, 2003). Moreover, a minimization of the TEV seems a

sensible goal for fund sponsors or executives to evaluate an ideal active management

(Roll, 1992). Then, the TEV is defined as:

TEV σ(ε) =
1

T

T
∑

t=1

(εt − ε̄)2 (2.5)

where ε̄ is the mean of the error during the considered period. This measure is still

symmetric with respect to the mean of the error and it takes into account the quadratic

variation of the difference between portfolio and benchmark returns.
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In the class of the quadratic measures it is preferred to the mean square error

measure for two mean reasons. Firstly, an ideal active management strategy would out-

perform the benchmark every single period by a fixed amount net of fees and expenses.

This implies zero tracking error volatility. It is ideal since the fund investment could

verify with complete statistical reliability that manager is adding value aver an index

fund alternative. Secondly, it is a valid measure to evaluate the impact of fund manager

strategy during the overall time period.

In this case, we are solving a least squared regression problem and the optimal

solution is based on the central tendency between the returns of tracking and tracked

portfolios. Differently, it is possible to construct a regression formulation in which

a linear equation relates how the quantiles of the dependent variable vary with the

independent one (Koenker and Bassett, 1978). In the next section, we introduce this

concept developing the relative measure of dispersion of tracking error but now we show

how to solve the index tracking problem considering these common measure of dispersion

of the tracking error.

2.2.2 Index Tracking Problem with Linear and Quadratic Dispersion

Measures

The common dispersion measures of the tracking error (2.3), (2.4) and (2.5) allow to

efficiently solve the benchmark tracking problem (2.2). While the tracking error volatility

shows a quadratic and convex feature in the portfolio problem the other two measures

could be defined as linear (Mansini et al., 2003; Speranza, 1993). This imply an efficient

way to solve high dimensionality problem and to replicate index with huge number of

components.

Let Y be the log-return of equity index with realization yt, t = 1, . . . , T and let R

be the returns of its N components being R = r1, r2, . . . , rN . We define εt ∈ R such that

εt =
∑N

n=1 rt,nβn − yt tracking error (TE) and σ(ε) a general dispersion measure. The
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benchmark tracking problem with the tracking error volatility measure (TEV) could be

defined as:

min
β

T
∑

t=1

(εt − ε̄)2

s.t.
N
∑

n=1

βn = 1

E [X]− E [Y ] ≥ K∗

lb ≤ βn ≤ ub ∀n = 1, . . . , N

(2.6)

where ε̄ is the mean of the error during the considered period. Solving problem (2.6) we

deal with a quadratic optimization with linear constraints.

Differently, the tracking error mean absolute deviation (TEMAD) (2.3) and the

tracking error downside mean semideviation (TEDMS) (2.4), could be expressed in a

linear formulation way. Let the following optimization problem:

min
β

T
∑

t=1

|rtβ − yt| (2.7)

that minimize the tracking error mean absolute deviation dispersion measure. We define

d+t = max {rtβ − yt, 0} ∀t = 1, . . . , T

d−t = max {yt − rtβ, 0} ∀t = 1, . . . , T
(2.8)

the positive and negative difference between the portfolio and benchmark returns. Then,

it is possible to rewrite the optimization problem (2.7) as:

min
β

T
∑

t=1

d+t + d−t

s.t. rtβ − yt = d+t − d−t ∀t = 1, . . . , T

d+t , d
−
t ≥ 0 ∀t = 1, . . . , T

(2.9)



Chapter 2. Tracking Error Quantile Regression. 25

The related linear benchmark tracking problem is defined as follow:

min
β

T
∑

t=1

d+t + d−t

s.t. rtβ − yt = d+t − d−t ∀t = 1, . . . , T

N
∑

n=1

βn = 1

E [X]− E [Y ] ≥ K∗

lb ≤ βn ≤ ub ∀n = 1, . . . , N

d+t , d
−
t ≥ 0 ∀t = 1, . . . , T

(2.10)

Considering the asymmetric downside mean semideviation measure, we could in-

vestigate a linear formulation of the index tracking problem. In particular, for discrete

random variables represented by their realizations xt and yt (for t = 1, . . . , T ), the down-

side mean semideviation is a convex piecewise linear function of the portfolio rtβ and

the benchmark tracking problem is LP computable. Thus, we define

d−t = min {rtβ − yt, 0} ∀t = 1, . . . , T (2.11)

the sequence of the negative realizations given by the difference of the returns of invested

and benchmark portfolios. Then, the minimization the tracking error downside mean

semideviation (TEDMS) (2.4) could be defined as follow:

min
β

T
∑

t=1

d−t

s.t. d−t ≤ rtβ − yt ∀t = 1, . . . , T

d−t ≥ 0 ∀t = 1, . . . , T

(2.12)
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and the related LP benchmark tracking problem as:

min
β

T
∑

t=1

d−t

s.t. d−t ≤ rtβ − yt ∀t = 1, . . . , T

N
∑

n=1

βn = 1

E [X]− E [Y ] ≥ K∗

lb ≤ βn ≤ ub ∀n = 1, . . . , N

d−t ≥ 0 ∀t = 1, . . . , T

(2.13)

In this benchmark tracking problem, we solve the optimization (2.13) as a LP prob-

lem.

The presented benchmark tracking problems (2.6), (2.10) and (2.13) are common

methods in the financial literature to solve the problem to mimic the returns of a given

benchmark. In the following section, we introduce the quantile regression method and

the related dispersion measure of the index tracking.

2.3 The Quantile Regression

The concept of quantile regression introduced by Koenker and Bassett (1978) represents

an interesting methodological approach to investigate and its application to the index

tracking problem lead to relevant consideration. We know that any random variable X

may be characterized by its right-continuous distribution function

F (x) = P(X ≤ x) (2.14)
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whereas for any 0 < τ < 1,

F (τ)−1 = inf [x : F (x) ≥ τ ] (2.15)

is called the τ th-quantile of X. The median, F−1(1/2), plays the central role. The

quantiles arise from a simple but fundamental optimization problem. Considering a the-

oretic problem to find a point estimate for a random variable with distribution function

F where the loss is described by the piecewise linear function

ρτ (u) = τu1[u<0] + (1− τ)u1[u≥0] (2.16)

for some τ ∈ (0, 1). The aim is to find x̂ to minimize expected loss. This problem was

faced by Fox and Rubin (1964), who studied the admissibility of the quantile estimator

under the loss function minimizing

E[ρτ (X − x̂)] = (τ − 1)

∫ x̂

−∞
(x− x̂) dF (x) + τ

∫ +∞

x̂
(x− x̂) dF (x) (2.17)

We could rewrite the previous formula as:

g(x̂) = (τ − 1)

[
∫ x̂

−∞
x f(x) dx− x̂ F (x̂)

]

+

+ τ

[
∫ +∞

x̂
x f(x) dx− x̂ (1− F (x̂))

]

(2.18)

= τ E(x)−
[
∫ x̂

−∞
x f(x) dx

]

+ (1− τ) x̂ F (x̂)− τ x̂ (1− F (x̂))
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Thus, differentiating with respect to x̂, we have:

0 = −x̂f(x̂) + (1− τ)F (x̂) + (1− τ)x̂f(x̂)− τ(1− F (x̂)) + τ x̂f(x̂)

= (1− τ)F (x̂)− τ(1− F (x̂))

= F (x̂)− τF (x̂)− τ + τF (x̂) (2.19)

= F (x̂)− τ

=

∫ x̂

−∞
dF (x)− τ

(
∫ x̂

−∞
dF (x) +

∫ +∞

x̂
dF (x)

)

= (1− τ)

∫ x̂

−∞
dF (x)− τ

∫ +∞

x̂
dF (x)

Since F is monotone, any element of x : F (x) = τ minimizes the expected loss. When

the solution is unique, x̂ = F−1(τ); otherwise, we have what it is called an “interval of τ

th-quantiles” from which the smallest element must be chosen to such that the empirical

quantile function is left-continuous.

It is natural that an optimal point estimator for asymmetric linear loss should lead us

to the quantiles, since in the symmetric case the median is the parameter that minimize

the absolute loss value. Moreover, when loss is linear and asymmetric, we prefer a point

estimate more likely to leave us on the flatter of the two branches of marginal loss.

Thus, for example, if an underestimate is marginally three times more costly than an

overestimate, we will choose x̂ so that P(X ≤ x̂) is three times greater than P(X > x̂)

to compensate. That is, we will choose x̂ to be the 75th percentile of F .

When F is replaced by the empirical distribution function

Fn(x) = n−1
n
∑

i=1

I(xi ≤ x) (2.20)

We may still choose x̂ to minimize the expected loss:

∫

ρτ (x− x̂)dFn(x) = T−1
T
∑

t=1

ρτ (xt − x̂) (2.21)
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When τ is an integer there is some ambiguity in the solution, because we really

have an interval of solutions, x : Ft(x) = τ , but we figure out that it has weak practical

consequences.

Much more important is the fact that we have expressed the problem of finding the

τ − th sample quantile, a problem that might seem inherently tied to the notion of an

ordering of the sample observations, as the solution to a simple optimization problem.

In fact, the problem of finding the τ − th sample quantile may be written as

min
ξ∈R

T
∑

t=1

ρτ (yt − ξ) (2.22)

Knowing that the sample mean µ solves the problem

min
µ∈R

T
∑

t=1

(yt − µ)2 (2.23)

also known as mean square error, suggest that, if we are willing to express the conditional

mean of y given x as µ(x) = xTβ, then β may be estimated by solving

min
β∈Rp

T
∑

t=1

(yt − xtβ)
2 (2.24)

Similarly, since the τth sample quantile α̂(τ) solves

min
α∈R

T
∑

t=1

ρτ (yt − α) (2.25)

we are led to specifying the τth conditional quantile function as Qy(τ |x) = xTβ(τ), and

to consideration of β(τ) solving

min
β∈Rp

T
∑

t=1

ρτ (yt − xtβ) (2.26)

where ρτ (·) = is defined as ρτ (εt) = (τ − I(εt ≤ 0)) and εt = yt − xtβ for t = 1, . . . , T .
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2.3.1 Financial Application of the Quantile Regression

The concept of quantile regression introduced by Koenker and Bassett (1978) is become

increasingly popular in finance (Xiao, 2009; Bassett and Chen, 2002) and economics

(Fitzenberger et al., 2013; Buchinsky, 1994) even though it has been applied to several

research fields during the last 30 years. Chernozhukov and Umantsev (2001) applied

quantile methods to estimate the Value at Risk. Wu and Xiao (2002) also used quantile

methods to estimate VaR and provided an example of how such approaches could be

used in the context of an index fund, while Meligkotsidou et al. (2009) explore the impact

of a number of risk factors on the entire conditional distribution of hedge fund returns.

This approach provides useful insights into the distributional dependence of hedge fund

returns on risk factors where the distribution of returns general deviates from normality.

Bassett and Chen (2002) introduce regression quantiles as a complementary tool to

identify the portfolio’s style signature in the time series of its returns. In particular,

regression quantile extract additional information identifying the way style affects re-

turns at places other than the expected value. The significant aspect of this approach

is reflected in the estimation of the impact of style on the tails of the conditional return

distribution.

Moreover, Bassett et al. (2004) provide an exposition of one variant of the Choquet

expected utility theory as it applies to decisions under risk. They link the theory of choice

under uncertainty and risk to a pessimistic decision theory that replaces the classical

expected utility criterion with a Choquet expectation that accentuates the likelihood

of the least favorable outcomes. By offering a general approach to portfolio allocation

for pessimistic Choquet preferences, they propose a critical reexamination of the role

of attitudes toward risk in this important setting. In contrast to conventional mean-

variance portfolio analysis implemented by solving least squares problems, pessimistic

portfolios will be constructed by solving quantile regression problems.
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Engle and Manganelli (2004) propose an estimation of the Value at Risk called Con-

ditional Autoregressive Value at Risk (CAViaR). They estimate the unknown parameters

minimizing the regression quantile loss function where their evolution over the time is

described by an autoregressive process. The introduction of autoregressive elements to

compute the conditional VaR has been proposed by Kuester et al. (2006). Finally, Ma

and Pohlman (2008) explore the full distributional impact of factors on returns of secu-

rities and find that factor effects vary substantially across quantiles of returns. Utilizing

distributional information from quantile regression models, they propose two general

methods for return forecasting and portfolio construction: the quantile regression alpha

distribution based on assumption of the selected quantile in the forecasting process and

the quantile regression portfolio distribution that incorporate the quantile information

in the portfolio optimization step.

Recently, Mezali and Beasley (2013) applied the quantile regression for the index

tracking proposing a double optimization problem to find a zero value of the quantile

regressed intercept with a unit slope. In their formulation transaction cost, a limited

number of stocks and a limited total transaction cost are included. Then, Bonaccolto

et al. (2015) propose a pessimistic asset allocation model based on a performance mea-

sure derived from the quantile regression and they impose a penalty on the ℓ1-norm

of the quantile regression coefficients along the line of the Least Absolute Shrinkage

and Selection Operator (LASSO), introduced by Tibshirani (1996) in a standard linear

regression framework.

2.3.2 Definition of a probability metric for the Benchmark Tracking

Problem

The development of the theory of probability metrics started with the investigation of

problems related to limit theorems in probability theory. The limit theorems take a very

important place in probability theory, statistics, and all their applications. A well-known

example by nonspecialists in the field is the celebrated Central Limit Theorem (CLT).
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The central question arising is how large an error we make by adopting the approximate

model. This question can be investigated by studying the distance between the limit

law and the stochastic model. Generally, the theory of probability metrics studies the

problem of measuring distances between random quantities (Rachev, 1991). On one

hand, it provides the fundamental principles for building probability metrics while, on

the other, it studies the relationships between various classes of probability metrics. The

second realm of study concerns problems that require a particular metric, while the basic

results can be obtained in terms of other metrics. In such cases, the metrics relationship

is of primary importance.

Rachev (1991) provides more details on the methods of the theory of probability

metrics and its numerous applications in both theoretical and more practical problems.

Note that there are no limitations in the theory of probability metrics concerning the

nature of the random quantities. This makes its methods fundamental and appealing.

Actually, in the general case, it is more appropriate to refer to the random quantities

as random elements. In the context of financial applications, we can study the distance

between two random stocks prices, or between vectors of financial variables building

portfolios, or between entire yield curves which are much more complicated objects.

One of most used approach related with the theory of the probability metrics is the

problem to measure the distance between two random variable. This type of problem is

known as the benchmark tracking problem and axiomatically formulated by Stoyanov

et al. (2008b). Following their approach, let X be a random variable that describes the

invested portfolio while Y is the benchmark, we denote by X be the space of random

variables on a given probability space (Ω,ℑ,P) taking values in R. By LX2 we denote

the space of all joint distributions PrX,Y generated by the pairs X,Y ∈ X. Supposing

that a mapping µ(X,Y ) := µ(PrX,Y ) is defined on LX2 taking values in the extended

interval [0,∞], it is called a probability quasi-metric on X if it satisfies the following two

properties:

a) µ(X,Y ) ≥ 0 and µ(X,Y ) = 0, if and only if X ∼ Y (Identity Property)
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b) µ(X,Y ) ≤ µ(X,Z) + µ(Z, Y ) for any X,Y, Z (Triangle Inequality)

In particular, we notice that the symmetric property does not hold in the strategy

replication problem (i.e. µ(X,Y ) 6= µ(Y,X)) and it is suitable to differently measure

positive and negative differences between the two random variables.

The following step introduced by Stoyanov et al. (2008b) is to define a metric of

relative deviation and the consequence relation with the concept of deviation metric

proposed by Rockafellar et al. (2006).

Remark 2.1

Any quasi-metric µ satisfying

c) µ(X + Z, Y + Z) ≤ µ(X,Y ) for all X,Y, Z, (Strong Regularity)

d) µ(aX, aY ) = asµ(X,Y ) for all X,Y, a, s ≥ 0 (Positive homogeneity of degree s)

is said to be a (translation invariant) metric of relative deviation (Stoyanov et al.,

2008b).

Remark 2.2

The functional µ(X,Y ) = D(X − Y ) satisfies a), b), c), d) with s = 1 where D : X →
[0,∞] is a deviation measure such that:

D1. D(X + C) = D(X) for all X and constants C

D2. D(0) = 0 and D(λX) = λD(X) for all X and all λ > 0

D3. D(X + Y ) ≤ D(X) +D(Y ) for all X and Y

D4. D(X) ≥ 0 for all X, with D(X) > 0 for non-constant X

Considering the identity property a) is possible to classify different type of probabil-

ity quasi-metrics and in general probability metrics considering different type of equality
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held on this property. In fact, the notation X ∼ Y denotes that X is equivalent to Y .

The meaning of equivalence depends on the type of metrics. If the equivalence is in

almost sure sense, then the metrics are called compound. If ∼ means equality of dis-

tribution, then the metrics are called simple. Finally, if ∼ stands for equality of some

characteristics of X and Y , then the metrics are called primary.

2.3.3 Tracking Error Quantile Regression

The common measure are broadly used in the benchmark tracking but they present

some intuitive drawbacks and theoretical lacks. For this reason, we consider the quantile

regression method to build a dispersion measure of the tracking error suitable for the

benchmark tracking problem. In quantile regression a linear equation relates how the

quantile of the dependent variable vary with the independent variable. The solution of

this problem does not present a closed form solution but the result are found solving

a linear program. Let (2.20) be the general solution of the quantile regression, we can

define the related measure of dispersion for the tracking error in a discrete case.

Definition 2.1

Let Y be a random variable of benchmark returns with realization yt for t = 1, . . . , T , let

X = rβ the returns of the invested portfolio of its N components and τ be the quantile of

interest such that (0 ≤ τ ≤ 1). Let εt =
∑N

n=1 rt,nβn−yt the difference between portfolio

and benchmark returns at time t, we define the tracking error quantile regression

(TEQR) at given τ as:

TEQR σ(ε|τ) = τ
T
∑

t=1

εt1[εt≥0] + (1− τ)
T
∑

t=1

εt1[εt<0] (2.27)

In (2.27), the first term is the sum of the positive residuals while the second term is

the sum of negative residuals. The first one represents the observations that lie above

the regression line and they receive a weight of τ , while the second are the observations

that lie below the regression line and they receive a weight of (1− τ).
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However, the concept of quantile regression is strictly connected with the Value at

Risk and expected shortfall at a given confidential level τ . It is not the objective of this

dissertation to investigate this implication (Taylor, 2008; Kuester et al., 2006; Engle and

Manganelli, 2004).

Portfolio managers aim to minimize a specific dispersion measure of tracking error

and in the tracking error quantile regression case, when τ increases (decreases) there will

be fewer positive (negative) residuals and they will be closer to the regression line. The

advantage of this approach is that when for instance τ = 0.9 (or τ = 0.1), the regression

line fits better the extreme value of the returns distribution. In particular, low values

of τ imply a specific behavior of the portfolio manager to built a tracking portfolio that

wants to reduce index outcomes greater than the mimic portfolio. It is an aggressive

strategy since the quantile regression line dominates the majority of the observations.

Contrary, high values of τ lead to a “Value at Risk” tracking portfolios and they

guarantee minimum expected returns. However, both the approaches approximate the

tail behavior of the benchmark returns distribution and in period of financial distress

help to achieve the portfolio manager goals. Consequently, a tail selection of the quantile

increase the tracking error since it exposes the portfolio to gains returns far from the

central and high probable return tendency.

Fixing the value of τ it is possible to define the tracking error quantile regression as

a translation invariant metric of relative deviation and a deviation measure.

Proposition 2.1

Let σ(X,Y |τ) be a mapping originated by the tracking error quantile regression taking

values in the extended interval [0,∞]. Then, for a fixed τ such that τ ∈ [0, 12) ∪ (12 , 1],

it is a translation invariant metric of relative deviation (Stoyanov et al., 2008b) since it

satisfies:

a) Identity Property := σ(X,Y |τ) ≥ 0 and σ(X,Y |τ) = 0 iff X = Y a.s.

b) Triangle Inequality := σ(X,Y |τ) ≤ σ(X,Z|τ) + σ(Z, Y |τ) ∀X,Y, Z
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c) Strong Regularity := σ(X + Z, Y + Z|τ) = σ(X,Y |τ) ∀X,Y, Z,

d) Positive homogeneity of degree s := σ(aX, aY |τ) = asσ(X,Y |τ) ∀X,Y, a, s ≥ 0

Proposition 2.2

For a fixed τ such that τ ∈ [0, 12)∪(12 , 1], the tracking error quantile regression is deviation

measure Rockafellar et al. (2006) since it satisfies properties D1, D2, D3 and D4.

From these definition it appears relevant the asymmetry property of the tracking

error quantile regression (2.27) is linked with the value of the selected τ . It gives a

different weight to positive and negative tracking errors and it also represents an aversion

risk coefficient.

As underlined by Koenker and Bassett (1978), the quantile regression problem does

not present a close form solution as the mean square error but it is the result of a

minimization problem. Let u and ν two slack variables such that:

ut = εt1[εt≥0] ∀t = 1, . . . , T

νt = εt1[εt<0] ∀i = t, . . . , T
(2.28)

It is possible to express the quantile regression as a solution of the following mini-

mization problem:

min
(w,u,ν)∈Rp×R2n

+

{

τ1⊤u+ (1− τ)1⊤ν|rβ − u+ ν = y
}

(2.29)

The linearity of the formulation and its theoretical support make of the tracking

error quantile regression a suitable dispersion measure to solve the benchmark tracking

portfolio problem. This measure is defined fixing the value of τ . As we discuss later, the

choice of the quantile represents an interesting topic of research and the possibility to

switch its value during the time allows to capture the features of the financial markets.

Thus, let the log-return of equity index Y s.t. yt, t = 1, . . . , T and of its N components

being r1, r2, . . . , rN . We define the slack variable u and ν (2.28).
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The linear programming benchmark tracking problem with the tracking error quan-

tile regression dispersion measure is:

min
β,u,ν

T
∑

t=1

τut + (1− τ)νt

s.t. rtβ − ut + νt = yt ∀t = 1, . . . , T

N
∑

n=1

βn = 1

E [X]− E [Y ] ≥ K∗

ut, νt ≥ 0 ∀t = 1, . . . , T

lb ≤ βn ≤ ub ∀n = 1, . . . , N

(2.30)

2.3.4 Reward, Risk Measure and Information Ratio

In the previous section, we introduced a dispersion measure for the benchmark tracking

problem. The tracking error quantile regression is theoretically suitable to measure

the distance between portfolio and benchmark returns but it depends on the assigned

quantile τ . However, investors and portfolio managers evaluate the profitability of their

investment in a reward/risk sense. For this reason financial literature introduced the

concept of ratio of performance to order the investor preferences for different reward and

risk measures. In the context of benchmark tracking portfolio problem the performance

ratio is called information ratio (IR) (Goodwin, 1998) since the selected measures are

not based only on the feature of the invested portfolio but also they take into account

the random variable describing a given benchmark.

In this section we firstly review the common information ratio based on the tracking

error measure presented in the Section 2.2.1 and then we introduce a new information

ratio based on the quantile regression discussing its properties from an empirical point

of view. Finally, we propose two different strategies for portfolio managers considering

static or rolling quantile decision approaches.
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Generally, benchmark tracking managers evaluate the performances of their mimic

portfolios considering the information ratio (IR) (i.e. the ratio between a reward measure

and a dispersion measure of the tracking error) (Goodwin, 1998):

IR =
µ(X − Y )

σ(X − Y )
(2.31)

when µ(·) is a reward measure and σ(·) is a dispersion measure of the tracking error.

Financial literature proposes several information ratios related with a common reward

measure and different risk ones. In particular, the common numerator of the (2.31) is

the portfolio alpha:

α̂ = E[X]− E[Y ] (2.32)

that identify the average difference between the return of mimic and benchmark port-

folios. Then, considering the common deviation measures presented in this essay (2.3),

(2.4) and (2.5) we could define three different information ratios that capture the risk

of the replicating strategy in different ways.

Considering the tracking error mean absolute deviation TEMAD (2.3), it is possible

to define the related information ratio mean absolute deviation as follow:

IRMAD =
µ(X − Y )

σ(X − Y )
=

α̂

σMAD(X − Y )
=

E[X]− E[Y ]
1
T

∑T
t=1 |εt|

(2.33)

Then, whether the investors are focused only on the downside risk, an efficient

dispersion measure is the downside mean semideviation and the related information

ratio is defined as:

IRDMS =
µ(X − Y )

σ(X − Y )
=

α̂

σDMS(X − Y )
=

E[X]− E[Y ]
1
T

∑T
t=1 |εt|1[εt<0]

(2.34)

Finally, considering a quadratic measure to capture the distance between portfolio

and benchmark returns, we define the information ratio volatility based on the measure

of dispersion of the tracking error (2.5) called tracking error volatility. In this way, the
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information ratio volatility is:

IRV =
µ(X − Y )

σ(X − Y )
=

α̂

σV (X − Y )
=

E[X]− E[Y ]
1
T

∑T
t=1(εt − ε̄)2

(2.35)

These measures have the advantages to be clearly defined and easy to compute.

Moreover, they depends on parameters with a strong impact in the decisional problem.

However, they present some important drawbacks. On one hand, they suffer they same

problematics discussed in the definition of the dispersion measures. In particular, they

consider a symmetric risk source such as the mean absolute deviation or they show a

quadratic formulation difficult to optimize if the performance measure is the objective

function of a portfolio selection model.

On the other hand, index tracking portfolio managers prefers investment with pos-

itive alphas and low dispersion measure levels. However, they have a different system

of choice with respect to the magnitude of the alphas since they are mimic the perfor-

mance of an index where high positive alphas are related with high dispersion measures.

Thus, investor with different reward-risk profiles would like to differently capture their

behavior in the evaluation of an benchmark tracking strategy. Finally, it is important

to mention how this information ratios are defined on [−∞,+∞] and when the portfolio

alpha is non positive (α̂ < 0) the evaluation of different benchmark tracking strategies

could leads to misleading results.

To cross these drawbacks, we introduce an information ratio based on the tracking

error quantile regression. In fact, this measure could be easily decomposed in two part:

the sum of the positive different between the mimic portfolio and the benchmark one

and the sum of the negative side of this difference. Since the second part presents the

absolute value of negative figures, we have two positive measures in the definition of the

index tracking. In this framework the two parts represent a reward and a risk measure,
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respectively. In particular, we could define a reward measure µ on the tracking error as:

µ(X − Y ) = µ(ε) =
1

T

T
∑

t=1

εt1[εt≥0] =
1

T

T
∑

t=1

ut (2.36)

This reward measure has the main feature to be defined on the positive support

such that µ : R → [0,+∞] and as we will discuss later this property fits the possibility

to compare in a reward-risk sense different benchmark tracking strategies. Then, the

associate risk measure to the tracking error quantile regression is defined as the sum of

the absolute value of the negative differences between portfolio and benchmark returns:

σ(X − Y ) = σ(ε) =
1

T

T
∑

t=1

|εt|1[εt<0] =
1

T

T
∑

t=1

νt (2.37)

Also in this case, we are dealing with a positive risk measure and even though it is

derived from the mean downside semideviation (2.4) while the reward measure (2.36) is

the mean positive semideviation.

However, benchmark tracking portfolio managers want to minimize both parts of

the tracking error quantile regression with different risk aversion given by the functional

τ . On one hand, in this minimization process, they aim to obtain that
∑T

t=1 εt1[εt≥0] ≥
∑T

t=1 |εt|1[εt<0] to have a replication portfolio strategy from above. On the other hand,

they evaluate the goodness of their strategy considering a measure of return and a

measure of risk. In this framework, portfolio managers compute the information ratio

(IR) that measure the reward for unit of risk. This ratio allows also to order different

investment in a reward/risk sense but it depends on how we measures the different

between invested portfolio and benchmark return and how we evaluate the intrinsic risk

of this difference.

Let µ be a reward measure applied on the difference between the portfolio (X)

and benchmark (Y ) returns and σ a risk dispersion measure. Fixing the quantile τ

that represent the investor’s risk aversion, we define the information ratio generalized
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quantile regression as:

IRGQR|τ =
µ(X − Y )

σ(X − Y )
=

τ
∑T

t=1 εt1[εt≥0]

(1− τ)
∑T

t=1 |εt|1[εt<0]

(2.38)

Introducing the two slack variables u and ν identifying the associated reward (2.36)

and risk (2.37) measures, we can define a new information ratio.

Definition 2.2

Let ut = εt1[εt≥0] and ν = |εt|1[εt<0] be two slack variable representing positive and neg-

ative excess returns between tracking and tracked portfolios where εt =
∑N

n=1 rt,nβn − yt

for t = 1, . . . , T . We define the information ratio generalized quantile regression

for a given τ (IRGQR|τ ) as

IRGQR|τ =
τ
∑T

t=1 ut

(1− τ)
∑T

t=1 νt
(2.39)

This information ratio is a functional depending on the quantile τ . In particular,

we notice that investors with low risk aversion select high level of τ to give a significant

weight to the positive difference between tracking and tracked portfolio returns while

high risk averted investor select low levels of the quantile. However, this formulation

leads to focus on the different behavior of the investors and it is suitable maximizing

the investor preferences in the active strategy area (Biglova et al., 2004; Sharpe, 1994;

Markowitz, 1952).

To evaluate the performance of a given benchmark tracking strategy we propose

a special case of the (2.39) in which τ = 0.50. In this case, investors equally weight

positive or negative performances with respect to the index.

Definition 2.3

Let ut = εt1[εt≥0] and νt = |εt|1[εt<0] be two slack variable representing positive and

negative excess returns between tracking and tracked portfolios where εt =
∑N

n=1 rt,nβn−
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yt for t = 1, . . . , T . We define the information ratio quantile regression (IRQR) as

IRQR =

∑T
t=1 ut

∑T
t=1 νt

(2.40)

The main advantage of this information ratio is to be defined in a positive range:

IRGQR := R → [0,+∞]. Since both terms of the ratio are positive it allows to compare

different benchmark tracking strategies also when they have negative alphas.

Finally, we discuss two possible approaches to solve the benchmark tracking problem

minimizing the tracking error quantile regression based on static or rolling strategies in

the definition of the quantile. In the traditional approach, portfolio managers choose a

given quantile and defining the style of portfolio strategy they keep it constant during the

entire investment period. This approach becomes optimal considering policy constraints

in the replication of the benchmark. In particular, a “Vale at Risk” strategy implemented

selecting a fixed low quantile allows to built a mimic portfolio that is very prudential

in the replication process. Differently, a high value of τ implies a much more seeking to

the risk and the possibility to achieve relevant extra-performances. Portfolio managers

which follow this style have the advantages to reduce the computational time and to

declare a priori which type of mimic portfolio they want to built.

Although, this approach turns out to be clear and very efficient not only from

a theoretical point of view but also analyzing the empirical results, it hampers the

possibility to seize some features of the financial market. For this reason a rolling

strategy based on the shift of the selected quantile to solve the benchmark tracking

problem seems to be optimal to capture different aspects of empirical evidences observed

on the financial markets. This rolling approach consists in a decisional process executed

at each portfolio optimization step that select the “best” quantile to be the more suitable

to capture portfolio evolution in the following investment period.
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The motivations underlying this approach are related with the opportunity to effi-

ciently capture different phases of the financial cycle as well as the phenomena of volatil-

ity clusterings. Forecasting modeling and Black-Litterman (Meucci, 2010; Satchell and

Scowcroft, 2000; Black and Litterman, 1992) views could be introduce in this formu-

lation. In this essay, we propose a simple decisional problem to switch the quantile.

This approach considers the financial trend and presents the information ratio quantile

regression as decisional tool. In particular, at each optimization step, we select the

quantile that in the static approach has the higher information ratio quantile regression

during a window covering the last d days.

2.4 Enhanced Indexing Strategy

Enhanced indexation models are related to index tracking, in the sense that they also

consider the return distribution of an index as a reference. However, they aim to outper-

form the index by generating “excess return” (Scowcroft and Sefton, 2003) or “adding

alpha” controlling the sources of risk. Enhanced indexation is a very new area of research

and there is no generally accepted portfolio construction method in this field (Canakgoz

and Beasley, 2009; Litterman, 2004).

In general, portfolio managers which implement an enhanced indexation strategy

aim to achieve two different goals mixing the advantages of passive and active bench-

mark tracking portfolios. In particular, they minimize the risk maximizing possible

extra-performances. In this way they try to synthesize the reduction of a dispersion

measure that characterize passive strategies while they try to outperform the bench-

mark as required in the active management. In this type of problem, we face the same

computational issues as in index tracking such as the high dimensionality and cardinality

constraints. Although the idea of enhanced indexation was formulated as early as 2000,

the few enhanced indexation methods were proposed later in the research community (a

review in Canakgoz and Beasley (2009)).
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In the recent years the need to built portfolios that mimic a given index looking

for an extra performance is getting crucial for different reasons. On one hand, portfolio

managers would cover the fees and transaction costs to maximize the profits and in-

vestors’ goals. Giving tracking error constraints they guarantee an extra-performance.

On the other hand, the same investors would replicate the performance of an index from

above and they are interested in strategies with this aim. For these reasons enhanced

indexation that is arranged between passive and active strategies is a relevant topic in

the recent financial literature (Valle et al., 2015; Bruni et al., 2014; Chavez-Bedoya and

Birge, 2014; Mezali and Beasley, 2013; Roman et al., 2013; Lejeune, 2012).

Several different approaches to the enhanced indexation problem, both exact and

heuristic, have been proposed in the last decade, starting from a seminal study by

Beasley et al. (2003). We review some of this works to give a general idea about the

state of the art about this innovative area of research.

Alexander and Dimitriu (2005), applied a cointegration based strategy constructing

two index series by adding/subtracting from the original index values a constant excess

return, alpha. They seek to earn excess return by going long on the alpha plus tracking

portfolio and shorting the alpha minus tracking portfolio. They used a very simple

approach to decide the stocks to include in the tracking portfolios based on ranking

stocks by price. Dose and Cincotti (2005) propose a cluster stocks method based on a

distance measure between stock prices time series data. This clustering is used to decide

which stocks hold in the tracking portfolio, given a priori cardinality constraint. To

compute the investment in each stock they use a weighting parameter lambda (Beasley

et al., 2003) as a trade-off between tracked index and excess return.

Konno and Hatagi (2005), used a mean absolute deviation objective function to

minimize the distance between index and the tracking portfolio values. In particular,

the index is scaled up by a factor alpha and normalized by the index value at the end of

the time period while the mimic portfolio is normalized by the tracking portfolio value

at the end of the time period. In their model transaction cost are included and the entire
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problem is formulated minimizing a separable concave function with linear constraints.

They performed a problem reduction test to eliminate variables. Wu et al. (2007),

presented a double goal programming approach trying to achieve a given rate of return

while they control the tracking error. In particular, it is defined in a nonlinear way,

but additive, fashion. The two objective functions are the minimization of the tracking

error, given by the standard deviation of the portfolio return compared to the benchmark

return, and the maximization of the excess portfolio return over the benchmark.

Canakgoz and Beasley (2009) propose a regression based model for enhanced in-

dexing, developing a two-stage mixed-integer linear programming approach where they

respectively focused on slope-intercept and transaction cost. In the first-stage, they solve

a problem achieving a regression slope as close to one as possible, subject to a constraint

on the regression intercept while the minimization of transaction cost subject is central

in the second-stage. Koshizuka et al. (2009) propose a minimization of the tracking er-

ror from an index-plus-alpha portfolio basing the selection process among the portfolios

which show a high correlation with the benchmark. To solve the enhanced indexation

tracking problem, they introduce a convex minimization model with linear objective

function and quadratic constraints where two alternative measures of the tracking error

are considered. The first one is based on the absolute deviation between the portfolio and

the index-plus-alpha portfolio while the second one is the downside absolute deviation

between these two quantities.

In 2011, Meade and Beasley (2011) investigate a momentum strategy via the maxi-

mization of a modified Sortino ratio (Sortino and Price, 1994) objective function while

Li et al. (2011) develop a non-linear bi-objective optimization model for enhanced index-

ing. In a mixed integer problem where the number of units of stock are the decisional

variables, they maximize the excess returns and minimize of the downside standard devi-

ation with the introduction of an evolutionary algorithm. Li et al. (2011) formulate the

enhanced indexing benchmark tracking problem as a bi-objective optimization model

where the excess portfolio return over the benchmark is maximized, while the tracking
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error, formulated by the authors as the downside standard deviation of the portfolio

return from the benchmark return, is minimized. Their model includes, among other

features, a cardinality constraint and buy-in threshold limits.

Lejeune (2012) introduce a game theoretical approach in the decisional problem

of the enhanced indexing. They propose a stochastic model which aim at maximize

the probability to obtain excess return of the invested portfolio with respect to the

benchmark. In this formulation, they impose a threshold level ensuring that the risk

source, given by the downside absolute deviation dispersion measure, does not cross it.

A similar approach that consider a stochastic mixed integer nonlinear model is proposed

in Lejeune and Samatli-Paç (2012) where asset returns and the return covariance terms

are treated as random variables.

Recently, Roman et al. (2013) apply a second order stochastic dominance strategy

(Fábián et al., 2011; Roman et al., 2006) to construct a portfolio whose return distribu-

tion dominates the benchmark one. They adopt a multi-objective linear problem solved

with a cutting-plane solution method presented in Fábián et al. (2011). Empirical analy-

ses confirm the goodness of the proposed methodology to outperformed the benchmark.

Moreover, they notice a reduction in the active asset without the introduction of cardi-

nality constraints and the robustness of the invested portfolio which does not need to

be significantly rebalanced.

Finally, Guastaroba et al. (2014) introduce a mixed-integer linear programming to

enhance the index tracking problem maximizing the Omega ratio Keating and Shadwick

(2002) in a linear formulation with buy-in threshold limits and cardinality constraints.

In the definition of the Omega ratio they propose two different approaches where the

benchmark return are defined by a fixed target or when they are random variables. Valle

et al. (2015) discuss an extension of a three-stage approach to compute an absolute return

portfolio in an enhanced indexing sense.

The contribution of this work is to propose a different methodology to solve the

enhanced indexing tracking problem. Considering the tracking error quantile regression
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dispersion measure we formulate a benchmark tracking problem to mimic the index’s be-

havior enhancing its performances with stochastic dominance constraints. This method-

ology differently solves the problem since it neither focus on performance measures nor

introduce a maximization problem related with the excess returns. Common approaches

stress the need to maximize portfolio gains trying to control or limit the risk. In our

approach, we still keep on reducing a dispersion measure replicating the performance

of the benchmark but stochastic dominance constraints allow to force that the mimic

portfolio should also dominate the tracked one.

Thus, a realistic model with transaction penalty function and buy-in threshold lim-

its is introduced to enhanced the portfolio performance. We achieved this aim setting

first order and second order stochastic dominance constraints and we discuss how dif-

ferent agent try to adding alpha to their portfolios. In particular, we built two kinds of

enhanced indexing tracking portfolios: the first one formulate an optimization problem

with first order stochastic dominance constraints whose solution is chosen by non-satiable

investors while the second one find optimal portfolio selected by non-satiable risk averse

investors.

2.4.1 Problem Formulation for the Enhanced Indexing

As stress in the previous section, enhanced indexing strategies capture the best features

of index tracking and active management. In fact, they reduce the risk maximizing

the expected returns. Considering the classical benchmark tracking problem, portfolio

managers fix the level K∗ of the expected or guaranteed future returns of the tracking
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portfolios in relation with the nature of their strategies.

min
β

σ (X − Y )

s.t.
N
∑

n=1

βn = 1

E[X] ≥ E[Y ] +K∗

lb ≤ βn ≤ ub ∀n = 1, . . . , N

(2.41)

Whether a zero value of K∗ is set to solve the index tracking portfolio problem,

increasing the required return portfolio managers switch from passive strategies to active

ones. The main issue of this approach is the absence of relations between the in sample

and the out of sample analyses. This aspect implies the impossibility for portfolio

managers to guarantee to their investors not only given but also positive gains and

consequently to pledge minima or excess returns.

To avoid this problem financial literature proposes several methodologies and port-

folio formulations but, as mentioned before, they significantly diverge from the original

idea of enhanced indexation strategies and sometimes their are really addressed with

active portfolio management. Setting K∗ = 0, we introduce an enhanced indexing

benchmark tracking portfolio problem which is still minimizing a dispersion measure

but also introduce two different components to make the model realistic and to obtain

significant extra-performances.

Thus, applying the proposed tracking error quantile regression dispersion measure

we introduce a linear penalty function in the objective formulation to reduce transaction

costs and stochastic dominance constraints to enhance the performance of the invested

portfolio that replicate the index from above. Moreover, a buy-in threshold level com-

bined with transaction penalty function reduces the portfolio turnover. In the next two

section, we recall the concept of stochastic dominance and we describe the complete

optimization model.
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2.4.2 Stochastic Dominance and Benchmark Tracking

The relation of stochastic dominance is one of the fundamental concepts of the decision

theory (Levy, 1992). It introduces a partial order in the space of real random variables.

The first degree relation carries over to expectations of monotone utility functions, and

the second degree relation to expectations of concave nondecreasing utility functions.

In portfolio theory, stochastic dominance rules have been used to justify the reward-

risk approaches (Mosler and Scarsini, 1991) and several behavioral finance studies have

tried to characterize investors’ behavior and preferences (Edwards, 1996; Friedman and

Savage, 1948). However, several theoretical formulation and empirical application in the

financial filed has been proposed in the last twenty years (Ziemba and Vickson, 2014;

Davidson and Duclos, 2013; Post and Kopa, 2013; Kopa and Tichỳ, 2012; Annaert et al.,

2009; Ortobelli et al., 2009; Sriboonchita et al., 2009; Rachev et al., 2008b; Dentcheva

and Ruszczyński, 2006; De Giorgi, 2005; Fong et al., 2005; Post and Levy, 2005; Post,

2003).

Suppose that there are two portfolios X and Y , such that all investors from a

given class do not prefer Y to X. This means that the probability distributions of the

two portfolios differ in a special way that, no matter the particular expression of the

utility function, if an investor belongs to the given class, then Y is not preferred by that

investor. In this case, we say that portfolio X dominates portfolio Y with respect to the

class of investors. Generally speaking, X dominates Y with respect to the α stochastic

dominance order Xα
≥
Y (with α ≥ 1) if and only if E[u(Y )] ≥ E[u(X)] for all u belonging

to a given class Uα of utility functions (Ortobelli et al., 2009).

The usual first order definition of stochastic dominance (FSD) gives a partial or-

der in the space of real random variables (Kopa and Post, 2009; Levy, 1992; Bawa,

1978). Let X and Y be r.v.s of the returns of two financial portfolios. Then, in the

stochastic dominance approach, they are compared by a point-wise comparison of some

performance functions constructed from their distribution functions. For a real random

variable X, its first performance function is defined as the right-continuous cumulative
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distribution function of X:

FX(ξ) = P(X ≤ ξ) for ξ ∈ R (2.42)

A random return X is said to stochastically dominate another random return Y in

the first order sense, denoted X ≥
(1)

Y , if

FX(ξ) ≤ FY (ξ) for ξ ∈ R (2.43)

More important from the portfolio point of view is the notion of second-order dom-

inance (SSD), which is also defined as a partial order. It is one of the most debated

topic in financial portfolio selection, due to its connection to the theory of risk-averse

investor behavior and tail risk minimization (De Giorgi and Post, 2008; De Giorgi, 2005;

Ortobelli, 2001; Bawa, 1975).

It is equivalent to this statement: a random variable X dominates the random vari-

able Y if E[u(X)] ≥ E[u(Y )] for all non-decreasing concave functions u(·) for which these

expected values are finite. Thus, no risk-averse decision maker will prefer a portfolio

with return rate Y over a portfolio with return rate X (Ortobelli et al., 2013; De Giorgi

and Post, 2008). The second performance function F (2) is given by area below the

distribution function F :

F
(2)
X =

∫ ξ

−∞
FX(ξ)dξ for ξ ∈ R (2.44)

and defines the weak relation of the second-order stochastic dominance. That is, random

return X stochastically dominates Y in the second order, denoted X ≥
(2)

Y , if

F
(2)
X (ξ) ≤ F

(2)
Y (ξ)for ξ ∈ R (2.45)



Chapter 2. Tracking Error Quantile Regression. 51

Changing the order of integration, the ordering X ≥
(2)

Y is equivalent to the expected

shortfall (Ortobelli et al., 2013; Ogryczak and Ruszczyński, 1999):

F
(2)
X (ξ) = E[(ξ −X)+]for ξ ∈ R (2.46)

where (ξ−X)+ = max(ξ−X, 0). In this case, the function F
(2)
X (ξ) is continuous, convex,

nonnegative and non-decreasing. It is well defined for all random variables X with finite

expected value.

Computational tractable and technological solvable portfolio optimization models

which apply the concept of FSD or SSD were recently proposed by Ortobelli et al. (2013);

Kopa and Chovanec (2008); Dentcheva and Ruszczyński (2006); Kuosmanen (2004). A

common problem with index tracking models is raised by their computational difficulty

due to the non-linearity of the objective function, the implementation of regulatory or

trading constraints, such as the cardinality constraint which limits the number of stocks

in the chosen portfolio. However, until recently, stochastic dominance was considered for

its theoretical development without analyzing its implication in the benchmark tracking

problem. The main reason is to ascribe to the model formulation which result intractable

or at least very demanding from a computational point of view. In fact, the introduction

of stochastic dominance constraints imply an increment in the complexity and in the

high dimensionality of the problem since they seems to have a non-linear feature.

Here we present the methodology to linearize FSD and SSD reviewing some impor-

tant work in the literature. In particular, first order stochastic dominance imply that

the cumulative distribution of the dominated random variable should be greater than

the dominant one (2.43). This type of formulation is presented in a non-linear form since

the returns of the two portfolios have to be sorted. For this reason, Kopa (2010) and

Kuosmanen (2004) propose a linear formulation of this problem through the introduc-

tion of a permutation matrix. Let P = {pr,c} a permutation matrix with pr,c = 0, 1 such

that
∑T

r=1 pr,c = 1 for c = 1, . . . , T and
∑T

c=1 pr,c = 1 for r = 1, . . . , T . Then portfolio
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X = xβ dominates portfolio Y in a first order sense if and only if:

X ≥ PY

T
∑

r=1

pr,c = 1 ∀c = 1, . . . , T

T
∑

c=1

pr,c = 1 ∀r = 1, . . . , T

pr,c ∈ 0, 1 ∀r = 1, . . . , T ; ∀c = 1, . . . , T

(2.47)

Differently, several approach are presented to solve the second order stochastic dom-

inance in a linear formulation. Let X = rβ be the random variable of the invested port-

folio in which the discrete joint distribution of the asset component xt, t = 1, . . . , T have

the same probability and let Y be the benchmark with realization yi (for i = 1, . . . , T ),

then X ≥
(2)

Y in the second order stochastic dominance sense if:

E[(yi − rtβ)+] ≤ E[(yi − Y )+] ∀i = 1, . . . , T (2.48)

Then the formulation of the stochastic dominance relation 2.48 could be expressed in

the following linear representation. Introducing slack variables si,t representing shortfall

of rtβ below yi in realization t, t = 1, . . . , T , we can formulate the second order stochastic

dominance (Ortobelli et al., 2013; Dentcheva and Ruszczyński, 2006) as:

N
∑

n=1

rt,nβn + si,t ≥ yi ∀i = 1, . . . , T ; ∀t = 1, . . . , T

T
∑

t=1

si,t ≤ E[(yi − Y )+] ∀i = 1, . . . , T

si,t ≥ 0 ∀i = 1, . . . , T ; ∀t = 1, . . . , T

(2.49)

Differently, Kopa (2010) and Kuosmanen (2004) propose another linear formulation

of the second order stochastic dominance. Let us assume that the return have a discrete
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joint distribution with realizations xt, t = 1, . . . , T having the same probability, then

X ≥
(2)

Y in the second order stochastic dominance sense if and only if there exists a

double stochastic matrix Z = {zr,c} with zr,c ∈ [0, 1] such that

X ≥ ZY

T
∑

r=1

zr,c = 1 ∀c = 1, . . . , T

T
∑

c=1

zr,c = 1 ∀r = 1, . . . , T

0 ≤ zr,c ≤ 1 ∀r = 1, . . . , T ; ∀c = 1, . . . , T

(2.50)

2.4.3 Enhanced Indexing Problem with Stochastic Dominance Con-

straints

A realistic formulation to solve the enhanced index benchmark tracking problem should

consider the introduction of different components to make the model as real as possible.

This complete formulation takes into account a linear penalty objective function and

buy-in threshold level to reduce the portfolio turnover and risk management duties.

Moreover, whether the introduction of stochastic dominance constraints enhances the

benchmark tracking model, its formulation strongly increases the dimensionality and the

computational complexity of the problem. In particular, we consider the methodologies

proposed by Kopa (2010) and Kuosmanen (2004).

The enhanced index benchmark tracking problem is solved considering the minimiza-

tion of a dispersion measure of the tracking error, the tracking error quantile regression

(2.27), which could be formulated as linear (2.29), and the minimization of the trans-

action costs. To enhance the performance in the risk minimization, we introduce first

and second order stochastic dominance constraints following the formulations (2.47) and

(2.50). Let the log-return of equity index Y with realization yt, t = 1, . . . , T and of its

N components being R = r1, r2, . . . , rN . The tracking error εt =
∑N

n=1 rt,nβn − yt is
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minimized considering the tracking error quantile regression. Then, let tc+ and tc− the

transaction costs to the buying and selling portfolios ω+ and ω− with a buy-in thresh-

old level θ. We define the enhanced indexation benchmark tracking problem with FSD

constraints as:

min
β,u,ν,p,ω+,ω−

T
∑

t=1

τut + (1− τ)νt + tc+ω+ + tc−ω−

s.t. rtβ − ut + νt = yt ∀t = 1, . . . , T

N
∑

n=1

βn = 1

E [X]− E [Y ] ≥ K∗

ω+
n − ω−

n = βn − βold
n ∀n = 1, . . . , N

∑

n
|βn − βold

n | ≤ θ n = 1, . . . , N

X ≥ PY

T
∑

r=1

pr,c = 1 ∀c = 1, . . . , T

T
∑

c=1

pr,c = 1 ∀r = 1, . . . , T

pr,c ∈ {0, 1} ∀r, c = 1, . . . , T

lb ≤ βn ≤ ub ∀n = 1, . . . , N

lb ≤ ω+
n , ω

−
n ≤ ub ∀n = 1, . . . , N

ut, νt ≥ 0 ∀t = 1, . . . , T

(2.51)

The solution of this problem is the portfolio chosen by all non-satiable investors. As

treated in Jarrow (1986) the existence of a portfolio that stochastically dominates the

index in a first order sense is equivalent to the concept of arbitrage. However, the en-

hanced index benchmark tracking problem (2.51) is a mixed-integer linear programming

since the permutation matrix P is composed by binary variables. We notice how the

dimensionality of this problem quadratically increase with the number of observation T .
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The other proposed model is based on second order stochastic dominance with the

introduction a double stochastic matrix Z. Thus, we define the enhanced indexation

benchmark tracking problem with SSD constraints as:

min
β,u,ν,p,ω+,ω−

T
∑

t=1

τut + (1− τ)νt + tc+ω+ + tc−ω−

s.t. rtβ − ut + νt = yt ∀t = 1, . . . , T

N
∑

n=1

βn = 1

E [X]− E [Y ] ≥ K∗

ω+
n − ω−

n = βn − βold
n ∀n = 1, . . . , N

∑

n
|βn − βold

n | ≤ θ n = 1, . . . , N

X ≥ ZY

T
∑

r=1

zr,c = 1 ∀c = 1, . . . , T

T
∑

c=1

zr,c = 1 ∀r = 1, . . . , T

0 ≤ zr,c ≤ 1 ∀r, c = 1, . . . , T

lb ≤ βn ≤ ub ∀n = 1, . . . , N

lb ≤ ω+
n , ω

−
n ≤ ub ∀n = 1, . . . , N

ut, νt ≥ 0 ∀t = 1, . . . , T

(2.52)

Differently from the previous enhanced index problem with first order stochastic

dominance constraints, this formulation is a linear programming and could be efficiently

solved also when the computational complexity increase with the number of observations.
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2.5 Empirical Applications

In this section, we present some empirical applications involving the tracking error quan-

tile regression. Firstly, we present the datasets which cover a long investment period

with different phases of the financial cycle and the related stock indexes are composed

by different number of assets. Secondly, we solve the classical benchmark tracking prob-

lem comparing the common measures of the tracking error with the proposed dispersion

one. Analyzing the behavior in sample and out of sample we also evaluate the differences

between static and rolling strategies. Thirdly, we propose a realistic LP model to solve

the enhanced indexation strategies with stochastic dominance constraints. In particular,

we stress the advantages of our methodology to reduce the risk component obtaining

extra-performances in a static or rolling framework.

2.5.1 Datasets Description

The empirical analysis is based on three stock indexes: Russell 1000, S&P 500 and

Nasdaq 100. The first one is a very important stock index in the financial market since

it considers the first 1000 U.S. public company for market capitalization. For this reason,

it represents one of the most tracked index through the exchange-traded funds (ETF)

and the benchmark of comparison for several portfolio strategies. The S&P 500 is an

American stock market index based on the market capitalizations of 500 large companies

having common stock listed on the NYSE or NASDAQ. It is one of the most commonly

followed equity indices, and many consider it one of the best representations of the U.S.

stock market, and a bellwether for the U.S. economy. Finally, the Nasdaq 100 is a

capitalization-weighted stock market index made up of 109 equity securities issued by

100 of the largest non-financial companies listed on the NASDAQ.

The analyzed time period covers the last decade from 31st December 2002 to 31st

December 2013 and we propose investment strategies with monthly recalibration (20

days) with a total number of 125 optimization steps. We generally consider an historical
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moving window of 260 observations which is reduced to 120 time series data when we

apply enhanced indexing strategies with first order stochastic dominance constraints.

Every investment portfolio strategy starts on 12th January 2004. While the Russell

1000 presents 736 components as number of stocks during the entire period, the S&P

500 is composed by 441 assets and the Nasdaq 100 has 84 components. We set a spectrum

of possible quantiles τ in the range [0.01, 0.05, 0.10, 0.20, . . . , 0.90, 0.95, 0.99] developing

the two different strategies involving the tracking error quantile regression dispersion

measure: the static, fixing the referred quantile a priori or the rolling when we switch

the quantile at each optimization step.

Figure 2.1 shows the normalized wealth path of the three stock indexes during the

investment period and we compare our portfolio strategies with these benchmarks.
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Figure 2.1: Portfolio Paths of Stock Indexes
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On the overall period the three stock indexes have similar behavior and path. Whilst,

the Russell 1000 and the S&P 500 have the same path with the first index dominating

the second one, the wealth path of the Nasdaq 100 under-performs the other two before

the huge sub-prime crisis inverted this trend during the following financial upturn. In

particular, for the first four years the indexes steadily increase reaching a maximum

level of 1.4. Then, they forcefully fall down due to the sub-prime crisis which putted in

jeopardy the entire system.

After loosing more than the 84% the three stock indexes and in general the U.S.

equity market rescued consequently to monetary policy of the FED and until 2011 they

offer interesting gains for private and institutional investors. In 2011, the European

government instability given by the Greece default rumors have consequences on the

three benchmarks that loose about the 20% of their values. Finally, another period of

financial growth characterized the recent years where the index has been increased more

than 60% with a final wealth of about 1.7 for the Russell 1000, 1.6 for the S&P 500 and

2 for the Nasdaq 100.

For this reason the selected stock indexes represents significant benchmarks not only

for their different number of components that stress the goodness of proposed portfolio

selection models in the high dimensionality framework but also for the several phases

of the financial cycle. In fact, we test weather the portfolio selection problems mimic,

enhance or outperform the index during constant period, crisis or financial upturns in

boosted markets.

2.5.2 Comparison Between Different Dispersion Measures in the Index

Tracking Problem

To evaluate the goodness of the proposed measure of dispersion of the tracking error, we

empirically test it comparing some statistics in the in sample and out of sample analysis.

In particular, we firstly solve index tracking portfolio selection problems 2.6, 2.10 and

2.13 with the tracking error volatility, mean absolute deviation and downside mean
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semideviation as dispersion measures. Then, we solve the portfolio problem 2.30 for the

tracking error quantile regression. In the Table 2.1, 2.2 and 2.3, we report 5 different

statistics for the in sample and out of sample analyses. In particular, we evaluate

common and innovative strategies considering the portfolio alpha α, the tracking error

mean absolute deviation, the tracking error downside mean semideviation, the tracking

error volatility and the average number of active assets.

Generally, we notice how the in sample analysis is not related with the out of sample

and it is difficult for portfolio managers take decision based on the in sample information.

Identifying the best criteria of selection, it is not possible to fix the in sample quantile

and obtain the best out of sample statistics. Focusing on the alpha of the portfolio we

could see how in the left side of the Table 2.1 increasing the level of the quantile we

obtain higher values of portfolio alpha according to the aim to build a VaR tracking

portfolio or one that wants to have better performances. Whether Table 2.1 and 2.2

produce very low values of alpha considering a tracking portfolio with more than 60

active assets, the replication of the Nasdaq 100 (Table 2.3) is obtained with a smaller

portfolio and the results show an increment in the extra-performances of the invested

portfolios with respect to the benchmark.

In a deviation framework, we observe how the tracking error quantile reduce this

risk source with respect to the common measures of dispersion. It is possible to find

a quantile with lower measure of dispersion than the common ones but since there are

no relations between the in sample and the out of sample analysis it is not possible

to select an efficient quantile in a priori window. Moreover, the dispersion is strictly

related with the portfolio performances. A tracking portfolio with an high alpha has

also an higher dispersion. However, the number of active assets represent a significant

parameter to evaluate the degree of diversification but it is also a negative parameter

considering transaction and managing costs. Finally, since it is not possible to select a

priori best quantile, the introduction of rolling strategy allow to have a unique solution

to this problem.
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In a rolling framework, we switch the quantile at each optimization step according

with the maximum information ratio 2.40 in the last month. Figures 2.2, 2.3 and 2.4

illustrate the wealth path of the common tracking error strategies and the rolling one

in the out of sample analyses. In these Figures we report the wealth paths of the mini-

mization of the tracking error mean absolute deviation (blue line) solving the portfolio

problem 2.10, the tracking error downside mean semideviation (red line) solving the

portfolio model 2.13 and the quadratic formulation 2.6 for the tracking error volatility

(yellow line). The violet line represents the wealth path of the rolling strategy which

switches the quantile at each optimization step according with the higher in sample in-

formation ratio quantile regression 2.40 during the last month and we compare all these

strategies with the given benchmark (green line).
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Figure 2.2: Out of Sample Portfolio Wealth of Index Tracking Rolling Strategy,
Russell 1000

Figure 2.2 shows the wealth paths regarding the index tracking of the Russell 1000.
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We notice that during the first period of the strategy the replication portfolios mimic

the Russell 1000 from below with a relevant difference in 2006. Then, there are an

adjustment of the portfolios during the sub-prime crisis. In this case, the proposed

formulation is suitable to capture period of financial instability. The financial upturn in

2009, marks two principal features in the benchmark tracking strategies.

Firstly, the minimization of the tracking error mean absolute deviation and track-

ing error downside mean semideviation leads to a strong replication of the benchmark

from below. This implies inefficient tracking process since the difference between the two

mimic and the benchmark portfolios steadily increase. Secondly, while the tracking error

volatility approach matches the portfolio and index returns, the rolling strategy involv-

ing the tracking error quantile regression efficiently deal with the benchmark tracking

problem since it is the only one who shows the matching from a above. Table 2.4 reports

the statistics of the out of sample analysis. In particular, we present also the information

ratios related with the portfolio alpha and the different dispersion measure. It is clear

the importance of the introduced information ratio quantile regression to improve the

decisional problem to order in a reward risk sense benchmark tracking strategies with

negative α.

Changing the benchmark and focusing on the replication of the S&P 500 we observe a

different behavior of the wealth paths of the strategies. In particular, the minimization

of the tracking error mean absolute deviation and the downside mean semideviation

significantly improves and they mimic efficiently the benchmark index during the overall

period. In contrast, we notice how the minimization of the tracking error volatility

under-performs the benchmark after the sub-prime crisis. Table 2.6 shows the benefits

of rolling approach with respect to the common dispersion measures of the tracking

error. In particular, comparing this table with the results of the Russell 1000 we observe

a reduction of the dispersion keeping similar reward value.

Analyzing the index tracking strategies to mimic the Russell 1000 and the S&P 500,

we dictate the dominance of the proposed tracking error quantile regression dispersion
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Figure 2.3: Out of Sample Portfolio Wealth of Index Tracking Rolling Strategy, S&P
500

measure to replicate the benchmarks. Developing a rolling strategy which proposes

to switch the quantile according to the greatest information ratio quantile regression

evaluated in a monthly in sample period we obtain an index tracking portfolio with

positive alpha a low dispersion.

Finally, Figure 2.4 illustrates the wealth paths of the comparison between the three

common tracking error measures and the quantile rolling strategy. We notice that all

the index tracking strategies outperform the benchmark for the overall period with a

similar path. In particular, they show extra gains before the sub-prime crisis and in the

following financial upturn they steadily increase since the Nasdaq 100 is not strongly

affected from the European sovereign debt crisis. Although the mimic portfolios have
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Figure 2.4: Out of Sample Portfolio Wealth of Index Tracking Rolling Strategy,
Nasdaq 100

similar path the rolling quantile regression dominates the others in terms of wealth with

a final value greater then 3.3.

2.5.3 A Realistic Formulation for the Enhanced Indexation Problem

with Stochastic Dominance Constraints

The comparison between the tracking error quantile regression and the common dis-

persion measures to mimic the performance of a benchmark highlights the theoretical

and empirical impact of this measure in the benchmark tracking problem. Thus, we

propose two realistic models to solve the enhanced indexation benchmark tracking prob-

lem introducing first and second order stochastic dominance constraints. We solve the
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optimization problems (2.51) and (2.52) with tc+ = tc+ = 15bps and the turnover con-

straints θ = 50%. It means the impossibility to roll more than 50% of the invested

portfolio at each optimization step. We remark that for the problem (2.51) we consider

a rolling time series of 130 historical observations since the problem is still demanding

considering the presence of 130× 130 = 16900 integer random variables.
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Figure 2.5: Out of Sample Portfolio Wealth of Enhanced Indexation Static Strategies,
Russell 1000

In this approach we compute the static analysis fixing the spectrum of τ and keeping

constant the selected one for the entire period. Then, we propose the rolling strategy

introducing the information ratio quantile regression (2.40) as decisional variable and we

report the results of the wealth paths. Figure 2.5 reports the wealth paths of five static

strategies to solve the enhanced indexation problem with first order stochastic domi-

nance constraints. We notice that increasing the level of the quantile value we obtain

higher returns and consequent dispersion. This pattern is not totally confirmed in the
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analysis of the enhanced indexation strategies with second order stochastic dominance

constraints where the benchmark is the Nasdaq 100. In this case extreme values of the

quantile lead to have the best portfolios in terms of final wealth as reported in Table 2.8.

Similar behavior is showed in the Figure 2.6 where we report the out of sample wealth

path of the enhanced indexation static strategies. We observe how the introduction of

these portfolio constraints allows to have a better performance than the tracked index.

These observations stress the idea to introduce also a rolling strategy in the enhanced

indexation framework to have a unified approach and to take advantages from the better

enhance in a given period.

12-Jan-2004 10-May-2007 05-Sep-2010 01-Jan-2014

N
or

m
al

iz
ed

 P
tf 

W
ea

lth

0.5

1

1.5

2

2.5

3

3.5
Portfolio Wealth, Fixed and Rolling Alpha with SSD Constraints

TEQR SSD alpha = 0.01
TEQR SSD alpha = 0.20
TEQR SSD alpha = 0.50
TEQR SSD alpha = 0.95
Rolling TEQR SSD
Nasdaq 100

Figure 2.6: Out of Sample Portfolio Wealth of Enhanced Indexation Static Strategies,
Nasdaq 100

Thus, Figures 2.7 and 2.8 show the wealth paths of the enhanced indexing rolling

strategies with first and second order stochastic dominance constraints with Russell

1000 and S&P 500 as benchmarks. Analyzing the results, we deduce the importance of
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Figure 2.7: Out of Sample Portfolio Wealth of Enhanced Indexation Rolling Strategy,
Russell 1000

stochastic dominance constraints in the portfolio selection problem. The wealth paths

of the enhanced index portfolio with first and second order stochastic dominance out-

perform the Russell 1000 on the overall period. Only during the first period when the

market is constant the portfolio with second order stochastic dominance constraints

could not show extra-performances. Then, during the first investment period the en-

hanced indexation strategies outperform the benchmark of about 20% while at the end

of 2013 the extra-performances are about 30% and 50% for FSD and SSD portfolios.

Considering the S&P 500 as a benchmark, we obtain the same patterns with a lower

level of wealth for the entire period. In fact, the final value of the enhanced indexing

portfolio with first order stochastic dominance is about 2.1 and for second order is about

1.8.

Interesting analyses are developed in the Tables 2.5 and 2.7 where we report the
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statistical values of the rolling strategy in the tracking error problem and in the enhanced

ones. The main feature is not only the increment of the portfolio return but also the

small increment in the dispersion measure produced by the rolling enhanced indexation

strategy with first order stochastic dominance constraints. In fact, this type of approach

results to be very interesting from portfolio managers since the increment of the risk is

very controlled with respect to the significant extra-performances in the portfolio final

wealth.
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Figure 2.8: Out of Sample Portfolio Wealth of Enhanced Indexation Rolling Strategy,
S&P 500
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Figure 2.9: Enhanced Indexation SSD Rolling Strategy Portfolio Weights, Russell
1000

Finally, in Figure 2.9 we report the different weights of the portfolio composition in

the enhanced indexation strategy with second order stochastic dominance constraints.

One advantage of the introduction of stochastic dominance constraints in the decisional

problem is related with the stability of portfolio weight. However, for management

duties this approach implies not only lower transaction costs but also a risk manage-

ment simplified process to evaluate and estimate possible different sources of risk in the

investment process.
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2.6 Final Remarks

In this chapter, we introduce a dispersion measure for the index tracking portfolio prob-

lem. This type of problem aims to replicate the performance of a given stock index as

benchmark. The tracking error quantile regression allows to better mimic the behavior

of the index during different phases of the financial cycle. For a theoretically point of

view this measure belongs to the class of relative deviation metrics and it satisfy a gen-

eral structure of properties. Analyzing the results of an empirical application, a rolling

strategy based on the switching of the quantile during at each optimization step produce

a unique and interesting approach to solve this problem. Then, we propose a realistic

enhanced indexation problem minimizing the tracking error quantile regression with first

and second order stochastic dominance constraints. The introduction of this formulation

aims to enhance the performances of the invested portfolio minimizing the dispersion.

Empirical applications on Nasdaq 100, S&P 500 and Russell 1000 stock indexes confirm

the goodness of the proposed approach.



Chapter 3

Dispersion Measures for the

Benchmark Tracking Portfolio

Problem and Third Order

Stochastic Dominance

Constraints.

3.1 Introduction

General deviation measures are introduced and studied for their potential applications

to risk management in areas like portfolio optimization and engineering. Such measures

include standard deviation as a special case but need not be symmetric with respect to

ups and downs. The main component presented in a random variable is its uncertainty

that is most commonly measured considering the standard deviation or other indicators,

such as mean absolute deviation. In many situations, however, there is interest in

treating the extent to which a random variable falls short of its expected value differently

76
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from the extent to which it exceeds its expected value. This suggests to focus on the

concept of general deviation measures as a bigger class of the common ones but they do

not need to be symmetric between positive and negative shift with respect to a average

value. In particular, this concept find several application in the financial sector. The

asymmetry is one of the main properties in the benchmark tracking portfolio problem for

several motivations. Of course, risk analysis can go far beyond portfolios, and advances

in the subject can be beneficial in other areas of management and engineering.

In this chapter, we theoretically develop the two main contributions of the previous

section. In particular, we classify the introduced measure of dispersion of the tracking

error in a more general framework considering the class of the coherent expectation

bounded risk measures. Linking the concept of risk measure with respect to a given

orderings, we derive other linear measures suitable to solve the benchmark tracking

problem. Then, we theoretically generalize the introduction of third order stochastic

dominance in the portfolio problem introducing a linear formulation for its constraints.

In this way, we obtain portfolio chosen by non-satiable risk averse investors with positive

skewness. This concept allow to build portfolio which dominates in the third order sense

an optimal portfolio with respect to the second order maximizing a performance measure

that is consistent with none of the previous orders. Empirically speaking, this contribu-

tion is focused on the concept of stochastic investment chain which are grounded on a

three step portfolio optimization problem with different orders of stochastic dominance.

This chapter is organized as follow. In section 3.2, starting from the definition of

dispersion measure, we consider different classes of risk measure for benchmark tracking

problem. In section 3.3, we introduce the benchmark tracking problem considering a

linear dispersion measure derived from the class of expectation bounded risk measure

and from the Lp metric. Section 3.4 debates the linearization of an aggressive utility

function and of the third order bounded stochastic dominance constraints. Then, we

propose a stochastic investment chain methodology to apply the third order bounded

stochastic constraints in the portfolio optimization model. Finally, in the last section,
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we summarize the results. Theoretical contributions are introduced as Proposition and

Theorem while Corollary and Remarks are used to report works from other author which

would be useful to completely understand the contribution of this chapter.

3.2 Coherent Expectation Bounded Risk Measures

In financial applications, many researchers have already delved into particular deviations

other than standard deviation, in one aspect or another. Markowitz (1952) suggested

the use of a downside form of standard deviation. Possible advantages of mean abso-

lute deviation and its downside version, most notably in relation to linear programming

computations of optimal portfolios, have been explored in Mansini et al. (2003), Konno

and Shirakawa (1994), Feinstein and Thapa (1993), Speranza (1993). Here, we link dila-

tion with expectation bounded risk measures and we propose linear formulation for the

benchmark tracking portfolio problem basing on the axiomatic approach of Rockafellar

et al. (2006) and De Giorgi (2005).

3.2.1 From Deviation Measure to Expectation Bounded Risk Measure

In the previous chapter, we review the concept of deviation measure and we show how the

tracking error quantile regression dispersion measure belongs to this family. However,

deviation measures are designed for applications to problems involving risk, they are

not “risk measures” in the sense proposed by Artzner et al. (1999). The connection

between deviation measures and risk measures is close, but a crucial distinction must

be appreciated clearly. Instead of measuring the uncertainty in X, in the sense of non-

constancy, a risk measure evaluates the “overall seriousness of possible losses” associated

with X, where a loss is an outcome below 0, in contrast to a gain, which is an outcome

above 0. In applying a risk measure, this orientation is crucial; if the concern is over the

extent to which a given random variable X might have outcomes X(ω) that drop below

a threshold C, one needs to replace X by X − C.
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Remembering that coherent risk measure is defined as a functional µ : L
2 →

[−∞,+∞] satisfying the following properties:

A1) Translation Invariance := µ(X + C) = µ(X)− C for all X and constant C,

A2) Positive Homogeneity := µ(0) = 0 and µ(λX) = λµ(X) for all X and all λ,

A3) Subadditivity := µ(X +X ′) ≤ µ(X) + µ(X ′) for all X and X ′,

A4) Monotonicity := µ(X) ≤ µ(X ′) for all X ≥ X ′,

The idea to link coherence and deviation risk measures could be find introducing

the concept of expectation bounded risk measure. They are defined as any functional

µ : L2 → [−∞,+∞] satisfying the axioms A1, A2, A3 (not necessary A4) and

A5) µ(X) ≥ E[−X] for all non-constant X.

According to the analysis of Rockafellar et al. (2006), when all the axioms A1-A5 are

satisfied, we speak of coherent expectation bounded risk measure. Moreover, there is a

one-to-one relation between deviation measures and expectation bounded risk measures

such that if D : X → [0,∞] is a deviation measure satisfying axioms D1 − D4 and

µ : L2 → [−∞,+∞] is a expectation bounded risk measure, then:

1) D(X) = µ(X − EX)

2) µ(X) = E[−X] +D(X)

Thus, not every coherent measures are expectation bounded for the axioms A5 while

it is interesting to investigate the relation between deviation and expectation bounded

risk measures. In particular, an expectation bounded risk measure is never a deviation

measure since the translation invariance property does not hold while it is possible to

obtain a relation between µ and D based on the coherency. In fact, µ is coherent if and

only if D is lower range dominated satisfying the following property:
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D5) D(X) ≤ E[X]− infX for all X

This formulation allows to define a class of coherent risk measure defined through

a dispersion measure and an expectation on the referred random variable. This set is

called expectation bounded risk measure and it is the based to formulate several linear

risk measure suitable for the benchmark tracking problem.

3.2.2 CVaR and Coherent Gini Type Measures

Considering the set coherent expectation bounded risk measure, we bring out two im-

portant cases: the Conditional Value at Risk (CVaR) (Mansini et al., 2007; Rockafellar

and Uryasev, 2002; Pflug, 2000; Artzner et al., 1999) and the class of Gini measures

(Shalit and Yitzhaki, 1984). Let X and Y be two random variables. We remember

that X dominates Y with respect to α inverse stochastic dominance order (Muliere and

Scarsini, 1989) X �
−α

Y (with α > 1) if and only if for every p ∈ [0, 1],

F
(−α)
X (p) =

1

Γ(α)

∫ p

o
(p− u)α−1dF−1

X (u) ≥ F
(−α)
Y (p), α > 1

F
(−1)
X (p) ≥ F

(−1)
Y (p), α = 1

(3.1)

where F−1
X (0) = lim

p→0
F−1
X (p) and F−1

X (p) = inf {x : Pr(X ≤ x) = FX(x) ≥ p} ∀p ∈ (0, 1]

is the left inverse of the cumulative distribution function FX . In this case, −F
(−α)
X (p) is

the risk measure associated with this risk ordering. In the risk management literature,

the opposite of the p-quantile F−1
X (p) of X is referred to as Value at Risk (VaR) (Pflug,

2000; Jorion, 1996) of X, i.e. V aRp(X) = −F−1
X (p). VaR refers to the maximum loss

among the best 1−p percentage cases that could occur for a given horizon. In particular,

when α = 2, we obtain F
(−2)
X (p) = LX(p) =

∫ p
0 F−1

X (t)dt the absolute Lorenz curve of

stock X with respect to its distribution function FX . The absolute concentration curve

LX(p) valued at p shows the mean return accumulated up to the lowest p percentage

of the distribution. Both measures and LX(p) have important financial and economic
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interpretations and are widely used in the recent risk literature. In particular, the

negative absolute Lorenz curve divided by probability p is a coherent risk measure in

the sense of Artzner et al. (1999) that is called conditional value-at-risk (CVaR), or

expected shortfall (Pflug, 2000), and is expressed as

CV aRp(X) = −1

p
LX(p) = inf

u

{

u+
1

p
E[(−X − u)+]

}

(3.2)

where the optimal value u is V aRp(X) = −F−1
X (p). As a consequence of Rockafellar

et al. (2006) definition we obtain the following corollary:

Corollary 3.1

For any p ∈ (0, 1), the functional

D(X) = CV aRp(X − E[X]) (3.3)

is a continuous, lower range dominated deviation measure and it correspond to the fol-

lowing coherent expectation bounded risk measure:

µ(X) = CV aRp(X) (3.4)

As proved by Pflug (2000) the minimization of the CVaR for a fixed mean is obtained

solving a LP problem.

3.2.3 Gini Tail Measures Associated with a Dilation Order

In many portfolio selection problems some concentration measures have been used to

measure the variability in choices. Starting from the linearization of the CVaR, other

coherent risk measures using specific functions for the Lorenz curve can be easily ob-

tained. In particular, we observe that some classic Gini-type (GT) measures are coherent

measures. By definition, for every v > 1 such that α = v+1 and for every β ∈ (0, 1) we
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have that:

GT(β,v)(X) = −Γ(v + 1)
1

βv
F

(−(v+1))
X (β)

= −(v − 1)v
1

βv

∫ β

0
(β − v)v−2LX(u)du

(3.5)

is consistent with ≥
−(v+1)

order, where Γ(v + 1) = Γ(α) =
∫ +∞
0 zα−1e−zdz. Then, using

the coherency of CVaR, we remark that:

Remark 3.1

For every v ≥ 1 and for every β ∈ (0, 1) the measure GT(β,v)(X) = −Γ(v+1)F
(−(v+1))
X (β)/βv

is a linearizable coherent risk measure associated with the (v+1) inverse stochastic dom-

inance order (Ortobelli et al., 2013). The measure GT(β,v)(X) generalizes the CVaR that

we get when v = 1.

Other classic example of concentration measure is Gini’s mean difference (GMD)

and its extensions related to the fundamental work of Gini (Shalit and Yitzhaki, 1984).

Gini’s mean difference is twice the area between the absolute Lorenz curve and the line

of safe asset joining the origin with the mean located on the right boundary vertical.

In addition to GMD, we consider the extended Gini’s mean difference (Ortobelli et al.,

2013; Shalit and Yitzhaki, 2010; Yitzhaki, 1983) that takes into account the degree of

risk aversion as reflected by the parameter v. This index can also be derived from the

Lorenz curve as follows:

ΓX(v) = E[X]− v(v − 1)

∫ 1

0
(1− u)v−2LX(u)du

= v cov(X, (1− FX(X))v−1)

(3.6)

From this definition, it follows that ΓX(v)−E[X] = −Γ(v+1)F
(
X−(v+1)) characterizes

the previous Gini orderings.

Remark 3.2

The extended Gini’s mean difference is a measure of spread associated with the expected

bounded coherent risk measure ΓX(v)− E[X] for every v > 1.
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Several application of the Gini’s mean difference in the portfolio theory has been

developed in Ortobelli et al. (2013) and Shalit and Yitzhaki (1984). One of the most

interesting is the use of Gini measures to the extended the Gini “tail” measures (for a

given β) that are associated with a dilation order (Fagiuoli et al., 1999):

ΓX,β(1) = E[X]− 1

β

(
∫ β

0
F−1
X (u)du

)

(3.7)

These measures can also be extended using v > 1 and the tail measure:

ΓX,β(v) = E[X]− v

βv

(
∫ β

0
(β − u)v−1F−1

X (u)du

)

= E[X]− v(v − 1)

βv

∫ β

0
(β − u)v−2LX(u)du

(3.8)

for some β ∈ [0, 1].

Remark 3.3

For every v > 1 the Gini “tail” measure associated with a dilation order ΓX,β(v) =

E[X]−Γ(v+1)F
(−(v+1))
X (β)/βv is the deviation measure associated with the expectation

bounded coherent risk measure ΓX,β(v)− E[X].

As mentioned above, we would like to consider a linear risk measure to be suitable

in the proposed formulation for the benchmark tracking problem. Then, the following

propositions hold:

Proposition 3.1

The quantile regression measure is a coherent expectation bounded risk measure associ-

ated with the Gini “tail” measure when v = 1 for less than a moltiplicative factor.

Proof. Considering the (3.8) when v = 1, we obtain:

ΓX,β(v) = E[X]− 1

β

∫ β

0
F−1
X (u)du

⇒ βΓX,β(v) = βE[X]−
∫ β

0
F−1
X (u)du

(3.9)
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Since E[X] =
∫ β
0 F−1

X (u)du+
∫ 1
β F−1

X (u)du. Then, we obtain:

β ΓX,β(v) = β

∫ β

0
F−1
X (u)du+ β

∫ 1

β
F−1
X (u)du−

∫ β

0
F−1
X (u)du

= (β − 1)

∫ β

0
F−1
X (u)du+ β

∫ 1

β
F−1
X (u)du

(3.10)

Then, with the following proposition, we could extend the linearity concept also for

v ≥ 2.

Remark 3.4

For v ≥ 2 the Gini “tail” measure is a linear coherent expectation bounded risk measure

associated with a dilation order.

In this case, we will discuss the linear benchmark tracking problem for v = 2 in the

Section 3.4 when we show how to use the Gini “tail” measure ΓX,β(2) for a spectrum of

β ∈ (0, 1).

Remark 3.5

For every v ≥ 1 and for every β ∈ (0, 1) the Gini tail measure ΓX,β(v) = E[X]− Γ(v +

1)F
(−(v+1))
X (β)/βv is consistent with Rothschild–Stiglitz order. Moreover, if ΓX,β(v) =

ΓY,β(v) for any β ∈ [0, 1] then FX = FY (Ortobelli et al., 2013).

Finally, it is possible to link the previous formulation with the portfolio theory.

According to Rockafellar et al. (2006), we can express the following proposition

Proposition 3.2

For any expected bounded risk measures consistent with the Rothschild–Stiglitz ordering,

we could derive a tracking error problem consistent with Rothschild–Stiglitz.

3.2.4 The L
p Compound Metric

Finally, let us to introduce the class of concentration Lp-metrics. Considering the class

of compound metrics we propose a concentration measure which could be applied to the
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benchmark tracking portfolio problem. Following Ortobelli et al. (2013), we say that X

is preferred to Y with respect to the µ-compound distance from Z (namely, X �
µZ

Y )

if and only if there exists a probability functional ρ : Λ × Z × B → R dependent on

µ such that for any t ∈ B and X,Y ∈ Λ, ρX(t) ≤ ρY (t). In this case, the equality

ρX = ρY implies a distributional equality Fg(X,Z) = Fg(Y, Z) for compound distances

µ and a distance equality g(FX , FZ) = g(FY , FZ) for simple distances µ, where g(x, z)

is a distance in R. We call ρX the (tail) tracking-error measure (functional) associated

with the µ tracking error ordering.

Consequently, in benchmark tracking strategies we minimize the tracking-error func-

tional ρX associated with the µ-tracking-error ordering. In essence, probability metrics

can be used as tracking-error measures. In solving the portfolio problem with a proba-

bility distance, we intend to “approach” the benchmark and change the perspective for

different types of probability distances. Hence, if the goal is only to control the variabil-

ity of an investor’s portfolio or to limit its possible losses, mimicking the uncertainty or

the losses of the benchmark can be done with a primary probability distance. When the

objective for an investor’s portfolio is to mimic the entire benchmark, a simple or com-

pound probability distance should be used. In addition to its role of measuring tracking

errors, a compound distance can be used as a measure of variability. If we apply any

compound distance µ(X,Y ) to X and Y = X1 that are i.i.d., we obtain:

µ(X,X1) = 0 iff P(X = X1) = 1 iff X is a constant almost surely.

For this reason, we refer to µ(X,X1) = µI(X) as a concentration measure derived by the

compound distance µ. Similarly, if we apply any compound distance µ(X,Y ) to X and

Y = E[X] (either Y = M(X), i.e. the median or a percentile of X, if the first moment

is not finite), we get:

µ(X,E[X]) = 0 iff P(X = E[X]) = 1 iff X is a constant almost surely.
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Hence, µ(X,E[X]) = µE[X](X) can be referred to as a dispersion measure derived by the

compound distance µ. Then, for each probability compound metric we can generate a

probability compound distance µH(X,Y ) = H(µ(X,Y )) with parameter KH .

Considering the Lp average compound metric, for every p ≥ 0 we recall the Lp-

metrics: µp(X,Y ) = E[|X − Y |p]min(1,1/p); the associated concentration measures are

µI,p(X) = E[|X − X1|p]min(1,1/p), where X1 is an i.i.d. copy of X; and the associated

dispersion measures are the central moments µE[X],p(X) = E[|X −E[X]|p]min(1,1/p). The

dispersion and concentration measures µE[X],p(X) and µI,p(X) are variability measures

consistent with the (p+ 1) Rothschild–Stiglitz order for any p ≥ 1. We can consider for

Lp metrics the tracking-error measures

ρX,p(t) = (µp(X1[|X−Z|≥t], Z1[|X−Z|≥t]))
min(1,1/p) − tpP(|X − Z| ≥ t)

= E[(|X − Z|p − qp)+]
(3.11)

for any t ∈ [0,+∞) associated with a µp tracking error ordering. Moreover, ρX,p = ρY,p

implies that F|X−Z| = F|Y−Z|.

3.3 Different Metrics for the Benchmark Tracking Prob-

lem

After the description of two different measure for the tracking error, in this section,

we propose the two linear problem for the Gini “tail” measure and the concentration

measure associate with the Lp average compound metric. Considering the Gini “tail”

measure ΓX,β(v) (3.8) we notice that for v = 1, we obtain the quantile regression disper-

sion measure while here, we propose a benchmark tracking portfolio with v = 2. Thus,

let the log-return of equity index be a random variable Y with discrete realization yt for

t = 1, . . . , T and let X = rβ the random variable of the invested portfolio with realiza-

tion rtβ, t = 1, . . . , T where βn is a vector represented the portfolio weights n = 1, . . . , N

(total number of index components) and r an T ×N matrix of stocks returns. We define
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the random variable Z such that Z = X − Y . Then, considering the Gini measure

ΓZ,γ(v) of ordering 2 such that:

ΓZ,γ(2) = E[Z]− 2

γ2

∫ γ

0
LZ(u)du (3.12)

where LX(u) is the Lorenz curve. The general formulation of the benchmark tracking

problem is:

min
Z

ΓZ,γ(2)

s.t.
N
∑

n=0

βn = 1

E[X]− E[Y ] ≥ K∗

lb ≤ βn ≤ ub ∀n = 1, . . . , N

(3.13)

Then following the integral rule derived from fractional integral theory define the

benchmark tracking LP as:

min
β,b,ν

1

T

T
∑

t=1

(rtβ − yt)−
2T

s2

s
∑

i=1

(

i

T
bi +

1

T

T
∑

t=1

νt,i

)

s.t. νt,i ≥ −rtβ + yt − bi ∀i = 1, . . . , s; ∀t = 1, . . . , T

N
∑

n=0

βn = 1

E[X]− E[Y ] ≥ K∗

lb ≤ βn ≤ ub ∀n = 1, . . . , N

νt,i ≥ 0 ∀i = 1, . . . , s; ∀t = 1, . . . , T

bi ∈ R ∀i = 1, . . . , s

(3.14)

where s = γT for every γ ∈ [0, 1]. We notice that for problem (3.14) we could define a

spectrum of the possible values of γ and, as in the quantile regression dispersion measure,

solve a static or rolling index tracking strategy. Also for the benchmark tracking problem
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with the Gini measure is possible to define the related LP enhanced indexation strategy

with stochastic dominance constraints.

Finally, we propose a LP benchmark tracking problem for the concentration measure

derived from the Lp-metric (3.11). Let X and Y be two random variables representing

the portfolio and the benchmark with realization rtβ and yt for t = 1, . . . , T . Then,

all investors who choose the portfolios that are consistent with the µp tracking error

ordering, where p = 1, solve the following LP benchmark tracking problem for some

given q > 0:

min
β,u,ν

1

T

T
∑

t=1

ut

s.t. νt ≥ rtβ − yy ∀t = 1, . . . , T

νt ≥ yy − rtβ ∀t = 1, . . . , T

ut ≥ νt − q ∀t = 1, . . . , T

N
∑

n=0

βn = 1

E[X]− E[Y ] ≥ K∗

lb ≤ βn ≤ ub ∀n = 1, . . . , N

ut ≥ 0; νt ∈ R ∀t = 1, . . . , T

(3.15)

where K∗ is the extra-performance of the invested portfolio with respect to the bench-

mark. Also in this case the previous problem (3.15) could be solved for different values

of q > 0 and it is possible to define an enhanced indexation benchmark tracking problem

introducing different stochastic dominance constraints.

3.3.1 L
P Average Compound Metrics with Stochastic Dominance Con-

straints

To evaluate the importance of the introduction of stochastic dominance constraints in

the benchmarking portfolio problem we propose three realistic models which takes into
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account a penalty function with transaction costs and a turnover threshold. For this

reason, it is possible to evaluate in a static and rolling framework the goodness of LP

metric and the impact of the stochastic dominance constraints in the out of sample

wealth path.

Let X = rβ a random variable of the portfolio returns and Y the random variable

of the benchmark returns with realizations rtβ and yt for t = 1, . . . , T . Let β ∈ S =
{

β ∈ Rn|
∑N

n=1 βn = 1
}

and q be a parameter such that q ∈ Q = {δ,maxβ(maxt[rtβ, yt, ])}
with δ small enough. Let tc+ and tc− the transaction costs to buy and sell new secu-

rities and βold the composition of the invested portfolio before the optimization step.

Then, the optimal portfolio composition which solve the benchmark tracking problem

is obtained fixing the value of q and solving the following linear programming problem:

min
β,u,ν,ω+,ω−

1

T

T
∑

t=1

ut + tc+ω+ + tc−ω−

s.t. νt ≥ rtβ − yy ∀t = 1, . . . , T

νt ≥ yy − rtβ ∀t = 1, . . . , T

ut ≥ νt − q ∀t = 1, . . . , T

N
∑

n=0

βn = 1

E[X]− E[Y ] ≥ K∗

ω+
n − ω−

n = βn − βold
n ∀n = 1, . . . , N

∑

n
|βn − βold

n | ≤ θ n = 1, . . . , N

lb ≤ βn ≤ ub ∀n = 1, . . . , N

ut ≥ 0; νt ∈ R ∀t = 1, . . . , T

(3.16)

where u, ν are two variable to linearize the associate benchmark tracking measure

of the LP metric and ω+, ω− two slack variables of the portfolio changes.
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Then, we introduce first and second order stochastic dominance constraints in the

linear formulation proposed in Kopa (2010) and Kuosmanen (2004) through the permu-

tation matrix P for the first order and the double stochastic matrix Z for the second

one. Let P = {pr,c} a permutation matrix with pr,c = {0, 1} s.t.
∑T

r=1 pr,c = 1 for

c = 1, . . . , T and
∑T

c=1 pr,c = 1 for r = 1, . . . , T , we could define the following enhanced

index mixed-integer linear problem with FSD constraints:

min
β,u,ν,ω+,ω−,p

1

T

T
∑

t=1

ut + tc+ω+ + tc−ω−

s.t. νt ≥ rtβ − yy ∀t = 1, . . . , T

νt ≥ yy − rtβ ∀t = 1, . . . , T

ut ≥ νt − q ∀t = 1, . . . , T

N
∑

n=0

βn = 1

E[X]− E[Y ] ≥ K∗

ω+
n − ω−

n = βn − βold
n ∀n = 1, . . . , N

∑

n
|βn − βold

n | ≤ θ n = 1, . . . , N

X ≥ PY

T
∑

r=1

pr,c = 1 ∀c = 1, . . . , T

T
∑

c=1

pr,c = 1 ∀r = 1, . . . , T

pr,c ∈ {0, 1} ∀r, c = 1, . . . , T

lb ≤ βn ≤ ub ∀n = 1, . . . , N

lb ≤ ω+
n , ω

−
n ≤ ub ∀n = 1, . . . , N

ut ≥ 0; νt ∈ R ∀t = 1, . . . , T

(3.17)

where K∗ is the extra-performance of the portfolio with respect to the benchmark.
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This kind of problem is mixed-integer since the introduction of the permutation matrix

require binary variable for the first order stochastic dominance conditions.

Then, let Z = {zr,c} a double stochastic matrix with zr,c ∈ [0, 1] s.t.
∑T

r=1 zr,c = 1

for c = 1, . . . , T and
∑T

c=1 zr,c = 1 for r = 1, . . . , T , we could define the following

enhanced index linear problem with SSD constraints:

min
β,u,ν,ω+,ω−,z

1

T

T
∑

t=1

ut + tc+ω+ + tc−ω−

s.t. νt ≥ rtβ − yy ∀t = 1, . . . , T

νt ≥ yy − rtβ ∀t = 1, . . . , T

ut ≥ νt − q ∀t = 1, . . . , T

N
∑

n=0

βn = 1

E[X]− E[Y ] ≥ K∗

ω+
n − ω−

n = βn − βold
n ∀n = 1, . . . , N

∑

n
|βn − βold

n | ≤ θ n = 1, . . . , N

X ≥ ZY

T
∑

r=1

zr,c = 1 ∀c = 1, . . . , T

T
∑

c=1

zr,c = 1 ∀r = 1, . . . , T

0 ≤ zr,c ≤ 1 ∀r, c = 1, . . . , T

lb ≤ βn ≤ ub ∀n = 1, . . . , N

lb ≤ ω+
n , ω

−
n ≤ ub ∀n = 1, . . . , N

ut ≥ 0; νt ∈ R ∀t = 1, . . . , T

(3.18)

The condition of second order stochastic dominance are weaker than the first order

and the range of the variables of the double stochastic matrix is the interval [0, 1]. It
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is important to stress the dramatical increment in the number of variables given by the

introduction of this two strong sets of constraints.

3.4 Stochastic Investment Chain

After the dissertation of linear expectation bounded risk measures, a relevant prob-

lem in the benchmark tracking is linked with the introduction of stochastic dominance

constraints. The previous chapter shows the impact of these constraints in portfolio

selection problem to enhance performances and increment gains. For this reason, we try

to investigate a methodology to obtain strengthen portfolio considering different orders

of stochastic dominance in a linear programming framework. We propose a three steps

portfolio optimization model where we increase the order of stochastic dominance max-

imizing suitable utility functions where, at the next level order, the dominant portfolio

becomes the dominated one. This chain has the consequence to increase the robustness

of the invested portfolio obtaining higher wealth in the out of sample analysis or to

improve the performance ratios.

To achieve this aim, we build a theoretical structure with sufficient conditions to

express the third order bounded stochastic dominance constraints in the portfolio for-

mulation which represent the preferences of all non-satiable risk averse investors with

positive skewness. Financial literature develops several works with the concept of third-

order stochastic dominance (Post et al., 2014; Le Breton and Peluso, 2009; Schmid, 2005;

Gotoh and Konno, 2000; Tehranian, 1980; Bawa, 1978; Whitmore, 1970) but there is

not a unified framework to express in a linear formulation the possibility to introduce in

the portfolio choice the preference of these type of investors. To introduce third order

stochastic dominance in the investment chain, the key point reflects the choice of utility

function which should not be consistent with second order stochastic dominance. In this

case, if we build an optimal portfolio in a second order stochastic sense maximizing a

function consistent with this order, then it is not possible to find a dominant portfolio
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introducing an higher order and keeping the same utility function. For this reason, we

consider the Rachev utility function (Rachev et al., 2008a) which is not consistent with

first and second order stochastic dominance.

In the following part of this section, we firstly develop the linear programming

formulation problem to maximize the Rachev utility function. Secondly, we introduce the

third order stochastic dominance condition for the portfolio selection problem developing

their linear formulation to efficiently solve the portfolio problem. Finally, we present the

decisional steps of the stochastic investment chain to build portfolios that dominate a

dominant one to higher of different orders.

3.4.1 The Rachev Utility Function

Financial agents and investors behave differently in their approach to the financial mar-

kets. For years several studies propose utility functions to describe their behavior and

the preferences trying to draw a complete picture of the entire universe. In this section,

we develop linear formulation problems to maximize one kind of investors’ preferences

represented by the the Rachev utility functions (Rachev et al., 2008a). It reflects the

behavior of non-satiable nor risk averse nor risk seeking investors. In particular, maxi-

mizing this kind of preference, we solve the following portfolio selection problem.

Let X = rβ be a random variable of the portfolio returns and let α1 and α2 be two

confidential levels. The Rachev utility is defined as the different between the Conditional

Value at Risk of the two sides of the returns distribution. Thus, let a, b ∈ R+ be two

positive coefficients, a non-satiable nor risk averse nor risk seeking investor choose the

solution of the following portfolio problem:

max
β

bCV aRα1(−X)− aCV aRα2(X)

s.t.

N
∑

n=1

βn = 1

0 ≤ βn ≤ 1 ∀n = 1, . . . , N

(3.19)
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Since the Rachev utility function could be rewritten as CV aRα1(−X)− a
b CV aRα2(X)

and following Stoyanov et al. (2007), the portfolio selection problem 3.19 could be defined

in a mixed-integer linear programming way. As discussed in Stoyanov et al. (2007), it is

necessary to introduce integer variable to bound the reward side of the utility function.

For this reason, the introduction of variable B ≥ |rβ|.

Proposition 3.4

The solution of the maximization of the Rachev utility function (3.19) with linear con-

straints is defined with the following mixed-integer linear programming portfolio selection

problem:

max
β,g,λ,γ,d

1

⌈α1T ⌉

T
∑

t=1

gt −
a

b

(

γ +
1

α2T

T
∑

t=1

dt

)

s.t.

N
∑

n=1

βn = 1

gt ≤ Bλt ∀t = 1, . . . , T

gt ≥ rtβ −B(1− λt) ∀t = 1, . . . , T

gt ≤ rtβ +B(1− λt) ∀t = 1, . . . , T

− rtβ − γ ≤ dt ∀t = 1, . . . , T

lb ≤ βn ≤ ub ∀n = 1, . . . , N

λt ∈ {0, 1} , γ ∈ R ∀t = 1, . . . , T

gt ≥ 0, dt ≥ 0 ∀t = 1, . . . , T

(3.20)

where λ is the binary variable.

Proof

Since the the combination between two convex functions is still convex, we could follow

Stoyanov et al. (2007) to linearize the problem 3.19 with linear constraints. In particular,

we notice that if the second terms coulb be linearized following Rockafellar and Uryasev

(2002), the linearization of the first term leads to an unbounded problem and the objective

function draws to infinite. For this reason the problem could be defined as mixed-integer
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introducing a binary set of variables λt and an artificial upper bound B which is big

enough to bound the possible maximum return of the created portfolio. The introduction

of the binary variables imply to consider two cases:

1. Suppose that λt = 0, then:

gt ≤ 0

gt ≥ rtβ −B

gt ≤ rtβ +B

gt ≥ 0

Since B is a very large number, then gt = 0.

2. Suppose that λt = 0, then:

gt ≤ B

gt ≥ rtβ

gt ≤ rtβ

gt ≥ 0

From this system of equation gt should be positive and bounded from B with a

unique solution such that gt = rtβ.

3.4.2 Linear Formulation for Third Order Stochastic Dominance Con-

straints

The introduction of third order stochastic dominance relates on the possibility to build

portfolio which dominates a benchmark which is optimal in the second order stochas-

tic sense. Considering the maximization of an aggressive function such as the Rachev

utility it is possible to construct portfolio with a suitable behavior for the investors. To
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express the concept of the third order stochastic dominance constraints in a linear for-

mulation, we propose an approach based on three main works presented in the literature

(Dentcheva and Ruszczyński, 2003; Hanoch and Levy, 1970, 1969).

In particular, whether Dentcheva and Ruszczyński (2003) propose a linear formula-

tion for the second order stochastic dominance while Hanoch and Levy (1970) introduce

some condition to satisfy second order stochastic dominance which can be extended to

other higher order. For this reason, we remember the main proposition introduce in

Dentcheva and Ruszczyński (2003).

Remark 3.6

Assuming to consider two random variables X and Y such that Y has a discrete distri-

bution with realization yi and cumulative density function FY (yt) = ut for t = 1, . . . , T .

Then, X �
(2)

Y with if and only if:

E [(yi −X)+] ≤ E [(yi − Y )+] (3.21)

where (yi −X)+ = max[0, yi −X] (Dentcheva and Ruszczyński, 2003).

Then, they build a portfolio optimization problem to guarantee linear second order

stochastic dominance constraints introducing a slack variable representing the shortfall

of X below yt. Thus, it is possible to derive a necessary and sufficient condition for the

existence of stochastic dominance relation between two random variables.

Proposition 3.8

Let X and Y be two random variables uniformly distributed (i.e. P(X = rtβ) = 1
T =

P(Y = yt)) with discrete realizations yt and xtβ for t = 1, . . . , T where β is the portfolio

weights. If ∄β ∈ Sn =
{

β ∈ Rn|
∑N

n=1 βn = 1; β = 1
}

, such that mint rtβ ≥ y1 then

X �
(α)

Y , ∀α ≥ 1, where y1 is the first observation of the cumulative random variable

FY .
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Proof

Since X �
α
Y, ∀α ≥ 1 implies that FX(y1) ≤ FY (y1) =

1
T then mint rtβ ≥ y1.

Following Hanoch and Levy (1969) we find a necessary condition to guarantee the

existence of a stochastic dominance relation such that X �
(α+1)

Y but not to the previous

order: X �
(α)

Y . In particular, we focus our analysis on the third order stochastic

dominance constraints such that X �
3
Y and X �

2

Y . Then, it is possible to define the

following conditions that guarantee the previous relation.

Theorem 3.1

Let X and Y be two random variables with finite number of discrete realizations xt and

yt for t = 1, . . . , T . Whether exists a t̄ such that t̄ ≤ T and

F
(2)
X (t) ≤ F

(2)
Y (t) ∀t ≤ t̄

F
(2)
X (t) ≥ F

(2)
Y (t) ∀t > t̄

E[X] > E[Y ]

(3.22)

then, X �
3
Y and X �

2

Y .

Proof

Recall that X �
3

Y iff F
(3)
X (u) =

∫ u
−∞ F

(2)
X (t)dt ≤ F

(3)
Y (u) =

∫ u
−∞ F

(2)
Y (t)dt. Then,

lim
t→+∞

∫ u
−∞(F

(2)
Y (t)− F

(2)
X (t))dt > 0 because F

(3)
X (t) = 1

2E[(t−X)2+] and we obtain that

(1) F
(3)
Y (t) − F

(3)
X (t) = 1

2(t
2(FY (t) − FX(t)) + E(Y 2I[Y≤t]) − E(X2I[X≤t]) + 2t(E(X) −

E(Y )).

We notice that, for t large this difference is always positive since E(X) > E(Y ) and X

and Y are bounded random variables.

Therefore:

• ∀u ≤ t̄ the integral
∫ u
−∞(F

(2)
X (t)− F

(2)
Y (t))dt ≤ 0, while

• ∀u > t̄,
∫ u
−∞(F

(2)
X (t) − F

(2)
Y (t))dt =

∫ t̄
−∞(F

(2)
X (t) − F

(2)
Y (t))dt +

∫ u
t̄ (F

(2)
X (t) −

F
(2)
Y (t))dt ≤ 0
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Since the first part is less than zero, the second part is grater than zero by hypothesis but

the second part never overcomes the first one for the presence of (1).

This theorem can be used even in linear portfolio selection framework when instead

of classic third stochastic dominance we consider the third bounded stochastic dominance

order. As a matter of fact, Fishburn (1980) has shown that for any order greater than

the second one, the classic stochastic dominance order implies the bounded one but the

contrary is not always true.

Proposition 3.9

Assuming to consider two random variables X and Y that have discrete distributions

with realization rtβ and yt for t = 1, . . . , T which belong to the joint support U =
{

u(1) ≤ · · · ≤ u(j) ≤ · · · ≤ u(J)
}

where J ≤ 2T . Then, X �
(3),b

Y (i.e., X dominates Y in

the bounded third order stochastic dominance sense) if there exists a t̄ ∈ U such that:

F
(2)
X (uj) ≤ F

(2)
Y (uj) ∀uj ∈ U ≤ t̄

F
(2)
X (uj) ≥ F

(2)
Y (uj) ∀uj ∈ U > t̄

E[X] > E[Y ]

(3.23)

. Proof

Since ∀j, uj ∈ U and for any random return X the function F
(2)
X (uj) is convex. Then,

for the first inequality of (3.23) such that uj ≤ t̄ we have that:

F
(2)
X (uj) ≤ λF

(2)
X (u(1)) + (1− λ)F

(2)
X (u(J)) ≤ λF

(2)
Y (u(1)) + (1− λ)F

(2)
Y (u(J)) = F

(2)
Y (uj),

where λ =
u(J)−uj

u(J)−u(1)
. The last inequality follow from the linearity of F

(2)
Y (uj) in U.

Differently if uj ≥ t̄, we have that:

F
(2)
X (uj) ≥ λF

(2)
X (u(1)) + (1− λ)F

(2)
X (u(J)) ≥ λF

(2)
Y (u(1)) + (1− λ)F

(2)
Y (u(J)) = F

(2)
Y (uj),

where λ =
u(J)−uj

u(J)−u(1)
.

We generally know that we cannot consider the ui of the support of all portfolio

problem but we have a good approx when the element of the number of the support are

very large.
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3.4.3 Two Investment Strategies with Different Stochastic Orders

The concept of stochastic investment chain allows investors and portfolio manager to

create aggressive strategies improving the reward-risk combination. For this reason,

we propose an investment strategy which is based on a three steps portfolio optimiza-

tion process when we introduce a new stochastic order to dominate previous dominant

portfolio.

Let A,B and C be three steps which the related optimal portfolios (i.e. XA = rβA)

and let Y be a random variable of the index benchmark returns. Considering the Rachev

utility function we follow the following portfolio selection rule to build the stochastic

investment chain:

A) XA FSD Y ;

B) XB SSD XA;

C) XC TSD XB.

At each investment step, we evaluate the risk and the reward of the strategy to

consider the advantages and disadvantages of this approach. In particular, we solve the

following three portfolio selection problems. Let XA and Y be two random variables

with discrete realization rtβ
A and yt for t = 1, . . . , T which belong to the joint support

U =
{

u(1) ≤ · · · ≤ u(j) ≤ · · · ≤ u(J)
}

where J ≤ 2T . LetXA be the return of the invested

portfolio and Y the benchmark ones. The optimal portfolio composition maximizing the

Rachev utility function at the first step A is the solution of the following mixed-integer
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linear portfolio problem:

max
βA

bCV aRα1(−XA)− aCV aRα2(X
A)

s.t. XA �
(1)

Y

E
[

XA
]

− E[Y ] ≥ K∗

N
∑

n=1

βA
n = 1

0 ≤ βA
n ≤ 1 ∀n = 1, . . . , N

(3.24)

where XA �
(1)

Y means that XA FSD Y . Considering the linearization problem (3.20)

of the Rachev utility function and the mixed-integer feature of the first order stochastic

dominance constraints (Kopa, 2010) we get a mixed-integer linear problem.

Then, the next step aims to find a portfolio that outperforms XA in a second

order stochastic dominance sense solving the following linear portfolio selection problem.

Let XB and XA be two random variables with discrete realization rtβ
B and rtβ

A for

t = 1, . . . , T which belong to the joint support U =
{

u(1) ≤ · · · ≤ u(j) ≤ · · · ≤ u(J)
}

where J ≤ 2T . Let XA be the return of the invested portfolio and XA the optimal

portfolio obtained from the problem (3.24), we solve:

max
βB

bCV aRα1(−XB)− aCV aRα2(X
B)

s.t. XB �
(2)

XA

E
[

XB
]

− E
[

XA
]

≥ K∗

N
∑

n=1

βB
n = 1

0 ≤ βB
n ≤ 1 ∀n = 1, . . . , N

(3.25)

where XB �
(1)

XA means that XB SSD XA. In this case, we introduce the linear defini-

tion of the second order stochastic dominance constraints through the double stochastic
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matrix (Kuosmanen, 2004). We notice how the problem (3.25) is solved in a linear

programming way.

Finally, we solve the step C of the stochastic investment chain. Let XC and XB

be two random variables with discrete realization rtβ
C and rtβ

B for t = 1, . . . , T which

belong to the joint support U =
{

u(1) ≤ · · · ≤ u(j) ≤ · · · ≤ u(J)
}

where J ≤ 2T . We solve

the following linear problem with third order bounded stochastic dominance constraints:

max
βC

bCV aRα1(−XC)− aCV aRα2(X
C)

s.t. XC �
(3),b

XB

E
[

XC
]

− E
[

XB
]

≥ K∗

N
∑

n=1

βC
n = 1

0 ≤ βC
n ≤ 1 ∀n = 1, . . . , N

(3.26)

where the solution of the linear programming problem (3.26) is the portfolio XC = rβC

which dominated the benchmark represented by the optimal portfolio XB = rβB in the

second order sense. In particular, following the Proposition 3.9 we introduce the linear

formulation of the third order bounded stochastic dominance constraints in the portfolio

problem.

3.5 Empirical Applications

In this section, we propose two empirical application to the benchmarking problem.

Considering the Russell 1000 stock index as the selected benchmark, we firstly address

with the problem to build portfolio which mimic the performances of a stock index and

then we introduce first and second order stochastic dominance constraints to evaluate

the enhanced strategies in a static and rolling framework. Secondly, we propose an

empirical application of the stochastic investment chain proposed in Section 3.4 when
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we maximize the Rachev utility function. At each optimization step, we solve (A), (B)

and (C) phases of the chain and we evaluate the out of sample wealth path of the three

portfolios.

3.5.1 Benchmark Tracking Error Problem with L
P Measure

The analyzed time period covers the last decade from 31st December 2002 to 31st De-

cember 2013 and we propose investment strategies with monthly recalibration (20 days)

with a total number of 125 optimization steps. We generally consider an historical mov-

ing window of 260 observations which is reduced to 120 time series data when we apply

enhanced indexing strategies with first order stochastic dominance constraints. Every

investment portfolio strategy starts on 12th January 2004. The Russell 1000 presents

736 components as number of stocks during the entire period.

We set a spectrum of 13 possible q ∈ R in the range of the join support between

portfolio and benchmark and we consider the information ratio quantile regression 2.40

as decisional rule to switch from the static to the rolling approach. Figure 3.1 shows the

out of sample wealth path of the rolling strategies obtained minimizing the dispersion

measure derived from the LP metric. The aim of portfolio manager is to obtain portfolio

as much as possible closed to the benchmark. The blue line represents the rolling strategy

obtained minimizing the realistic index tracking portfolio problem (3.16) while the yellow

and red line represents the wealth path of the enhanced indexation problem with second

and first order stochastic dominance constraints. In these cases we solve the portfolio

problem (3.18) and (3.17).

Analyzing the behavior of the three benchmarking strategies is clear the impact of

stochastic dominance constraints in the optimization problem. Firstly, the dispersion

measure derived from the LP metric results to be a useful tool to track the benchmark

performances since the blue lines mimic very well the Russell 1000. Secondly, whether

second order stochastic dominance constraints produces a relative weak impact in the
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final wealth with gain more than 10% on the overall period, the contribution of the FSD

strategy is very impressive.
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Figure 3.1: Out of Sample Portfolio Wealth of Index Tracking and Enhanced Index-
ation Rolling Strategy LP Metrics, Russell 1000

In fact, solving the enhanced indexation problem with first order stochastic dom-

inance constraints we obtain portfolios which outperforms the index and the previous

one for the entire investment period. In this case we have a peak in the period before

the sub-prime crisis with gains about 50% and a value of the final wealth of about 2.1

times the initial one.
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3.5.2 Three Stochastic Order Steps Maximizing the Rachev Utility

Function

In this section, we analyze the results of empirical applications of the stochastic invest-

ment chain problem. In particular, considering the Russell 1000 as initial benchmark

and for an investment period of 10 years, we compare three portfolio strategies which

correspond to the three steps of the stochastic investment chain. The analyzed time

period covers the last decade from 31st December 2002 to 31st December 2013 and we

propose investment strategies with monthly recalibration (20 days) with a total number

of 125 optimization steps. Setting an historical moving window of 120 daily observa-

tions we solve the portfolio problems (3.24), (3.25) and (3.26) at each optimization step.

Every investment portfolio strategy starts on 12th January 2004 and the Russell 1000

presents 736 components as number of stocks during the entire period.

Figure 3.2 shows the wealth path of the three portfolios XA, XB and XC during the

overall period. We notice the high different behavior between them. In particular, start-

ing from the maximization of the Rachev utility with first order stochastic dominance

(blue line) we notice that the wealth increase forcefully after the sub-prime and the

Greece debt crises in 2008 and 2011. However, the wealth reach a final value more than

3 times the initial one. Differently, the solution of the step (B), obtained maximizing the

Rachev utility with the second order stochastic constraints where the benchmark is the

previous optimal portfolio, shows a wealth path relative smooth for the entire period.

In fact, comparing these two strategies we notice how the red line which represent the

portfolio XB is much more conservative in the risk exposition and additive shift during

the overall period. Finally, the introduction of third order stochastic dominance con-

straints has the opposite behavior in the out of sample portfolio wealth. The yellow line

represents the entire path and it shows how the portfolio is strongly exposed to upward

and downward shifts. Before sub-prime crisis in 2007 the value of the portfolio was more

than 3 times the initial one and after loosing all the previous gains in few months the
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wealth restart to increase forcefully during the following financial upturn with a final

figure of about 5.3.
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Figure 3.2: Out of Sample Portfolio Wealth of Stochastic Investment Chain Maxi-
mizing Rachev Utility Function, Russell 1000

3.6 Final Remarks

In this Chapter, we extended the concept of deviation measure to the class of the risk

measure. For this reason, we show how a deviation measure could be defined as an

expectation bounded risk measure and we illustrate some applications. In particular,

introducing the class of Gini measure we prove how the quantile regression results to

be a special case of this very important class in the financial literature and we propose
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two linear portfolio selection models based on a different ordering of the Gini measure

and a concentration measure derived from the p-average compound metrics. Then,

we introduce a theoretical construction to extend the linearity constraints to the third

order bounded stochastic dominance. This approach has the aim to introduce stochastic

dominance chain and build portfolios that dominate an optimal one to an higher order.



Chapter 4

Linear Programming Active

Management Strategy.

The Maximization of

Performance Measures.

4.1 Introduction

The active benchmark tracking portfolio problem is a investment strategy which aims to

exceed the performance of a selected target benchmark and it is sometimes referred to

as active portfolio management (Sharpe, 1994). It is well known that many professional

investors achieve this benchmarking strategy: for instance, bond funds try to beat the

Barclays Bond Index, commodity funds seek to beat the Goldman Sachs Commodity

Index while several mutual funds take the Standard and Poors (S&P) 500 Index as their

benchmark.

107
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However, a famous study by DeMiguel et al. (2009) questions the efficiency of active

strategies in the mean-variance optimization relative to naive diversification, i.e., relative

to a strategy that places a weight of 1/N on each of the N assets under consideration.

The authors of the study implement 14 variants of the standard mean-variance model

for a number of datasets and find that there is no single model that consistently delivers

a Sharpe ratio or a CEQ return that is higher than that of the 1/N portfolio.

The main reason of this result is attributed to the presence of estimation error and

constraints on portfolio holdings with significant implication in presence of huge assets

with short available time series data. Pástor (2000) and Pástor and Stambaugh (2000)

use Bayesian methods to address the issue of parameter uncertainty. Ledoit and Wolf

(2003) develop an optimal shrinkage methodology for covariance matrix estimation and

find that it improves the out-of-sample performance of mean-variance optimization meth-

ods. Jagannathan and Ma (2003) consider ad hoc short-sale constraints and position

limits and show that these restrictions are a form of shrinkage that improves portfolio

performance by reducing the ex post effect of estimation error. Kan and Zhou (2007) use

an innovative approach to develop a three-fund asset allocation strategy that optimally

diversifies across both factor and estimation risk.

Thus, the problem to identify the “best” composition to beat a given benchmark

or market portfolio is the main topic of this chapter since a decisional process to iden-

tify the selection criteria is still an open question in the financial literature. Different

approaches to address with the active management strategy involve decisional problems

based on historical observations or scenario simulations. In this essay, we consider histor-

ical observations as decisional variables while strategies involving the creation of future

scenarios are discussed in the Appendix A. There, we present a well-known methodology

based on an ARMA-GARCH process to obtain future realization of the log-returns of the

asset’s price when the innovation is chosen considering three distributional hypotheses:

Gaussian, Student and Stable Paretian (Rachev and Mittnik, 2000).
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The aim of this chapter is to solve the benchmark tracking problem implementing

active strategies to manage portfolio which outperforms the benchmark index. In this

framework, we face the high dimensionality problem looking for efficient solutions to

maximize the utility of different investors’ preferences. The main contribution of this

chapter is the development of linear formulation portfolio optimization problems max-

imizing four different performance measures. Then, introducing first and second order

linear stochastic dominance constraints, we evaluate their impact in the out of sample

wealth path of the invested portfolios. In particular, a linear programming formulation

of the optimization problem significantly reduces the computational complexity of the

active strategies and efficiently solves the problem to maximize a performance measure

when the number of asset is lower than the available historical observations.

This chapter is organized as follow. In Section 4.2, we review three main performance

measures presented in the financial literature and we introduce a new one based on the

mean absolute semi-deviation. Section 4.3 discusses the linear formulation approach to

solve the active management while Section 4.4 describe the linear and mixed-integer

linear programming with stochastic dominance enhancement. An empirical application

is proposed in Section 4.5 and we summarize the main results in the final Section 4.6.

4.2 Performance Measures and Different Investors’ Pro-

files

In the active strategy framework, the goal of portfolio managers is to maximize their

future or final wealth considering different reward/risk investors’ profiles. In particular,

maximizing future investors wealth, we generally use a reward/risk portfolio selection

model applied either to historical series or to simulated scenario models (see, among

others, Rachev et al. (2008a) and Biglova et al. (2004)). Let Y be the random variable

representing the return of a given benchmark with realization yt at time t for t = 1, . . . , T

composed by N assets with returns R = [r1, . . . , rN ]′. Thus, the vector of the returns
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of an invested portfolio is defined by a random variable X such that X = rβ with

realization xt =
∑N

n=1 rn,tβn and the tracking error is a random variable Z such that

Z = X−Y . To maximize the performances of a portfolio in the reward/risk framework,

we provide the maximum expected reward µ per unit of risk ρ. This optimal portfolio

is commonly called the market portfolio and it can be obtained with several possible

reward/risk performance ratios (Cogneau and Hübner, 2009a,b) defined as:

G(Z) =
µ(Z)

ρ(Z)
(4.1)

Recall that a performance ratio must be isotonic with investors’ preferences, i.e. if Z

is preferable to V , then G(Z) ≥ G(V ) (Rachev et al., 2008a). Although the financial lit-

erature agrees that investors are non-satiable, there is no common vision about their risk

aversion. Investors’ choices should be isotonic with non-satiable investors’ preferences,

i.e. if Z ≥ V then G(Z) ≥ G(V ), and several behavioral finance studies suggest that

most investors are neither risk averse nor risk seeking (Cogneau and Hübner, 2009a,b;

Rachev et al., 2008a). Here, we review and present four measure of performances given

by the ratios between a reward and a risk measure.

4.2.1 The Sharpe Ratio

The Sharpe ratio is a commonly used measure of portfolio performance. However, be-

cause it is based on the mean-variance theory, it is valid only for either normally dis-

tributed returns or quadratic preferences. In other words, the Sharpe ratio is a mean-

ingful measure of portfolio performance when the risk can be adequately measured by

standard deviation. When return distributions are non-normal, the Sharpe ratio can

lead to misleading conclusions and unsatisfactory paradoxes, see, for example, (Orto-

belli et al., 2005; Bernardo and Ledoit, 2000; Hodges, 1998).
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According to the Markowitz mean-variance analysis, Sharpe (1994) suggests that

investors should maximize what is now referred to as the Sharpe Ratio (SR) given by:

SR(Z) =
E [Z]

STD(Z)
(4.2)

where the numerator is the expected value and the denominator represent the standard

deviation of excess returns. Maximizing the Sharpe Ratio, we obtain a market portfolio

which should be optimal for non-satiable risk-averse investors, but that is not dominated

in the sense of second-order stochastic dominance. This performance measure is fully

compatible with elliptically distributed returns, but it leads to incorrect investment

decisions when the returns distribution presents heavy tails or skewness.

4.2.2 Rachev Ratio

The Rachev Ratio (Biglova et al., 2004) is based on tail measures and it is isotonic with

the preferences of non-satiable investors that are neither risk averse nor risk seekers.

The Rachev Ratio (RR) is the ratio between the average of earnings and the mean of

losses; that

RR(Z, α1, α1) =
CVaRα2(−Z)

CVaRα1(Z)
(4.3)

where the Conditional Value-at-Risk (CVaR), is a coherent risk measures (Rockafellar

and Uryasev, 2002; Artzner et al., 1999) defined as:

CVaRα(Z) =
1

α

∫ α

0
V aRq(Z)dq (4.4)

and

VaRq(Z) = −F−1
Z (q) = −inf {z|P(Z ≤ z) > q} (4.5)

is the Value-at-Risk (VaR) of the random return Z. If we assume a continuous distribu-

tion for the probability law of Z, then CVaRα(Z) = −E [Z|Z ≤ VaRα(Z)] and, therefore

CVaR can be interpreted as the average loss beyond VaR. Typically, we use historical
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observations to estimate the portfolio return and a risk measures. A consistent estimator

of CVaRα(Z) is given by:

CVaRα(Z) =
1

[αT ]

[αT ]
∑

t

Zt:T (4.6)

where T is the number of historical observations of Z, [αT ] is the integer part of αT and

Zt:T is the t-th observation of Z ordered in increasing values. Similarly an approximation

of V aRq(Z) is simply given by –Z[qT ]:T .

4.2.3 The STARR

In 2005, Martin et al. (2005) introduce a different reward risk measure: the Stable Tail

Adjusted Return Ratio (STARRα). This measure is a generalization of the Sharpe Ra-

tio but it allows to overcome the drawbacks of the standard deviation as a risk measure

(Artzner et al., 1999). In particular, STARR focus on the downside risk and it is not a

symmetric and unstable measure of risk when returns present heavy-tailed distribution.

Thus, let a random variable Z be the difference between two random variables repre-

senting the portfolio and benchmark returns, the STARR at the confidence level α is

expressed as:

STARR(Z, α) =
E[Z]

CVaRα(Z)
(4.7)

The STARR differently from the Sharpe Ratio considers a coherent risk measure

and not a deviation one as risk sources.

4.2.4 Mean Absolute Semideviation Ratio

Finally, we introduce a performance measure splitting the two components of the quantile

regression dispersion measure. This ratio is based on the idea to divide positive and

negative difference between the returns of the invested and benchmark portfolios and

evaluate their mean in the absolute sense. Thus, we introduce reward and risk measures
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applied to the tracking error Z = X − Y where X is the invested portfolio and Y is the

benchmark return.

Definition 4.1

Let Z be a random variable with realization at time t equal to εt which represent the dif-

ference between the returns of the invested portfolio and the benchmark (i.e. εt = rtβ−yt)

and let ut = (rtβ−yt)1[rtβ≥yt] and νt = |(yt−rtβ)1[rtβ<yt]| be two positive variables rep-

resenting the two sides of the excess returns between investing and benchmark portfolios.

We define the Mean Absolute Semideviation Ratio (MASDR) as:

MASDR(Z) =
E
[

Z1[Z≥0]

]

E
[

Z1[Z<0]

] =
1
T

∑T
t=1 ut

1
T

∑T
t=1 νt

=
E [max(rtβ − yt, 0)]

E [max(yt − rtβ, 0)]
(4.8)

The main advantage of this ratio is the positive support when it is defined and it

allows to compare investment also when the alpha of the portfolio is negative. Moreover,

as developed in the following section the maximization of the Mean Absolute Semidevi-

ation Ratio (4.8) could be efficiently solved as a linear programming portfolio problem.

We notice that this ratio is the a special case of the Farinelli-Tibiletti Ratio (FTR)

(Farinelli et al., 2008):

FTR(Z, p, q) =
E
[

Zp
1[Z≥0]

]1/p

E
[

Zq1[Z<0]

]1/q
(4.9)

when p = q = 1. In this case, as treated in Stoyanov et al. (2007) we deal with

a non-quasi concave reward-risk ratio. In the general formulation with p ≥ q > 1 it is

not possible to define a linear programming formulation of the portfolio problem (4.10)

while we show how linearize this special case in the next section.
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4.3 LP Problem for Active Strategies

In the Modern Portfolio Theory, the problem of choice to maximize the performance of

an investor with different preferences is still an open question in the financial literature.

In recent time, one of the main issue is to deal with portfolio problem characterized by

high dimensionality and numerous assets. In particular, the first concept relates with

the situation when the number of assets are greater than the historical observations

(Kondor et al., 2007; Papp et al., 2005). Considering these type of problems is essential

to have an easily solvable structure of the portfolio model and the class of LP problem

results to be suitable to achieve this aim. Linear programming implies the possibility

to find an optimal solution reducing the computational time. Dealing with non-linear

optimization problem with huge number of assets, we have to develop our research in

the reduction of the dimensionality, in the linearization of the objective function and in

the definition of linear constraints to efficiently find the optimal portfolio composition.

In this section, we address both of these problems. Here we discuss the reduction

of the number of assets while in the next subsections we develop linear formulation to

solve the maximization problem of the four performance measures presented before.

In the financial applications, several problems need a preliminary reduction when

the number of assets is still numerous. This concept is strictly linked with the order-

ing problem (Ortobelli et al., 2013, 2009; Ortobelli and Shalit, 2008; Ortobelli et al.,

2008) which identify different criteria to select the “best” and reject the “worst” assets

according to investor’s preference. For instance, whether a portfolio manager bases its

decision in a mean-variance framework the Sharpe Ratio results to be an optimal criteria

to select a subset of assets with high expected value and low standard deviation.

The main technique for a preliminary reduction leads to the introduction of pre-

selection steps before the portfolio optimization. Pre-selection consist to order the asset

considering a criteria which reflect the investor preferences and active only the assets

that satisfy the given condition. Following this way, we could reduce the number of
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portfolio’s inputs. In this essay, we pre-select the “best” assets ordering with respect

to the performance measure considered in the optimization problem. This performance

measure is calculated on the historical observation of the rolling window and then, we

select the first d assets such that d ≤ N with higher value. In fact, they have the best

reward for unit of risk and they would be suitable to outperform the index also in the

next investment period.

4.3.1 Active Strategies Maximizing a Performance Measure

The second problem to address is related with the linearization of the four performance

measures presented before solving the following portfolio selection problem. Let X = rβ

be the return of the invested portfolio with realization xt = rtβ at time t where rt is the

raw of the asset returns and let Y be the returns of the benchmark with realization yt.

We define the common portfolio selection problem as follow:

max
β

µ (X − Y )

ρ (X − Y )

s.t.

N
∑

n=1

βn = 1

lb ≤ βn ≤ ub ∀n = 1, . . . , N

(4.10)

where βn for n = 1, . . . , N is the portfolio weight vector and optimal solution of the min-

imization problem, lb the lower bound and ub the upper bound as maximum amount

invested in a given asset. In particular, fixing the value of the upper bound it is possi-

ble to implicitly define the number of minimum active assets in the portfolio selection

problem.

We could notice that the objective function is non linear since in the ratio the

variable β appears both to the numerator and to the denominator. For this reason

analyzing the nature of different reward and risk measure, we linearize these objective

functions following the theoretical structure in Stoyanov et al. (2007). In particular, we
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review two active management portfolio strategies linearizing the STARR (4.3) and the

Rachev Ratio (4.7) following the approach proposed in Stoyanov et al. (2007) proposing

an empirical application. Then, we develop a linear formulation for the Sharpe Ratio

(4.2) and the Mean Absolute Semideviation Ratio (4.8). The following two Remarks are

important to linearly develop the Sharpe Ratio and the Mean Absolute Semideviation

Ratio.

Remark 4.1

If µ : D1 ⊂ Rn → R++ is a concave function and ρ : D2 ⊂ Rn → R++ is a convex

function then

1. the ratio µ/ρ : D1 ∩ D2 → R++ is quasi-concave;

2. the ratio ρ/µ : D1 ∩ D2 → R++ is quasi-convex;

3. the following relationship holds: arg maxx
µ(x)
ρ(x) = arg minx

ρ(x)
µ(x)

as proved in Stoyanov et al. (2007).

Remark 4.2

Suppose that µ(·) and ρ(·) are functional satisfying the following properties: The reward

measure µ is assumed to be a positive functional on the space of real-valued random

variables that is:

1. positive homogeneous: µ(tX) = tµ(X), t > 0

2. concave: µ(αX1 + (1− α)X2) ≥ αµ(X1 + (1− α)µ(X2), α ∈ [0, 1]

The risk-measure is a positive functional on the space of real-valued random variables

which is assumed to be:

1. positive homogeneous: ρ(tX) = tρ(X), t > 0

2. sub-additive: ρ(X1 +X2) ≤ ρ(X1) + ρ(X2)
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Then, the reward function µ(xtβ− yt) : X ∩Rn → R++ is concave and the risk function

ρ(xtβ − yt) : X ∩Rn → R++ is convex, provided that the domain X is a convex set and

the problem (4.10) could be linearized as developed in Stoyanov et al. (2007).

4.3.1.1 Portfolio with maximum STARR

Applying the linearization technique developed in Stoyanov et al. (2007) and Rockafel-

lar and Uryasev (2002), we could reformulate the problem (4.10) where the objective

function is represented by the STARRα(X) (4.7). Let β = w
g and X∗ = rw we obtain

the following LP portfolio selection problem:

min
w,g,d,γ

γ +
1

αT

T
∑

t=1

dt

s.t. E [X∗]− gE [Y ] = 1

− rtw + gyt − γ ≤ dt ∀t = 1, . . . , T

N
∑

n=1

wn = g

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

g ≥ 0, dt ≥ 0 ∀t = 1, . . . , T

(4.11)

where α is the confident level. This problem is linear and introducing T +2 variables it

could be efficiently solved. In particular, the dimensionality does not increase so much

with the length of the historical observations. However, the choice of the confidential

level is crucial to obtain feasible solution.

4.3.1.2 Mixed-Integer linear programming to maximize the Rachev Ratio

Differently, there are reward-risk ratios suggested in literature that are not in the class

of the quasi-concave functions because both the numerator and the denominator are

convex. Such are for instance the Farinelli-Tibiletti Ratio (Farinelli et al., 2008) and
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the Generalized Rachev Ratio (Biglova et al., 2004). However, Stoyanov et al. (2007)

propose a mixed-integer linear programming (MILP) formulation for the Rachev Ratio

introducing binary variables λt, ∀t = 1, . . . , T and the threshold B such that B ≥
|xtw|, ∀t = 1, . . . , T .

In this case, setting an extremely high value of B we could solve the following MILP

problem which mazimizes the RRα1,α2(X):

min
w,g,f,d,λ,γ

− 1

⌈α2T ⌉

T
∑

t=1

ft

s.t. ft ≤ Bλt ∀t = 1, . . . , T

ft ≥ rtw −B(1− λt) ∀t = 1, . . . , T

ft ≤ rtw +B(1− λt) ∀t = 1, . . . , T

T
∑

t=1

λt = ⌈α2T ⌉

γ +
1

⌈α1T ⌉

T
∑

t=1

dt ≤ 1

− rtw − γ ≤ dk ∀t = 1, . . . , T

N
∑

n=1

wn = g

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

g ≥ 0, dt ≥ 0 ∀t = 1, . . . , T

ft ≥ 0, λt ∈ [0, 1] ∀t = 1, . . . , T

(4.12)

when the real portfolio weights are obtained dividing the vector w for the scalar g

such that β = w
g and ⌈αT ⌉ is the ceiling integer number of αT . The feasibility of this

problem is strictly connected with the length of historical observation having an impact

on the number of binary variable in the MILP problem. The number of real variables

is 2T + 2 while the mixed-integer are T for a total number of 3T + 2 variables. For

this reason it is not possible to solve the problem with long historical time series data
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but an interesting analysis that we do not discuss in this essay could be based on the

introduction of weekly data to cover a long historical time period with small number of

observation. For a practical point of view this approach is adopted for several class of

the asset management like as the pension fund when the availability of the data has a

weekly frequency.

4.3.1.3 Maximization of the Sharpe Ratio

In this section, we propose a linear formulation to maximize the common portfolio

problem (4.10) when the measure of performance is the Sharpe Ratio (4.2). It is well-

known that this type of problem could be solved in a quadratic form minimizing the

risk or maximizing the return with a set of linear constraints (Stoyanov et al., 2007).

In this essay, we propose a linear approximation of the portfolio variance (Ortobelli

et al., 2013) to introduce stochastic dominance constraints in the optimization problem.

Since in the enhanced indexation strategies we highlight the importance of this set of

stochastic dominance constraints to strengthen the investor future wealth, we propose a

linearization technique based on an integral rule derived from fractional integral theory

(Ortobelli et al., 2013; Fishburn, 1980, 1976) which allows to efficiently solve the problem.

Proposition 4.1

The maximization of the Sharpe Ratio should be solve in a linear programming formula-

tion considering that the reward measure satisfies the positive homogeneity property and

it is concave while the risk measure is positive homogeneous and sub-addictive.
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Considering the fractional integral theory, we maximize the Sharpe Ratio solving the

following problem:

min
w,v,u,g

M−1
∑

i=1

1

T

T
∑

k=1

vk,i + uk,i

s.t. E [X∗]− gE [Y ] = 1

N
∑

n=1

wn = g

vk,i ≥ c+
i

M
(E [X∗]− gE [Y ]− c)− rkw + gyk ∀k = 1, . . . , T, i = 1, . . . ,M

uk,i ≥ c+
i

M
(−E [X∗]− gE [Y ]− c) + rkw − gyk ∀k = 1, . . . , T, i = 1, . . . ,M

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

g ≥ 0, uk,i ≥ 0, vk,i ≥ 0 ∀k = 1, . . . , T, i = 1, . . . ,M

(4.13)

where M is a large integer and c = −max (|minβ mint (rtβ − yt) |, |maxβ maxt (rtβ − yt) |).
Thus, the optimal portfolio weight βn = wn

g for n = 1, . . . , n.

In the previous portfolio optimization problem, we number of variable increase to

2T ×M + 1 where T is the fixed number of historical observations and it represent the

length of the past window while M is a decisional input representing the discretization

of the fractional integration. Thus, the main issue is to define the trade-off between the

approximation and the computational complexity of the portfolio problem.

4.3.1.4 LP problem to maximize the Mean Absolute Semideviation Ratio

Finally, we propose a linear programming portfolio model which maximizes the Mean

Absolute Semideviation Ratio (4.8). In this formulation we have a reward and a risk

measure defined as the mean of the positive and negative deviation. Thus, we have to

define the properties of these two measures.

Proposition 4.2

Let µ(Z) = E
[

Z1[Z≥0]

]

be a reward measure which satisfies the positive homogeneity
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and the concavity properties and let ρ(Z) = E
[

|Z|1[Z<0]

]

a risk measure that satisfies

the positive homogeneity and the sub-additivity properties. Then, the reward functional

µ(Z) is concave and the risk functional ρ(Z) is convex.

To maximize the Mean Absolute Semideviation Ratio we solve the optimization

problem (4.10) with the given performance measure as objective function.

Proposition 4.3

The general performance measure optimization problem (4.10) is equivalent to the fol-

lowing linear programming problem:

min
w,d,g

T
∑

t=1

dt

s.t. E [X∗]− gE [Y ] = 1

N
∑

n=1

wn = g

dt ≥ gyt − rtw ∀t = 1, . . . , T

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

g ≥ 0, dt ≥ 0 ∀t = 1, . . . , T

(4.14)

where the optimal portfolio composition β = w/g.

Proof. We want to maximize the following performance measure:

max
β

E
[

(X − Y )1[X−Y≥0]

]

E
[

|X − Y |1[X−Y <0]

] = max
β

E [max(X − Y, 0)]

E [max(Y −X, 0)]
=

Then, reformulating the numerator (Guastaroba et al., 2014), we obtain:

= max
β

E [X − Y ]− E [max(Y −X, 0)]

E [max(Y −X, 0)]
= max

β

E [X − Y ]

E [max(Y −X, 0)]
− 1
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Since the numerator is a concave function and the denominator is convex for Remark

4.1, we have

max
β

E [X − Y ]

E [max(Y −Xβ, 0)]
− 1 = min

β

E [max(Y −X, 0)]

E [X − Y ]

Substituting g = µ−1(rtβ− yt) and assuming the positive homogeneity we could rewrite

the previous minimization problem as follow:

min
w,g

E [max(gY −X∗, 0)]

s.t. E [X∗]− gE [Y ] = 1

N
∑

n=1

wn = g

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

g ≥ 0 ∀t = 1, . . . , T

(4.15)

where w = βg. Then, introducing a slack variable d = max(gY −X∗, 0) we obtain the

portfolio problem 4.14.

We notice that, the linear programming portfolio problem 4.14 which maximizes

the Mean Absolute Semideviation Ratio has a relative small increment in the number

of variables equal to T + 1.

4.4 Active Management of Stochastic Dominance Constraints

In chapter 2, we show how the introduction of stochastic dominance constraints leads

to obtain better results in terms of final wealth building portfolios which dominates

the benchmark during the overall period. For this reason, in this section we introduce

the linear formulation of the first and second orders stochastic dominance constraints

to increase the wealth of the invested portfolio keeping the optimization problem linear

or mixed-integer linear programming. For this reason, staring from the optimization
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problems 4.11 and 4.12, we introduce the double stochastic matrix Z = zr,c such that
∑T

r=1 zr,c = 1 for c = 1, . . . , T ,
∑T

c=1 zr,c = 1 for r = 1, . . . , T and zr,c ∈ [0, 1] to

include the second order stochastic dominance constraints as suggested in Kopa (2010)

and Kuosmanen (2004) while the consider the permutation matrix P = pr,c such that
∑T

r=1 pr,c = 1 for c = 1, . . . , T ,
∑T

c=1 pr,c = 1 for r = 1, . . . , T and pr,c ∈ {0, 1} to

consider the first order stochastic dominance constraints. Then, we introduce the linear

and mixed-integer linear programming to maximize the four performance measure in the

portfolio optimization problem (4.10) with first and second order stochastic dominance

constraints.
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4.4.1 Maximize the STARR with FSD and SSD constraints

The next two portfolio problems maximize the STARR with first and second order

stochastic dominance constraints, respectively. In particular, the portfolio which maxi-

mize the STARR at a confidential level α is obtain solving the following MILP problem:

min
w,g,d,γ,p∗

γ +
1

αT

T
∑

t=1

dt

s.t. E [X∗]− gE [Y ] = 1

− rtw + gyt − γ ≤ dt ∀t = 1, . . . , T

N
∑

n=1

wn = g

X∗ ≥ P ∗Y

T
∑

r=1

p∗r,c = g ∀c = 1, . . . , T

T
∑

c=1

p∗r,c = g ∀r = 1, . . . , T

g ∈ N, p∗r,c ∈ N ∀r, c = 1, . . . , T

0 ≤ p∗r,c ≤ g ∀r, c = 1, . . . , T

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

dt ≥ 0 ∀t = 1, . . . , T

(4.16)

where P ∗ is a modified permutation matrix with integer values and the optimal portfolio

composition β = w/g. In fact, according with Kopa (2010) and Kuosmanen (2004), X

dominates Y in the first order stochastic dominance sense if and only if X ≥ PY . Then,

for the formulation of X∗ = rw, we have X∗ ≥ PY g and setting P ∗ = Pg we have the

optimization problem proposed before. In this problem the number of variables strongly

increase of T 2 + T + 2 where T 2 are integer.
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Then, we propose a formulation to maximize the STARR with second order stochas-

tic dominance constraints as follow:

min
w,g,d,γ,z∗

γ +
1

αT

T
∑

t=1

dt

s.t. E [X∗]− gE [Y ] = 1

− rtw + gyt − γ ≤ dt ∀t = 1, . . . , T

N
∑

n=1

wn = g

X∗ ≥ Z∗Y

T
∑

r=1

z∗r,c = g ∀c = 1, . . . , T

T
∑

c=1

z∗r,c = g ∀r = 1, . . . , T

z∗r,c ∈ R ∀r, c = 1, . . . , T

0 ≤ z∗r,c ≤ g ∀r, c = 1, . . . , T

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

g ≥ 0, dt ≥ 0 ∀t = 1, . . . , T

(4.17)

where z∗r,c is the modified double stochastic matrix following the same process as in the

first order case. This problem is linear programming with an increment of T 2 + T + 2

variables with respect to the problem (4.10).

4.4.2 Mixed-integer linear programming with SD constraints in the

maximization of the Rachev Ratio

In the next two portfolio selection problems, we propose a linear optimization model to

maximize the Rachev Ratio with first and second order stochastic dominance constraints.

In particular, we use the formulation P ∗ for the modified permutation matrix and Z∗

for the double stochastic one as in the maximization of the STARR.
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Then, the portfolio optimization problem that maximizes the Rachev Ratio, RRα1,α2 ,

with FSD constraints is the following:

min
w,g,f,d,λ,γ,p∗

− 1

⌈α2T ⌉

T
∑

t=1

ft

s.t. ft ≤ Bλt ∀t = 1, . . . , T

ft ≥ rtw −B(1− λt) ∀t = 1, . . . , T

ft ≤ rtw +B(1− λt) ∀t = 1, . . . , T

T
∑

t=1

λt = ⌈α2T ⌉

γ +
1

⌈α1T ⌉

T
∑

t=1

dt ≤ 1

− rtw − γ ≤ dt ∀t = 1, . . . , T

N
∑

n=1

wn = g

X∗ ≥ P ∗Y

T
∑

r=1

p∗r,c = g ∀c = 1, . . . , T

T
∑

c=1

p∗r,c = g ∀r = 1, . . . , T

g ∈ N, p∗r,c ∈ N ∀r, c = 1, . . . , T

0 ≤ p∗r,c ≤ g ∀r, c = 1, . . . , T

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

ft ≥ 0, dt ≥ 0 ∀t = 1, . . . , T

λt ∈ {0, 1} ∀t = 1, . . . , T

(4.18)

where B is a positive high value and the optimal solution is β = w/g and X∗ = rw.

Maximizing the Rachev Ratio with first order stochastic dominance constraints we obtain

an increment of the number of variable T 2 +3T +2 of which T 2 +T are integer. In this
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case the computational complexity of the mixed-integer linear programming problem

becomes relevant and we should reduce the number of observations to have feasible

solutions.

Then, we propose the following problem for the maximization of the Rachev Ratio

with second order stochastic dominance constraints:

min
w,g,f,d,λ,γ,z∗

− 1

⌈α2T ⌉

T
∑

t=1

ft

s.t. ft ≤ Bλt ∀t = 1, . . . , T

ft ≥ rtw −B(1− λt) ∀t = 1, . . . , T

ft ≤ rtw +B(1− λt) ∀t = 1, . . . , T

T
∑

t=1

λt = ⌈α2T ⌉

γ +
1

⌈α1T ⌉

T
∑

t=1

dt ≤ 1

− rtw − γ ≤ dk ∀t = 1, . . . , T

N
∑

n=1

wn = g

X∗ ≥ Z∗Y

T
∑

r=1

z∗r,c = g ∀c = 1, . . . , T

T
∑

c=1

z∗r,c = g ∀r = 1, . . . , T

z∗r,c ∈ R ∀r, c = 1, . . . , T

0 ≤ z∗r,c ≤ g ∀r, c = 1, . . . , T

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

g ≥ 0, dt ≥ 0 ∀t = 1, . . . , T

ft ≥ 0, λt ∈ {0, 1} ∀t = 1, . . . , T

(4.19)
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In this case the increment in the number of variable is still relevant since they

get T 2 + 3T + 2 of which only T are integer. Thus, a key aspect in the solution of

these MILP problems is the length of the time series data. In the previous section,

we discussed the problem to have a relevant window of historical observations while

here we analyze the issue related with first order stochastic dominance constraints. In

this case, the number of integer variables dramatically increase withe the length of the

rolling window. To simplify the problem and reduce the computational complexity it

is possible to consider the usual length of historical observations and then introduce a

shorter window to compute the stochastic dominance constraints. This algorithm results

to be very efficient to solve the active strategies maximizing the Rachev Ratio with first

and second order stochastic dominance constraints.

4.4.3 Stochastic dominance constraints and maximization of the Sharpe

Ratio

Maximizing the Sharpe Ratio (Sharpe, 1994), we propose to linear problem formulation

introducing first and second order stochastic dominance constraints in the selection

process. Since the introduction of the modified double stochastic matrix holds the

problem linear, the set of constraints which allows to build a portfolio dominating the

benchmark in a first stochastic order sense, require integer variables. In this case the

linearity of the Sharpe Ratio becomes a relevant aspect in the optimization problem. In

this section, we propose the two portfolio selection models to deal with this goal looking

for extra-performances in the active strategy framework. However, the dimensionality

of the problem and its computational complexity strongly increase. In fact, linearizing

the Sharpe Ratio we introduce a new huge set of variables and for stochastic dominance

constraints the number of set’s components present a further increment.

Let M be the number linked with the approximation of the fractional integral, we

define the following mixed-integer linear problem to maximize the Sharpe Ratio with
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first stochastic dominance constraints:

min
w,v,u,g,p∗

M−1
∑

i=1

1

T

T
∑

k=1

vk,i + uk,i

s.t. E [X∗]− gE [Y ] = 1

N
∑

n=1

wn = g

vk,i ≥ c+
i

M
(E [X∗]− gE [Y ]− c)− rkw + gyk ∀k = 1, . . . , T, i = 1, . . . ,M

uk,i ≥ c+
i

M
(−E [X∗]− gE [Y ]− c) + rkw − gyk ∀k = 1, . . . , T, i = 1, . . . ,M

X∗ ≥ P ∗Y ∀t = 1, . . . , N

T
∑

r=1

p∗r,c = g ∀c = 1, . . . , T

T
∑

c=1

p∗r,c = g ∀r = 1, . . . , T

g ∈ N, p∗r,c ∈ N ∀r, c = 1, . . . , T

0 ≤ p∗r,c ≤ g ∀r, c = 1, . . . , T

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

uk,i ≥ 0, vk,i ≥ 0 ∀k = 1, . . . , T, i = 1, . . . ,M

(4.20)

where the optimal portfolio composition is defined as βn = wn

g for n = 1, . . . , N . In

this case, the we have to introduce T 2 + 2T ×M + 1 variables of whom T 2 are integer.

In this case is very important to tuning and define the parameters to have an optimal

trade-off between problem dimensionality, approximation accuracy and computational

complexity.

Then, we propose a linear programming for active benchmark strategies to build

portfolio which maximizes the Sharpe Ratio considering the second order stochastic
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dominance constraints. Thus, we solve the following portfolio optimization model:

min
w,v,u,g,z∗

M−1
∑

i=1

1

T

T
∑

k=1

vk,i + uk,i

s.t. E [X∗]− gE [Y ] = 1

N
∑

n=1

wn = g

vk,i ≥ c+
i

M
(E [X∗]− gE [Y ]− c)− rkw + gyk ∀k = 1, . . . , T, i = 1, . . . ,M

uk,i ≥ c+
i

M
(−E [X∗]− gE [Y ]− c) + rkw − gyk ∀k = 1, . . . , T, i = 1, . . . ,M

X∗ ≥ Z∗Y

T
∑

r=1

z∗r,c = g ∀c = 1, . . . , T

T
∑

c=1

z∗r,c = g ∀r = 1, . . . , T

z∗r,c ∈ R ∀r, c = 1, . . . , T

0 ≤ z∗r,c ≤ g ∀r, c = 1, . . . , T

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

g ≥ 0, uk,i ≥ 0, vk,i ≥ 0 ∀k = 1, . . . , T, i = 1, . . . ,M

(4.21)

where the optimal portfolio composition in represented by the vector β = w
g . As the

previous ones, also this optimization problem presents a huge number of increasing

variables T 2 + 2T ×M + 1.

4.4.4 Portfolio with maximum Mean Absolute Semideviation Ratio

with FSD and SSD constraints

To enhance the strategy which maximize the Mean Absolute Semideviation Ratio, we

propose a mixed-integer linear programming and a linear programming portfolio selec-

tion models with first and second order stochastic dominance constraints.
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Thus, to maximize the MASR with first order stochastic dominance constraints, we

introduce the following portfolio optimization problem:

min
w,d,g,p∗

T
∑

t=1

dt

s.t. E [X∗]− gE [Y ] = 1

N
∑

n=1

wn = g

dt ≥ gyt − rtw ∀t = 1, . . . , T

X∗ ≥ P ∗Y

T
∑

r=1

p∗r,c = g ∀c = 1, . . . , T

T
∑

c=1

p∗r,c = g ∀r = 1, . . . , T

g ∈ N, p∗r,c ∈ N ∀r, c = 1, . . . , T

0 ≤ p∗r,c ≤ g ∀r, c = 1, . . . , T

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

dt ≥ 0 ∀t = 1, . . . , T

(4.22)

where the optimal composition is given by the vector β = w/g. This problem is a

mixed-integer linear programming with T 2 more integer variables with respect to the

linear formulation of the maximization of the Mean Absolute Semideviation Ratio.

Differently, the maximization of the MASR with second order stochastic dominance

constraints is still a linear programming problem with an increment of T 2 variables
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solved with the following minimization problem:

min
w,d,g,z∗

T
∑

t=1

dt

s.t. E [X∗]− gE [Y ] = 1

N
∑

n=1

wn = g

dt ≥ gyt − rtw ∀t = 1, . . . , T

X∗ ≥ Z∗Y ∀t = 1, . . . , N

T
∑

r=1

z∗r,c = g ∀c = 1, . . . , T

T
∑

c=1

z∗r,c = g ∀r = 1, . . . , T

z∗r,c ∈ R ∀r, c = 1, . . . , T

0 ≤ z∗r,c ≤ g ∀r, c = 1, . . . , T

g lb ≤ wn ≤ g ub ∀n = 1, . . . , N

g ≥ 0, dt ≥ 0 ∀t = 1, . . . , T

(4.23)

where the optimal portfolio composition is β = w/g.

4.5 Empirical Application

The proposed methodologies are applied to the active management strategy solving the

problem to find a portfolio composition which beat the benchmark in the last ten years.

For this reason, we compute empirical applications where the benchmarks stock index

are the Russell 1000 and the Nasdaq 100 from 31st December 2002 to 31st December

2013 and we investigate how different portfolio selection problems could outperforms its

performances. We consider, as in the previous analyses, a historical moving window of

260 observations while for the mixed-integer linear programming we take into account
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120 time series data. Every strategy starts on 12th January 2004. Then, at each opti-

mization step, we compute the STARR5% and the RACHEV5%,2% for a total number of

125 optimization since we change portfolio composition every month (20 days). Finally,

we set un upper bound level of 10% and transaction costs (30bps) are included.

4.5.1 Active Strategies in the Benchmark Tracking Problem with Stochas-

tic Dominance Constraints

We solve the six portfolio selection problem (4.11), (4.12), (4.16), (4.17), (4.18) and

(4.19) presented in the previous section proposing portfolio approaches to address with

the active management. Then, we compare and empirically test the different opti-

mization methods and the impact to introduce stochastic dominance constraints in the

problem formulation.

Figures 4.1 and 4.2 illustrate the out of sample normalized wealth path during the

investment period from 12th January 2004 to 31st December 2013. In Figure 4.1 we

notice how every active strategy outperforms the Russell 1000. In particular, the classical

maximization of the STARR produce an extra-performance of the 30% at the end of the

investment period. Weather the introduction of the second order stochastic dominance

constraints has not a strong impact in the wealth path, the first order constraints produce

an increment in the portfolio gains before the sub-prime crisis. In fact, during this period

the portfolio wealth gains more than 70% while after the crisis it is difficult to enhance the

performance of the maximization of the STARR. Considering the benchmark represented

by the Russell 1000 it is evident the goodness of the active strategies to outperform it

but also the increment of the risk component.

These active portfolio strategies with stochastic dominance constraints suffer the

sub-prime crisis but in the case of first order stochastic dominance the value of its

portfolio does not fall down the initial wealth and it could have solid base to make use

of the following financial upturn. Therefore, starting from the 2009 the market increase

forcefully and the strategies based on the maximization of the STARR significantly
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Figure 4.1: Portfolio Wealth of Active Strategies STARR, Russell 1000

dominate the benchmark stock index. In particular, the portfolio strategies with first

and second order stochastic dominance constraints have a final wealth more than 3.5

and 3.4, respectively.

Neither risk aversion nor risk seeking investors that maximize their utility solving

a portfolio problem which involves the maximization of the Rachev Ratio obtain higher

final value than the previous strategies. Figure 4.2 shows the normalized wealth path

of the Russell 1000 (purple line), the maximization of the Rachev ratio (azure line),

the strategy with the introduction of first order stochastic dominance (red line) and the

maximization of the Rachev Ratio with second order stochastic dominance constraints

(gold line). Also in this case every active managed portfolio outperforms the benchmark

stock index for the overall period.
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Figure 4.2: Portfolio Wealth of Active Strategies Rachev Ratio, Russell 1000

Weather the common maximization of the Rachev Ratio produce a portfolio with

more than 3 times the initial wealth allocation, the other two strategies have better

results. In particular, the maximization of the performance measure with first order

stochastic dominance constraints amplifies the market jumps during the entire period.

In fact, this strategy reach 1.7 times the initial wealth in 2008 before the sub-prime

crisis while investors holding this portfolio composition have also a peak of about 300%

of earnings in 2010 and after a period of stability during the European sovereign debt

crisis the portfolio wealth path starts a increasing rally with a final value more than 3.5

times the original invested capital.

Analyzing the two strategies with stochastic dominance constraints we notice that

the first order stochastic dominance portfolio dominates the other strategies for the
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entire period with the exception of the last investment period. Differently from the

maximization of the STARR we stress the different wealth path of the three strategies

since the maximization of the Rachev Ratio is not consistent with second order stochastic

dominance.

Figure 4.3 report the maximization of the Mean Absolute Semideviation Ratio. We

observe how the three strategies outperform the benchmark represented by the Russell

1000. Moreover, the red line which illustrates the wealth path of the maximization of

the MAS Ratio dominates the other for the overall period with a final gain of more than

2.1 times the initial value.
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Figure 4.3: Portfolio Wealth of Active Strategies Mean Absolute Semideviation Ratio,
Russell 1000
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Figure 4.4: Portfolio Wealth of Active Strategies STARR, Nasdaq 100

Finally, Figures 4.4 and 4.5 show the maximization of the STARR and the MAS

Ratio with the Nasdaq 100 as benchmark. In particular, we notice a strong increment in

the portfolio gains during the overall period applying the first order stochastic dominance

constraints. In fact, maximizing the STARR we notice that the simple maximization

of the performance ratio and the introduction of second order stochastic dominance

constraints show the same wealth path with the second one which slightly dominates

the first one. They reach final values more than 3 times the initial wealth while the

strategy with include first order stochastic dominance constraints dominated the other

for the overall period and it show a final gains of about 53% more than the Nasdaq stock

index.

Also Figure 4.5 reports the same feature with a higher final values for every active
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strategy. In this case, the portfolio which maximize the Mean Absolute Semideviation

Ratio with first order stochastic dominance doubles its wealth during the first three

years of the investment period and it takes relevant advantages during several upward

changes of the financial cycle.
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Figure 4.5: Portfolio Wealth of Active Strategies Mean Absolute Semideviation Ratio,
Nasdaq 100

4.6 Final Remarks

In this chapter, we treat active management portfolio strategy proposing a portfolio se-

lection problem consistent with the maximization of a performance measure and stochas-

tic dominance constraints. Following the linear formulation proposed by Stoyanov et al.
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(2007), we implement LP portfolio selection problem adding stochastic dominance con-

straints. Finally, we empirically test this approach and we could notice how there is an

increment in the portfolio wealth not only with respect to the index tracking and en-

hanced indexation strategies but also adding different orders of stochastic dominance in

the active strategy management problem. Future researches will focus on the introduc-

tion of different measures such as the Sharpe Ratio and the Mean Absolute Semideviation

Ratio in a linear formulation problem. Then, a comparison with the portfolio selection

problem proposed in this essay could completely cover the are of maximization of perfor-

mance measures. Moreover, the investigation of linear third order stochastic dominance

constraints will also leads to find another important specification in the optimization

problem.



Chapter 5

Conclusion and Future Research.

5.1 Conclusion

In this essay, we describe the three main areas of the benchmarking problem. This kind

of problem is related to the construction of an invested portfolio which compares its

performance with a given index. Considering the assets that compose the stock index,

we develop index tracking, enhanced indexation and active strategies. The aim of this

work is to propose theoretical and methodological approaches to cover different portfolio

managers goals. In particular, we grounded our analysis on the definition of linear port-

folio selection models with the introduction of different stochastic dominance constraints

in the decisional problem and evaluating their benefits in terms of risk reduction and

increasing gains.

After a review of the literature, in Chapter 2, we develop a new measure for the

index tracking based on the quantile regression which aims to mimic the performance

of a benchmark in several phases of the financial cycle considering medium and big

tracked portfolios. Then, we propose a realistic model introducing a penalty function

with transaction costs and turnover constraints to limit the changes in portfolio active
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assets. In this model, we add stochastic dominance constraints to enhance the perfor-

mance of invested portfolios obtaining strategies that minimize linear and asymmetric

dispersion measure, as the tracking error quantile regression, and outperform the bench-

mark. Empirical applications dictate the benefits of this approach in a reduction of the

active assets and portfolio turnover. Moreover, stochastic dominance allows to obtain

attractive portfolio returns controlling the risk.

Then, Chapter 3 presents a generalization of the functional measure in the bench-

mark tracking problem reviewing the Gini tail measure and the Lp metric for this kind of

problem. We develop a theoretical and methodological formulation to take advantages

from different orders of stochastic dominance introducing investment chain to increase

the portfolio wealth or to improve the risk premium. In this framework, we linearize

the portfolio problem to maximize utility functions and we introduce different types of

stochastic dominance. Considering three levels to improve the portfolio construction

process, we create investment strategies focusing on the behavior of non satiable risk

averse investor with positive skewness. Future research will focus on an extension of

this concept analyzing other possible development of the stochastic investment chain

through the introduction of other order of stochastic dominance and utility functions.

Finally in Chapter 4, we address with problem to actively manage the invested port-

folio to outperform the benchmark. Facing high dimensionality problem and evaluating

the impact of the introduction of stochastic dominance constraints, we develop linear

portfolio selection models that maximize some performance measures which are consis-

tent with different investor’s profiles. Empirical applications show the out of sample

wealth paths of these strategies and they highlight the importance of stochastic domi-

nance in the decisional problem to obtain portfolios with a strong behavior capable to

strongly produce consistent and permanent gains with respect to the benchmark.



Appendix A

Econometrics Model to Generate

Future Scenarios of the Asset

Returns

The portfolio selection problem could be solved considering different decisional sets of

variable. In this essay, we consider the historical observation but several methodolo-

gies based on the forecast of future returns are proposed in the financial literature

Ortobelli Lozza et al. (2011); Biglova et al. (2009); Andersen et al. (2001); Black and

Litterman (1992); Breen et al. (1989). In this Appendix, we describe the factor model

used to reduce complexity of the problem searching for an acceptable model to describe

the dependence structure. Thus, we perform a principal components analysis (PCA)

to identify the main portfolio factors whose variance is significantly different from zero

(Biglova et al., 2009). With this approach, we obtain the few components that explain

the majority of the return volatility, resulting in a reduction of the dependence struc-

ture dimension. This step allow to shrink the complexity of the problem approximating

the historical return and reducing the dimensionality in problems with numerous index

components.
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To simulate realistic future return scenarios, we distinguish between the approx-

imation of PCA-residuals and PCA-factors. The sample residuals obtained from the

factor model are well approximated with an ARMA(1,1)-GARCH(1,1) model with dif-

ferent distributional hypotheses on the innovations while we independently simulate the

factors with the same econometric process but we model their dependencies structure

with an asymmetric Student t-copula (Biglova et al., 2009; Sun et al., 2008) with stable

marginal distributions. This approach allows to consider the stylized facts observed in

financial markets such as clustering of the volatility effect, heavy tails, and skewness

and investigate the nature of the PCA-residuals during different phases on the financial

cycle.

Several issues need to be addressed in order to model, control and forecast portfolios

in equity markets. Firstly, the reduction of the dimensionality of the problem gets

robust estimations in a multivariate framework modeling the dependence structure of

the returns with a copula approach. Secondly, the proposed modelization allows to

consider the main features of the stock returns in the scenario generation: heavy-tailed

distributions, volatility clustering, and non-Gaussian copula dependence.

A.0.1 Regression Model and Dimensionality Reduction

One methodology to reduce the dimensionality of the problem is to approximate the

return series with a regression-type model (such as a k-fund separation model) that

depends on an adequate number of parameters (Ross, 1978). Thus, we compute a

principal component analysis (PCA) of the returns of the N stock index components

in order to identify few factors (portfolios) with the highest variability. Replacing the

original N correlated time series rn with N uncorrelated time series Pn, we assume that

each rn is a linear combination of the Pn. Then we implement a dimensionality reduction

by choosing only those portfolios whose variance is significantly different from zero. In

particular, we call portfolios factors fn the p portfolios Pn with a significant variance,

while the remaining N − p portfolios with very small variances are summarized by an
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error ǫ. In conclusion, we obtain that each series rn is a linear combination of the factors

plus a small uncorrelated noise:

rn =

p
∑

n=1

cnfn +
N
∑

n=p+1

dnPn =

p
∑

n=1

cnfn + ǫ (A.1)

Generally, we can apply the PCA either to the variance-covariance matrix or to the

correlation matrix. Since returns are heavy-tailed dimensionless quantities, we apply

PCA to the correlation matrix obtaining N principal components, which are linear com-

binations of the original series, r = (r1, . . . , rN ). At each time of our approach, we select

the first p component analyzing their global portfolio variance. This approach wants to

capture and take advantage from the increasing correlation during period financial dis-

tress (Chiang et al., 2007; Dungey and Martin, 2007; Veldkamp, 2006; Hartmann et al.,

2004; Loretan and English, 2000) when the residuals show particular feature and a dy-

namic approach to describe and capture their distribution could improve the estimation

process.

As a consequence of this principal component analysis, each series r = (r1, . . . , rN )

can be represented as a linear combination of p factors plus a small uncorrelated noise.

Once we have identified the factors, we can generate the future returns rn using the

factor model:

rt,n = αn +

p
∑

j=1

βj,nft,j + ǫt,n (A.2)

where n = 1, . . . , N is the n-th components of the stock index and t the historical

observations. Formula A.2 shows how to approximate the time series through a factor

model with p factors. This model will be the base also to compute the future simulated

assets’ returns.

In fact, the generation of future scenarios should consider three main feature: the

empirical evidence observed in equity returns; the time evolution of factor ft,j and of
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errors ǫt,n and the comovements of the vector of the returns considering the skewness and

kurtosis of the joint distribution. In particular, this last feature is solved introducing

a skewed copula with heavy tails. A copula function C associated to random vector

u = (u1, . . . , uN ) is a probability distribution function on the n-dimensional hypercube,

such that:

Fu(y1, . . . , yN ) = P(u1 ≤ y1, . . . , uN ≤ yN ) =

C(P(u1 ≤ y1), . . . ,P(uN ≤ yN )) = (A.3)

= C(Fu1(y1), . . . , FuN
(yN ))

where Fun is the marginal distribution of the n-th component (Sklar, 1959). Once we

have generated scenarios with the copula C(u1, . . . , uN ) = Fu(F
−1
un

(u1), . . . , F
−1
uN

(uN ))

(where F−1
un

is the inverse cumulative function of the n-th marginal derived from the

multivariate distributional assumption Fu) that summarizes the dependence structure of

returns, then we can easily generate joint observations using the most opportune inverse

distribution functions F−1
un

of the single components applied to the points generated by

the copula. In particular, we consider a multivariate skewed Student’s t-copula for the

joint generation of innovations of the p factors.

In the following part of this section, we summarize the algorithm proposed to gen-

erate future return scenarios according to Biglova et al. (2009). Assuming that the

log-returns follow the factor model A.2, we firstly approximate each factor ft,j with an

ARMA(1,1)-GARCH(1,1) process with stable Paretian innovations. Then, we provide

the marginal distributions for standardized innovations of each factor used to simulate

the next-period returns. Secondly, we estimate the dependence structure of the vec-

tor of standardized innovations with a skewed Student-t copula with stable marginal

distributions.

Thirdly, combining the marginal distributions and the scenarios for the copula into

scenarios for the vector of factors, we generate the vector of the standardized innovation

assuming that the marginal distributions are αj-stable distributions and considering
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an asymmetric t-copula to summarize the dependence structure. Finally, we obtain

the vector of factors and combining the simulated factor with the simulated residuals

of the model A.2,we generate future returns. The algorithm is as follows. Firstly, we

compute the maximum likelihood parameter estimation of ARMA(1,1)-GARCH(1,1) for

each factor ft,j (j = 1, . . . , p).

ft,j = a0,j + a1,jft−1,j + b1,jǫt−1,j + ǫt,j (A.4)

ǫt,j = σt,jut,j (A.5)

σ2
t,j = c0,j0 + c1,jσ

2
t−1,j + d1,jǫ

2
t−1,j (A.6)

for j = 1, . . . , p and t = 1, . . . , T number of historical moving window observations.

Approximate with αj-stable distribution Sαj
(σj , βj , µj) (Samoradnitsky and Taqqu,

1994; Rachev and Mittnik, 2000) (see Appendix B) the empirical standardized innova-

tions ût,j = ˆǫt,j/σt,j where the innovations ˆǫt,j = f : t, j − a0,j − a1,jft−1,j − b1,jǫt−1,j

for j = 1, . . . , p. In order to value the marginal distribution of each innovation, we first

simulate S stable distributed scenarios for each of the future standardized innovations

series. Then, we compute the sample distribution functions of these simulated series:

FûT+h,j
(x) = 1

S

∑S
s=1 I[ûs

T+h,j
≤x] (A.7)

x ∈ R, j = 1, . . . , p

where ûT+h,j(1 ≤ s ≤ S) is the s-th value simulated with the fitted αj-stable distribution

for future standardized innovation (valued in T + h) of the j-th factor and h is the

investment horizon when the investor recalibrate its portfolio.

Secondly, fitting the p-dimensional vector of empirical standardized innovations û =

[û1, . . . , ûp]
′ with an asymmetric t-distribution V = [V1, . . . , Vp] with v degree of freedom;

i.e.,

V = µ+ γY +
√
Y Z (A.8)
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where µ and γ are constant vectors and Y is inverse γ-distributed IG(v/2; v/2) (Rachev

and Mittnik, 2000) independent of the vector Z that is normally distributed with zero

mean and covariance matrix Σ = [σi,j ]. We use the maximum likelihood method to

estimate the parameters (v, µ̂i, σ̂i,i, γ̂i) of each component. Then, an estimator of matrix

Σ is given by

Σ̂ =

(

cov(V)− 2v2

(v − 2)2(v − 4)
γ̂γ̂′
)

v − 2

2
(A.9)

where γ̂ = (γ1, . . . , γp) and cov(V) is the variance-covariance matrix of V. Since we

have estimated all the parameters of Y and Z, we can generate S scenarios for Y and,

independently, S scenarios for Z, and using Equation A.8 we obtain S scenarios for the

vector of standardized innovations û = [û1, . . . , ûp] that is asymmetric t-distributed.

Denote these scenarios by (V
(s)
1 , . . . , V

(s)
1 ) for s = 1, . . . , S and denote the marginal

distributions FVj
(x) for 1 ≤ j ≤ p of the estimated p-dimensional asymmetric t-

distribution by FV (x1, . . . , xp) = P(V1 ≤ x1, . . . , Vp ≤ xp). Then, considering U
(s)
j =

FVj
(Vj (s)), 1 ≤ j ≤ p; 1leqs ≤ S, we can generate S scenarios (U1 (s)Up ()), s = 1, . . . , S

of the uniform random vector (U1, . . . , Up) (with support on the p-dimensional unit cube)

and whose distribution is given by the copula:

C(t1, . . . , tp) = FV (F
−1
V1

(t1), . . . , F
−1
Vp

(tp))

0 ≤ ti ≤ 1; (A.10)

1 ≤ i ≤ p

Considering the stable distributed marginal sample distribution function of the j-

th standardized innovation Fûj,T+h
; j = 1, . . . , p (see Equation A.8) and the scenarios

U
(s)
j for 1 ≤ j ≤ p; 1 ≤ s ≤ S, then we can generate S scenarios of the vector of

standardized innovations (taking into account the dependence structure of the vector)
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u
(s)
T+h =

(

u
(1,s)
T+h, . . . , u

(p,s)
T+h

)

, s = 1 . . . , S valued at time T + h assuming:

u
(j,s)
T+h =

(

FuT+h,j

)−1

1 ≤ j ≤ p (A.11)

1 ≤ s ≤ S

Once we have described the multivariate behavior of the standardized innovation at time

T + h using relation A.6, we can generate S scenarios of the vector of innovation:

ǫ
(s)
T+h =

(

ǫ
(1,s)
T+h, . . . , ǫ

(p,s)
T+h

)

=
(

σT+h,1u
(1,s)
T+h, . . . , σT+h,pu

(p,s)
T+h

)

(A.12)

where σT+h,j , are still defined by Equation A.6. Thus, using relation A.6, we can

generate S scenarios of the vector of factors valued at time T + h.

Finally, we estimate a model ARMA(1,1)-GARCH(1,1) for the residuals of the factor

model A.2. That is, we consider the empirical residuals:

ǫ̂t,n = rt,n − α̂n −
p
∑

j=1

β̂j,nft,j (A.13)

We assume that also the residuals ǫ̂t,n follow an ARMA(1,1)-GARCH(1,1) model and

then we estimate its parameters g0,n, g1,n, h1,n, k0,n, k1,n, p1,n for all n = 1, . . . , N :

ǫ̂t,n = g0,n + g1,nǫ̂t−1,n + h1,nqt−1,n + qt,n

qt,n = vt,nzt,n (A.14)

v2t,n = k0,n + k1,nv
2
t−1,n + p1,nq

2
t−1,n

for n = 1, . . . , N and t = 1, . . . , T .
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A.0.2 Dynamic Innovation Hypotheses. Distributions and Statistical

Tests

To assess the goodness of fit, we consider a classical statistic. It might be of interest to

test the ability to model extreme events and to test which of three different hypotheses

could better capture the distribution of the innovation zi,t. To this end, we introduce the

Anderson-Darling statistic (AD-statistic) (Razali and Wah, 2011; Anderson and Darling,

1954; Scholz and Stephens, 1987). The Anderson-Darling test is commonly used to test

whether a data sample comes from a given distribution. The test statistic belongs to the

family of quadratic empirical distribution function statistics, which measure the distance

between the hypothesized distribution, F (x) and the empirical c.d.f., Fn(x) as

n

∫ ∞

−∞
(Fn(x)− F (x))2 g(x)dF (x) (A.15)

over the ordered sample values x1 < x2 < · · · < xn where g(x) is a weight function and

n is the number of data points in the sample. The weight function for the Anderson-

Darling test is

g(x) = [F (x)(1− F (x))]−1 (A.16)

which places greater weight on the observations in the tails of the distribution. The

Anderson-Darling test statistic is:

A2
n = −n−

n
∑

i=1

2i− 1

n
[ln(F (Xi)) + ln(1− F (Xn+1−i))] (A.17)

where {X1 < . . .Xn} are the ordered sample data points and n is the number of data

points in the sample.

In this work, we consider three hypotheses to capture the distributional behavior of

the innovations (see Appendix B for a review of these distributions):

1. Gaussian or Normal distribution.
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2. Student-t distribution (Blattberg and Gonedes, 1974).

3. Alpha Stable distribution (Samorodnitsky and Taqqu, 1994 and Rachev and Mit-

tnik, 2000).

Thus, we test using the A-D test the three different distributional hypothesis and we

select the minimum level of the statistic to simulate future scenarios.

A.0.3 Scenario Generation Process

Moreover, as for the factor innovation, we approximate with αj-stable distribution

Sαj
(σn, βn, µn) for any n = 1, . . . , N the empirical standardized innovations ˆzt,n =

q̂t,n/vt,n, where the innovations q̂t,n = êt,n − g0,n − g1,nêt−1,n − h1,nqt−1,n. Then, we

can generate S scenarios αj-stable distributed for the standardized innovations z
(s)
T+1,n,

s = 1, . . . , S and from Equation A.15 we get S possible scenarios for the residuals

e
(s)
T+h,n = vT+h,nz

(s)
T+h,n, s = 1, . . . , S. Therefore, combining the simulation of the factor

with the simulation of the residuals we get S possible scenarios of returns:

r
(s)
T+h,n = α̂n +

p
∑

j=1

β̂j,nf
(s)
t,n + ǫt, n(s) (A.18)

The procedure illustrated here permits one to generate S scenarios at time T + h of the

vector of returns.



Appendix B

Gaussian, Student-t and Alpha

Stable Distributions

In this Appendix, we review the three main principal distributional assumption consid-

ered in this work.

Gaussian Distribution

The class of normal distributions, or Gaussian distributions, is certainly one of the

most important probability distributions in statistics and, due to some of its appealing

properties, also the class that is used in most applications in finance. Here we introduce

some of its basic properties.

The random variable X is said to be normally distributed with parameters µ and

σ, abbreviated by X ∼ N(µ, σ), if the density function of the random variable is given

by the formula:

f(x) =
1√
2πσ2

exp

{

−(x− µ)2

2σ2

}

(B.1)
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A normal distribution with µ = 0 and σ = 1 is called a standard normal distribution.

Notice the following characteristics of the normal distribution. First, the middle of the

distribution equals µ. Second, the distribution is symmetric around µ. This second

characteristic justifies the name location parameter for µ. For small values of σ, the

density function becomes more narrow and peaked whereas for larger values of σ the

shape of the density widens. These observations lead to the name shape parameter or

scale parameter for σ.

Student-t Distribution

The Student-t distribution has become the mainstream alternative of the normal distri-

bution, when attempting to address asset returns’ heavy-tailedness. It is a symmetric

and mound-shaped, like the normal distribution. However, it is more peaked around the

center and has fatter tails (Blattberg and Gonedes, 1974). This makes it better suited

for return modeling than the Gaussian distribution (Theodossiou, 1998 and Andersen

et a., 2001).

Additionally, numerical methods for the t-distribution are widely available and easy

to implement (McNeil and Frey, 2000). The t-distribution has a single parameter, called

degrees of freedom (DOF), that controls the heaviness of the tails and, therefore, the

likelihood for extreme returns. The DOF takes only positive values, with lower values

signifying heavier tails. Values less than 2 imply infinite variance, while values less than

1 imply infinite mean since given ν the DOF, every moments lower than ν do not exist.

The t-distribution becomes arbitrarily close to the normal distribution as DOF increases

above 30. Generally, a random variable X (taking any real value) distributed with the

Student-t distribution with ν degrees of freedom has a density function given by

f(x|ν) = Γ
(

ν+1
2

)

Γ
(

ν
2

)√
νπ

(

1 +
x2

ν

)−(ν+1)/2

(B.2)
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where Γ is the Gamma function. Usually, this distribution is denoted by tν . The mean

of X is zero and its variance is given by

var(X) =
ν

ν − 2
(B.3)

In financial applications, it is often necessary to define the Student’s t-distribution

in a more general manner so that we allow for the mean (location) and scale to be

different from zero and one, respectively (Rachev et al., 2005 and Aas and Haff, 2006).

The density function of such a “scaled” Student’s t-distribution is described by

f(x|ν, µ, σ) = Γ
(

ν+1
2

)

σΓ
(

ν
2

)√
νπ

(

1 +
1

ν

(

x− µ

σ

)2
)−(ν+1)/2

(B.4)

where the mean µ ∈ R and the standard deviation σ > 0. Finally, we make a note of

an equivalent representation of the Student’s t-distribution which is useful for obtain-

ing simulations from it (Bigliova et al., 2009). The tν(µ, σ) distribution is equivalently

expressed as a scale mixture of the normal distribution where the mixing variable dis-

tributed with the inverse-gamma distribution,

X ∼ N(µ,
√
Wσ) (B.5)

W ∼ Inv −Gamma
(

ν
2 ,

ν
2

)

Alpha Stable Distribution

Research on stable distributions in the field of finance has a long history (Samorodnitsky

and Taqqu, 1994 and Rachev and Mittnik, 2000). In 1963, the mathematician Benoit

Mandelbrot first used the stable distribution to model empirical distributions that have

skewness and fat tails. The practical implementation of stable distributions to risk

modeling, however, has only recently been developed. Reasons for the late penetration

are the complexity of the associated algorithms for fitting and simulating stable models,

as well as the multivariate extensions.
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To distinguish between Gaussian and non-Gaussian stable distributions, the lat-

ter are commonly referred to as stable Paretian, Levy stable, or α-stable distributions.

Stable Paretian tails decay more slowly than the tails of the normal distribution and

therefore better describe the extreme events present in the data (Rachev et al., 2011).

Like the Student’s t-distribution, stable Paretian distributions have a parameter respon-

sible for the tail behavior, called tail index or index of stability.

It is possible to define the stable Paretian distribution in two ways. The first one

establishes the stable distribution as having a domain of attraction. That is, (properly

normalized) sums of IID random variables are distributed with the α-stable distribution

as the number of summands n goes to infinity. Formally, let Y1, Y2, . . . , Yn be IID

random variables and an and bn be sequences of real and positive numbers, respectively.

A variable X is said to have the stable Paretian distribution if

∑n
i=1 Yi − an

bn

d→ X (B.6)

The density function of the stable Paretian distribution is not available in a closed-

form expression in the general case. Therefore, the distribution of a stable random

variable X is alternatively defined through its characteristic function. The density func-

tion can be obtained through a numerical method. The characteristic function of the

α-stable distribution is given by

ϕX(t|α, σ, β, µ) = E
[

eitX
]

=







exp
(

iµt− |σt|α
(

1− iβ(sign t) tanπα
2

))

, α 6= 1

exp
(

iµt− σ |t|
(

1− iβ 2
π (sign t) ln |t|

))

, α = 1
(B.7)

where

sign t =



















1 t > 0

0 t = 0

−1 t < 0

(B.8)
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The distribution is characterized by four parameters:

• α ∈ (0, 2): the index of stability or the shape parameter.

• β ∈ [−1,+1]: the skewness parameter.

• σ ∈ (0,+∞): the scale parameter.

• µ ∈ (−∞,+∞): the location parameter.

Because of the four parameters, the α-stable distribution is highly flexible and suit-

able for modeling non-symmetric, highly kurtotic, and heavy-tailed data. When a ran-

dom variable X follows the α-stable distribution characterized by those parameters, then

we denote X ∼ Sα(σ, β, µ). The three special cases where there is a closed-form solution

for the densities are the Gaussian case (α = 2), the Cauchy case (α = 1, β = 0) and the

Lévy case (α = 1
2 , β = ±1).
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M. Gilli and E. Këllezi. The threshold accepting heuristic for index tracking. Financial

Engineering, E-Commerce and Supply Chain, pages 1–18, 2002.

T. H. Goodwin. The information ratio. Financial Analysts Journal, 54(4):34–43, 1998.

J.-y. Gotoh and H. Konno. Third degree stochastic dominance and mean-risk analysis.

Management Science, 46(2):289–301, 2000.

G. Guastaroba and M. G. Speranza. Kernel search: an application to the index tracking

problem. European Journal of Operational Research, 217(1):54–68, 2012.

G. Guastaroba, R. Mansini, W. Ogryczak, and M. Speranza. Linear programming mod-

els based on omega ratio for the enhanced index tracking problem. Technical report,

Institute of Control and Computation Engineering, Warsaw University of Technology,

2014.

G. Hanoch and H. Levy. The efficiency analysis of choices involving risk. Review of

Economic Studies, 36(107):335–346, 1969.

G. Hanoch and H. Levy. Efficient portfolio selection with quadratic and cubic utility.

Journal of Business, pages 181–189, 1970.

W. V. Harlow. Asset allocation in a downside-risk framework. Financial analysts journal,

47(5):28–40, 1991.

P. Hartmann, S. Straetmans, and C. G. De Vries. Asset market linkages in crisis periods.

Review of Economics and Statistics, 86(1):313–326, 2004.



Bibliography 164

C. R. Harvey, J. C. Liechty, M. W. Liechty, and P. Müller. Portfolio selection with

higher moments. Quantitative Finance, 10(5):469–485, 2010.

S. Hodges. A generalization of the Sharpe ratio and its applications to valuation bounds

and risk measures. Financial Options Research Centre, Warwick Business School,

University of Warwick, 1998.

R. Jagannathan and T. Ma. Risk reduction in large portfolios: Why imposing the wrong

constraints helps. The Journal of Finance, 58(4):1651–1684, 2003.

R. Jansen and R. Van Dijk. Optimal benchmark tracking with small portfolios. The

journal of portfolio management, 28(2):33–39, 2002.

R. Jarrow. The relationship between arbitrage and first order stochastic dominance.

The Journal of Finance, 41(4):915–921, 1986.

P. Jorion. Risk2: Measuring the risk in value at risk. Financial Analysts Journal, 52(6):

47–56, 1996.

P. Jorion. Portfolio optimization with constraints on tracking error. Financial Analysts

Journal, 59(5):70–82, 2003.

R. Kan and G. Zhou. Optimal portfolio choice with parameter uncertainty. Journal of

Financial and Quantitative Analysis, 42(03):621–656, 2007.

C. Keating and W. F. Shadwick. A universal performance measure. Journal of perfor-

mance measurement, 6(3):59–84, 2002.

C. Kenyon, S. Savage, and B. Ball. Equivalence of linear deviation about the mean

and mean absolute deviation about the mean objective functions. Operations research

letters, 24(4):181–185, 1999.

J. S. Kim, Y. C. Kim, and K. Y. Shin. An algorithm for portfolio optimization problem.

Informatica, 16(1):93–106, 2005.



Bibliography 165

R. Koenker and G. Bassett. Regression quantiles. Econometrica: journal of the Econo-

metric Society, pages 33–50, 1978.

E. Kole, K. Koedijk, and M. Verbeek. Selecting copulas for risk management. Journal

of Banking & Finance, 31(8):2405–2423, 2007.

I. Kondor, S. Pafka, and G. Nagy. Noise sensitivity of portfolio selection under various

risk measures. Journal of Banking & Finance, 31(5):1545–1573, 2007.

H. Konno. Mean–absolute deviation model. Stochastic Programming, pages 239–255,

2011.

H. Konno and T. Hatagi. Index-plus-alpha tracking under concave transaction cost.

Journal of industrial and management optimization, 1(1):87, 2005.

H. Konno and H. Shirakawa. Equilibrium relations in a capital asset market: A mean

absolute deviation approach. Asia-Pacific Financial Markets, 1(1):21–35, 1994.

H. Konno and A. Wijayanayake. Minimal cost index tracking under nonlinear transaction

costs and minimal transaction unit constraints. International Journal of Theoretical

and Applied Finance, 4(06):939–957, 2001.

H. Konno and H. Yamazaki. Mean-absolute deviation portfolio optimization model and

its applications to tokyo stock market. Management science, 37(5):519–531, 1991.

H. Konno, H. Shirakawa, and H. Yamazaki. A mean-absolute deviation-skewness port-

folio optimization model. Annals of Operations Research, 45(1):205–220, 1993.

M. Kopa. Measuring of second–order stochastic dominance portfolio efficiency. Kyber-

netika, 46(3):488–500, 2010.

M. Kopa and P. Chovanec. A second-order stochastic dominance portfolio efficiency

measure. Kybernetika, 44(2):243–258, 2008.

M. Kopa and T. Post. A portfolio optimality test based on the first-order stochastic

dominance criterion. Journal of Financial and Quantitative Analysis, 44(05):1103–

1124, 2009.



Bibliography 166
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W. Schoutens. Lévy Processes in Finance. Jhon Wiley & Sons, Ltd, 2003.

A. Scowcroft and J. Sefton. Enhanced indexation. Advances in portfolio construction

and implementation, pages 95–124, 2003.

H. Shalit and S. Yitzhaki. Mean-gini, portfolio theory, and the pricing of risky assets.

The Journal of Finance, 39(5):1449–1468, 1984.

H. Shalit and S. Yitzhaki. How does beta explain stochastic dominance efficiency?

Review of Quantitative Finance and Accounting, 35(4):431–444, 2010.

W. F. Sharpe. A simplified model for portfolio analysis. Management science, 9(2):

277–293, 1963.

W. F. Sharpe. Asset allocation: Management style and performance measurement. The

Journal of Portfolio Management, 18(2):7–19, 1992.



Bibliography 174

W. F. Sharpe. The sharpe ratio. The journal of portfolio management, 21(1):49–58,

1994.

J. B. Silvers. An alternative to the yield spread as a measure of risk. The Journal of

Finance, 28(4):933–955, 1973.

Y. Simaan. Estimation risk in portfolio selection: the mean variance model versus the

mean absolute deviation model. Management Science, 43(10):1437–1446, 1997.
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