
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Benchmarking a New Paradigm:
Experimental Analysis and
Characterization of a Real
Processing-in-Memory System
JUAN GÓMEZ-LUNA1, IZZAT EL HAJJ2, IVAN FERNANDEZ1,3, CHRISTINA GIANNOULA1,4,
GERALDO F. OLIVEIRA1, AND ONUR MUTLU1
1ETH Zürich
2American University of Beirut
3University of Malaga
4National Technical University of Athens

Corresponding author: Juan Gómez-Luna (e-mail: juang@ethz.ch).

ABSTRACT
Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing
by integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).
Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays
with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.
This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-
based PIM system using microbenchmarks to assess various architecture limits such as compute throughput
and memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory bench-
marks), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear
algebra, databases, data analytics, graph processing, neural networks, bioinformatics, image processing),
which we identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM
benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to
their modern CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based
PIM systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the
PIM system, programming recommendations for software designers, and suggestions and hints for hardware
and architecture designers of future PIM systems.

INDEX TERMS Processing-in-memory, near-data processing, memory systems, data movement bottle-
neck, DRAM, benchmarking, real-system characterization, workload characterization

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

I. INTRODUCTION

In modern computing systems, a large fraction of the execu-
tion time and energy consumption of modern data-intensive
workloads is spent moving data between memory and pro-
cessor cores. This data movement bottleneck [1–7] stems
from the fact that, for decades, the performance of processor
cores has been increasing at a faster rate than the memory
performance. The gap between an arithmetic operation and a
memory access in terms of latency and energy keeps widen-
ing and the memory access is becoming increasingly more
expensive. As a result, recent experimental studies report
that data movement accounts for 62% [8] (reported in 2018),
40% [9] (reported in 2014), and 35% [10] (reported in 2013)
of the total system energy in various consumer, scientific, and
mobile applications, respectively.

One promising way to alleviate the data movement bot-
tleneck is processing-in-memory (PIM), which equips mem-
ory chips with processing capabilities [2]. This paradigm
has been explored for more than 50 years [1–4, 8, 11–
131], but limitations in memory technology prevented com-
mercial hardware from successfully materializing. More
recently, difficulties in DRAM scaling (i.e., challenges
in increasing density and performance while maintain-
ing reliability, latency and energy consumption) [132–
166] have motivated innovations such as 3D-stacked mem-
ory [63, 167–172] and nonvolatile memory [146, 173–
183] which present new opportunities to redesign the
memory subsystem while integrating processing capabili-
ties. 3D-stacked memory integrates DRAM layers with a
logic layer, which can embed processing elements. Sev-
eral works explore this approach, called processing-near-
memory (PNM), to implement different types of process-
ing components in the logic layer, such as general-purpose
cores [8, 56, 63–67, 128, 184], application-specific accel-
erators [57–61, 69, 79, 81, 82, 88, 89, 101, 104, 105, 107, 108,
124–127, 129–131, 185, 186], simple functional units [62, 84,
120, 122, 123, 187], GPU cores [78, 80, 85, 87], or reconfig-
urable logic [68, 73, 75, 121]. However, 3D-stacked memory
suffers from high cost and limited capacity, and the logic
layer has hardware area and thermal dissipation constraints,
which limit the capabilities of the embedded processing
components. On the other hand, processing-using-memory
(PUM) takes advantage of the analog operational properties
of memory cells in SRAM [21–24], DRAM [25–40, 99, 100,
119, 188–191], or nonvolatile memory [41–55, 70, 103, 114,
118, 192–196] to perform specific types of operations effi-
ciently. However, processing-using-memory is either limited
to simple bitwise operations (e.g., majority, AND, OR) [21,
25, 26, 188, 191], requires high area overheads to perform
more complex operations [35, 36, 99], or requires significant
changes to data organization, manipulation, and handling
mechanisms to enable bit-serial computation, while still hav-

ing limitations on certain operations [29, 37, 40].1 Moreover,
processing-using-memory approaches are usually efficient
mainly for regular computations, since they naturally operate
on a large number of memory cells (e.g., entire rows across
many subarrays [25–28, 37, 188–191, 197]) simultaneously.
For these reasons, complete PIM systems based on 3D-
stacked memory or processing-using-memory have not yet
been commercialized in real hardware.

The UPMEM PIM architecture [198, 199] is the first PIM
system to be commercialized in real hardware. To avoid the
aforementioned limitations, it uses conventional 2D DRAM
arrays and combines them with general-purpose processing
cores, called DRAM Processing Units (DPUs), on the same
chip. Combining memory and processing components on
the same chip imposes serious design challenges. For exam-
ple, DRAM designs use only three metal layers [200, 201],
while conventional processor designs typically use more
than ten [199, 202–204]. While these challenges prevent
the fabrication of fast logic transistors, UPMEM overcomes
these challenges via DPU cores that are relatively deeply
pipelined and fine-grained multithreaded [205–209] to run at
several hundred megahertz. The UPMEM PIM architecture
provides several key advantages with respect to other PIM
proposals. First, it relies on mature 2D DRAM design and
fabrication process, avoiding the drawbacks of emerging 3D-
stacked memory technology. Second, the general-purpose
DPUs support a wide variety of computations and data types,
similar to simple modern general-purpose processors. Third,
the architecture is suitable for irregular computations because
the threads in a DPU can execute independently of each other
(i.e., they are not bound by lockstep execution as in SIMD2).
Fourth, UPMEM provides a complete software stack that
enables DPU programs to be written in the commonly-used
C language [213].

Rigorously understanding the UPMEM PIM architecture,
the first publicly-available PIM architecture, and its suitabil-
ity to various workloads can provide valuable insights to pro-
grammers, users and architects of this architecture as well as
of future PIM systems. To this end, our work provides the first
comprehensive experimental characterization and analysis of
the first publicly-available real-world PIM architecture. To
enable our experimental studies and analyses, we develop
new microbenchmarks and a new benchmark suite, which we
openly and freely make available [214].

We develop a set of microbenchmarks to evaluate, charac-
terize, and understand the limits of the UPMEM-based PIM
system, yielding new insights. First, we obtain the compute
throughput of a DPU for different arithmetic operations

1PUM approaches performing bit-serial computation [29, 37, 40] need
to layout data elements vertically (i.e., all bits of an element in the same
bitline), which (1) does not allow certain data manipulation operations (e.g.,
shuffling of data elements in an array) and (2) requires paying the overhead
of bit transposition, when the format of data needs to change [37], i.e., prior
to performing bit-serial computation.

2Single Instruction Multiple Data (SIMD) [210–212] refers to an ex-
ecution paradigm where multiple processing elements execute the same
operation on multiple data elements simultaneously.

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

and data types. Second, we measure the bandwidth of two
different memory spaces that a DPU can directly access
using load/store instructions: (1) a DRAM bank called Main
RAM (MRAM), and (2) an SRAM-based scratchpad memory
called Working RAM (WRAM). We employ streaming (i.e.,
unit-stride), strided, and random memory access patterns to
measure the sustained bandwidth of both types of memories.
Third, we measure the sustained bandwidth between the
standard main memory and the MRAM banks for different
types and sizes of transfers, which is important for the com-
munication of the DPU with the host CPU and other DPUs.

We present PrIM (Processing-In-Memory benchmarks),
the first benchmark suite for a real PIM architecture. PrIM
includes 16 workloads from different application domains
(e.g., dense/sparse linear algebra, databases, data analytics,
graph processing, neural networks, bioinformatics, image
processing), which we identify as memory-bound using the
roofline model for a conventional CPU [215]. We perform
strong scaling3 and weak scaling4 experiments with the 16
benchmarks on a system with 2,556 DPUs, and compare their
performance and energy consumption to their modern CPU
and GPU counterparts. Our extensive evaluation provides
new insights about suitability of different workloads to the
PIM system, programming recommendations for software
designers, and suggestions and hints for hardware and ar-
chitecture designers of future PIM systems. All our mi-
crobenchmarks and PrIM benchmarks are publicly and freely
available [214] to serve as programming samples for real
PIM architectures, evaluate and compare current and future
PIM systems, and help further advance PIM architecture,
programming, and software research.5

The main contributions of this work are as follows:
• We perform the first comprehensive characterization and

analysis of the first publicly-available real-world PIM ar-
chitecture. We analyze the new architecture’s potential,
limitations and bottlenecks. We analyze (1) memory band-
width at different levels of the DPU memory hierarchy
for different memory access patterns, (2) DPU compute
throughput of different arithmetic operations for different
data types, and (3) strong and weak scaling characteristics
for different computation patterns. We find that (1) the UP-
MEM PIM architecture is fundamentally compute bound,
since workloads with more complex operations than integer
addition fully utilize the instruction pipeline before they
can potentially saturate the memory bandwidth, and (2)
workloads that require inter-DPU communication do not
scale well, since there is no direct communication channel
among DPUs, and therefore, all inter-DPU communication

3Strong scaling refers to how the execution time of a program solving a
particular problem varies with the number of processors for a fixed problem
size [216, 217].

4Weak scaling refers to how the execution time of a program solving a
particular problem varies with the number of processors for a fixed problem
size per processor [216, 218].

5We refer the reader to a recent overview paper [2] on the state-of-the-art
challenges in PIM research.

takes place via the host CPU, i.e., through the narrow
memory bus.

• We present and open-source PrIM, the first benchmark
suite for a real PIM architecture, composed of 16 real-
world workloads that are memory-bound on conventional
processor-centric systems. The workloads have different
characteristics, exhibiting heterogeneity in their memory
access patterns, operations and data types, and commu-
nication patterns. The PrIM benchmark suite provides a
common set of workloads to evaluate the UPMEM PIM
architecture with and can be useful for programming, ar-
chitecture and systems researchers all alike to improve
multiple aspects of future PIM hardware and software.5

• We compare the performance and energy consumption of
PrIM benchmarks on two UPMEM-based PIM systems
with 2,556 DPUs and 640 DPUs to modern conventional
processor-centric systems, i.e., CPUs and GPUs. Our anal-
ysis reveals several new and interesting findings. We high-
light three major findings. First, both UPMEM-based PIM
systems outperform a modern CPU (by 93.0× and 27.9×,
on average, respectively) for 13 of the PrIM benchmarks,
which do not require intensive inter-DPU synchronization
or floating point operations.6 Section V-B provides a de-
tailed analysis of our comparison of PIM systems to mod-
ern CPU and GPU. Second, the 2,556-DPU PIM system
is faster than a modern GPU (by 2.54×, on average) for
10 PrIM benchmarks with (1) streaming memory accesses,
(2) little or no inter-DPU synchronization, and (3) little
or no use of complex arithmetic operations (i.e., integer
multiplication/division, floating point operations).7 Third,
energy consumption comparison of the PIM, CPU, and
GPU systems follows the same trends as the performance
comparison: the PIM system yields large energy savings
over the CPU and the CPU, for workloads where it largely
outperforms the CPU and the GPU. We are comparing the
first ever commercial PIM system to CPU and GPU sys-
tems that have been heavily optimized for decades in terms
of architecture, software, and manufacturing. Even then,
we see significant advantages of PIM over CPU and GPU
in most PrIM benchmarks (Section V-B). We believe the
architecture, software, and manufacturing of PIM systems
will continue to improve (e.g., we suggest optimizations
and areas for future improvement in Section VI). As such,
more fair comparisons to CPU and GPU systems would be
possible and can reveal higher benefits for PIM systems in
the future.

6Two of the other three PrIM benchmarks, Breadth-first Search (BFS) and
Needleman-Wunsch (NW), pay the huge overhead of inter-DPU synchro-
nization via the host CPU. The third one, Sparse Matrix-Vector Multiply
(SpMV), makes intensive use of floating point multiplication and addition.

7We also evaluate the 640-DPU PIM system and find that it is slower than
the GPU for most PrIM benchmarks, but the performance gap between the
two systems (640-DPU PIM and GPU) is significantly smaller for the 10
PrIM benchmarks that do not need (1) heavy inter-DPU communication or
(2) intensive use of multiplication operations. The 640-DPU PIM system is
faster than the GPU for two benchmarks, which are not well-suited for the
GPU. Section V-B provides a detailed analysis of our comparison.

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

II. UPMEM PIM ARCHITECTURE
We describe the organization of a UPMEM PIM-enabled
system (Section II-A), the architecture of a DPU core (Sec-
tion II-B), and important aspects of programming DPUs
(Section II-C).

A. SYSTEM ORGANIZATION
Figure 1 (left) depicts a UPMEM-based PIM system with
(1) a host CPU (e.g., an x86 [219], ARM64 [220], or 64-bit
RISC-V [221] multi-core system), (2) standard main memory
(DRAM memory modules [222–225]), and (3) PIM-enabled
memory (UPMEM modules) [198, 199]. PIM-enabled mem-
ory can reside on one or more memory channels. A UPMEM
module is a standard DDR4-2400 DIMM (module) [226]
with several PIM chips. Figure 2 shows two UPMEM mod-
ules. All DPUs in the UPMEM modules operate together as
a parallel coprocessor to the host CPU.

Inside each UPMEM PIM chip (Figure 1 (right)), there
are 8 DPUs. Each DPU has exclusive access to (1) a 64-
MB DRAM bank, called Main RAM (MRAM) Ê, (2) a 24-
KB instruction memory, called Instruction RAM (IRAM) Ë,
and (3) a 64-KB scratchpad memory, called Working RAM
(WRAM) Ì. MRAM is accessible by the host CPU (Figure 1
(left)) for copying input data (from main memory to MRAM)
Í and retrieving results (from MRAM to main memory) Î.
These CPU-DPU and DPU-CPU data transfers can be per-
formed in parallel (i.e., concurrently across multiple MRAM
banks), if the buffers transferred from/to all MRAM banks
are of the same size. Otherwise, the data transfers happen
serially (i.e., a transfer from/to another MRAM bank starts
after the transfer from/to an MRAM bank completes). There
is no support for direct communication between DPUs. All
inter-DPU communication takes place through the host CPU
by retrieving results from the DPU to the CPU and copying
data from the CPU to the DPU.

The programming interface for serial transfers [213] pro-
vides functions for copying a buffer to (dpu_copy_to)
and from (dpu_copy_from) a specific MRAM bank.
The programming interface for parallel transfers [213] pro-
vides functions for assigning buffers to specific MRAM
banks (dpu_prepare_xfer) and then initiating the ac-
tual CPU-DPU or DPU-CPU transfers to execute in par-
allel (dpu_push_xfer). Parallel transfers require that
the transfer sizes to/from all MRAM banks be the same.
If the buffer to copy to all MRAM banks is the same,
we can execute a broadcast CPU-DPU memory transfer
(dpu_broadcast_to).

Main memory and PIM-enabled memory require different
data layouts. While main memory uses the conventional
horizontal DRAM mapping [199, 228], which maps con-
secutive 8-bit words onto consecutive DRAM chips, PIM-
enabled memory needs entire 64-bit words mapped onto the
same MRAM bank (in one PIM chip) [199]. The reason
for this special data layout in PIM-enabled memory is that
each DPU has access to only a single MRAM bank, but it
can operate on data types of up to 64 bits. The UPMEM

SDK includes a transposition library [199] to perform the
necessary data shuffling when transferring data between main
memory and MRAM banks. These data layout transforma-
tions are transparent to programmers. The UPMEM SDK-
provided functions for serial/parallel/broadcast CPU-DPU
and serial/parallel DPU-CPU transfers call the transposition
library internally, and the library ultimately performs data
layout conversion, as needed.

In current UPMEM-based PIM system configura-
tions [227], the maximum number of UPMEM DIMMs
is 20. A UPMEM-based PIM system with 20 UPMEM
modules can contain up to 2,560 DPUs which amounts to
160 GB of PIM-capable memory.

Table 1 presents the two real UPMEM-based PIM systems
that we use in this work.

We use a real UPMEM-based PIM system that contains
2,556 DPUs, and a total of 159.75 GB MRAM. The DPUs
are organized into 20 double-rank DIMMs, with 128 DPUs
per DIMM.8 Each DPU runs at 350 MHz. The 20 UPMEM
DIMMs are in a dual x86 socket with 2 memory controllers
per socket. Each memory controller has 3 memory chan-
nels [229]. In each socket, two DIMMs of conventional
DRAM (employed as main memory of the host CPU) are on
one channel of one of the memory controllers. Figure 3 shows
a UPMEM-based PIM system with 20 UPMEM DIMMs.

We also use an older real system with 640 DPUs. The
DPUs are organized into 10 single-rank DIMMs, with 64
DPUs per DIMM. The total amount of MRAM is thus 40 GB.
Each DPU in this system runs at 267 MHz. The 10 UPMEM
DIMMs are in an x86 socket with 2 memory controllers.
Each memory controller has 3 memory channels [230]. Two
DIMMs of conventional DRAM are on one channel of one of
the memory controllers.

B. DRAM PROCESSING UNIT (DPU) ARCHITECTURE
A DPU (Figure 1 (right)) is a multithreaded in-order 32-
bit RISC core with a specific Instruction Set Architecture
(ISA) [213]. The DPU has 24 hardware threads, each with
24 32-bit general-purpose registers (Ï in Figure 1 (right)).
These hardware threads share an instruction memory (IRAM)
Ë and a scratchpad memory (WRAM) Ì to store operands.
The DPU has a pipeline depth of 14 stages Ð, however, only
the last three stages of the pipeline (i.e., ALU4, MERGE1,
and MERGE2 in Figure 1 (right)) can execute in parallel with
the DISPATCH and FETCH stages of the next instruction
in the same thread. Therefore, instructions from the same
thread must be dispatched 11 cycles apart, requiring at least
11 threads to fully utilize the pipeline [231].

The 24 KB IRAM can hold up to 4,096 48-bit encoded
instructions. The WRAM has a capacity of 64 KB. The DPU
can access the WRAM through 8-, 16-, 32-, and 64-bit load/-
store instructions. The ISA provides DMA instructions [213]

8There are four faulty DPUs in the system where we run our experiments.
They cannot be used and do not affect system functionality or the correctness
of our results, but take away from the system’s full computational power of
2,560 DPUs.

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM Chip

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-MB
DRAM
Bank

(MRAM)64-KB
WRAM

x8

Control/Status Interface DDR4 Interface

DISPATCH
FETCH1
FETCH2
FETCH3

READOP1
READOP2
READOP3
FORMAT

ALU1
ALU2
ALU3
ALU4

MERGE1
MERGE2

Re
gi

st
er

 F
ile

P
ip

el
in

e

64 bits

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

DPU-CPU

CP
U-D

PU

1

2

3

5

6

7

4

Figure 1: UPMEM-based PIM system with a host CPU, standard main memory, and PIM-enabled memory (left), and
internal components of a UPMEM PIM chip (right) [198, 199].

Table 1: UPMEM-based PIM Systems.
(a) Memory Parameters.

System
PIM-enabled Memory DRAM Memory

DIMM Number of Ranks/ DPUs/ Total DPU Total Number of Total
Codename DIMMs DIMM DIMM DPUs Frequency Memory DIMMs Memory

2,556-DPU System P21 20 2 128 2,5568 350 MHz 159.75 GB 4 256 GB
640-DPU System E19 10 1 64 640 267 MHz 40 GB 2 64 GB

(b) CPU Parameters.

System
CPU

CPU CPU Sockets Mem. Controllers/ Channels/
Processor Frequency Socket Mem. Controller

2,556-DPU System Intel Xeon Silver 4215 [229] 2.50 GHz 2 2 3
640-DPU System Intel Xeon Silver 4110 [230] 2.10 GHz 1 2 3

Figure 2: UPMEM-based PIM modules (downloaded
from [227]).

to move instructions from the MRAM bank to the IRAM, and
data between the MRAM bank and the WRAM.

The frequency of a DPU can potentially reach 400
MHz [227]. At 400 MHz, the maximum possible MRAM-
WRAM bandwidth per DPU can achieve around 800 MB/s.
Thus, the maximum aggregated MRAM bandwidth for a
configuration with 2,560 DPUs can potentially be 2 TB/s.
However, the DPUs run at 350 MHz in our 2,556-DPU setup

CPU 0

CPU 1
DRAM

DRAM

PIM-enabled
memory

PIM-enabled
memory

PIM-enabled
memory

PIM-enabled
memory

Figure 3: UPMEM-based PIM system with 2,560 DPUs.
See Table 1 for the specifications.

and at 267 MHz in the 640-DPU system. For this reason, the
maximum possible MRAM-WRAM bandwidth per DPU in
our setup is 700 MB/s (534 MB/s in the 640-DPU setup),
and the maximum aggregated bandwidth for the 2,556 DPUs
is 1.7 TB/s (333.75 GB/s in the 640-DPU system).

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

C. DPU PROGRAMMING
UPMEM-based PIM systems use the Single Program Multi-
ple Data (SPMD) [232] programming model, where software
threads, called tasklets, (1) execute the same code but operate
on different pieces of data, and (2) can execute different
control-flow paths at runtime.

Up to 24 tasklets can run on a DPU, since the number of
hardware threads is 24. Programmers determine the number
of tasklets per DPU at compile time, and tasklets are statically
assigned to each DPU.

Tasklets inside the same DPU can share data among each
other in MRAM and in WRAM, and can synchronize via
mutexes, barriers, handshakes, and semaphores [233].

Tasklets in different DPUs do not share memory or any di-
rect communication channel. As a result, they cannot directly
communicate or synchronize. As mentioned in Section II-A,
the host CPU handles communication of intermediate data
between DPUs, and merges partial results into final ones.

1) Programming Language and Runtime Library
DPU programs are written in the C language with some
library calls [198, 213].9 The UPMEM SDK [234] supports
common data types supported in the C language and the
LLVM compilation framework [235]. For the complete list
of supported instructions, we refer the reader to the UPMEM
user manual [213].

The UPMEM runtime library [213] provides library calls
to move (1) instructions from the MRAM bank to the IRAM,
and (2) data between the MRAM bank and the WRAM
(namely, mram_read() for MRAM-WRAM transfers, and
mram_write() for WRAM-MRAM transfers).

The UPMEM runtime library also provides func-
tions to (1) lock and unlock mutexes (mutex_lock(),
mutex_unlock()), which create critical sections, (2) ac-
cess barriers (barrier_wait()), which suspend tasklet
execution until all tasklets in the DPU reach the same
point in the program, (3) wait for and notify a handshake
(handshake_wait_for(), handshake_notify()),
which enables one-to-one tasklet synchronization, and (4) in-
crement and decrement semaphore counters (sem_give(),
sem_take()).

Even though using the C language to program the DPUs
ensures a low learning curve, programmers need to deal
with several challenges. First, programming thousands of
DPUs running up to 24 tasklets requires careful workload
partitioning and orchestration. Each tasklet has a tasklet ID
that programmers can use for that purpose. Second, pro-
grammers have to explicitly move data between the standard
main memory and the MRAM banks, and ensuring data
coherence between the CPU and DPUs (i.e., ensuring that
CPU and DPUs use up-to-date and correct copies of data)
is their responsibility. Third, DPUs do not employ cache
memories. The data movement between the MRAM banks
and the WRAM is explicitly managed by the programmer.

9In this work, we use UPMEM SDK 2021.1.1 [234].

2) General Programming Recommendations
General programming recommendations of the UPMEM-
based PIM system that we find in the UPMEM programming
guide [213], presentations [199], and white papers [198] are
as follows.

The first recommendation is to execute on the DPUs por-
tions of parallel code that are as long as possible, avoiding
frequent interactions with the host CPU. This recommenda-
tion minimizes CPU-DPU and DPU-CPU transfers, which
happen through the narrow memory bus (Section II-A), and
thus cause a data movement bottleneck [2–4, 7], which the
PIM paradigm promises to alleviate.

The second recommendation is to split the workload
into independent data blocks, which the DPUs operate
on independently (and concurrently). This recommendation
maximizes parallelism and minimizes the need for inter-
DPU communication and synchronization, which incurs high
overhead, as it happens via the host CPU using CPU-DPU
and DPU-CPU transfers.

The third recommendation is to use as many working
DPUs in the system as possible, as long as the workload
is sufficiently large to keep the DPUs busy performing ac-
tual work. This recommendation maximizes parallelism and
increases utilization of the compute resources.

The fourth recommendation is to launch at least 11
tasklets in each DPU, in order to fully utilize the fine-
grained multithreaded pipeline, as mentioned in Section II-B.

GENERAL PROGRAMMING RECOMMEN-
DATIONS

1. Execute on the DRAM Processing Units (DPUs)
portions of parallel code that are as long as possi-
ble.
2. Split the workload into independent data
blocks, which the DPUs operate on independently.
3. Use as many working DPUs in the system as
possible.
4. Launch at least 11 tasklets (i.e., software
threads) per DPU.

In this work, we perform the first comprehensive char-
acterization and analysis of the UPMEM PIM architecture,
which allows us to (1) validate these programming recom-
mendations and identify for which workload characteristics
they hold, as well as (2) propose additional programming
recommendations and suggestions for future PIM software
designs, and (3) propose suggestions and hints for future PIM
hardware designs, which can enable easier programming as
well as broad applicability of the hardware to more work-
loads.

III. PERFORMANCE CHARACTERIZATION OF A UPMEM
DPU
This section presents the first performance characterization
of a UPMEM DPU using microbenchmarks to assess various

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

architectural limits and bottlenecks. Section III-A evaluates
the throughput of arithmetic operations and WRAM band-
width of a DPU using a streaming microbenchmark. Sec-
tion III-B evaluates the sustained bandwidth between MRAM
and WRAM. Section III-C evaluates the impact of the oper-
ational intensity of a workload on the arithmetic throughput
of the DPU. Finally, Section III-D evaluates the bandwidth
between the main memory of the host and the MRAM banks.
Unless otherwise stated, we report experimental results on
the larger, 2,556-DPU system presented in Section II-A. All
observations and trends identified in this section also apply to
the older 640-DPU system (we verified this experimentally).
All microbenchmarks used in this section are publicly and
freely available [214].

A. ARITHMETIC THROUGHPUT AND WRAM
BANDWIDTH
The DPU pipeline is capable of performing one integer
addition/subtraction operation every cycle and up to one
8-byte WRAM load/store every cycle when the pipeline
is full [199]. Therefore, at 350 MHz, the theoretical peak
arithmetic throughput is 350 Millions of OPerations per
Second (MOPS), assuming only integer addition operations
are issued into the pipeline, and the theoretical peak WRAM
bandwidth is 2,800 MB/s. In this section, we evaluate the
arithmetic throughput and sustained WRAM bandwidth that
can be achieved by a streaming microbenchmark (i.e., a
benchmark with unit-stride access to memory locations) and
how the arithmetic throughput and WRAM bandwidth vary
with the number of tasklets deployed.

1) Microbenchmark Description
To evaluate arithmetic throughput and WRAM bandwidth in
streaming workloads, we implement a set of microbench-
marks [214] where every tasklet loops over elements of an
array in WRAM and performs read-modify-write operations.
We measure the time it takes to perform WRAM loads, arith-
metic operations, WRAM stores, and loop control. We do not
measure the time it takes to perform MRAM-WRAM DMA
transfers (we will study them separately in Section III-B).

a: Arithmetic Throughput.
For arithmetic throughput, we examine the addition, sub-
traction, multiplication, and division operations for 32-bit
integers, 64-bit integers, floats, and doubles. Note that the
throughput for unsigned integers is the same as that for
signed integers. As we indicate at the beginning of Sec-
tion III-A, the DPU pipeline is capable of performing one
integer addition/subtraction operation every cycle, assuming
that the pipeline is full [199]. However, real-world workloads
do not execute only integer addition/subtraction operations.
Thus, the theoretical peak arithmetic throughput of 350
MOPS is not realistic for full execution of real workloads.
Since the DPUs store operands in WRAM (Section II-B), a
realistic evaluation of arithmetic throughput should consider
the accesses to WRAM to read source operands and write

destination operands. One access to WRAM involves one
WRAM address calculation and one load/store operation.

Listing 1 shows an example microbenchmark for the
throughput evaluation of 32-bit integer addition. Listing 1a
shows our microbenchmark written in C. The operands are
stored in bufferA, which we allocate in WRAM using
mem_alloc [213] (line 2). The for loop in line 3 goes
through each element of bufferA and adds a scalar value
scalar to each element. In each iteration of the loop, we
load one element of bufferA into a temporal variable temp
(line 4), add scalar to it (line 5), and store the result back
into the same position of bufferA (line 6). Listing 1b shows
the compiled code, which we can inspect using UPMEM’s
Compiler Explorer [236]. The loop contains 6 instructions:
WRAM address calculation (lsl_add, line 3), WRAM load
(lw, line 4), addition (add, line 5), WRAM store (sw, line
6), loop index update (add, line 7), and conditional branch
(jneq, line 8). For a 32-bit integer subtraction (sub), the
number of instructions in the streaming loop is also 6, but for
other operations and data types the number of instructions
can be different (as we show below).

1 # d e f i n e SIZE 256
2 i n t * b u f f e r A = mem_alloc (SIZE* s i z e o f (i n t)) ;
3 f o r (i n t i = 0 ; i < SIZE ; i ++) {
4 i n t temp = b u f f e r A [i] ;
5 temp += s c a l a r ;
6 b u f f e r A [i] = temp ;
7 }

(a) C-based code.

1 move r2 , 0
2 . LBB0_1 : / / Loop h e a d e r
3 l s l _ a d d r3 , r0 , r2 , 2
4 lw r4 , r3 , 0
5 add r4 , r4 , r1
6 sw r3 , 0 , r4
7 add r2 , r2 , 1
8 j n e q r2 , 256 , . LBB0_1

(b) Compiled code in UPMEM DPU ISA.

Listing 1: Microbenchmark for throughput evaluation of
32-bit integer addition [214].

Given the instructions in the loop of the streaming mi-
crobenchmark (Listing 1b), we can obtain the expected
throughput of arithmetic operations. Only one out of the
six instructions is an arithmetic operation (add in line 5 in
Listing 1b). Assuming that the pipeline is full, the DPU issues
(and retires) one instruction every cycle [199]. As a result,
we need as many cycles as instructions in the streaming
loop to perform one arithmetic operation. If the number of
instructions in the loop is n and the DPU frequency is f , we
calculate the arithmetic throughput in operations per second
(OPS) as expressed in Equation 1.

Arithmetic Throughput (in OPS) =
f

n
(1)

For a 32-bit integer addition (Listing 1), the expected

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

arithmetic throughput on a DPU running at 350 MHz is 58.33
millions of operations per second (MOPS). We verify this on
real hardware in Section III-A2.

b: WRAM Bandwidth.

To evaluate sustained WRAM bandwidth, we examine the
four versions of the STREAM benchmark [237], which
are COPY, ADD, SCALE, and TRIAD, for 64-bit integers.
These microbenchmarks access two (COPY, SCALE) or
three (ADD, TRIAD) arrays in a streaming manner (i.e.,
with unit-stride or sequentially). The operations performed
by ADD, SCALE, and TRIAD are addition, multiplication,
and addition+multiplication, respectively.

In our experiments, we measure the sustained bandwidth
of WRAM, which is the average bandwidth that we measure
over a relatively long period of time (i.e., while streaming
through an entire array in WRAM).

We can obtain the maximum theoretical WRAM band-
width of our STREAM microbenchmarks, which depends
on the number of instructions needed to execute the op-
erations in each version of STREAM. Assuming that the
DPU pipeline is full, we calculate the maximum theoretical
WRAM bandwidth in bytes per second (B/s) with Equation 2,
where b is the total number of bytes read and written, n is
the number of instructions in a version of STREAM to read,
modify, and write the b bytes, and f is the DPU frequency.

WRAM Bandwidth (in B/s) =
b× f

n
(2)

For example, COPY executes one WRAM load (ld) and
one WRAM store (sd) per 64-bit element. These two in-
structions require 22 cycles to execute for a single tasklet.
When the pipeline is full (i.e., with 11 tasklets or more),
11 × 16 = 176 bytes are read and written in 22 cycles. As a
result, b = 176 and n = 22, and thus, the maximum theoret-
ical WRAM bandwidth for COPY, at f=350 MHz, is 2,800
MB/s. We verify this on real hardware in Section III-A3.

2) Arithmetic Throughput

Figure 4 shows how the measured arithmetic throughput on
one DPU (in MOPS) varies with the number of tasklets.
We use 1 to 24 tasklets, which is the maximum number of
hardware threads.

We make four key observations from Figure 4.

First, the throughput of all arithmetic operations and data
types saturates after 11 tasklets. This observation is con-
sistent with the description of the pipeline in Section II-B.
Recall that the DPU uses fine-grained multithreading across
tasklets to fully utilize its pipeline. Since instructions in the
same tasklet are dispatched 11 cycles apart, 11 tasklets is
the minimum number of tasklets needed to fully utilize the
pipeline.

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t
(M

O
PS

)

#Tasklets

(d) DOUBLE (1 DPU) ADD
SUB
MUL
DIV

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t
(M

O
PS

)

#Tasklets

(c) FLOAT (1 DPU)

ADD
SUB
MUL
DIV

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t
(M

O
PS

)

#Tasklets

(b) INT64 (1 DPU)

ADD
SUB
MUL
DIV

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t
(M

O
PS

)

#Tasklets

(a) INT32 (1 DPU)

ADD
SUB
MUL
DIV

Figure 4: Throughput of arithmetic operations (ADD,
SUB, MUL, DIV) on one DPU for four different data
types: (a) INT32, (b) INT64, (c) FLOAT, (d) DOUBLE.

KEY OBSERVATION 1

The arithmetic throughput of a DRAM Processing
Unit saturates at 11 or more tasklets. This obser-
vation is consistent for different data types (INT32,
INT64, UINT32, UINT64, FLOAT, DOUBLE) and
operations (ADD, SUB, MUL, DIV).

Second, the throughput of addition/subtraction is 58.56
MOPS for 32-bit integer values (Figure 4a), and 50.16
MOPS for 64-bit integer values (Figure 4b). The number
of instructions inside the streaming loop for 32-bit integer
additions/subtractions is 6 (Listing 1). Hence, the expected
throughput at 350 MHz is 58.33 MOPS (obtained with Equa-
tion 1), which is close to what we measure (58.56 MOPS).
A loop with 64-bit integer additions/subtractions contains 7
instructions: the same 6 instructions as the 32-bit version plus
an addition/subtraction with carry-in bit (addc/subc) for
the upper 32 bits of the 64-bit operands. Hence, the expected
throughput at 350 MHz is 50 MOPS which is also close to
what we measure (50.16 MOPS).

Third, the throughput of integer multiplication and di-
vision is significantly lower than that of integer addition
and subtraction (note the large difference in y-axis scale
between Figure 4a,b and Figure 4c,d). A major reason is that
the DPU pipeline does not include a complete 32 × 32-bit
multiplier due to hardware cost concerns and limited number
of available metal layers [199]. Multiplications and divisions
of 32-bit operands are implemented using two instructions
(mul_step, div_step) [213], which are based on bit
shifting and addition. With these instructions, multiplication

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

and division can take up to 32 cycles (32 mul_step or
div_step instructions) to perform, depending on the val-
ues of the operands. In case multiplication and division take
32 cycles, the expected throughput (Equation 1) is 10.94
MOPS, which is similar to what we measure (10.27 MOPS
for 32-bit multiplication and 11.27 MOPS for 32-bit division,
as shown in Figure 4a). For multiplication and division of
64-bit integer operands, programs call two UPMEM runtime
library functions (__muldi3, __divdi3) [213, 238] with
123 and 191 instructions, respectively. The expected through-
put for these 64-bit operations is significantly lower than for
32-bit operands, as our measurements confirm (2.56 MOPS
for 64-bit multiplication and 1.40 MOPS for 64-bit division,
as shown in Figure 4b).

Fourth, the throughput of floating point operations (as
shown in Figures 4c and 4d) is more than an order of
magnitude lower than that of integer operations. A major
reason is that the DPU pipeline does not feature native
floating point ALUs. The UPMEM runtime library emulates
these operations in software [213, 238]. As a result, for
each 32-bit or 64-bit floating point operation, the number of
instructions executed in the pipeline is between several tens
(32-bit floating point addition) and more than 2000 (64-bit
floating point division). This explains the low throughput.
We measure 4.91/4.59/1.91/0.34 MOPS for FLOAT add/sub-
/multiply/divide (Figure 4c) and 3.32/3.11/0.53/0.16 MOPS
for DOUBLE add/sub/multiply/divide (Figure 4d).

KEY OBSERVATION 2

• DRAM Processing Units (DPUs) provide native
hardware support for 32- and 64-bit integer addi-
tion and subtraction, leading to high throughput for
these operations.
• DPUs do not natively support 32- and 64-bit
multiplication and division, and floating point
operations. These operations are emulated by the
UPMEM runtime library, leading to much lower
throughput.

3) Sustained WRAM Bandwidth
Figure 5 shows how the sustained WRAM bandwidth varies
with the number of tasklets (from 1 to 16 tasklets). In
these experiments, we unroll the loop of the STREAM mi-
crobenchmarks, in order to exclude loop control instructions,
and achieve the highest possible sustained WRAM band-
width. We make three major observations.

First, similar to arithmetic throughput, we observe that
WRAM bandwidth saturates after 11 tasklets which is the
number of tasklets needed to fully utilize the DPU pipeline.

Second, the maximum measured sustained WRAM band-
width depends on the number of instructions needed to
execute the operation. For COPY, we measure 2,818.98
MB/s, which is similar to the maximum theoretical WRAM
bandwidth of 2,800 MB/s, which we obtain with Equation 2
(see Section III-A1). ADD executes 5 instructions per 64-

1,682.46

2,818.98

42.03
61.66

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Su
st

ai
ne

d
W

RA
M

Ba

nd
w

id
th

 (M
B/

s)

#Tasklets

STREAM (WRAM, INT64, 1DPU)
ADD
COPY
SCALE
TRIAD

Figure 5: Sustained WRAM bandwidth for streaming
access patterns.

bit element: two WRAM loads (ld), one addition (add),
one addition with carry-in bit (addc), and one WRAM store
(sd). In this case, 11 × 24 = 264 bytes are accessed in 55
cycles when the pipeline is full. Therefore, the maximum the-
oretical WRAM bandwidth for ADD is 1,680 MB/s, which is
similar to what we measure (1,682.46 MB/s). The maximum
sustained WRAM bandwidth for SCALE and TRIAD is
significantly smaller (42.03 and 61.66 MB/s, respectively),
since these microbenchmarks use the costly multiplication
operation, which is a library function with 123 instructions
(Section III-A2).

Third, and importantly (but not shown in Figure 5),
WRAM bandwidth is independent of the access pattern
(streaming, strided, random),10 since all 8-byte WRAM loads
and stores take one cycle when the DPU pipeline is full, same
as any other native instruction executed in the pipeline [199].

KEY OBSERVATION 3

The sustained bandwidth provided by the DRAM
Processing Unit’s internal Working memory
(WRAM) is independent of the memory access
pattern (either streaming, strided, or random access
pattern).
All 8-byte WRAM loads and stores take one cycle,
when the DRAM Processing Unit’s pipeline is full
(i.e., with 11 or more tasklets).

B. MRAM BANDWIDTH AND LATENCY
Recall that a DPU, so as to be able to access data from
WRAM via load/store instructions, should first transfer the
data from its associated MRAM bank to its WRAM via
a DMA engine. This section evaluates the bandwidth that
can be sustained from MRAM, including read and write
bandwidth (Section III-B1), streaming access bandwidth

10We have verified this observation using a microbenchmark (which we
also provide as part of our open source release [214]), but do not show the
detailed results here for brevity. This microbenchmark uses three arrays in
WRAM, a, b, and c. Array a is a list of addresses to copy from b to c (i.e.,
c[a[i]] = b[a[i]]). This list of addresses can be (1) unit-stride (i.e., a[i] =
a[i − 1] + 1), (2) strided (i.e., a[i] = a[i − 1] + stride), or (3) random
(i.e., a[i] = rand()). For a given number of tasklets and size of the arrays,
we measure the same execution time for any access pattern (i.e., unit-stride,
strided, or random), which verifies that WRAM bandwidth is independent of
the access pattern.

VOLUME 4, 2016 9

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

(Section III-B2), and strided/random access bandwidth (Sec-
tion III-B3).

1) Read and Write Latency and Bandwidth
In this experiment, we measure the latency of a
single DMA transfer of different sizes for a single
tasklet, and compute the corresponding MRAM
bandwidth. These DMA transfers are performed via the
mram_read(mram_source, wram_destination,
SIZE) and mram_write(wram_source,
mram_destination, SIZE) functions, where SIZE is
the transfer size in bytes and must be a multiple of 8 between
8 and 2,048 according to UPMEM SDK 2021.1.1 [213].

a: Analytical Modeling.
We can analytically model the MRAM access latency (in
cycles) using the linear expression in Equation 3, where α
is the fixed cost of a DMA transfer, β represents the variable
cost (i.e., cost per byte), and size is the transfer size in bytes.

MRAM Latency (in cycles) = α+ β × size (3)

After modeling the MRAM access latency using Equa-
tion 3, we can analytically model the MRAM bandwidth (in
B/s) using Equation III-B1a, where f is the DPU frequency.

MRAM Bandwidth (in B/s) =
size× f

MRAM Latency
=

=
size× f

α+ β × size
(4)

b: Measurements.
Figure 6 shows how the measured MRAM read and write la-
tency and bandwidth vary with transfer size and how well the
measured latency follows the analytical model we develop
above.

In our measurements, we find that α is ∼77 cycles for
mram_read and ∼61 cycles for mram_write. For both
types of transfers, the value β is 0.5 cycles/B. The inverse of
β is the maximum theoretical MRAM bandwidth (assuming
the fixed cost α = 0), which results in 2 B/cycle. The
latency values estimated with our analytical model in Equa-
tion III-B1a (as shown by the black dashed lines in Figure 6)
accurately match the latency measurements (light blue lines
in Figure 6).

KEY OBSERVATION 4

• The DRAM Processing Unit’s Main memory
(MRAM) bank access latency increases linearly
with the transfer size.
• The maximum theoretical MRAM bandwidth is
2 bytes per cycle.

628.23

32

128

512

2048

1

10

100

1000

8 16 32 64 12
8

25
6

51
2

10
24

20
48

La
te

nc
y (

cy
cl

es
)

Ba
nd

w
id

th
 (M

B/
s)

Data transfer size (bytes)

MRAM Read

633.22

32

128

512

2048

1

10

100

1000

8 16 32 64 12
8

25
6

51
2

10
24

20
48

La
te

nc
y (

cy
cl

es
)

Ba
nd

w
id

th
 (M

B/
s)

Data transfer size (bytes)

MRAM Write

Figure 6: MRAM read and write latency (log scale) and
bandwidth (log scale) for data transfer sizes between 8
and 2,048 bytes. The black dashed line represents latency
estimates with a linear model (Equation 3).

We make four observations from Figure 6.
First, we observe that read and write accesses to MRAM

are symmetric. The latency and bandwidth of read and write
transfers are very similar for a given data transfer size.

Second, we observe that the sustained MRAM bandwidth
(both read and write) increases with data transfer size.
The maximum sustained MRAM bandwidth we measure is
628.23 MB/s for read and 633.22 MB/s for write transfers
(both for 2,048-byte transfers). Based on this observation,
a general recommendation to maximize MRAM bandwidth
utilization is to use large DMA transfer sizes when all
the accessed data is going to be used. According to Equa-
tion III-B1a, the theoretical maximum MRAM bandwidth is
700 MB/s at a DPU frequency of 350 MHz (assuming no
fixed transfer cost, i.e., α = 0). Our measurements are within
12% of this theoretical maximum.

PROGRAMMING RECOMMENDATION 1

For data movement between the DRAM Processing
Unit’s Main memory (MRAM) bank and the internal
Working memory (WRAM), use large DMA trans-
fer sizes when all the accessed data is going to be
used.

Third, we observe that MRAM latency changes slowly
between 8-byte and 128-byte transfers. According to Equa-
tion 3, the read latency for 128 bytes is 141 cycles and the
read latency for 8 bytes is 81 cycles. In other words, latency
increases by only 74% while transfer size increases by 16×.
The reason is that, for small data transfer sizes, the fixed
cost (α) of the transfer latency dominates the variable cost
(β × size). For large data transfer sizes, the fixed cost (α)

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

does not dominate the variable cost (β × size), and in fact
the opposite starts becoming true. We observe that, for read
transfers, α (77 cycles) represents 95% of the latency for 8-
byte reads and 55% of the latency for 128-byte reads. Based
on this observation, one recommendation for programmers is
to fetch more bytes than necessary within a 128-byte limit
when using small data transfer sizes. Doing so increases
the probability of finding data in WRAM for later accesses,
eliminating future MRAM accesses. The program can simply
check if the desired data has been fetched in a previous
MRAM-WRAM transfer, before issuing a new small data
transfer.

PROGRAMMING RECOMMENDATION 2

For small transfers between the DRAM Processing
Unit’s Main memory (MRAM) bank and the inter-
nal Working memory (WRAM), fetch more bytes
than necessary within a 128-byte limit. Doing so
increases the likelihood of finding data in WRAM for
later accesses (i.e., the program can check whether
the desired data is in WRAM before issuing a new
MRAM access).

Fourth, MRAM bandwidth scales almost linearly between
8 and 128 bytes due to the slow MRAM latency increase.
After 128 bytes, MRAM bandwidth begins to saturate. The
reason the MRAM bandwidth saturatesat large data transfer
sizes is related to the inverse relationship of bandwidth and
latency (Equation III-B1a). The fixed cost (α) of the transfer
latency becomes negligible with respect to the variable cost
(β × size) as the data transfer size increases. For example,
α for read transfers (77 cycles) represents only 23%, 13%,
and 7% of the MRAM latency for 512-, 1,024-, and 2,048-
byte read transfers, respectively. As a result, the MRAM read
bandwidth increases by only 13% and 17% for 1,024- and
2,048-byte transfers over 512-byte transfers. Based on this
observation, the recommended data transfer size, when
all the accessed data is going to be used, depends on
a program’s WRAM usage, since WRAM has a limited
size (only 64 KB). For example, if each tasklet of a DPU
program needs to allocate 3 temporary WRAM buffers for
data from 3 different arrays stored in MRAM, using 2,048-
byte data transfers requires that the size of each WRAM
buffer is 2,048 bytes. This limits the number of tasklets to 10,
which is less than the recommended minimum of 11 tasklets
(Sections II-C2 and III-A2), since 64KB

3×2,048 < 11. In such a
case, using 1,024-byte data transfers is preferred, since the
bandwidth of 2,048-byte transfers is only 4% higher than
that of 1,024-byte transfers, according to our measurements
(shown in Figure 6).

PROGRAMMING RECOMMENDATION 3

Choose the data transfer size between the DRAM
Processing Unit’s Main memory (MRAM) bank
and the internal Working memory (WRAM)
based on the program’s WRAM usage, as it im-
poses a tradeoff between the sustained MRAM band-
width and the number of tasklets that can run in the
DRAM Processing Unit (which is dictated by the
limited WRAM capacity).

2) Sustained Streaming Access Bandwidth
In this experiment, we use the same four versions of the
STREAM benchmark [237] described in Section III-A1,
but include the MRAM-WRAM DMA transfer time in our
measurements. We also add another version of the copy
benchmark, COPY-DMA, which copies data from MRAM
to WRAM and back without performing any WRAM load-
s/stores in the DPU core. We use 1024-byte DMA transfers.
We scale the number of tasklets from 1 to 16. The tasklets
collectively stream 2M 8-byte elements (total of 16 MB),
which are divided evenly across the tasklets.

Figure 7 shows how the MRAM streaming access band-
width varies with the number of tasklets.

624.02

42.01
61.59

0
100
200
300

400
500
600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Su
st

ai
ne

d
M

RA
M

Ba

nd
w

id
th

 (M
B/

s)

#Tasklets

STREAM (MRAM, INT64, 1DPU)

ADD
COPY
COPY-DMA
SCALE
TRIAD

Figure 7: Sustained MRAM bandwidth for streaming
access patterns.

We make four key observations.
First, the sustained MRAM bandwidth of COPY-DMA is

624.02 MB/s, which is close to the theoretical maximum
bandwidth (700 MB/s derived in Section II-B). The measured
aggregate sustained bandwidth for 2,556 DPUs is 1.6 TB/s.
In the 640-DPU system, we measure the sustained MRAM
bandwidth to be 470.50 MB/s per DPU (theoretical maxi-
mum = 534 MB/s), resulting in aggregate sustained MRAM
bandwidth of 301 GB/s for 640 DPUs.

Second, the MRAM bandwidth of COPY-DMA saturates
with two tasklets. Even though the DMA engine can perform
only one data transfer at a time [231], using two or more
tasklets in COPY-DMA guarantees that there is always a
DMA request enqueued to keep the DMA engine busy when
a previous DMA request completes, thereby achieving the
highest MRAM bandwidth.

Third, the MRAM bandwidth for COPY and ADD satu-
rates at 4 and 6 tasklets, respectively, i.e., earlier than the 11
tasklets needed to fully utilize the pipeline. This observation

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

indicates that these microbenchmarks are limited by access
to MRAM (and not the instruction pipeline). When the
COPY benchmark uses fewer than 4 tasklets, the latency of
pipeline instructions (i.e., WRAM loads/stores) is longer than
the latency of MRAM accesses (i.e., MRAM-WRAM and
WRAM-MRAM DMA transfers). After 4 tasklets, this trend
flips, and the latency of MRAM accesses becomes longer.
The reason is that the MRAM accesses are serialized, such
that the MRAM access latency increases linearly with the
number of tasklets. Thus, after 4 tasklets, the overall latency
is dominated by the MRAM access latency, which hides the
pipeline latency. As a result, the sustained MRAM bandwidth
of COPY saturates with 4 tasklets at the highest MRAM
bandwidth, same as COPY-DMA. Similar observations apply
to the ADD benchmark with 6 tasklets.

Fourth, the sustained MRAM bandwidth of SCALE and
TRIAD is approximately one order of magnitude smaller
than that of COPY-DMA, COPY, and ADD. In addition,
SCALE and TRIAD’s MRAM bandwidth saturates at 11
tasklets, i.e., the number of tasklets needed to fully utilize the
pipeline. This observation indicates that SCALE and TRIAD
performance is limited by pipeline throughput, not MRAM
access. Recall that SCALE and TRIAD use costly multipli-
cations, which are based on the mul_step instruction, as
explained in Section III-A2. As a result, instruction execution
in the pipeline has much higher latency than MRAM access.
Hence, it makes sense that SCALE and TRIAD are bound
by pipeline throughput, and thus the maximum sustained
WRAM bandwidth of SCALE and TRIAD (Figure 5) is the
same as the maximum sustained MRAM bandwidth (Fig-
ure 7).

KEY OBSERVATION 5

• When the access latency to a DRAM Processing
Unit’s Main memory (MRAM) bank for a stream-
ing benchmark (COPY-DMA, COPY, ADD) is
larger than the pipeline latency (i.e., execution la-
tency of arithmetic operations and WRAM accesses),
the performance of the DRAM Processing Unit
(DPU) saturates at a number of tasklets (i.e., soft-
ware threads) smaller than 11. This is a memory-
bound workload.
• When the pipeline latency for a streaming
benchmark (SCALE, TRIAD) is larger than the
MRAM access latency, the performance of a DPU
saturates at 11 tasklets. This is a compute-bound
workload.

3) Sustained Strided and Random Access Bandwidth
We evaluate the sustained MRAM bandwidth of strided and
random access patterns.

To evaluate strided access bandwidth in MRAM, we devise
an experiment in which we write a new microbenchmark that
accesses MRAM in a strided manner. The microbenchmark
accesses an array at a constant stride (i.e., constant distance

between consecutive memory accesses), copying elements
from the array into another array using the same stride.
We implement two versions of the microbenchmark, coarse-
grained DMA and fine-grained DMA, to test both coarse-
grained and fine-grained MRAM access. In coarse-grained
DMA, the microbenchmark accesses via DMA a large con-
tiguous segment (1024 B) of the array in MRAM, and
the strided access happens in WRAM. The coarse-grained
DMA approach resembles what modern CPU hardware does
(i.e., reads large cache lines from main memory and strides
through them in the cache). In fine-grained DMA, the mi-
crobenchmark transfers via DMA only the data that will be
used by the microbenchmark from MRAM. The fine-grained
DMA approach results in more DMA requests, but less total
amount of data transferred between MRAM and WRAM.

To evaluate random access bandwidth in MRAM, we im-
plement the GUPS benchmark [239], which performs read-
modify-write operations on random positions of an array. We
use only fine-grained DMA for random access, since random
memory accesses in GUPS do not benefit from fetching large
chunks of data, because they are not spatially correlated.

In our experiments, we scale the number of tasklets from 1
to 16. The tasklets collectively access arrays in MRAM with
(1) coarse-grained strided access, (2) fine-grained strided
access, or (3) fine-grained random access. Each array con-
tains 2M 8-byte elements (total of 16MB), which are divided
evenly across the tasklets.

Figure 8 shows how the sustained MRAM bandwidth
varies with access pattern (strided and random access) as well
as with the number of tasklets.

We make four key observations.
First, we measure maximum sustained MRAM bandwidth

to be 622.36 MB/s for coarse-grained DMA (with 16 tasklets
and a stride of 1, Figure 8a), and 72.58 MB/s for fine-
grained DMA (with 16 tasklets, Figure 8b). This difference
in the sustained MRAM bandwidth values of coarse-grained
DMA and fine-grained DMA is related to the difference in
MRAM bandwidth for different transfer sizes (as we analyze
in Section III-B1). While coarse-grained DMA uses 1,024-
byte transfers, fine-grained DMA uses 8-byte transfers.

Second, we observe that the sustained MRAM bandwidth
of coarse-grained DMA (Figure 8a) decreases as the stride
becomes larger. This is due to the effective utilization of the
transferred data, which decreases for larger strides (e.g., a
stride of 4 means that only one fourth of the transferred data
is effectively used).

Third, the coarse-grained DMA approach has higher sus-
tained MRAM bandwidth for smaller strides while the fine-
grained DMA approach has higher sustained MRAM band-
width for larger strides. The larger the stride in coarse-
grained DMA, the larger the amount of fetched data that
remains unused, causing fine-grained DMA to become more
efficient with larger strides. In these experiments, the coarse-
grained DMA approach achieves higher sustained MRAM
bandwidth than the fine-grained DMA approach for strides
between 1 and 8. For a stride of 16 or larger, the fine-

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

622.36

77.86

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Su
st

ai
ne

d
M

RA
M

 B
an

dw
id

th

(M
B/

s)

Stride

(a) Coarse-grained Strided (MRAM, 1 DPU)

Coarse-grained DMA - 1 tasklet
Coarse-grained DMA - 2 tasklets
Coarse-grained DMA - 4 tasklets
Coarse-grained DMA - 8 tasklets
Coarse-grained DMA - 16 tasklets

72.58

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

G
U

PS

Su
st

ai
ne

d
M

RA
M

 B
an

dw
id

th

(M
B/

s)

Stride

(b) Fine-grained Strided & Random (MRAM, 1 DPU)

Fine-grained DMA - 1 tasklet
Fine-grained DMA - 2 tasklets
Fine-grained DMA - 4 tasklets
Fine-grained DMA - 8 tasklets
Fine-grained DMA - 16 tasklets

Ra
nd

om
(G

U
PS

)

Figure 8: Sustained MRAM bandwidth for (a) coarse-grained strided and (b) fine-grained strided and random access
patterns.

grained DMA approach achieves higher sustained MRAM
bandwidth. This is because with larger strides, the fraction of
transferred data that is actually used by the microbenchmark
becomes smaller (i.e., effectively-used MRAM bandwidth
becomes smaller). With a stride of 16 and coarse-grained
DMA, the microbenchmark uses only one sixteenth of the
fetched data. As a result, we measure the sustained MRAM
bandwidth to be 38.95 MB/s for coarse-grained DMA, which
is only one sixteenth of the maximum sustained MRAM
bandwidth of 622.36 MB/s, and is lower than the sustained
MRAM bandwidth of fine-grained DMA (72.58 MB/s).

Fourth, the maximum sustained MRAM bandwidth for
random access is 72.58 MB/s (with 16 tasklets, as shown in
Figure 8b). This bandwidth value is very similar to the max-
imum MRAM bandwidth of the fine-grained DMA approach
for strided access (e.g., 72.58 MB/s with 16 tasklets and
stride 4,096, as shown in Figure 8b), since our microbench-
mark uses fine-grained DMA for random access.

Based on these observations, we recommend that program-
mers use the coarse-grained DMA approach for work-
loads with small strides and the fine-grained DMA ap-
proach for workload with large strides or random access
patterns.

PROGRAMMING RECOMMENDATION 4

• For strided access patterns with a stride smaller
than 16 8-byte elements, fetch a large contiguous
chunk (e.g., 1,024 bytes) from a DRAM Processing
Unit’s Main memory (MRAM) bank.
• For strided access patterns with larger strides
and random access patterns, fetch only the data
elements that are needed from an MRAM bank.

C. ARITHMETIC THROUGHPUT VERSUS OPERATIONAL
INTENSITY
Due to its fine-grained multithreaded architecture [205–209],
a DPU overlaps instruction execution latency in the pipeline

and MRAM access latency [199, 213]. As a result, the overall
DPU performance is determined by the dominant latency
(either instruction execution latency or MRAM access la-
tency). We observe this behavior in our experimental results
in Section III-B2, where the dominant latency (pipeline la-
tency or MRAM access latency) determines the sustained
MRAM bandwidth for different versions of the STREAM
benchmark [237].

To further understand the DPU architecture, we design a
new microbenchmark where we vary the number of pipeline
instructions with respect to the number of MRAM accesses,
and measure performance in terms of arithmetic throughput
(in MOPS, as defined in Section III-A1). By varying the
number of pipeline instructions per MRAM access, we move
from microbenchmark configurations where the MRAM
access latency dominates (i.e., memory-bound regions) to
microbenchmark configurations where the pipeline latency
dominates (i.e., compute-bound regions).

Our microbenchmark includes MRAM-WRAM DMA
transfers, WRAM load/store accesses, and a variable number
of arithmetic operations. The number of MRAM-WRAM
DMA transfers in the microbenchmark is constant, and thus
the total MRAM latency is also constant. However, the la-
tency of instructions executed in the pipeline varies with the
variable number of arithmetic operations.

Our experiments aim to show how arithmetic through-
put varies with operational intensity. We define operational
intensity as the number of arithmetic operations performed
per byte accessed from MRAM (OP/B). As explained in
Section III-A2, an arithmetic operation in the UPMEM PIM
architecture takes multiple instructions to execute. The ex-
periment is inspired by the roofline model [215], a perfor-
mance analysis methodology that shows the performance of
a program (arithmetic instructions executed per second) as
a function of the arithmetic intensity (arithmetic instructions
executed per byte accessed from memory) of the program,
as compared to the peak performance of the machine (de-
termined by the compute throughput and the L3 and DRAM

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

memory bandwidth).
Figure 9 shows results of arithmetic throughput versus

operational intensity for representative data types and opera-
tions: (a) 32-bit integer addition, (b) 32-bit integer multiplica-
tion, (c) 32-bit floating point addition, and (d) 32-bit floating
point multiplication. Results for other data types (64-bit
integer and 64-bit floating point) and arithmetic operations
(subtraction and division) follow similar trends. We change
the operational intensity from very low values (1

2048 opera-
tions/byte, i.e., one operation per every 512 32-bit elements
fetched) to high values (8 operations/byte, i.e., 32 operations
per every 32-bit element fetched), and measure the resulting
throughput for different numbers of tasklets (from 1 to 16).

We make four key observations from Figure 9.
First, the four plots in Figure 9 show (1) the memory-

bound region (where arithmetic throughput increases with
operational intensity) and (2) the compute-bound region
(where arithmetic throughput is flat at its maximum value)
for each number of tasklets. For a given number of tasklets,
the transition between the memory-bound region and the
compute-bound region occurs when the latency of instruction
execution in the pipeline surpasses the MRAM latency. We
refer to the operational intensity value where the transition
between the memory-bound region and the compute-bound
region happens as the throughput saturation point.

Second, arithmetic throughput saturates at low (e.g.,
1
4 OP/B for integer addition, i.e., 1 integer addition per every
32-bit element fetched) or very low (e.g., 1

128 OP/B for
floating point multiplication, i.e., 1 multiplication per every
32 32-bit elements fetched) operational intensity. This result
demonstrates that the DPU is fundamentally a compute-
bound processor designed for workloads with low data
reuse.

KEY OBSERVATION 6

The arithmetic throughput of a DRAM Processing
Unit (DPU) saturates at low or very low oper-
ational intensity (e.g., 1 integer addition per 32-
bit element). Thus, the DPU is fundamentally a
compute-bound processor.
We expect most real-world workloads be compute-
bound in the UPMEM PIM architecture.

Third, the throughput saturation point is lower for data
types and operations that require more instructions per oper-
ation. For example, the throughput for 32-bit multiplication
(Figure 9b), which requires up to 32 mul_step instructions
(Section III-A2), saturates at 1

32 OP/B, while the throughput
for 32-bit addition (Figure 9a), which is natively supported
(it requires a single add instruction), saturates at 1

4 OP/B.
Floating point operations saturate earlier than integer op-
erations, since they require from several tens to hundreds
of instructions: 32-bit floating point addition (Figure 9c)
and multiplication (Figure 9d) saturate at 1

64 and 1
128 OP/B,

respectively.

Fourth, we observe that in the compute-bound regions (i.e.,
after the saturation points), arithmetic throughput saturates
with 11 tasklets, which is the number of tasklets needed to
fully utilize the pipeline. On the other hand, in the memory-
bound region, throughput saturates with fewer tasklets be-
cause the memory bandwidth limit is reached before the
pipeline is fully utilized. For example, at very low operational
intensity values (≤ 1

64 OP/B), throughput of 32-bit integer
addition saturates with just two tasklets which is consistent
with the observation in Section III-B2 where COPY-DMA
bandwidth saturates with two tasklets. However, an opera-
tional intensity of 1

64 OP/B is extremely low, as it entails only
one addition for every 64 B accessed (16 32-bit integers).
We expect higher operational intensity (e.g., greater than
1
4 OP/B) in most real-world workloads [184, 215] and, thus,
arithmetic throughput to saturate with 11 tasklets in real-
world workloads.

In the Appendix (Section IX-A), we present a differ-
ent view of these results, where we show how arithmetic
throughput varies with the number of tasklets at different
operational intensities.

D. CPU-DPU COMMUNICATION
The host CPU and the DPUs in PIM-enabled memory com-
municate via the memory bus. The host CPU can access
MRAM banks to (1) transfer input data from main memory
to MRAM (i.e., CPU-DPU), and (2) transfer results back
from MRAM to main memory (i.e., DPU-CPU), as Figure 1
shows. We call these data transfers CPU-DPU and DPU-
CPU transfers, respectively. As explained in Section II-A,
these data transfers can be serial (i.e., performed sequentially
across multiple MRAM banks) or parallel (i.e., performed
concurrently across multiple MRAM banks). The UPMEM
SDK [213] provides functions for serial and parallel trans-
fers. For serial transfers, dpu_copy_to copies a buffer
from the host main memory to a specific MRAM bank (i.e.,
CPU-DPU), and dpu_copy_from copies a buffer from one
MRAM bank to the host main memory (i.e., DPU-CPU).
For parallel transfers, a program needs to use two functions.
First, dpu_prepare_xfer prepares the parallel transfer
by assigning different buffers to specific MRAM banks.
Second, dpu_push_xfer launches the actual transfers to
execute in parallel. One argument of dpu_push_xfer
defines whether the parallel data transfer happens from the
host main memory to the MRAM banks (i.e., CPU-DPU)
or from the MRAM banks to the host main memory (i.e.,
DPU-CPU). Parallel transfers have the limitation (in UP-
MEM SDK 2021.1.1 [213]) that the transfer sizes to all
MRAM banks involved in the same parallel transfer need to
be the same. A special case of parallel CPU-DPU transfer
(dpu_broadcast_to) broadcasts the same buffer from
main memory to all MRAM banks.

In this section, we measure the sustained bandwidth of
all types of CPU-DPU and DPU-CPU transfers between
the host main memory and MRAM banks. We perform two
different experiments. The first experiment transfers a buffer

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

12345678910111213141516
12345678910111213141516

12345678910111213141516
12345678910111213141516 1

2345678910111213141516 1
2345678910111213141516

1
2
345678910111213141516

1
2
34
5678910111213141516

1
2
34
56
78910111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

0.03
0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

 1
/4096

 1
/2048

 1
/1024

 1
/512

 1
/256

 1
/128

 1
/64

 1
/32

 1
/16

 1
/8

 1
/4

 1
/2

1 2 4 8

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t (
M

O
PS

, l
og

 sc
al

e)

Operational Intensity (OP/B)

(a) INT32, ADD (1 DPU)

1
2345678910111213141516

1
2345678910111213141516 1

2345678910111213141516 1
2345678910111213141516

1
2
345678910111213141516

1
2
34
5678910111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

0.03
0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

 1
/4096

 1
/2048

 1
/1024

 1
/512

 1
/256

 1
/128

 1
/64

 1
/32

 1
/16

 1
/8

 1
/4

 1
/2

1 2 4 8

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t (
M

O
PS

, l
og

 sc
al

e)

Operational Intensity (OP/B)

(b) INT32, MUL (1 DPU)

1
2345678910111213141516 1

2345678910111213141516 1
2345678910111213141516

1
2
345678910111213141516

1
2
34
5678910111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

0.03
0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

 1
/4096

 1
/2048

 1
/1024

 1
/512

 1
/256

 1
/128

 1
/64

 1
/32

 1
/16

 1
/8

 1
/4

 1
/2

1 2 4 8

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t (
M

O
PS

, l
og

 sc
al

e)

Operational Intensity (OP/B)

(c) FLOAT, ADD (1 DPU)

1
2
345678910111213141516

1
2
345678910111213141516

1
2
34
5678910111213141516

1
2
34
56
78910111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

0.03
0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

 1
/4096

 1
/2048

 1
/1024

 1
/512

 1
/256

 1
/128

 1
/64

 1
/32

 1
/16

 1
/8

 1
/4

 1
/2

1 2 4 8

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t (
M

O
PS

, l
og

 sc
al

e)

Operational Intensity (OP/B)

(d) FLOAT, MUL (1 DPU)

21 8421 84

21 84 21 84

Figure 9: Arithmetic throughput versus operational intensity for (a) 32-bit integer addition, (b) 32-bit integer multi-
plication, (c) 32-bit floating point addition, and (d) 32-bit floating point multiplication. The number inside each dot
indicates the number of tasklets. Both x- and y-axes are log scale.

of varying size to/from a single MRAM bank. Thus, we
obtain the sustained bandwidth of CPU-DPU and DPU-CPU
transfers of different sizes for one MRAM bank. In this
experiment, we use dpu_copy_to and dpu_copy_from
and vary the transfer size from 8 bytes to 32 MB. The second
experiment transfers buffers of size 32 MB per MRAM
bank from/to a set of 1 to 64 MRAM banks within the
same rank. We experiment with both serial and parallel
transfers (dpu_push_xfer), including broadcast CPU-
DPU transfers (dpu_broadcast_to). Thus, we obtain the
sustained bandwidth of serial/parallel/broadcast CPU-DPU
transfers and serial/parallel DPU-CPU transfers for a number
of MRAM banks in the same rank between 1 and 64.

Figure 10 presents the sustained bandwidth results of both
experiments.

We make seven key observations.11

First, sustained bandwidths of CPU-DPU and DPU-CPU
transfers for a single DPU (Figure 10a) are similar for trans-

11Note that our measurements of and observations about CPU-DPU and
DPU-CPU transfers are both platform-dependent (i.e., measurements and
observations may change for a different host CPU) and UPMEM SDK-
dependent (i.e., the implementation of CPU-DPU/DPU-CPU transfers may
change in future releases of the UPMEM SDK). For example, our bandwidth
measurements on the 640-DPU system (not shown) differ from those on the
2,556-DPU system (but we find the trends we observe to be similar on both
systems).

fer sizes between 8 and 512 bytes. For transfer sizes greater
than 512 bytes, sustained bandwidth of CPU-DPU transfers
is higher than that of DPU-CPU transfers. For the largest
transfer size we evaluate (32 MB), CPU-DPU and DPU-CPU
bandwidths are 0.33 GB/s and 0.12 GB/s, respectively.

Second, the sustained bandwidths of CPU-DPU and DPU-
CPU transfers for a single DPU (Figure 10a) increase linearly
between 8 bytes and 2 KB, and tend to saturate for larger
transfer sizes.

KEY OBSERVATION 7

Larger CPU-DPU and DPU-CPU transfers be-
tween the host main memory and the DRAM
Processing Unit’s Main memory (MRAM) banks
result in higher sustained bandwidth.

Third, for one rank (Figure 10b) the sustained bandwidths
of serial CPU-DPU and DPU-CPU transfers remain flat for
different numbers of DPUs. Since these transfers are exe-
cuted serially, latency increases proportionally with the num-
ber of DPUs (hence, the total amount of data transferred). As
a result, the sustained bandwidth does not increase.

Fourth, the sustained bandwidth of the parallel transfers
increases with the number of DPUs, reaching the highest

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

0.0001

0.0010

0.0100

0.1000

1.0000

8 32 12
8

51
2 2K 8K 32
K

12
8K

51
2K 2M 8M 32
M

Su
st

ai
ne

d
CP

U
-D

PU

Ba
nd

w
id

th
(G

B/
s,

lo
g

sc
al

e)

Data transfer size (bytes)
(a) 1 DPU

CPU-DPU

DPU-CPU

0.27

0.12

6.68

4.74

16.88

0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00

1 2 4 8 16 32 64

Su
st

ai
ne

d
CP

U
-D

PU

Ba
nd

w
id

th
(G

B/
s,

lo
g

sc
al

e)

#DPUs(b) 1 rank

CPU-DPU (serial) DPU-CPU (serial)
CPU-DPU (parallel) DPU-CPU (parallel)
CPU-DPU (broadcast)

Figure 10: Sustained bandwidth (log scale x- and y-axes) of (a) CPU-DPU (host main memory to one MRAM
bank) and DPU-CPU (one MRAM bank to host main memory) transfers of different sizes for one DPU, and (b)
serial/parallel/broadcast CPU-DPU (host main memory to several MRAM banks) and serial/parallel DPU-CPU (several
MRAM banks to host main memory) transfers of 32 MB for a set of 1-64 DPUs within one rank.

sustained bandwidth values at 64 DPUs. The maximum sus-
tained CPU-DPU bandwidth that we measure is 6.68 GB/s,
while the maximum sustained DPU-CPU bandwidth is 4.74
GB/s. However, we observe that the increase in sustained
bandwidth with DPU count is sublinear. The sustained CPU-
DPU bandwidth for 64 DPUs is 20.13× higher than that for
one DPU. For DPU-CPU transfers, the sustained bandwidth
increase of 64 DPUs to one DPU is 38.76×.

KEY OBSERVATION 8

The sustained bandwidth of parallel CPU-DPU
and DPU-CPU transfers between the host main
memory and the DRAM Processing Unit’s Main
memory (MRAM) banks increases with the num-
ber of DRAM Processing Units inside a rank.

Fifth, we observe large differences between sustained
bandwidths of CPU-DPU and DPU-CPU transfers for both
serial and parallel transfers. These differences are due to dif-
ferent implementations of CPU-DPU and DPU-CPU trans-
fers in UPMEM SDK 2021.1.1 [231]. While CPU-DPU
transfers use x86 AVX write instructions [240], which are
asynchronous, DPU-CPU transfers use AVX read instruc-
tions [240], which are synchronous. As a result, DPU-CPU
transfers cannot sustain as many memory accesses as CPU-
DPU transfers, which results in lower sustained bandwidths
of both serial and parallel DPU-CPU transfers than the CPU-
DPU transfer counterparts.

Sixth, sustained bandwidth of broadcast CPU-DPU trans-
fers reaches up to 16.88 GB/s. One reason why this max-
imum sustained bandwidth is significantly higher than that
of parallel CPU-DPU transfers is better locality in the cache
hierarchy of the host CPU [231]. While a broadcast transfer
copies the same buffer to all MRAM banks, which increases
temporal locality in the CPU cache hierarchy, a parallel CPU-
DPU transfer copies different buffers to different MRAM
banks. These buffers are more likely to miss in the CPU
cache hierarchy and need to be fetched from main memory
into CPU caches before being copied to MRAM banks.

Seventh, in all our experiments across an entire rank, the

sustained bandwidth is lower than the theoretical maximum
bandwidth of DDR4-2400 DIMMs (19.2 GB/s) [226]. We
attribute this bandwidth loss to the transposition library [199]
that the UPMEM SDK uses to map entire 64-bit words onto
the same MRAM bank (Section II-A).

KEY OBSERVATION 9

The sustained bandwidth of parallel CPU-DPU
transfers between the host main memory and the
DRAM Processing Unit’s Main memory (MRAM)
banks is higher than the sustained bandwidth of
parallel DPU-CPU transfers between the MRAM
banks and the host main memory due to different
implementations of CPU-DPU and DPU-CPU trans-
fers in the UPMEM runtime library.
The sustained bandwidth of broadcast CPU-DPU
transfers (i.e., the same buffer is copied to mul-
tiple MRAM banks) is higher than that of paral-
lel CPU-DPU transfers (i.e., different buffers are
copied to different MRAM banks) due to higher
temporal locality in the CPU cache hierarchy.

IV. PRIM BENCHMARKS
We present the benchmarks included in our open-source
PrIM (Processing-In-Memory) benchmark suite, the first
benchmark suite for a real PIM architecture. PrIM bench-
marks are publicly and freely available [214].

For each benchmark, we include in this section a de-
scription of its implementation on a UPMEM-based PIM
system with multiple DPUs. Table 2 shows a summary of
the benchmarks. We group benchmarks by the application
domain they belong to. Within each application domain, we
sort benchmarks by (1) incremental complexity of the PIM
implementation (e.g., we explain VA before GEMV) and
(2) alphabetical order. We use the order of the benchmarks
in Table 2 consistently throughout the rest of the paper.
For each benchmark, the table includes (1) the benchmark’s
short name, which we use in the remainder of the paper,
(2) memory access patterns of the benchmark (sequential,

16 VOLUME 4, 2016

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

strided, random), (3) computation pattern (operations and
data types), and (4) communication/synchronization type of
the PIM implementation (intra-DPU, inter-DPU). For intra-
DPU communication, the table specifies the synchronization
primitives, such as barriers, handshakes, and mutexes, that
the benchmark uses (Section II-C1).

All implementations of PrIM benchmarks follow the
general programming recommendations presented in Sec-
tion II-C2. Note that our goal is not to provide extremely
optimized implementations, but implementations that follow
the general programming recommendations and make good
use of the resources in PIM-enabled memory with reasonable
programmer effort. For several benchmarks, where we can
design more than one implementation that is suitable to the
UPMEM-based PIM system, we develop all alternative im-
plementations and compare them. As a result, we provide two
versions of two of the benchmarks, Image histogram (HST)
and Prefix sum (SCAN). In the Appendix (Section IX-B),
we compare these versions and find the cases (i.e., dataset
characteristics) where each version of each of these bench-
marks results in higher performance. We also design and
develop three versions of Reduction (RED). However, we do
not provide them as separate benchmarks, since one of the
three versions always provides higher performance than (or at
least equal to) the other two (see Appendix, Section IX-B).12

Our benchmark selection is based on several criteria: (1)
suitability for PIM, (2) domain diversity, and (3) diversity of
memory access, computation, and communication/synchro-
nization patterns, as shown in Table 2. We identify the suit-
ability of these workloads for PIM by studying their memory
boundedness. We employ the roofline model [215], as de-
scribed in Section III-C, to quantify the memory boundedness
of the CPU versions of the workloads. Figure 11 shows the
roofline model on an Intel Xeon E3-1225 v6 CPU [241] with
Intel Advisor [242]. In these experiments, we use the first
dataset for each workload in Table 3 (see Section V).

BFS

BS

GEMV
MLP

SEL
SpMV

TS UNI

VA

HST

RED

SCAN

NW
TRNS

0.125
0.25

0.5
1
2
4
8

16

0.01 0.1 1 10

Pe
rf

or
m

an
ce

 (G
O

PS
)

Arithmetic Intensity (OP/B)

Peak compute performance

DRAM

L3

Figure 11: Roofline model for the CPU versions of the 14
PrIM workloads on an Intel Xeon E3-1225 v6 CPU.

We observe from Figure 11 that all of the CPU versions of
the PrIM workloads are in the memory-bounded area of the
roofline model (i.e., the shaded region on the left side of the
intersection between the DRAM bandwidth line and the peak
compute performance line). Hence, these workloads are all

12We provide the three versions of RED as part of the same benchmark.
Users can select the version they want to test via compiler flags.

limited by memory. We conclude that all 14 CPU versions of
PrIM workloads are potentially suitable for PIM [184]. We
briefly describe each PrIM benchmark and its PIM imple-
mentation next.

A. VECTOR ADDITION
Vector Addition (VA) [243] takes two vectors a and b as
inputs and performs their element-wise addition.

Our PIM implementation divides the input vectors a and
b into as many equally-sized chunks as the number of DPUs
in the system, and makes a linear assignment (i.e., chunk i
assigned to DPU i). The host CPU loads one chunk of both
vectors a and b to the MRAM bank of each DPU. Inside each
DPU, we assign blocks of elements from a and b to tasklets
in a cyclic manner (i.e., block j assigned to tasklet j%T
for a total number T of tasklets per DPU). Each tasklet (1)
moves the blocks of elements from a and b to the WRAM,
(2) performs the element-wise addition, and (3) moves the
results to the MRAM bank. Tasklets iterate as many times as
needed until the whole chunk assigned to a DPU is processed.
At the end of the execution on the DPUs, the CPU retrieves
the output vector chunks from the MRAM banks to the host
main memory and constructs the complete output vector.

B. MATRIX-VECTOR MULTIPLY
Matrix-Vector multiply (GEMV) [243] is a dense linear alge-
bra routine that takes a matrix of size m × n and a vector of
size n× 1 as inputs and performs the multiplication between
them, producing a new m× 1 vector as a result.

Our PIM implementation of GEMV partitions the matrix
across the DPUs available in the system, assigning a fixed
number of consecutive rows to each DPU, while the input
vector is replicated across all DPUs. The host CPU assigns
each set of consecutive rows to a DPU using linear assign-
ment (i.e., set of rows i assigned to DPU i). Inside each
DPU, tasklets are in charge of computing on the set of the
rows assigned to that DPU. We assign a subset of consecutive
rows from the set of rows assigned to a DPU to each tasklet
(i.e., subset of rows j assigned to tasklet j). First, each
tasklet reads a block of elements, both from one row of the
input matrix and from the vector, and places these elements
in the WRAM. Second, each tasklet performs multiply and
accumulation of those elements, and it jumps to the first step
until it reaches the end of the row. Third, each tasklet stores
the sums of multiplications in MRAM. Fourth, each tasklet
repeats these three steps as many times as there are rows in
its subset. Fifth, each DPU produces a contiguous chunk of
elements of the output vector. The CPU retrieves the output
vector chunks and builds the complete output vector.

C. SPARSE MATRIX-VECTOR MULTIPLY
Sparse Matrix-Vector multiply (SpMV) [244] is a sparse
linear algebra routine where a sparse matrix is multiplied by
a dense vector.

Our PIM implementation of SpMV uses the Compressed
Sparse Row (CSR) storage format [245–247] to represent the

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

Table 2: PrIM benchmarks.
Domain Benchmark Short name Memory access pattern Computation pattern Communication/synchronization

Sequential Strided Random Operations Datatype Intra-DPU Inter-DPU

Dense linear algebra Vector Addition VA Yes add int32_t
Matrix-Vector Multiply GEMV Yes add, mul uint32_t

Sparse linear algebra Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float

Databases Select SEL Yes add, compare int64_t handshake, barrier Yes
Unique UNI Yes add, compare int64_t handshake, barrier Yes

Data analytics Binary Search BS Yes Yes compare int64_t
Time Series Analysis TS Yes add, sub, mul, div int32_t

Graph processing Breadth-First Search BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes
Neural networks Multilayer Perceptron MLP Yes add, mul, compare int32_t
Bioinformatics Needleman-Wunsch NW Yes Yes add, sub, compare int32_t barrier Yes

Image processing Image histogram (short) HST-S Yes Yes add uint32_t barrier Yes
Image histogram (long) HST-L Yes Yes add uint32_t barrier, mutex Yes

Parallel primitives

Reduction RED Yes Yes add int64_t barrier Yes
Prefix sum (scan-scan-add) SCAN-SSA Yes add int64_t handshake, barrier Yes
Prefix sum (reduce-scan-scan) SCAN-RSS Yes add int64_t handshake, barrier Yes
Matrix transposition TRNS Yes Yes add, sub, mul int64_t mutex

matrix. First, the host CPU distributes the rows of the matrix
evenly across DPUs, using linear assignment (i.e., set of rows
i assigned to DPU i) as in GEMV (Section IV-B). Within
each DPU, the rows of the matrix are distributed evenly
across tasklets (i.e., subset of rows j assigned to tasklet j,
same as in GEMV). The input vector is replicated across
DPUs. Each tasklet multiplies its subset of rows with the
input vector and produces a contiguous chunk of the output
vector. At the end of the execution on the DPUs, the CPU
copies back the output vector chunks from the MRAM banks
to the host main memory, in order to construct the entire
output vector.

D. SELECT
Select (SEL) [248] is a database operator that, given an input
array, filters the array elements according to a given input
predicate. Our version of SEL removes the elements that
satisfy the predicate, and keeps the elements that do not.

Our PIM implementation of SEL partitions the array
across the DPUs available in the system. The tasklets inside
a DPU coordinate using handshakes (Section II-C1). First,
each tasklet moves a block of elements to WRAM. Second,
each tasklet filters the elements and counts the number of
filtered elements. Third, each tasklet passes its number of
filtered elements to the next tasklet using handshake-based
communication, which inherently performs a prefix-sum op-
eration [249–251] to determine where in MRAM to store the
filtered elements. The tasklet then moves its filtered elements
to MRAM. Fourth, the host CPU performs the final merge of
the filtered arrays returned by each DPU via serial DPU-CPU
transfers, since parallel DPU-CPU transfers are not feasible
because each DPU may return a different number of filtered
elements.

E. UNIQUE
Unique (UNI) [248] is a database operator that, for each
group of consecutive array elements with the same value,
removes all but the first of these elements.

Our PIM implementation of UNI follows a similar ap-
proach to SEL. The main difference lies in the more complex

handshake-based communication that UNI needs. Besides
the number of unique elements, each tasklet has to pass the
value of its last unique element to the next tasklet. This way,
the next tasklet can check whether its first element is unique
or not in the context of the entire array.

F. BINARY SEARCH
Binary Search (BS) [252] takes a sorted array as input and
finds the position of some query values within the sorted
array.

Our PIM implementation of binary search distributes the
sorted array across the DPUs. Inside each DPU, tasklets are
in charge of a subpartition of the assigned query values. First,
each tasklet checks the assigned set of query values to find,
moving them from the MRAM bank to WRAM and iterating
over them using a for loop. Second, each tasklet performs
the binary search algorithm, moving from left to right or
vice-versa, depending on the current value to find. Third, the
tasklet stops the algorithm when it finds one query value.
Fourth, at the end of the execution on the DPUs, the host
CPU retrieves the positions of the found query values.

G. TIME SERIES ANALYSIS
Time Series analysis (TS) [253] aims to find anomalies and
similarities between subsequences of a given time series.
Our version of time series analysis is based on Matrix
Profile [254], an algorithm that works in a streaming-like
manner, where subsequences (or query sequences) coming
from a source of data are compared to a well-known time
series that has the expected behavior.

Our PIM implementation of time series analysis divides
the time series across the DPUs, adding the necessary over-
lapping between them, and replicating the query sequence
across the tasklets to compare to the time series. Different
slices of the time series are assigned to different tasklets.
First, each tasklet performs the dot product of its slice of
the time series and the query sequence. Second, each tasklet
calculates the similarity between the slice of the time series
and the query sequence by computing the z-normalized Eu-
clidean distance [254]. Third, each tasklet compares the cal-

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

culated similarity to the minimum similarity (or maximum,
depending on the application) found so far, and updates it
if the calculated similarity is a new minimum (or maximum).
Fourth, at the end of the execution on the DPUs, the host CPU
retrieves the minimum (or maximum) similarity values and
their positions from all DPUs, and finds the overall minimum
(or maximum) and its position.

H. BREADTH-FIRST SEARCH
Breadth-First Search (BFS) [255] is a graph algorithm that
labels each node in the graph with its distance from a given
source node. In our version, all edges have the same weight,
therefore the distance represents the number of edges.

Our PIM implementation of BFS uses a Compressed
Sparse Row (CSR) [245–247] representation of the adja-
cency matrix, which represents the graph. Each element (i, j)
of the adjacency matrix indicates whether vertices i and j are
connected by an edge. Vertices are distributed evenly across
DPUs, with each DPU receiving the neighbor lists for the
vertices that it owns. The neighbor list of vertex i contains
the vertex IDs of the vertices that are connected to vertex i
by an edge. Each DPU maintains its own local copy of the
list of visited vertices in the graph, which is represented as a
bit-vector. At the end of each iteration of the BFS algorithm,
the host CPU merges all local per-DPU copies of the list of
visited vertices. The whole list of visited vertices is called the
frontier.

At the beginning of each iteration, the host CPU broadcasts
the complete current frontier to all the DPUs. Each DPU uses
the current frontier to update its local copy of the visited
list. The DPU keeps the vertices of the current frontier that
correspond to the vertices that it owns and discards the rest.
The tasklets in the DPU (1) go through these vertices concur-
rently, (2) visit their neighbors, and (3) add the neighbors to
the next frontier if they have not previously been visited. This
approach to BFS is called top-down approach [256, 257].
Tasklets use critical sections (implemented via mutexes) to
update the next frontier concurrently without data conflicts.
At the end of each iteration, the CPU retrieves the next
frontier produced by each DPU, and computes their union to
construct the complete next frontier. The iterations continue
until the next frontier is empty at the end of an iteration.

I. MULTILAYER PERCEPTRON
Multilayer perceptron (MLP) [258] is a class of feedforward
artificial neural network with at least three layers: input,
hidden and output.

Our PIM implementation of MLP performs MLP infer-
ence. In each layer, the weights are arranged as a matrix
and the input is a vector. The computation in each layer
is a matrix-vector multiplication. The implementation of
each layer is based on our implementation of GEMV (Sec-
tion IV-B). Thus, in each layer of MLP, the distribution of
the workload among DPUs and tasklets is the same as in
GEMV. ReLU is the activation function at the end of each
layer. When a layer terminates, the host CPU (1) retrieves the

output vector chunks from the MRAM banks, (2) constructs
the complete vector, (3) feeds this vector to the DPUs as the
input of the next layer, and (4) transfers the weights matrix of
the next layer to the DPUs. At the end of the output layer, the
host CPU retrieves the output vector chunks, and constructs
the final output vector.

J. NEEDLEMAN-WUNSCH
Needleman-Wunsch (NW) [259] is a bioinformatics algo-
rithm that performs global sequence alignment, i.e., it com-
pares two biological sequences over their entire length to
find out the optimal alignment of these sequences. NW is a
dynamic programming algorithm that consists of three steps:
(i) initialize a 2D score matrix m × n, where m, n are the
lengths of the sequences (i.e., the number of base pairs, bps,
in each sequence); (ii) fill the score matrix by calculating
the score for each cell in the matrix, which is the maximum
of the scores of the neighboring cells (left, top, or top-left
cells) plus a penalty in case of a mismatch; and (iii) trace
back the optimal alignment by marking a path from the cell
on the bottom right back to the cell on the top left of the
score matrix. Note that there may be more than one possible
optimal alignments between two sequences.

Our PIM implementation first fills the upper triangle (top-
left part) of the 2D score matrix, and then the lower triangle
(bottom-right part) of it. The matrix is partitioned into large
2D blocks, and the algorithm iterates over the diagonals at
a large block granularity (from the top-left diagonal to the
bottom-right diagonal). In each iteration, all large blocks that
belong to the same diagonal of the 2D score matrix are cal-
culated in parallel by evenly distributing them across DPUs.
Inside the DPU, each large 2D block is further partitioned
into small 2D sub-blocks. The tasklets of each DPU work
on the diagonals at a small sub-block granularity, i.e., in
each iteration the tasklets of a DPU concurrently calculate
different small sub-blocks that belong to the same large block
of one diagonal.

For each diagonal of the 2D score matrix, the host CPU
retrieves the large blocks produced by all DPUs. Then, it uses
the filled cells of the last row and the last column of each large
block as input to the next iteration (i.e., the next diagonal),
since only these cells are neighboring cells with the next
diagonal blocks. The iterations continue until all diagonal
large blocks of the whole 2D score matrix are calculated. The
host CPU finally uses the resulting 2D score matrix to trace
back the optimal alignment.

In the Appendix (Section IX-B1), we show additional
experimental results for NW to demonstrate that the com-
putation of the complete problem and the computation of the
longest diagonal scale differently across one rank of DPUs.

K. IMAGE HISTOGRAM
Image histogram (HST) [260] calculates the histogram of an
image, i.e., it counts the number of occurrences of each pos-
sible pixel value in an input image and stores the aggregated
counts of occurrences into a set of bins.

VOLUME 4, 2016 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

We develop two PIM implementations of image histogram:
short (HST-S) and long (HST-L).

HST-S distributes chunks of the input image across tasklets
running on a DPU. Each tasklet creates a local histogram in
WRAM. When the local histograms are created, the tasklets
synchronize with a barrier, and the local histograms are
merged in a parallel manner. Since each tasklet features a
local histogram in WRAM, the maximum histogram size
is relatively small (e.g., 256 32-bit bins, when running 16
tasklets).13

HST-L can generate larger histograms, the size of which
is limited only by the total amount of WRAM, since only
one local histogram per DPU is stored in WRAM. Same as
HST-S, HST-L distributes chunks of the input image across
tasklets, which update the histogram in WRAM by using a
mutex, in order to ensure that only a single tasklet updates
the histogram at a time.

Both HST-S and HST-L merge all per-DPU histograms
into a single final histogram in the host CPU.

We compare HST-S and HST-L for different histogram
sizes in the Appendix (Section IX-B2), in order to find out
which HST version is preferred on the UPMEM-based PIM
system for each histogram size.

L. REDUCTION
Reduction (RED) [261] computes the sum of the elements in
an input array.

Our PIM implementation of reduction has two steps. In
the first step, each tasklet inside a DPU is assigned a chunk
of the array. The tasklet accumulates all values of the chunk
and produces a local reduction result. In the second step,
after a barrier, a single tasklet reduces the partial results of
all tasklets from the first step. At the end of the second step,
the host CPU retrieves the reduction result.

Alternatively, we can implement the second step as a par-
allel tree reduction [262, 263]. We implement two versions
of this parallel tree reduction, which use different intra-DPU
synchronization primitives. One of the versions uses hand-
shakes for communication between tasklets from one level
of the tree to the next one. The other version uses barriers
between levels of the tree. In the Appendix (Section IX-B3),
we compare the single-tasklet implementation to the two
versions of parallel tree reduction.

M. PREFIX SUM (SCAN)
Prefix sum or scan (SCAN) [249] is a parallel primitive
that computes the prefix sum of the values in an array. We
implement an exclusive scan: the i-th element of the output
contains the sum of all elements of the input array from the
first element to the (i-1)-th element.

We implement two PIM versions of scan: Scan-Scan-
Add (SCAN-SSA) [251, 264, 265] and Reduce-Scan-Scan

13256 32-bit bins is the maximum histogram size for 16 tasklets (1)
assuming power-of-two size of the histogram and (2) taking into account
that each tasklet allocates a WRAM buffer for its chunk of the input image.

(SCAN-RSS) [251, 264, 266]. Both versions assign a large
chunk of the input array to each DPU.

SCAN-SSA has three steps. First, it computes the scan
operation locally inside each DPU. Second, it copies the last
element of the local scan to the host CPU, and places it in a
vector in the position corresponding to the DPU order. The
host CPU scans this vector and moves each result value to
the corresponding DPU. Third, it adds the value computed in
the host CPU to all elements of the local scan output in each
DPU. Fourth, the host CPU retrieves the complete scanned
array from the MRAM banks.

SCAN-RSS also has three steps. First, it computes the
reduction operation in each DPU. Second, it copies the reduc-
tion results to the host CPU, where the host CPU scans them.
Third, it moves the result values of the scan operation in
the host CPU to the corresponding DPUs, where the tasklets
perform a local scan (including the value coming from the
host CPU). Fourth, the host CPU retrieves the complete
scanned array from the MRAM banks.

The advantage of SCAN-RSS over SCAN-SSA is that
SCAN-RSS requires fewer accesses to MRAM. For an array
of size N , SCAN-RSS needs 3 × N + 1 accesses: N reads
and 1 write for Reduce, and N reads and N writes for
Scan. SCAN-SSA needs 4 × N accesses: N reads and N
writes for Scan, and N reads and N writes for Add. The
advantage of SCAN-SSA over SCAN-RSS is that it requires
less synchronization. The reduction operation in SCAN-RSS
requires a barrier, but the addition operation in SCAN-SSA
does not require any synchronization. We expect SCAN-RSS
to perform better for large arrays where access to MRAM
dominates the execution time, and SCAN-SSA to perform
better for smaller arrays where the reduction that requires
synchronization constitutes a larger fraction of the entire
computation. We compare both implementations of SCAN
for arrays of different sizes in Appendix Section IX-B4.

N. MATRIX TRANSPOSITION
Matrix transposition (TRNS) [267] converts an M ×N array
into an N × M array. We focus on in-place transposition,
where the transposed array occupies the same physical stor-
age locations as the original array. In-place transposition is a
permutation, which can be factored into disjoint cycles [268].
A straightforward parallel implementation can assign en-
tire cycles to threads. However, in such a straightforward
implementation, (1) the length of cycles is not uniform in
rectangular matrices, causing load imbalance, and (2) the
memory accesses are random as operations are done on single
matrix elements (without exploiting spatial locality). Thus,
efficient parallelization is challenging.

Our PIM implementation follows an efficient 3-step tiled
approach [269, 270] that (1) exploits spatial locality by op-
erating on tiles of matrix elements, as opposed to single
elements, and (2) balances the workload by partitioning
the cycles across tasklets. To perform the three steps, we
first factorize the dimensions of the M × N array as an
M ′×m×N ′×n array, whereM =M ′×m andN = N ′×n.

20 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

The first step operates on tiles of size n. This step performs
the transposition of an M ×N ′ array, where each element is
a tile of size n. The resulting array has dimensionsN ′×M×
n = N ′ ×M ′ ×m× n. In the UPMEM-based PIM system,
we perform this step using n-sized CPU-DPU transfers that
copy the input array from the main memory of the host CPU
to the corresponding MRAM banks.

The second step performsN ′×M ′ transpositions ofm×n
tiles. In each DPU, one tasklet transposes an m × n tile in
WRAM. The resulting array has dimensionsN ′×M ′×n×m.

The third step operates on tiles of size m. This step
performs transpositions of N ′ arrays of dimensions M ′ × n,
where each element is a tile of size m. The resulting array
has dimensions N ′ × n ×M ′ ×m. In each DPU, the avail-
able tasklets collaborate on the transposition of an M ′ × n
array (with m-sized elements) using the algorithm presented
in [271]. Differently from the algorithm in [271], which
uses atomic instructions for synchronization [272], our PIM
implementation uses mutexes for synchronization of tasklets
via an array of flags that keeps track of the moved tiles (we
choose this implementation because the UPMEM ISA [213]
does not include atomic instructions).

After the three steps, the host CPU retrieves the transposed
matrix from the MRAM banks.

V. EVALUATION OF PRIM BENCHMARKS
In this section, we evaluate the 16 PrIM benchmarks on the
2,556-DPU system (Section II-A), unless otherwise stated.
Our evaluation uses the datasets presented in Table 3, which
are publicly and freely available [214]. Since these datasets
are large and do not fit in WRAM, we need to use MRAM-
WRAM DMA transfers repeatedly. The results we present
are for the best performing transfer sizes, which we include
in Table 3 to facilitate the reproducibility of our results.
We provide the command lines we use to execute each
benchmark along with all parameters in [214].

First, we present performance and scaling results. We
evaluate strong scaling3 for the 16 PrIM benchmarks (Sec-
tion V-A1) on the 2,556-DPU system by running the ex-
periments on (1) 1 DPU, (2) 1 rank (from 1 to 64 DPUs),
and (3) 32 ranks (from 256 to 2,048 DPUs). The goal of
these experiments is to evaluate how the performance of the
UPMEM-based PIM system scales with the number of DPUs
for a fixed problem size. The ideal strong scaling is linear
scaling, i.e., the ideal speedup for strong scaling with N
DPUs over the execution on a single DPU should be N .

We also evaluate weak scaling4 for the 16 PrIM bench-
marks (Section V-A2) on 1 rank (from 1 to 64 DPUs). In
this experiment, we evaluate how the performance of the
UPMEM-based PIM system scales with the number of DPUs
for a fixed problem size per DPU. In an ideal weak scaling
scenario, the execution time remains constant for any number
of DPUs.

Second, we compare the performance and energy con-
sumption of two full-blown UPMEM-based PIM systems
(Table 1) with 2,556 DPUs (newer system) and with 640

DPUs (older system) to those of a modern Intel Xeon E3-
1240 CPU [241] and a modern NVIDIA Titan V GPU [277]
(Section V-B).

In Section VI, we provide new insights about suitability
of different workloads to the PIM system, programming
recommendations for software designers, and suggestions
and hints for hardware and architecture designers of future
PIM systems.
A. PERFORMANCE AND SCALING RESULTS
We evaluate the performance of all the benchmarks with
strong and weak scaling experiments using the datasets in
Table 3. Section V-A1 presents strong scaling results for a
single DPU, a single rank (from 1 to 64 DPUs), and for sets
of 4 to 32 ranks (from 256 to 2,048 DPUs). We also evaluate
the cost of inter-DPU synchronization. In Section V-A2, we
analyze weak scaling on an entire rank for 1 to 64 DPUs. We
include in the analysis the cost of inter-DPU synchronization
via the host CPU, as well as CPU-DPU and DPU-CPU
latencies.

1) Strong Scaling Results
We evaluate strong scaling with three different configura-
tions: (1) 1-16 tasklets inside one DPU, (2) 1-64 DPUs inside
one rank, and (3) 4-32 ranks. For the experiments inside one
rank and multiple ranks, we use the best-performing number
of tasklets from the experiment on one DPU.

a: One DPU
Figure 12 presents execution time and speedup scaling (ver-
sus tasklet count) results for 16 benchmarks on a single DPU.
The speedup results (right y-axis of each plot) correspond
to only the execution time portion spent on the DPU (i.e.,
"DPU" portion of each bar in Figure 12). In these experi-
ments, we set the number of tasklets to 1, 2, 4, 8, and 16.
The benchmarks distribute computation among the available
tasklets in a data-parallel manner. The datasets and their sizes
are in Table 3. The times shown in Figure 12 are broken down
into the execution time on the DPU ("DPU"), the time for
inter-DPU communication via the host CPU ("Inter-DPU"),
the time for CPU to DPU transfer of input data ("CPU-
DPU"), and the time for DPU to CPU transfer of final results
("DPU-CPU").

We make the following five observations from Figure 12.
First, in VA, GEMV, SpMV, SEL, UNI, TS, MLP, NW,

HST-S, RED, SCAN-SSA (Scan kernel), SCAN-RSS (both
kernels), and TRNS (Step 2 kernel), the best performing
number of tasklets is 16. This is in line with our observations
in Section III-A2: a number of tasklets greater than 11 is
usually a good choice to achieve the best performance from
the pipeline. These benchmarks show good scaling from 1
to 8 tasklets with speedups between 1.5× and 2.0× as we
double the number of tasklets until 8. From 8 to 16 tasklets,
the speedups are between 1.2× and 1.5× due to the pipeline
throughput saturating at 11 tasklets. For BS and BFS, 16
tasklets provide the highest performance too. However, scal-
ing in BS and BFS is more limited than in the kernels listed

VOLUME 4, 2016 21

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

Table 3: Evaluated Datasets.
Benchmark Strong Scaling Dataset Weak Scaling Dataset MRAM-WRAM

Transfer Sizes

VA 1 DPU-1 rank: 2.5M elem. (10 MB) | 32 ranks: 160M elem. (640 MB) 2.5M elem./DPU (10 MB) 1024 bytes
GEMV 1 DPU-1 rank: 8192× 1024 elem. (32 MB) | 32 ranks: 163840× 4096 elem. (2.56 GB) 1024× 2048 elem./DPU (8 MB) 1024 bytes
SpMV bcsstk30 [273] (12 MB) bcsstk30 [273] 64 bytes
SEL 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
UNI 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
BS 2M elem. (16 MB). 1 DPU-1 rank: 256K queries. (2 MB) | 32 ranks: 16M queries. (128 MB) 2M elem. (16 MB). 256K queries./DPU (2 MB). 8 bytes
TS 256 elem. query. 1 DPU-1 rank: 512K elem. (2 MB) | 32 ranks: 32M elem. (128 MB) 512K elem./DPU (2 MB) 256 bytes
BFS loc-gowalla [274] (22 MB) rMat [275] (≈100K vertices and 1.2M edges per DPU) 8 bytes
MLP 3 fully-connected layers. 1 DPU-1 rank: 2K neurons (32 MB) | 32 ranks: ≈160K neur. (2.56 GB) 3 fully-connected layers. 1K neur./DPU (4 MB) 1024 bytes
NW 1 DPU-1 rank: 2560 bps (50 MB), large/small sub-block= 2560

#DPUs /2 | 32 ranks: 64K bps (32 GB), l./s.=32/2 512 bps/DPU (2MB), l./s.=512/2 8, 16, 32, 40 bytes

HST-S 1 DPU-1 rank: 1536× 1024 input image [276] (6 MB) | 32 ranks: 64 × input image 1536× 1024 input image [276]/DPU (6 MB) 1024 bytes
HST-L 1 DPU-1 rank: 1536× 1024 input image [276] (6 MB) | 32 ranks: 64 × input image 1536× 1024 input image [276]/DPU (6 MB) 1024 bytes
RED 1 DPU-1 rank: 6.3M elem. (50 MB) | 32 ranks: 400M elem. (3.1 GB) 6.3M elem./DPU (50 MB) 1024 bytes
SCAN-SSA 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
SCAN-RSS 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
TRNS 1 DPU-1 rank: 12288× 16× 64× 8 (768 MB) | 32 ranks: 12288× 16× 2048× 8 (24 GB) 12288× 16× 1× 8/DPU (12 MB) 128, 1024 bytes

in the beginning of this paragraph, as we discuss later in this
section.

KEY OBSERVATION 10

A number of tasklets greater than 11 is a good
choice for most real-world workloads we tested (16
kernels out of 19 kernels from 16 benchmarks), as it
fully utilizes the DRAM Processing Unit’s pipeline.

Second, some of these benchmarks (VA, GEMV, SpMV,
BS, TS, MLP, HST-S, TRNS (Step 2)) do not use synchro-
nization primitives, while in others (SEL, UNI, NW, RED,
SCAN-SSA (Scan kernel), SCAN-RSS (both kernels)), syn-
chronization across tasklets (via handshakes and/or barriers)
is lightweight.

Third, BFS, HST-L, and TRNS (Step 3) show limited
scaling when increasing the number of tasklets because they
use mutexes, which cause contention when accessing shared
data structures (i.e., output frontier in BFS, local per-DPU
histogram in HST-L, array of flags in TRNS (Step 3)). While
in BFS using 16 tasklets provides the highest performance
since it can compensate for the large synchronization cost,
in HST-L and TRNS (Step 3) the best performing number
of tasklets is 8 due to the high synchronization overheads
beyond 8 tasklets.

KEY OBSERVATION 11

Intensive use of intra-DPU synchronization across
tasklets (e.g., mutexes, barriers, handshakes) may
limit scalability, sometimes causing the best per-
forming number of tasklets to be lower than 11.

Fourth, SCAN-SSA (Add kernel) experiences speedups
between 1.5× and 2.0× when we double the number of
tasklets until 8. However, there is no speedup from 8 to 16
tasklets, even though this step of the SCAN-SSA benchmark
does not use any synchronization primitives. We observe the
same behavior for the STREAM ADD microbenchmark in

Figure 7, i.e., performance saturation happens before the 11
tasklets required to fully utilize the pipeline. As explained
in Section III-B2, the reason is that both STREAM ADD
and SCAN-SSA (Add kernel) are not compute-intensive
kernels, since they perform only one integer addition per
input element accessed from MRAM. As a result, the overall
latency is dominated by the MRAM access latency, which
hides the pipeline latency (and thus performance saturates at
fewer than 11 tasklets required to fully utilize the pipeline).
The same reason explains that BS obtains almost no speedup
(only 3%) from 8 to 16 tasklets, since BS performs only one
comparison per input element.

KEY OBSERVATION 12

Most real-world workloads are in the compute-
bound region of the DRAM Processing Unit (all
kernels except SCAN-SSA (Add kernel)), i.e., the
pipeline latency dominates the MRAM access la-
tency.

Fifth, while the amount of time spent on CPU-DPU trans-
fers and DPU-CPU transfers is relatively low compared to the
time spent on DPU execution for most benchmarks, we ob-
serve that CPU-DPU transfer time is very high in TRNS. The
CPU-DPU transfer of TRNS performs step 1 of the matrix
transposition algorithm [269, 270] by issuing M ′ × m data
transfers of n elements, as explained in Section IV-N. Since
we use a small n value in the experiment (n = 8, as indicated
in Table 3), the sustained CPU-DPU bandwidth is far from
the maximum CPU-DPU bandwidth (see sustained CPU-
DPU bandwidth for different transfer sizes in Figure 10a).

KEY OBSERVATION 13

Transferring large data chunks from/to the host
CPU is preferred for input data and output results
due to higher sustained CPU-DPU/DPU-CPU band-
widths.

22 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

0

2

4

6

8

10

12

14

0

200

400

600

800

1000

1200
1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
VA

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

2

4

6

8

10

12

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
GEMV

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

2

4

6

8

10

12

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
SpMV

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

7

8

0

200

400

600

800

1000

1200

1400

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
SEL

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

7

8

0

200

400

600

800

1000

1200

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
UNI

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
BS

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

2

4

6

8

10

12

0

20000

40000

60000

80000

100000

120000

140000

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
TS

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
BFS

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

2

4

6

8

10

12

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
MLP

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

7

0

50

100

150

200

250

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
NW

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

2

4

6

8

10

12

14

0

500

1000

1500

2000

2500

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
RED

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

7

0

500

1000

1500

2000

2500

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
SCAN-SSA

DPU-CPU CPU-DPU
Inter-DPU DPU (Scan)
DPU (Add) Speedup (Scan)
Speedup (Add)

0

2

4

6

8

10

12

0

500

1000

1500

2000

2500

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
SCAN-RSS

DPU-CPU CPU-DPU
Inter-DPU DPU (Scan)
DPU (Reduce) Speedup (Scan)
Speedup (Red.)

0

2

4

6

8

10

12

0
2000
4000
6000
8000

10000
12000
14000
16000

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
TRNS

DPU-CPU CPU-DPU (Step 1)
Inter-DPU DPU (Step 3)
DPU (Step 2) Speedup (Step 3)
Speedup (Step 2)

0

1

2

3

4

5

6

0
200

400
600

800
1000

1200

1400
1600

1800

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)
#tasklets per DPU

HST-L

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

2

4

6

8

10

12

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#tasklets per DPU
HST-S

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

Figure 12: Execution time (ms) of 16 benchmarks on 1, 2, 4, 8, and 16 tasklets in one DPU (left y-axis), and speedup
(considering only the portion of execution time spent on the DPU) provided by more tasklets normalized to the
performance of 1 tasklet (right y-axis).

b: One Rank (1-64 DPUs).

We evaluate strong scaling with 1 to 64 DPUs. The size of the
input is the dataset size we can fit in a single DPU (see Ta-
ble 3). We especially examine CPU-DPU transfer and DPU-
CPU transfer times, in order to assess how they change as
we increase the number of DPUs. Figure 13 shows execution
time and speedup scaling (versus DPU count) results for 1, 4,
16, and 64 DPUs. The speedup results (right y-axis of each
plot) correspond to only the execution time portion spent on

the DPU (i.e., the "DPU" portion of each bar in Figure 13).
The breakdown of execution time is the same as that done in
Figure 12 for the single-DPU results.

We make the following seven observations from Figure 13.
First, we observe that DPU performance scaling is linear

with DPU count (i.e., the execution times on the DPU reduce
linearly as we increase the number of DPUs) for VA, GEMV,
SpMV, SEL, UNI, BS, TS, MLP, HST-S, HST-L, RED,
SCAN-SSA (both kernels), SCAN-RSS (both kernels), and
TRNS (both kernels) (speedups between 3.1× and 4.0×

VOLUME 4, 2016 23

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

0

10

20

30

40

50

60

0

50

100

150

200

250

300
1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
VA

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

10

20

30

40

50

60

70

0

100

200

300

400

500

600

700

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
GEMV

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

5

10

15

20

25

30

35

40

0
100
200
300
400
500
600
700
800
900

1000

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
SpMV

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

10

20

30

40

50

60

70

0

50
100

150

200
250

300
350

400
450

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
SEL

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

10

20

30

40

50

60

70

0

50

100

150

200

250

300

350

400

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
UNI

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

10

20

30

40

50

60

70

0

500

1000

1500

2000

2500

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
BS

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

10

20

30

40

50

60

70

0

2000

4000

6000

8000

10000

12000

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
TS

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0
1

2

3
4

5
6

7
8

9

0

200

400

600

800

1000

1200

1400

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
BFS

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

10

20

30

40

50

60

70

0

200

400

600

800

1000

1200

1400

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
MLP

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0
2
4
6
8
10
12
14
16
18
20

0

500

1000

1500

2000

2500

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
NW

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

10

20

30

40

50

60

70

0

50

100

150

200

250

300

350

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
RED

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

10

20

30

40

50

60

70

0

100
200
300

400
500

600
700
800

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
SCAN-SSA

DPU-CPU CPU-DPU
Inter-DPU DPU (Scan)
DPU (Add) Speedup (Scan)
Speedup (Add)

0

10

20

30

40

50

60

70

0.E+00

1.E+02

2.E+02

3.E+02

4.E+02

5.E+02

6.E+02

7.E+02

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
SCAN-RSS

DPU-CPU CPU-DPU
Inter-DPU DPU (Scan)
DPU (Reduce) Speedup (Scan)
Speedup (Red.)

0

10

20

30

40

50

60

70

0.E+00
1.E+05

2.E+05
3.E+05
4.E+05
5.E+05
6.E+05
7.E+05
8.E+05

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
TRNS

DPU-CPU CPU-DPU (Step 1)
Inter-DPU DPU (Step 3)
DPU (Step 2) Speedup (Step 3)
Speedup (Step 2)

0

10

20

30

40

50

60

0

20

40

60

80

100

120

140

160

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
HST-S

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

0

10

20

30

40

50

60

70

0
50

100
150
200
250
300
350
400
450
500

1 4 16 64

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
HST-L

DPU-CPU
CPU-DPU
Inter-DPU
DPU
Speedup

Figure 13: Execution time (ms) of 16 benchmarks on one rank (1, 4, 16, and 64 DPUs, using strong scaling3) (left y-axis),
and speedup (considering only the portion of execution time spent on the DPU) provided by more DPUs normalized to
the performance of 1 DPU (right y-axis). Inside a DPU, we use the best-performing number of tasklets from Figure 12.

when increasing the number of DPUs by 4). As a result,
increasing the DPU count from 1 to 64 for these benchmarks
produces speedups between 37× (SpMV) and 64× (TS,
TRNS).

Second, scaling of DPU performance is sublinear for two
benchmarks (BFS, NW). Increasing the DPU count from 1
to 64 for these two benchmarks produces speedups between
8.3× (BFS) and 17.2× (NW). For BFS, the speedups are
sublinear (1.7 − 2.7× when increasing the number of DPUs

by 4) due to load imbalance across DPUs produced by the
irregular topology of the loc-gowalla graph [274]. In NW, the
speedups are between 2.2× and 3.3× when multiplying the
DPU count by 4. In this benchmark, the parallelization factor
in each iteration (i.e., number of active DPUs) depends on the
size of the diagonal of the 2D score matrix that is processed,
and the number of large 2D blocks in the diagonal. When we
increase the number of DPUs by 4, the parallelization factor
in smaller diagonals is low (i.e., equal to only the number

24 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

of blocks in these diagonals), and only increases up to 4×
in the larger diagonals (i.e., when there are enough blocks to
use all available DPUs). As a result, the scalability of NW is
sublinear.

Third, the overhead (if any) of inter-DPU synchronization
(as depicted by the "Inter-DPU" portion of each bar in Fig-
ure 13) is low in 14 of the benchmarks (VA, GEMV, SpMV,
SEL, UNI, BS, TS, HST-S, HST-L, RED, SCAN-SSA,
SCAN-RSS, TRNS). As a result, these benchmarks achieve
higher performance when we increase the number of DPUs
(even including the inter-DPU synchronization time). There
is no inter-DPU synchronization in VA, GEMV, SpMV, BS,
TS, and TRNS. There is inter-DPU synchronization in HST-S
and HST-L (for final histogram reduction), but its overhead is
negligible. The inter-DPU synchronization time is noticeable
in SEL, UNI, and RED (for final result merging) and in
SCAN-SSA and SCAN-RSS (for intermediate scan step in
the host). For 64 DPUs, the inter-DPU synchronization times
of SEL, UNI, RED, SCAN-SSA, and SCAN-RSS account for
53%, 91%, 48%, 42%, and 17% the execution times on the
DPUs (not visible in Figure 13), respectively. Despite that,
we still obtain the best performance (including portions of
the execution time spent on the DPUs, i.e., "DPU", and inter-
DPU synchronization, i.e., "Inter-DPU") with 64 DPUs for
SEL, UNI, RED, SCAN-SSA, and SCAN-RSS.

Fourth, we observe significantly higher overhead of inter-
DPU synchronization for BFS, MLP, and NW. In MLP, the
inter-DPU synchronization overhead (due to the distribution
of weights matrix and input vector to each layer) reduces as
the number of DPUs increases. The reason is that the distri-
bution of the weights matrix (i.e., copying assigned matrix
rows to the corresponding DPUs) takes advantage of parallel
CPU-DPU transfers, while the overhead of transferring the
input vector is negligible. However, the trend is different for
BFS and NW. The overall performance (including portions
of the execution time on the DPUs, i.e., "DPU", and inter-
DPU synchronization, i.e., "Inter-DPU") of 64 DPUs is only
5% and 17% higher than that of 16 DPUs for BFS and NW,
respectively. The reason in BFS is that, after each iteration,
the CPU has to compute the union of the next frontier from all
DPUs sequentially and redistribute it across the DPUs. Thus,
the inter-DPU synchronization cost increases linearly with
the number of DPUs. In NW, the inter-DPU synchronization
overhead is substantial due to a similar reason. For each
diagonal of the 2D score matrix, the host CPU (1) retrieves
the results of the sub-blocks produced by all DPUs, and (2)
sends the cells of the last row and the last column of each
sub-block as input to the next diagonal (processed in the next
iteration).

Fifth, we observe the CPU-DPU transfer and DPU-CPU
transfer times decrease for VA, GEMV, TS, MLP, HST-S,
HST-L, RED, SCAN-SSA, SCAN-RSS, and TRNS, when
we increase the number of DPUs in the strong scaling exper-
iment for 1 rank. These benchmarks use parallel CPU-DPU
and DPU-CPU transfers between the main memory of the
host CPU and the MRAM banks.

Sixth, the CPU-DPU and DPU-CPU transfer times do not
decrease for BS and NW with increasing number of DPUs,
even though BS and NW use parallel transfers. BS distributes
the values to search in a sorted array across the available
DPUs, but the sorted array is replicated in each DPU. As a
result, the total CPU-DPU time increases with the number of
DPUs. NW processes a diagonal in each iteration. For shorter
diagonals, the algorithm does not need to use all available
DPUs. Thus, more available DPUs does not always mean
more parallelism in CPU-DPU and DPU-CPU transfers.

Seventh, the remaining benchmarks (SpMV, SEL, UNI,
BFS) cannot use parallel transfers to copy input data and/or
retrieve results. In SEL and UNI, DPU-CPU transfer times
increase when we increase the number of DPUs because
we cannot use parallel transfers for retrieving results. In
these two benchmarks, the size of the output in each DPU
may differ as it depends on the element values of the input
array. SpMV and BFS cannot use parallel CPU-DPU and
DPU-CPU transfers because the size of the inputs assigned
to each DPU may be different (e.g., different number of
nonzero elements of different sparse rows in SpMV, different
numbers of edges for different vertices in BFS). As a result,
we observe that CPU-DPU and DPU-CPU transfer times do
not reduce in SpMV and BFS when increasing the number of
DPUs.

PROGRAMMING RECOMMENDATION 5

Parallel CPU-DPU/DPU-CPU transfers inside a
rank of UPMEM DRAM Processing Units are
recommended for real-world workloads when all
transferred buffers are of the same size.

c: 32 Ranks (256-2,048 DPUs).
We evaluate strong scaling with 4, 8, 16, and 32 ranks. The
size of the input is the maximum dataset size we can fit
in four ranks (i.e., 256 DPUs), as shown in Table 3. We
do not include CPU-DPU and DPU-CPU transfer times in
our performance analysis, because these transfers are not
simultaneous across ranks, as we mentioned in Section III-D.
Figure 14 shows execution time and speedup scaling (versus
DPU count) results for 256, 512, 1,024, and 2,048 DPUs,
corresponding to 4, 8, 16, and 32 ranks. The speedup results
(right y-axis of each plot) correspond to only the execution
time portion spent on the DPU (i.e., the "DPU" portion of
each bar in Figure 14).

We make the following observations from Figure 14.
First, as in the experiments on one rank, we observe that

the execution times on the DPU (i.e., the "DPU" portion
of each bar in Figure 14) reduce linearly with the number
of DPUs (i.e., ∼2× when we double the number of DPUs,
and ∼8× from 256 to 2,048 DPUs) for VA, GEMV, SEL,
UNI, BS, TS, MLP, HST-S, HST-L, RED, SCAN-SSA (both
kernels), SCAN-RSS (both kernels), and TRNS (both ker-
nels). For SCAN-SSA (Scan) and SCAN-RSS (Scan), we

VOLUME 4, 2016 25

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

0

1

2

3

4

5

6

7

8

0
10
20
30
40
50
60
70
80
90

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

VA

Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

140

160

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

GEMV

Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

7

0
100
200
300
400
500
600
700
800
900

1000

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

SpMV

Inter-DPU
DPU
Speedup

0
1
2
3
4
5
6
7
8
9

0

20

40

60

80

100

120

140

160

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

SEL

Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

UNI

Inter-DPU
DPU
Speedup

0
1
2
3
4
5
6
7
8
9

0

100

200

300

400

500

600

700

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

BS

Inter-DPU
DPU
Speedup

0
1
2
3
4
5
6
7
8
9

0

500

1000

1500

2000

2500

3000

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

TS

Inter-DPU
DPU
Speedup

0

1

1

2

2

3

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

BFS

Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

7

8

0

200

400

600

800

1000

1200

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

MLP

Inter-DPU
DPU
Speedup

0.0

0.5

1.0

1.5

2.0

2.5

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

NW

Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

7

8

0

5

10

15

20

25

30

35

40

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

HST-S

Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

7

8

9

0

20

40

60

80

100

120

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

HST-L

Inter-DPU
DPU
Speedup

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

140

160

180

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

RED

Inter-DPU
DPU
Speedup

0

2

4

6

8

10

12

0

50

100

150

200

250

300

350

400

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

SCAN-SSA

Inter-DPU
DPU (Scan)
DPU (Add)
Speedup (Scan)
Speedup (Add)

0

2

4

6

8

10

12

0

50

100

150

200

250

300

350

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

SCAN-RSS

Inter-DPU
DPU (Scan)
DPU (Reduce)
Speedup (Scan)
Speedup (Red.)

0

1

2

3

4

5

6

7

8

9

0

500

1000

1500

2000

2500

3000

3500

25
6

51
2

10
24

20
48

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs

TRNS

Inter-DPU
DPU (Step 3)
DPU (Step 2)
Speedup (Step 3)
Speedup (Step 2)

Figure 14: Execution time (ms) of 16 benchmarks on 4, 8, 16, and 32 ranks (256, 512, 1,024, and 2,048 DPUs, using strong
scaling3) (left y-axis), and speedup (considering only the portion of execution time spent on the DPU) provided by more
DPUs normalized to the performance of 4 ranks (256 DPUs) (right y-axis). Inside a DPU, we use the best-performing
number of tasklets from Figure 12.

observe more than 8× speedup when we scale from 256 to
2,048 DPUs. The reason is that the amount of synchroniza-
tion across tasklets (i.e., handshakes in Scan) reduces when
we distribute the input array across more DPUs. However,
the downside is that the inter-DPU communication cost in-
creases, as we explain below.

Second, DPU performance scaling (i.e., the "DPU" portion

of each bar in Figure 14) is sublinear for SpMV, BFS, and
NW. For SpMV and BFS, there is load imbalance across
DPUs due to the irregular nature of graphs and sparse matri-
ces. For NW, we observe small speedups when we double the
number of DPUs (1.60× from 256 to 512 DPUs, and 1.25×
from 512 to 1,024 DPUs), and almost no speedup (only 8%)
from 1,024 to 2,048 DPUs. As explained above, NW does

26 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

not use all DPUs in all iterations, but only the number that
is needed for the diagonal that is processed in each iteration.
As a result, doubling the number of DPUs does not reduce
the execution time spent on the DPU at the same rate.

KEY OBSERVATION 14

Load balancing across DRAM Processing Units
(DPUs) ensures linear reduction of the execution
time spent on the DPUs for a given problem size,
when all available DPUs are used (as observed in
strong scaling experiments).

Third, inter-DPU synchronization (as depicted by the
"Inter-DPU" portion of each bar in Figure 14) imposes a
small overhead (if any) for 12 of the benchmarks (VA,
GEMV, SpMV, SEL, UNI, BS, TS, HST-S, HST-L, RED,
and TRNS). VA, GEMV, SpMV, BS, TS, and TRNS do not
require inter-DPU synchronization. For SEL, UNI, HST-S,
HST-L, and RED, the inter-DPU synchronization involves
only DPU-CPU transfers, since it is only used to merge final
results at the end of execution. The inter-DPU synchroniza-
tion overhead increases with the number of DPUs, since the
amount of partial results to merge increases. However, the
inter-DPU synchronization cost is small, and a larger number
of DPUs results in larger overall performance.

KEY OBSERVATION 15

The overhead of merging partial results from
DRAM Processing Units in the host CPU is tol-
erable across all PrIM benchmarks that need it.

Fourth, the inter-DPU synchronization imposes significant
overhead when it requires more complex patterns (involving
both CPU-DPU and DPU-CPU transfers). We observe this
for five benchmarks (BFS, MLP, NW, SCAN-SSA, and
SCAN-RSS). For NW and MLP, we observe that inter-DPU
synchronization times are significantly higher than DPU
times. If we compare these results to the results in Figure 13,
we conclude that these benchmarks’ overall performance is
greatly burdened by inter-DPU synchronization when using
more than one rank. SCAN-SSA and SCAN-RSS perform
a more complex intermediate step in the CPU: (1) the CPU
gathers partial results from the first kernel (Scan in SCAN-
SSA, Reduce in SCAN-RSS) from the DPUs (via DPU-
CPU transfers), (2) the CPU performs a scan operation,
and (3) the CPU returns a value to be used by the second
kernel (Add in SCAN-SSA, Scan in SCAN-RSS) to each
DPU (via CPU-DPU transfers). The significant increase in
"Inter-DPU" from 1,024 to 2,048 DPUs is due to the dual-
socket system configuration (Section II-A), since the CPU
in one socket obtains lower memory bandwidth from remote
MRAM banks (i.e., in the other socket). For BFS, the trend
is even worse. We observe that the huge increase in the
inter-DPU synchronization time makes 256 DPUs the best

choice for executing BFS. Our observations for BFS, SCAN-
SSA, and SCAN-RSS are against the general programming
recommendation of using as many working DPUs as possible
(Section II-C2). These three benchmarks show that the best-
performing number of DPUs is limited by the inter-DPU
synchronization overhead.

KEY OBSERVATION 16

Complex synchronization across DRAM Process-
ing Units (i.e., inter-DPU synchronization involv-
ing two-way communication with the host CPU)
imposes significant overhead, which limits scala-
bility to more DPUs. This is more noticeable when
DPUs involved in the synchronization span multiple
ranks.

2) Weak Scaling Results
Figure 15 shows the weak scaling results inside a single
rank for 1, 4, 16, and 64 DPUs. In each DPU, we run the
number of tasklets that produces the best performance in
Section V-A1a. The size of the dataset per DPU is the size
shown in Table 3. The time is broken down into execution
time on the DPU ("DPU"), inter-DPU synchronization time
("Inter-DPU"), and CPU-DPU and DPU-CPU transfer times
("CPU-DPU", "DPU-CPU"), similarly to the strong scaling
results presented in Figures 12 to 14 in Section V-A1.

We make the following five observations from Figure 15.
First, we observe perfect (i.e., linear) weak scaling on the

DPU for 14 benchmarks: the execution time on the DPU (i.e.,
the "DPU" portion of each bar in Figure 15) remains constant
for VA, GEMV, SpMV, SEL, UNI, BS, TS, MLP, HST-S,
HST-L, RED, SCAN-SSA, SCAN-RSS, and TRNS, as we
increase the number of DPUs (and the dataset size). Since
there is no direct communication between DPUs in these
kernels, the even distribution of workload (i.e., load balance)
among DPUs leads to performance scaling. We observe a
similar trend of perfect weak scaling for BFS even though
there is some load imbalance across DPUs in BFS.

KEY OBSERVATION 17

Equally-sized problems assigned to different
DRAM Processing Units (DPUs) and little/no
inter-DPU synchronization lead to linear weak
scaling of the execution time spent on the DPUs
(i.e., constant execution time when we increase the
number of DPUs and the dataset size accordingly).

Second, NW does not scale linearly (i.e., the execution
time spent on the DPU is not constant) because the size of
the problem does not increase linearly with the number of
DPUs. We increase the lengths of the input sequences to NW
linearly with the number of DPUs (see Table 3, weak scaling
dataset). Thus, the size of the 2D score matrix increases
quadratically with the number of DPUs. As a result, the

VOLUME 4, 2016 27

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

0

100

200

300

400

500

600

700

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
VA

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0

50

100

150

200

250

300

350

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
GEMV

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0

500

1000

1500

2000

2500

3000

3500

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
SpMV

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
SEL

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
UNI

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0

500

1000

1500

2000

2500

3000

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
BS

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0

2000

4000

6000

8000

10000

12000

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
TS

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0

2000

4000

6000

8000

10000

12000

14000

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
BFS

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0
50

100
150

200
250

300

350
400

450

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
MLP

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
NW

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0

50

100

150

200

250

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
HST-S

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0

100

200

300

400

500

600

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
HST-L

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0

100

200

300

400

500

600

700

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
RED

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0

200

400

600

800

1000

1200

1400

1600

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
SCAN-SSA

DPU-CPU
CPU-DPU
Inter-DPU
DPU (Scan)
DPU (Add)

0

200

400

600

800

1000

1200

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
SCAN-RSS

DPU-CPU
CPU-DPU
Inter-DPU
DPU (Scan)
DPU (Reduce)

0

2000
4000

6000

8000
10000

12000
14000

16000
18000

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs
TRNS

DPU-CPU
CPU-DPU (Step 1)
Inter-DPU
DPU (Step 3)
DPU (Step 2)

Figure 15: Execution time (ms) of 16 benchmarks on one rank (1, 4, 16, and 64 DPUs, using weak scaling4). Inside a
DPU, we use the best-performing number of tasklets from Figure 12.

execution times on the DPUs increase when we increase the
number of DPUs. However, the longest diagonal of the 2D
score matrix increases linearly with the number of DPUs.
The processing time of this diagonal shows linear weak
scaling as we increase the number of DPUs. We show these
experimental results in the Appendix (Section IX-B1).

Third, among the benchmarks that require inter-DPU syn-
chronization (SEL, UNI, BFS, MLP, NW, HST-S, HST-
L, RED, SCAN-SSA, and SCAN-RSS, the synchronization
overhead (i.e., the "Inter-DPU" portion of each bar in Fig-

ure 15) is negligible for SEL, UNI, HST-S, HST-L, RED,
SCAN-SSA, and SCAN-RSS. For MLP and NW, the inter-
DPU synchronization time takes a significant fraction of the
overall execution time, and it increases with the number of
DPUs because the total problem size (and thus, the size of
weight matrices in MLP and the number of iterations in
NW) increases, as indicated above. In BFS, the inter-DPU
synchronization time increases linearly, as we explain in Sec-
tion V-A1 (Figures 13 and 14) for strong scaling experiments.
As a result, BFS obtains the best tradeoff between overall ex-

28 VOLUME 4, 2016

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

ecution time (including portions of the execution time spent
on the DPUs, i.e., "DPU", and inter-DPU synchronization,
i.e., "Inter-DPU") and number of DPUs at 16 DPUs (i.e.,
the ratio of overall execution time, the "DPU" portions + the
"Inter-DPU" portions, over number of DPUs is lower for 16
DPUs).

Fourth, CPU-DPU and DPU-CPU transfer times increase
slowly with the number of DPUs for the 13 benchmarks
that use parallel transfers between main memory and MRAM
banks (VA, GEMV, SEL (only CPU-DPU), UNI (only CPU-
DPU), BS, TS, MLP, HST-S, HST-L, RED, SCAN-SSA,
SCAN-RSS, and TRNS). As observed from Figure 10,
the sustained CPU-DPU and DPU-CPU bandwidths in-
crease sublinearly with the number of DPUs. On average,
the increase in sustained CPU-DPU/DPU-CPU bandwidth
for these 13 benchmarks from 1 DPU to 64 DPUs is
20.95×/23.16×. NW uses parallel CPU-DPU and DPU-CPU
transfers, but the CPU-DPU transfer and DPU-CPU transfer
times increase with the number of DPUs because the amount
of transferred data increases (i.e., the total problem size
increases, as described above in the second observation from
Figure 15).

Fifth, CPU-DPU transfer and DPU-CPU transfer times in-
crease linearly with the number of DPUs for the benchmarks
that cannot use parallel transfers. SEL and UNI employ serial
DPU-CPU transfers, as we discuss above. This makes the
DPU-CPU transfer times in these two benchmarks increase
dramatically with the number of DPUs, dominating the entire
execution time. In SpMV and BFS, where we cannot use
parallel transfers due to the irregular nature of datasets, CPU-
DPU transfer and DPU-CPU transfer times also increase
significantly. In full-blown real-world applications, where
SEL, UNI, SpMV, or BFS may be just one of the multiple
or many kernels executed by the application, the CPU-DPU
transfer and DPU-CPU transfer times can be amortized and
their overhead alleviated.

KEY OBSERVATION 18

Sustained bandwidth of parallel CPU-DPU/DPU-
CPU transfers inside a rank of DRAM Processing
Units (DPUs) increases sublinearly with the num-
ber of DPUs.

B. COMPARISON TO CPU AND GPU
We compare the UPMEM PIM architecture to a modern CPU
and a modern GPU in terms of performance and energy
consumption. Our goal is to quantify the potential of the
UPMEM PIM architecture as a general-purpose accelerator.
We use state-of-the-art CPU and GPU versions of PrIM
benchmarks for comparison to our PIM implementations.
The sources of the CPU and GPU versions of the benchmarks
are listed in the Appendix (Table 5).

We compare the UPMEM-based PIM systems with 640
and 2,556 DPUs (Table 1) to an Intel Xeon E3-1225 v6
CPU [241] and an NVIDIA Titan V GPU [277] based on

the Volta architecture [278] for all our benchmarks. Table 4
summarizes key characteristics of the CPU, the GPU, and the
two UPMEM-based PIM systems.

For our UPMEM-based PIM system performance mea-
surements, we include the time spent in the DPU and the
time spent for inter-DPU synchronization on the UPMEM-
based PIM systems. For our CPU and GPU performance
measurements, we include only the kernel times (i.e., we
do not include data transfers between the host CPU and the
GPU in the GPU versions). For energy measurements, we
use Intel RAPL [279] on the CPU and NVIDIA SMI [280]
on the GPU. In the UPMEM PIM systems, we obtain the
energy consumed by the DIMMs connected to the memory
controllers, which can be done in x86 sockets [281]. The
measurements include only the energy of the PIM chips.

1) Performance Comparison
Figure 16 shows the speedup of the UPMEM-based PIM
systems with 640 and 2,556 DPUs and the Titan V GPU over
the Intel Xeon CPU.

0.001
0.004
0.016
0.063
0.250
1.000
4.000

16.000
64.000

256.000
1024.000

VA SE
L

U
N

I

BS

H
ST

-S

H
ST

-L

RE
D

SC
AN

-S
SA

SC
AN

-R
SS

TR
N

S

G
EM

V

Sp
M

V TS BF
S

M
LP

N
W

G
M

EA
N

 (1
)

G
M

EA
N

 (2
)

G
M

EA
N

More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

Sp
ee

du
p

ov
er

 C
PU

 (l
og

 sc
al

e)

CPU GPU 640 DPUs 2556 DPUs

G
M

EA
N

(1
)

G
M

EA
N

(2
)

G
M

EA
N

More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

Figure 16: Performance comparison between the
UPMEM-based PIM systems with 640 and 2,556 DPUs,
a Titan V GPU, and an Intel Xeon E3-1240 CPU. Results
are normalized to the CPU performance (y-axis is
log scale). There are two groups of benchmarks: (1)
benchmarks that are more suitable to the UPMEM PIM
architecture, and (2) benchmarks that are less suitable to
the UPMEM PIM architecture.

We make four key observations from Figure 16.
First, the 2,556-DPU system and the 640-DPU system

are on average 23.2× and 10.1× faster than the CPU. The
highest speedup is for UNI: the 2,556-DPU system is 629.5×
and the 640-DPU system is 234.4× faster than the CPU. Even
benchmarks that make heavy use of integer multiplication
(GEMV, TS, and MLP) are much faster on the UPMEM-
based PIM systems (5.8-86.6× faster on the 2,556-DPU
system, and 5.6-25.2× faster on the 640-DPU system). This
observation reflects the large performance improvements that
workloads running on a conventional system with a CPU can
experience if we expand the system with DIMMs of PIM-
enabled memory (see Figure 1).

Second, the UPMEM-based PIM systems outperform the
CPU for all of the benchmarks except SpMV, BFS, and NW.
SpMV has three characteristics that make it less suitable
for UPMEM-based PIM systems: (1) it operates on floating

VOLUME 4, 2016 29

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

Table 4: Evaluated CPU, GPU, and UPMEM-based PIM Systems.

System Process Processor Cores Memory TDPNode Total Cores Frequency Peak Performance Capacity Total Bandwidth
Intel Xeon E3-1225 v6 CPU [241] 14 nm 4 (8 threads) 3.3 GHz 26.4 GFLOPS? 32 GB 37.5 GB/s 73 W
NVIDIA Titan V GPU [277] 14 nm 80 (5,120 SIMD lanes) 1.2 GHz 12,288.0 GFLOPS 12 GB 652.8 GB/s 250 W
2,556-DPU PIM System 2x nm 2,5569 350 MHz 894.6 GOPS 159.75 GB 1.7 TB/s 383 W†

640-DPU PIM System 2x nm 640 267 MHz 170.9 GOPS 40 GB 333.75 GB/s 96 W†

?Estimated GFLOPS = 3.3 GHz × 4 cores× 2 instructions per cycle.
†Estimated TDP = Total DPUs

DPUs/chip × 1.2W/chip [199].

point data, (2) it uses multiplication heavily, and (3) it suffers
from load imbalance due to the irregular nature of sparse
matrices. Regarding the first two characteristics, we know
from our analyses in Sections III-A2 and III-C that floating
point multiplication is very costly because of the lack of
native support. Regarding the third characteristic, we know
from our strong scaling evaluation in Section V-A1 that load
imbalance across DPUs causes sublinear scaling for SpMV.
BFS performs much worse than CPU on the UPMEM-
based PIM systems because of the large overhead of inter-
DPU synchronization via the host CPU, as we discuss in
Section V-A. Since the inter-DPU synchronization overhead
of BFS increases linearly with the number of DPUs, the
2,556-DPU system is significantly slower than the 640-DPU
system.14 Note that the goal of these experiments is not
to show the performance of the best-performing number of
DPUs for a given workload, but the performance of the full-
blown systems with all 2,556 DPUs and 640 DPUs active
for each workload. NW is one order of magnitude slower
on both UPMEM-based PIM systems than on the CPU due
to the inter-DPU synchronization overhead. The inter-DPU
synchronization overhead of NW is not as dependent on
the number of DPUs. As a result, the 2,556-DPU system
has the same performance as the 640-DPU system for this
benchmark.

Third, the 2,556-DPU system is faster than the GPU for
10 benchmarks: VA, SEL, UNI, BS, HST-S, HST-L, RED,
SCAN-SSA, SCAN-RSS, and TRNS. These 10 benchmarks
are more suitable to the UPMEM PIM architecture due to
three key characteristics: (1) streaming memory accesses, (2)
no or little inter-DPU communication, and (3) no or little use
of integer multiplication, integer division, or floating point
operations. The speedups of the 2,556-DPU system over the
GPU for these benchmarks range between 6% (for SCAN-
SSA) and 57.5× (for BS), with an average of 2.54×. It
is especially interesting that the 2,556-DPU system outper-
forms the Titan V for some of these benchmarks, which
are traditionally considered GPU-friendly and are subject
of GPU optimization studies, libraries, and reference im-
plementations, such as VA [282], SEL and UNI [250, 283],
HST-S and HST-L [260, 272, 284], RED [262, 263], SCAN-

14BFS can obtain better performance by running it using much fewer
DPUs. The reason is that BFS performance does not scale with many DPUs,
as shown in Sections V-A1 and V-A2 (Figures 13-15). However, we do
not run BFS using much fewer DPUs as we study the full-blown system
performance utilizing all DPUs in this experiment.

SSA [264, 265, 283], SCAN-RSS [251, 264, 266, 285], and
TRNS [269, 270, 286]. In summary, the UPMEM PIM archi-
tecture outperforms the modern GPU for workloads that ex-
hibit the three key characteristics that make them potentially
suitable for execution on the UPMEM-based PIM system.

Fourth, the 640-DPU system is generally slower than the
GPU, but for the 10 benchmarks where the 2,556-DPU
system is faster than the GPU (VA, SEL, UNI, BS, HST-
S, HST-L, RED, SCAN-SSA, SCAN-RSS, and TRNS) the
average performance of the 640-DPU system is within 65%
the performance of the GPU. Among these benchmarks, the
640-DPU system is faster than the GPU for two benchmarks:
HST-S and BS. The GPU version of histogram [260, 287]
(the same one for HST-S and HST-L) uses atomic operations
that burden the performance heavily [272]. As a result, the
640-DPU system is 1.89× faster than the GPU for HST-S.
For BS, the GPU version suffers from many random memory
accesses, which greatly reduce the achievable memory band-
width. The 640-DPU system is 11.0× faster than the GPU
for BS.

KEY OBSERVATION 19

The UPMEM-based PIM system can outperform
a modern GPU on workloads with three key char-
acteristics:

1. Streaming memory accesses
2. No or little inter-DPU synchronization
3. No or little use of integer multiplication, integer

division, or floating point operations
These three key characteristics make a workload
potentially suitable to the UPMEM PIM architec-
ture.

2) Energy Comparison
Figure 17 shows the energy savings of the UPMEM-based
PIM system with 640 DPUs and the Titan V GPU over the
Intel Xeon CPU. At the time of writing, the 2,556-DPU
system is not enabled to perform energy measurements, but
we will aim to include them in an extended version of our
work.

We make three key observations from Figure 17.
First, the 640-DPU system consumes, on average, 1.64×

less energy than the CPU for all 16 benchmarks. For 12
benchmarks (VA, GEMV, SEL, UNI, BS, TS, HST-S, HST-

30 VOLUME 4, 2016

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

0.03
0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

128.00
256.00

VA SE
L

U
N

I

BS

H
ST

-S

H
ST

-L

RE
D

SC
AN

-S
SA

SC
AN

-R
SS

TR
N

S

G
EM

V

Sp
M

V TS BF
S

M
LP N
W

G
M

EA
N

 (1
)

G
M

EA
N

 (2
)

G
M

EA
N

More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

En
er

gy
 sa

vi
ng

s o
ve

r C
PU

 (l
og

 sc
al

e)

CPU GPU 640 DPUs

G
M

EA
N

(1
)

G
M

EA
N

(2
)

G
M

EA
N

Less PIM-suitable workloads (2)More PIM-suitable workloads (1)

Figure 17: Energy comparison between the UPMEM-
based PIM system with 640 DPUs, a Titan V GPU, and
an Intel Xeon E3-1240 CPU. Results are normalized to
the CPU performance (y-axis is log scale). There are
two groups of benchmarks: (1) benchmarks that are
more suitable to the UPMEM PIM architecture, and (2)
benchmarks that are less suitable to the UPMEM PIM
architecture.

L, RED, SCAN-SSA, SCAN-RSS, and TRNS), the 640-DPU
system provides an energy savings of 5.23× over the CPU.
The maximum energy savings is 39.14× for UNI. Our experi-
ments show that the 640-DPU system, featuring PIM-enabled
memory with a capacity of 40 GB, provides outstanding
energy savings over a modern Intel Xeon CPU (with memory
capacity of 32 GB) for 12 out of 16 benchmarks. This energy
savings comes from the lower execution times of these 12
benchmarks on the 640-DPU system (Figure 16). We expect
that the energy savings of the 2,556-DPU system, with ∼6×
more DPUs, 160 GB of PIM-enabled memory, and higher
frequency (350 vs. 267 MHz), over the CPU will be even
higher due to higher performance (thus, lower static energy)
and less data movement.

Second, the 640-DPU system is only less energy efficient
than the CPU for SpMV, BFS, and NW, which is in line with
our observations about performance (Section V-B1).

Third, compared to the GPU, the 640-DPUs system con-
sumes less energy for BS and HST-S, since these are the
two benchmarks for which the 640-DPU system outperforms
the GPU (see Section V-B1). For the 2,556-DPU system, we
expect energy results to follow the performance results in
Section V-B1. The 10 benchmarks (VA, SEL, UNI, BS, HST-
S, HST-L, RED, SCAN-SSA, SCAN-RSS, and TRNS) that
run faster on the 2,556-DPU system than on the GPU will
also likely consume less energy. This is because the major
cause of performance improvement and energy reduction is
the same: the reduction in data movement between memory
and processors that the UPMEM-based PIM systems provide.

KEY OBSERVATION 20

The UPMEM-based PIM system provides large
energy savings over a modern CPU due to higher
performance (thus, lower static energy) and less data
movement between memory and processors.
The UPMEM-based PIM system provides energy
savings over a modern CPU/GPU on workloads
where it outperforms the CPU/GPU. This is be-
cause the source of both performance improvement
and energy savings is the same: the significant re-
duction in data movement between the memory
and the processor cores, which the UPMEM-based
PIM system can provide for PIM-suitable workloads.

3) Discussion
These observations are useful for programmers to anticipate
how much performance and energy savings they can get
from the UPMEM hardware compared to traditional CPU
and GPU systems for different types of workloads.

One limitation of this comparison is the difficulty of es-
tablishing a common control factor across all three types of
systems (CPU, GPU, and UPMEM-based PIM system) to
ensure a fair comparison. To this end, the 640-DPU PIM
system has comparable memory capacity to the CPU (40
GB vs. 32 GB). However, the 2,556-DPU system has much
higher memory capacity (∼160 GB). On the other hand, the
640-DPU UPMEM-based PIM system and the GPU have
comparable cost (the 640-DPU system being a little cheaper).
Other hardware characteristics, such as fabrication technol-
ogy, process node, number of cores, or frequency (Table 5),
are very different across the four systems that we evaluate in
Section V-B.

We note that the UPMEM hardware is still maturing and is
expected to run at a higher frequency in the near future (400-
450 MHz instead of 350 or 267 MHz) and potentially be man-
ufactured with a smaller technology node [231]. Hence, the
results we report in this comparison may underestimate the
full potential of the UPMEM-based PIM architecture. CPU
and GPU systems have been heavily optimized for decades
in terms of architecture, software, and manufacturing. We
believe the architecture, software, and manufacturing of PIM
systems will continue to improve (see our suggestions for
future improvement in Section VI).

VI. KEY TAKEAWAYS
In this section, we reiterate several key empirical observa-
tions in the form of four key takeaways we provide through-
out this paper. We also provide implications on workload
suitability and good programming practices for the UPMEM
PIM architecture, and suggestions for hardware and architec-
ture designers of future PIM systems.

a: Key Takeaway #1.
The UPMEM PIM architecture is fundamentally com-
pute bound. Section III-B shows that workloads with more

VOLUME 4, 2016 31

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

complex operations than integer addition fully utilize the
instruction pipeline before they can potentially saturate the
memory bandwidth. Section III-C shows that even workloads
with as simple operations as integer addition saturate the
compute throughput with an operational intensity as low as
0.25 operations/byte (1 addition per integer accessed). This
key takeaway shows that the most suitable workloads for
the UPMEM PIM architecture are memory-bound work-
loads. From a programmer’s perspective, the architecture
requires a shift in how we think about computation and data
access, since the relative cost of computation vs. data access
in the PIM system is very different from that in the dominant
processor-centric architectures of today.

KEY TAKEAWAY 1

The UPMEM PIM architecture is fundamentally
compute bound. As a result, the most suitable
workloads are memory-bound.

b: Key Takeaway #2.
The workloads most well-suited for the UPMEM PIM
architecture are those with simple or no arithmetic oper-
ations. This is because DPUs include native support for only
integer addition/subtraction and bitwise operations. More
complex integer (e.g., multiplication, division) and floating
point operations are implemented using software library
routines. Section III-A2 shows that the arithmetic through-
put of more complex integer operations and floating point
operations are an order of magnitude lower than that of
simple addition and subtraction. Section V-B shows that
benchmarks with little amount of computation and no use of
multiplication, division, or floating point operations (10 out
of 16 benchmarks) run faster (2.54× on average) on a 2,556-
DPU system than on a modern NVIDIA Titan V GPU. These
observations show that the workloads most well-suited for
the UPMEM PIM architecture are those with no arith-
metic operations or simple operations (e.g., bitwise op-
erations and integer addition/subtraction). Based on this
key takeaway, we recommend devising much more efficient
software library routines or, more importantly, specialized
and fast in-memory hardware for complex operations in
future PIM architecture generations to improve the general-
purpose performance of PIM systems.

KEY TAKEAWAY 2

The most well-suited workloads for the UPMEM
PIM architecture use no arithmetic operations or
use only simple operations (e.g., bitwise opera-
tions and integer addition/subtraction).

c: Key Takeaway #3.
The workloads most well-suited for the UPMEM PIM

architecture are those with little global communication,
because there is no direct communication channel among
DPUs. As a result, there is a huge disparity in perfor-
mance scalability of benchmarks that do not require inter-
DPU communication and benchmarks that do (especially if
parallel transfers across MRAM banks cannot be used), as
Section V-A shows. This key takeaway shows that the work-
loads most well-suited for the UPMEM PIM architecture
are those with little or no inter-DPU communication.
Based on this takeaway, we recommend that the hardware
architecture and the software stack be enhanced with sup-
port for inter-DPU communication (e.g., by leveraging new
in-DRAM data copy techniques [27, 28, 33, 38, 39, 188, 190]
and providing better connectivity inside DRAM [33, 38]).

KEY TAKEAWAY 3

The most well-suited workloads for the UPMEM
PIM architecture require little or no communica-
tion across DRAM Processing Units (inter-DPU
communication).

d: Summary.
We find that the workloads most suitable for the UPMEM
PIM architecture in its current form are (1) memory-bound
workloads with (2) simple or no arithmetic operations and
(3) little or no inter-DPU communication.

e: Key Takeaway #4.
We observe that the existing UPMEM-based PIM systems
greatly improve energy efficiency and performance over
modern CPU and GPU systems across many workloads we
examine. Section V-B shows that the 2,556-DPU and the 640-
DPU systems are 23.2× and 10.1× faster, respectively, than
a modern Intel Xeon CPU, averaged across the entire set of
16 PrIM benchmarks. The 640-DPU system is 1.64× more
energy efficient than the CPU, averaged across the entire set
of 16 PrIM benchmarks, and 5.23× more energy efficient for
12 of the PrIM benchmarks.

The 2,556-DPU system is faster (on average by 2.54×)
than the modern GPU in 10 out of 16 PrIM benchmarks,
which have three key characteristics that define a workload’s
PIM suitability: (1) streaming memory accesses, (2) little
or no inter-DPU communication, and (3) little or no use of
multiplication, division, or floating point operations.15

We expect that the 2,556-DPU system will provide even
higher performance and energy benefits, and that future PIM

15Note that these three characteristics are not exactly the same three
characteristics highlighted by key takeaways #1 to #3, but more specific. The
difference is that the 2,556-DPU system outperforms the GPU for memory-
bound workloads with streaming memory accesses. These workloads do not
need to have only streaming memory accesses, since BS, HST-S, HST-L,
and TRNS, for which the 2,556-DPU system outperforms the GPU, have
also random accesses. Since all PrIM workloads (see Table 2) contain some
streaming memory accesses, we cannot say that the 2,556-DPU system out-
performs the GPU for workloads with only strided and/or random accesses.

32 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

systems will be even better (especially after implementing
our recommendations for future PIM hardware). If the ar-
chitecture is improved based on our recommendations under
Key Takeaways 1-3, we believe the future PIM system will
be even more attractive, leading to much higher performance
and energy benefits versus modern CPUs and GPUs over
potentially all workloads.

KEY TAKEAWAY 4

• UPMEM-based PIM systems outperform modern
CPUs in terms of performance and energy effi-
ciency on most of PrIM benchmarks.
• UPMEM-based PIM systems outperform modern
GPUs on a majority of PrIM benchmarks, and the
outlook is even more positive for future PIM systems.
• UPMEM-based PIM systems are more energy-
efficient than modern CPUs and GPUs on work-
loads that they provide performance improve-
ments over the CPUs and the GPUs.

VII. RELATED WORK
To our knowledge, this paper provides the first compre-
hensive characterization and analysis of the first publicly-
available real-world PIM architecture along with the first
open-source benchmark suite for a real-world PIM architec-
ture.

We briefly review related work on PIM architectures.
There are two main approaches to PIM [1–4]: (1)

processing-using-memory (PUM) and (2) processing-near-
memory (PNM). No prior work on PUM or PNM provides
results from real commercial systems or a benchmark suite
to evaluate PIM architectures.

Processing using memory (PUM) exploits the exist-
ing memory architecture and the operational principles
of the memory cells and circuitry to perform operations
within each memory chip at low cost. Prior works propose
PUM mechanisms using SRAM [21–24], DRAM [25–40,
99, 100, 119, 188–191, 288], PCM [41], MRAM [42–44], or
RRAM/memristive [45–55, 70, 103, 114, 118, 192, 193, 289]
memories. PUM mechanisms enable different types of oper-
ations such as data copy and initialization [21, 27, 28, 33, 38,
39, 119, 190], bulk bitwise operations (e.g., a functionally-
complete set of Boolean logic operations) [21, 25, 26, 32, 34,
35, 41–44, 145, 188, 191], and simple arithmetic operations
(e.g., addition, multiplication, implication) [21–24, 29, 35,
36, 45–55, 99]. A recent work, called SIMDRAM [37], de-
signs a framework for implementing and executing arbitrary
operations in a bit-serial SIMD fashion inside DRAM arrays,
building on the Ambit substrate [25, 26].

Processing near memory (PNM) integrates processing
elements (e.g., functional units, accelerators, simple
processing cores, reconfigurable logic) near or inside
the memory (e.g., [8, 56–69, 71–96, 98, 101, 104–
110, 113, 120–130, 290, 291]). Many of these PNM
works place PIM logic inside the logic layer of 3D-

stacked memories [8, 56, 58–67, 75, 78–80, 82, 84–
87, 89–95, 101, 106, 108–111, 113, 128–130, 290, 291],
at the memory controller [76, 77], on the DDRX
DIMMs [68, 121, 292, 293], or in the same package as the
CPU connected via silicon interposers [57, 126, 127, 186].

Another body of recent works study and propose solu-
tions to system integration challenges in PIM-enabled sys-
tems, such as memory coherence [64–66], virtual mem-
ory [185, 294], synchronization [56], or PIM suitability of
workloads [128, 184].

Several works explore the acceleration opportunities
offered by the UPMEM PIM architecture for bioinfor-
matics [295, 296], skyline computation [297], compres-
sion [298], or sparse linear algebra [299]. Readers can refer to
these works for in-depth analysis of specific applications on
the UPMEM PIM architecture. Our work is the first one that
performs a comprehensive architecture characterization of
the UPMEM PIM architecture and studies the PIM suitability
of a large number of workloads. We are also the first to openly
and freely provide the first benchmark suite for real PIM
systems.

A recent work [122, 123] presents a real-world PIM sys-
tem with programmable near-bank computation units, called
FIMDRAM, based on HBM technology [168, 169]. The
FIMDRAM architecture, designed specifically for machine
learning applications, implements a SIMD pipeline with sim-
ple multiply-and-accumulate units [300, 301]. More recently
presented, Accelerator-in-Memory [120] is a GDDR6-based
PIM architecture with specialized units for multiply-and-
accumulate and activation functions for deep learning appli-
cations. AxDIMM [121] is a DIMM-based solution which
places an FPGA fabric in the buffer chip of the DIMM. It
has been tested for recommendation inference. Compared to
the more general-purpose UPMEM PIM architecture, these
architectures focus on a specific domain of applications (i.e.,
machine learning), and thus it may lack flexibility to support
a wider range of applications. A comprehensive character-
ization and analysis of these architectures, along the lines
of our work, can greatly help researchers, programmers, and
architects to understand their potential.

VIII. SUMMARY & CONCLUSION
We present the first comprehensive characterization and anal-
ysis of a real commercial PIM architecture. Through this
analysis, we develop a rigorous, thorough understanding of
the UPMEM PIM architecture, the first publicly-available
PIM architecture, and its suitability to various types of work-
loads.

First, we conduct a characterization of the UPMEM-based
PIM system using microbenchmarks to assess various ar-
chitecture limits such as compute throughput and memory
bandwidth, yielding new insights. Second, we present PrIM,
a benchmark suite of 16 memory-bound workloads from dif-
ferent application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks,
bioinformatics, image processing).

VOLUME 4, 2016 33

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

Our extensive evaluation of PrIM benchmarks conducted
on two real systems with UPMEM memory modules pro-
vides new insights about suitability of different workloads
to the PIM system, programming recommendations for soft-
ware designers, and suggestions and hints for hardware and
architecture designers of future PIM systems. We compare
the performance and energy consumption of the UPMEM-
based PIM systems for PrIM benchmarks to those of a
modern CPU and a modern GPU, and identify key work-
load characteristics that can successfully leverage the key
strengths of a real PIM system over conventional processor-
centric architectures. We note that we compare the first ever
commercial PIM system to CPU and GPU systems that have
been heavily optimized for decades in terms of architecture,
software, and manufacturing. As the architecture, software,
and manufacturing of PIM systems continue to improve, it
will be possible to do more fair comparisons to CPU and
GPU systems, which reveal even higher benefits for PIM
systems in the future.

We believe and hope that our work will provide valuable
insights to programmers, users and architects of this PIM
architecture as well as of future PIM systems, and will rep-
resent an enabling milestone in the development of memory-
centric computing systems.

IX. APPENDIX
This appendix presents some additional results for one of
our microbenchmarks (Section IX-A) and four of the PrIM
benchmarks (Section IX-B). Section IX-C shows the sources
of the CPU and GPU versions of PrIM benchmarks.

A. ARITHMETIC THROUGHPUT VERSUS NUMBER OF
TASKLETS
Figure 18 presents arithmetic throughput results for different
numbers of tasklets at different operational intensities. This
figure shows a different view of the experimental results
presented in Figure 9, with the goal of showing the variation
in arithmetic throughput for different operational intensities.

We make two key observations from Figure 18.
First, for any data type and operation, the highest possible

throughput is achieved at 11 tasklets, i.e., the number of
tasklets to fully utilize the pipeline. However, the operational
intensity at which the highest throughput value is reached
depends on the actual data type and operation. For example,
the highest throughput of 32-bit integer addition is achieved
at 1

4 OP/B, i.e., 1 addition per 32-bit element. For floating
point multiplication, the highest throughput is achieved at
1

128 OP/B, i.e., 1 multiplication every 32 32-bit elements.
Second, for lower operational intensities, the number of

tasklets necessary to reach the saturation throughput is less
than 11. This happens in the memory-bound regions, where
the MRAM access latency dominates the overall latency. This
observation is in line with our observations for COPY and
ADD benchmarks in Section III-B2.

B. EXTENDED RESULTS FOR NEEDLEMAN-WUNSCH,
IMAGE HISTOGRAM, REDUCTION, AND SCAN
This section presents some additional results for four of the
PrIM benchmarks. First, we present an extended evaluation
of NW (Section IX-B1). Second, we compare HST-S and
HST-L for different histogram sizes (Section IX-B2). Third,
we show an evaluation of RED with three different mecha-
nisms to perform local intra-DPU reduction (Section IX-B3).
Fourth, we compare SCAN-SSA and SCAN-RSS for differ-
ent array sizes (Section IX-B4).

1) Needleman-Wunsch
We present additional results for the weak scaling experiment
of NW. In this experiment, we increase the length of the
sequences to align proportionally to the number of DPUs.
Thus, the size of the 2D score matrix increases quadratically
with the number of DPUs. Figure 19 shows weak scaling
results of (a) the complete execution of NW (including all
iterations) and (b) the execution of only the longest diagonal.

We make two observations from Figure 19. First, the
execution times on the DPUs for the complete execution
(Figure 19a) increase with the number of DPUs, since the size
of the problem (the 2D score matrix) increases quadratically.
We make the same observation in Section V-A2. Second,
the execution times on the DPUs for the longest diagonal
(Figure 19b) remain flat as the number of DPUs increases.
The reason is that the length of the longest diagonal increases
linearly with the length of the sequences and the number of
DPUs. As a result, we observe linear weak scaling for the
longest diagonal.

These results show (1) that a larger number of active DPUs
is more beneficial for NW in the computation of the longest
diagonals of the 2D score matrix, and (2) why we do not
observe linear scaling for the complete NW.

2) Image Histogram
We present results for different histogram sizes for our two
versions of histogram (HST-S, HST-L). Figure 20 shows the
execution time results for histogram sizes between 64 and
4096. The input is the one specified in Table 3, which is
an image of 12-bit depth (thus, maximum histogram size is
4096).

The results show that HST-S is 1.6−2.5× faster than HST-
L for histograms between 64 and 1024 bins. The performance
of HST-S gets worse when increasing the histogram size
because the number of tasklets that it is possible to run on a
DPU reduces. For example, for 512 bins, only 8 tasklets can
be launched because of the limited amount of WRAM (each
tasklet has its own local histogram). For 4046 bins, HST-S
can only launch 2 tasklets. After 2048 bins, HST-L performs
faster, as its execution time is independent of the histogram
size.

3) Reduction
We compare three versions of RED that we introduce in
Section IV-L. Recall that RED has two steps. In the first

34 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t
(M

O
PS

, l
og

 s
ca

le
)

#Tasklets

8
4
2
1
 1/2
 1/4
 1/8
 1/16
 1/32
 1/64
 1/128
 1/256
 1/512
 1/1024
 1/2048

(a) INT32, ADD (1 DPU)

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t
(M

O
PS

, l
og

 s
ca

le
)

#Tasklets

8
4
2
1
 1/2
 1/4
 1/8
 1/16
 1/32
 1/64
 1/128
 1/256
 1/512
 1/1024
 1/2048

(b) INT32, MUL (1 DPU)

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t
(M

O
PS

, l
og

 s
ca

le
)

#Tasklets

8
4
2
1
 1/2
 1/4
 1/8
 1/16
 1/32
 1/64
 1/128
 1/256
 1/512
 1/1024
 1/2048

(c) FLOAT, ADD (1 DPU)

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t
(M

O
PS

, l
og

 s
ca

le
)

#Tasklets

8
4
2
1
 1/2
 1/4
 1/8
 1/16
 1/32
 1/64
 1/128
 1/256
 1/512
 1/1024
 1/2048

(d) FLOAT, MUL (1 DPU)

Figure 18: Arithmetic throughput versus number of tasklets for different operational intensities of (a) 32-bit integer
addition, (b) 32-bit integer multiplication, (c) 32-bit floating point addition, and (d) 32-bit floating point multiplication.
The legend shows the operational intensity values (in OP/B). The y-axis is log scale.

0

50

100

150

200

250

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs(b)

DPU-CPU
CPU-DPU
Inter-DPU
DPU

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 4 16 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

#DPUs(a)

DPU-CPU
CPU-DPU
Inter-DPU
DPU

Figure 19: Weak scaling evaluation of NW: (a) complete
execution of NW, (b) execution of the longest diagonal.

step, each tasklet accumulates the values of an assigned
chunk of the input array. In the second step, RED performs
the final reduction of the local sums of all tasklets. The
difference between the three versions is in how the second
step is implemented. The first version uses a single tasklet to
perform a sequential reduction in the second step (SINGLE in
Figures 21 to 23). The other two versions implement a paral-
lel tree-based reduction in the second step (see Section IV-L).
The only difference between the other two versions is the
synchronization primitive used for synchronization at the end
of each tree level: (1) barriers for all tasklets (BARRIER in

0
100
200
300
400
500
600
700
800

64 128 256 512 1024 2048 4096

Ex
ec

ut
iio

n
Ti

m
e

(m
s)

Histogram size (bins)

HST-L HST-S

Figure 20: Execution times (ms) of two versions of his-
togram (HST-L, HST-S) on 1 DPU.

Figures 21 to 23), or (2) handshakes between pairs of tasklets
(HANDS in Figures 21 to 23). Figure 21 shows the number
of execution cycles needed to perform sequential (SINGLE)
or the parallel tree-based (BARRIER, HANDS) reduction for
2 to 16 tasklets on one DPU.

We observe that the most efficient of the three versions is
the sequential reduction (SINGLE). However, it is only a few
cycles faster (6% faster with 16 tasklets) that the tree-based
version with handshakes (HANDS). We also observe the
high cost of barriers when the number of tasklets increases.
These results indicate that synchronization primitives impose
high overhead in the current implementation of the UPMEM

VOLUME 4, 2016 35

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

288 528 304 576 1776 768 1072

4996

1392 2499

13760

2654

0

4000
8000

12000

16000

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

TREE TREE TREE TREE

2 4 8 16

Ex
ec

ut
io

n
Cy

cl
es

Reduction version (single tasklet, with barriers, with handshakes)
#Tasklets

Figure 21: Effect of sequential reduction (SINGLE) vs.
parallel tree-based reductions (BARRIER, HANDS), in
the second step of the RED benchmark.

PIM architecture. Nevertheless, the relative weight of the
final reduction is negligible when the input array is large.
Figure 22 shows the execution cycles of the three versions
for an input array of 2K 64-bit elements with 2-16 tasklets on
one DPU. The difference between the three versions is very
small, but we still observe that SINGLE is slightly faster (i.e.,
2% over HANDS, and 47% over BARRIER).

98200 98416 98265

50849 52011 51060
29196 32681 29412 23780

35036 24334

0.0E+00
2.0E+04
4.0E+04
6.0E+04
8.0E+04
1.0E+05
1.2E+05

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

TREE TREE TREE TREE

2 4 8 16

Ex
ec

ut
io

n
Cy

cl
es

Reduction version (single tasklet, with barriers, with handshakes)
#Tasklets

Figure 22: Execution cycles of three versions of reduction
of 2K 64-bit elements on 1 DPU.

For an array of 2M 64-bit elements (Figure 23), the dif-
ference in performance of the three versions is completely
negligible, since most of the execution cycles are spent in the
first step of RED.

9.9E+07 9.9E+07 9.9E+07

5.0E+07 5.0E+07 5.0E+07

2.5E+07 2.5E+07 2.5E+07 1.7E+07 1.7E+07 1.7E+07

0.0E+00
2.0E+07
4.0E+07
6.0E+07
8.0E+07
1.0E+08
1.2E+08

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

SI
NG

LE

BA
RR

IE
R

HA
N

D
S

TREE TREE TREE TREE

2 4 8 16

Ex
ec

ut
io

n
Cy

cl
es

Reduction version (single tasklet, with barriers, with handshakes)
#Tasklets

Figure 23: Execution cycles of three versions of reduction
of 2M 64-bit elements on 1 DPU.

4) Prefix Sum (Scan)
We compare the execution time of our two versions of scan,
SCAN-SSA and SCAN-RSS, for different array sizes (2048,

4096, 8192, 16384, 65536 elements) on the DPU. Figure 24
shows the execution time results. For both versions, the figure
shows the breakdown of DPU kernel times ("DPU Scan" +
"DPU Add" in SCAN-SSA, and "DPU Reduction" + "DPU
Scan" in SCAN-RSS) and the intermediate scan in the host
CPU ("Inter-DPU").

0

1

2

3

4

5

6

SSA RSS SSA RSS

16384 65536

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Scan version
Array size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

SSA RSS SSA RSS SSA RSS

2048 4096 8192

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Scan version
Array size

Inter-DPU
DPU Scan
DPU Add/Reduction

Figure 24: Two versions of scan (SCAN-SSA, SCAN-RSS)
on 1 DPU.

The main observation from these results is that SCAN-
SSA runs faster for small arrays (2048-8192). Scan kernel
time and Inter-DPU time are very similar in both SCAN-
SSA and SCAN-RSS, but the Add kernel is faster than the
Reduction kernel for small sizes. The reason is that the
Reduction kernel is burdened by the overhead of intra-DPU
synchronization (barrier) and the final reduction, where only
a single tasklet works. This overhead becomes negligible for
larger arrays. As a result, SCAN-RSS is faster for large arrays
(more than 16384 elements).

C. CPU AND GPU VERSIONS OF THE BENCHMARKS
Table 5 shows the sources of the CPU and GPU versions of
PrIM benchmarks, which we use for comparison purposes in
Section V-B. We provide these CPU and GPU versions as
part of our PrIM benchmark suite [214].

Table 5: CPU and GPU versions of PrIM benchmarks.
Benchmark CPU version GPU version
VA OpenMP (custom) CUDA SDK [282]
GEMV OpenMP (custom) CUDA (custom)
SpMV OpenMP (custom) CUDA (custom)
SEL DS algorithms [250] DS algorithms [250]
UNI DS algorithms [250] DS algorithms [250]
BS OpenMP (custom) CUDA (custom)
TS [254] [254]
BFS OpenMP (custom) CUDA [256]
NW Rodinia [302] Rodinia [302]
MLP OpenMP (custom) CUDA (custom)
HST Chai [287] Chai [287]
RED Thrust [283] Thrust [283]
SCAN Thrust [283] Thrust [283]
TRNS [270] [270]

36 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

ACKNOWLEDGMENTS
We thank UPMEM’s Fabrice Devaux, Rémy Cimadomo, Ro-
maric Jodin, and Vincent Palatin for their valuable support.
We acknowledge the support of SAFARI Research Group’s
industrial partners, especially ASML, Facebook, Google,
Huawei, Intel, Microsoft, VMware, Xilinx, the ETH Future
Computing Laboratory, and the Semiconductor Research
Corporation. Izzat El Hajj acknowledges the support of the
University Research Board of the American University of
Beirut (URB-AUB-103951-25960).

This article is a greatly extended version of [303], a
summary of our work presented at the 2021 12th Interna-
tional Green and Sustainable Computing Conference (IGSC).
This article is also a revised and updated version of the
paper placed on arXiv on September, 9th, 2021 [304]. Talk
videos for this work are available on YouTube, including a
3-minute talk video (https://youtu.be/SrFD_u46EDA), a 20-
minute talk video (https://youtu.be/Pp9jSU2b9oM), a 1-hour
talk video (https://youtu.be/6Ws3h_CQO_Q), and a long talk
video (https://youtu.be/D8Hjy2iU9l4).

References
[1] O. Mutlu et al., “Processing Data Where It Makes Sense: Enabling In-

Memory Computation,” MicPro, 2019.
[2] O. Mutlu et al., “A Modern Primer on Processing in Memory,” Emerging

Computing: From Devices to Systems - Looking Beyond Moore and Von
Neumann, 2021, https://arxiv.org/pdf/2012.03112.pdf.

[3] S. Ghose et al., “Processing-in-Memory: A Workload-Driven Perspec-
tive,” IBM JRD, 2019.

[4] S. Ghose et al., “A Workload and Programming Ease Driven Perspective
of Processing-in-Memory,” arXiv:1907.12947 [cs:AR], 2019.

[5] S. Ghose et al., “Enabling the Adoption of Processing-in-Memory: Chal-
lenges, Mechanisms, Future Research Directions,” arXiv:1802.00320
[cs:AR], 2018.

[6] O. Mutlu, “Processing Data Where It Makes Sense: Enabling In-Memory
Computation,” https://bit.ly/3IVpj0j, 2017, keynote talk at MST.

[7] O. Mutlu et al., “Enabling Practical Processing in and near Memory for
Data-Intensive Computing,” in DAC, 2019.

[8] A. Boroumand et al., “Google Workloads for Consumer Devices: Miti-
gating Data Movement Bottlenecks,” in ASPLOS, 2018.

[9] D. Pandiyan and C.-J. Wu, “Quantifying the Energy Cost of Data Move-
ment for Emerging Smart Phone Workloads on Mobile Platforms,” in
IISWC, 2014.

[10] G. Kestor et al., “Quantifying the Energy Cost of Data Movement in
Scientific Applications,” in IISWC, 2013.

[11] W. H. Kautz, “Cellular Logic-in-Memory Arrays,” IEEE TC, 1969.
[12] H. S. Stone, “A Logic-in-Memory Computer,” IEEE TC, 1970.
[13] D. E. Shaw et al., “The NON-VON Database Machine: A Brief

Overview,” IEEE Database Eng. Bull., 1981.
[14] P. M. Kogge, “EXECUBE - A New Architecture for Scaleable MPPs,” in

ICPP, 1994.
[15] M. Gokhale et al., “Processing in Memory: The Terasys Massively

Parallel PIM Array,” IEEE Computer, 1995.
[16] D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro, 1997.
[17] M. Oskin et al., “Active Pages: A Computation Model for Intelligent

Memory,” in ISCA, 1998.
[18] Y. Kang et al., “FlexRAM: Toward an Advanced Intelligent Memory

System,” in ICCD, 1999.
[19] K. Mai et al., “Smart Memories: A Modular Reconfigurable Architec-

ture,” in ISCA, 2000.
[20] J. Draper et al., “The Architecture of the DIVA Processing-in-Memory

Chip,” in SC, 2002.
[21] S. Aga et al., “Compute Caches,” in HPCA, 2017.
[22] C. Eckert et al., “Neural Cache: Bit-serial In-cache Acceleration of Deep

Neural Networks,” in ISCA, 2018.
[23] D. Fujiki et al., “Duality Cache for Data Parallel Acceleration,” in ISCA,

2019.

[24] M. Kang et al., “An Energy-Efficient VLSI Architecture for Pat-
tern Recognition via Deep Embedding of Computation in SRAM,” in
ICASSP, 2014.

[25] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise
Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[26] V. Seshadri et al., “Buddy-RAM: Improving the Performance and Ef-
ficiency of Bulk Bitwise Operations Using DRAM,” arXiv:1611.09988
[cs:AR], 2016.

[27] V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk
Data Copy and Initialization,” in MICRO, 2013.

[28] V. Seshadri et al., “RowClone: Accelerating Data Movement and Initial-
ization Using DRAM,” arXiv:1805.03502 [cs.AR], 2018.

[29] S. Angizi and D. Fan, “Graphide: A Graph Processing Accelerator
Leveraging In-dram-computing,” in GLSVLSI, 2019.

[30] J. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical
Unclonable Functions by Exploiting the Latency–Reliability Tradeoff in
Modern DRAM Devices,” in HPCA, 2018.

[31] J. Kim et al., “D-RaNGe: Using Commodity DRAM Devices to Generate
True Random Numbers with Low Latency and High Throughput,” in
HPCA, 2019.

[32] F. Gao et al., “ComputeDRAM: In-Memory Compute Using Off-the-
Shelf DRAMs,” in MICRO, 2019.

[33] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling
Fast Inter-Subarray Data Movement in DRAM,” in HPCA, 2016.

[34] X. Xin et al., “ELP2IM: Efficient and Low Power Bitwise Operation
Processing in DRAM,” in HPCA, 2020.

[35] S. Li et al., “DRISA: A DRAM-Based Reconfigurable In-Situ Accelera-
tor,” in MICRO, 2017.

[36] Q. Deng et al., “DrAcc: a DRAM Based Accelerator for Accurate CNN
Inference,” in DAC, 2018.

[37] N. Hajinazar et al., “SIMDRAM: A Framework for Bit-Serial SIMD
Processing Using DRAM,” in ASPLOS, 2021.

[38] S. H. S. Rezaei et al., “NoM: Network-on-Memory for Inter-Bank Data
Transfer in Highly-Banked Memories,” CAL, 2020.

[39] Y. Wang et al., “FIGARO: Improving System Performance via Fine-
Grained In-DRAM Data Relocation and Caching,” in MICRO, 2020.

[40] M. F. Ali et al., “In-Memory Low-Cost Bit-Serial Addition Using Com-
modity DRAM Technology,” in TCAS-I, 2019.

[41] S. Li et al., “Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-Volatile Memories,” in DAC, 2016.

[42] S. Angizi et al., “PIMA-Logic: A Novel Processing-in-Memory Archi-
tecture for Highly Flexible and Energy-efficient Logic Computation,” in
DAC, 2018.

[43] S. Angizi et al., “CMP-PIM: An Energy-efficient Comparator-based
Processing-in-Memory Neural Network Accelerator,” in DAC, 2018.

[44] S. Angizi et al., “AlignS: A Processing-in-Memory Accelerator for DNA
Short Read Alignment Leveraging SOT-MRAM,” in DAC, 2019.

[45] Y. Levy et al., “Logic Operations in Memory Using a Memristive Akers
Array,” Microelectronics Journal, 2014.

[46] S. Kvatinsky et al., “MAGIC—Memristor-Aided Logic,” IEEE TCAS II:
Express Briefs, 2014.

[47] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator
with In-situ Analog Arithmetic in Crossbars,” in ISCA, 2016.

[48] S. Kvatinsky et al., “Memristor-Based IMPLY Logic Design Procedure,”
in ICCD, 2011.

[49] S. Kvatinsky et al., “Memristor-Based Material Implication (IMPLY)
Logic: Design Principles and Methodologies,” TVLSI, 2014.

[50] P.-E. Gaillardon et al., “The Programmable Logic-in-Memory (PLiM)
Computer,” in DATE, 2016.

[51] D. Bhattacharjee et al., “ReVAMP: ReRAM based VLIW Architecture
for In-memory Computing,” in DATE, 2017.

[52] S. Hamdioui et al., “Memristor Based Computation-in-Memory Archi-
tecture for Data-intensive Applications,” in DATE, 2015.

[53] L. Xie et al., “Fast Boolean Logic Papped on Memristor Crossbar,” in
ICCD, 2015.

[54] S. Hamdioui et al., “Memristor for Computing: Myth or Reality?” in
DATE, 2017.

[55] J. Yu et al., “Memristive Devices for Computation-in-Memory,” in DATE,
2018.

[56] C. Giannoula et al., “SynCron: Efficient Synchronization Support for
Near-Data-Processing Architectures,” in HPCA, 2021.

[57] I. Fernandez et al., “NATSA: A Near-Data Processing Accelerator for
Time Series Analysis,” in ICCD, 2020.

VOLUME 4, 2016 37

https://youtu.be/SrFD_u46EDA
https://youtu.be/Pp9jSU2b9oM
https://youtu.be/6Ws3h_CQO_Q
https://youtu.be/D8Hjy2iU9l4
https://arxiv.org/pdf/2012.03112.pdf
https://bit.ly/3IVpj0j

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

[58] M. Alser et al., “Accelerating Genome Analysis: A Primer on an Ongoing
Journey,” IEEE Micro, 2020.

[59] D. S. Cali et al., “GenASM: A High-Performance, Low-Power Approx-
imate String Matching Acceleration Framework for Genome Sequence
Analysis,” in MICRO, 2020.

[60] J. S. Kim et al., “GRIM-Filter: Fast Seed Filtering in Read Mapping
Using Emerging Memory Technologies,” arXiv:1708.04329 [q-bio.GN],
2017.

[61] J. S. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA Read
Mapping Using Processing-in-Memory Technologies,” BMC Genomics,
2018.

[62] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-
Aware Processing-in-Memory Architecture,” in ISCA, 2015.

[63] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel
Graph Processing,” in ISCA, 2015.

[64] A. Boroumand et al., “CoNDA: Efficient Cache Coherence Support for
near-Data Accelerators,” in ISCA, 2019.

[65] A. Boroumand et al., “LazyPIM: An Efficient Cache Coherence Mecha-
nism for Processing-in-Memory,” CAL, 2016.

[66] A. Boroumand et al., “LazyPIM: Efficient Support for Cache Coherence
in Processing-in-Memory Architectures,” arXiv:1706.03162 [cs:AR],
2017.

[67] G. Singh et al., “NAPEL: Near-memory Computing Application Perfor-
mance Prediction via Ensemble Learning,” in DAC, 2019.

[68] H. Asghari-Moghaddam et al., “Chameleon: Versatile and Practical Near-
DRAM Acceleration Architecture for Large Memory Systems,” in MI-
CRO, 2016.

[69] O. O. Babarinsa and S. Idreos, “JAFAR: Near-Data Processing for
Databases,” in SIGMOD, 2015.

[70] P. Chi et al., “PRIME: A Novel Processing-In-Memory Architecture
for Neural Network Computation In ReRAM-Based Main Memory,” in
ISCA, 2016.

[71] A. Farmahini-Farahani et al., “NDA: Near-DRAM acceleration archi-
tecture leveraging commodity DRAM devices and standard memory
modules,” in HPCA, 2015.

[72] M. Gao et al., “Practical Near-Data Processing for In-Memory Analytics
Frameworks,” in PACT, 2015.

[73] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable
Logic for Near-Data Processing,” in HPCA, 2016.

[74] B. Gu et al., “Biscuit: A Framework for Near-Data Processing of Big
Data Workloads,” in ISCA, 2016.

[75] Q. Guo et al., “3D-Stacked Memory-Side Acceleration: Accelerator and
System Design,” in WoNDP, 2014.

[76] M. Hashemi et al., “Accelerating Dependent Cache Misses with an
Enhanced Memory Controller,” in ISCA, 2016.

[77] M. Hashemi et al., “Continuous Runahead: Transparent Hardware Accel-
eration for Memory Intensive Workloads,” in MICRO, 2016.

[78] K. Hsieh et al., “Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems,” in
ISCA, 2016.

[79] D. Kim et al., “Neurocube: A Programmable Digital Neuromorphic
Architecture with High-Density 3D Memory,” in ISCA, 2016.

[80] G. Kim et al., “Toward Standardized Near-Data Processing with Unre-
stricted Data Placement for GPUs,” in SC, 2017.

[81] J. H. Lee et al., “BSSync: Processing Near Memory for Machine Learn-
ing Workloads with Bounded Staleness Consistency Models,” in PACT,
2015.

[82] Z. Liu et al., “Concurrent Data Structures for Near-Memory Computing,”
in SPAA, 2017.

[83] A. Morad et al., “GP-SIMD Processing-in-Memory,” ACM TACO, 2015.
[84] L. Nai et al., “GraphPIM: Enabling Instruction-Level PIM Offloading in

Graph Computing Frameworks,” in HPCA, 2017.
[85] A. Pattnaik et al., “Scheduling Techniques for GPU Architectures with

Processing-in-Memory Capabilities,” in PACT, 2016.
[86] S. H. Pugsley et al., “NDC: Analyzing the Impact of 3D-Stacked Mem-

ory+Logic Devices on MapReduce Workloads,” in ISPASS, 2014.
[87] D. P. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable

Processing in Memory,” in HPDC, 2014.
[88] Q. Zhu et al., “Accelerating Sparse Matrix-Matrix Multiplication with

3D-Stacked Logic-in-Memory Hardware,” in HPEC, 2013.
[89] B. Akin et al., “Data Reorganization in Memory Using 3D-Stacked

DRAM,” in ISCA, 2015.
[90] M. Gao et al., “Tetris: Scalable and Efficient Neural Network Accelera-

tion with 3D Memory,” in ASPLOS, 2017.

[91] M. Drumond et al., “The Mondrian Data Engine,” in ISCA, 2017.
[92] G. Dai et al., “GraphH: A Processing-in-Memory Architecture for Large-

scale Graph Processing,” IEEE TCAD, 2018.
[93] M. Zhang et al., “GraphP: Reducing Communication for PIM-based

Graph Processing with Efficient Data Partition,” in HPCA, 2018.
[94] Y. Huang et al., “A Heterogeneous PIM Hardware-Software Co-Design

for Energy-Efficient Graph Processing,” in IPDPS, 2020.
[95] Y. Zhuo et al., “GraphQ: Scalable PIM-based Graph Processing,” in

MICRO, 2019.
[96] P. C. Santos et al., “Operand Size Reconfiguration for Big Data Process-

ing in Memory,” in DATE, 2017.
[97] W.-M. Hwu et al., “Rebooting the Data Access Hierarchy of Computing

Systems,” in ICRC, 2017.
[98] M. Besta et al., “SISA: Set-Centric Instruction Set Architecture for Graph

Mining on Processing-in-Memory Systems,” in MICRO, 2021.
[99] J. D. Ferreira et al., “pLUTo: In-DRAM Lookup Tables to Enable

Massively Parallel General-Purpose Computation,” arXiv:2104.07699
[cs.AR], 2021.

[100] A. Olgun et al., “QUAC-TRNG: High-Throughput True Random
Number Generation Using Quadruple Row Activation in Commodity
DRAMs,” in ISCA, 2021.

[101] S. Lloyd and M. Gokhale, “In-memory Data Rearrangement for Irregular,
Data-intensive Computing,” Computer, 2015.

[102] D. G. Elliott et al., “Computational RAM: Implementing Processors in
Memory,” IEEE Design & Test of Computers, 1999.

[103] L. Zheng et al., “RRAM-based TCAMs for pattern search,” in ISCAS,
2016.

[104] J. Landgraf et al., “Combining Emulation and Simulation to Evaluate a
Near Memory Key/Value Lookup Accelerator,” 2021.

[105] A. Rodrigues et al., “Towards a Scatter-Gather Architecture: Hardware
and Software Issues,” in MEMSYS, 2019.

[106] S. Lloyd and M. Gokhale, “Design Space Exploration of Near Memory
Accelerators,” in MEMSYS, 2018.

[107] S. Lloyd and M. Gokhale, “Near Memory Key/Value Lookup Accelera-
tion,” in MEMSYS, 2017.

[108] M. Gokhale et al., “Near Memory Data Structure Rearrangement,” in
MEMSYS, 2015.

[109] R. Nair et al., “Active Memory Cube: A Processing-in-Memory Archi-
tecture for Exascale Systems,” IBM JRD, 2015.

[110] A. C. Jacob et al., “Compiling for the Active Memory Cube,” Tech. rep.
RC25644 (WAT1612-008). IBM Research Division, Tech. Rep., 2016.

[111] Z. Sura et al., “Data Access Optimization in a Processing-in-Memory
System,” in CF, 2015.

[112] R. Nair, “Evolution of Memory Architecture,” Proceedings of the IEEE,
2015.

[113] R. Balasubramonian et al., “Near-Data Processing: Insights from a
MICRO-46 Workshop,” IEEE Micro, 2014.

[114] Y. Xi et al., “In-Memory Learning With Analog Resistive Switching
Memory: A Review and Perspective,” Proceedings of the IEEE, 2020.

[115] Onur Mutlu and Juan Gómez-Luna, “Exploring the Processing-in-
Memory Paradigm for Future Computing Systems (Fall 2021),”
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=
processing_in_memory.

[116] Onur Mutlu, “Computer Architecture (Fall 2021),” https://safari.ethz.ch/
architecture/fall2021/doku.php?id=start.

[117] Onur Mutlu and Mohammed Alser and Juan Gómez-Luna, “Seminar in
Computer Architecture (Fall 2021),” https://safari.ethz.ch/architecture_
seminar/spring2022/doku.php?id=start.

[118] L. Yavits et al., “GIRAF: General Purpose In-Storage Resistive Associa-
tive Framework,” IEEE TPDS, 2021.

[119] A. Olgun et al., “PiDRAM: A Holistic End-to-end FPGA-based Frame-
work for Processing-in-DRAM,” arXiv preprint arXiv:2111.00082, 2021.

[120] S. Lee et al., “A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based
Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Var-
ious Activation Functions for Deep-Learning Applications,” in ISSCC,
2022.

[121] L. Ke et al., “Near-Memory Processing in Action: Accelerating Person-
alized Recommendation with AxDIMM,” IEEE Micro, 2021.

[122] Y.-C. Kwon et al., “25.4 A 20nm 6GB Function-In-Memory DRAM,
Based on HBM2 with a 1.2 TFLOPS Programmable Computing Unit
Using Bank-Level Parallelism, for Machine Learning Applications,” in
ISSCC, 2021.

[123] S. Lee et al., “Hardware Architecture and Software Stack for PIM Based
on Commercial DRAM Technology: Industrial Product,” in ISCA, 2021.

38 VOLUME 4, 2016

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=start
https://safari.ethz.ch/architecture/fall2021/doku.php?id=start
https://safari.ethz.ch/architecture_seminar/spring2022/doku.php?id=start
https://safari.ethz.ch/architecture_seminar/spring2022/doku.php?id=start

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

[124] B. Asgari et al., “FAFNIR: Accelerating Sparse Gathering by Using
Efficient Near-Memory Intelligent Reduction,” in HPCA, 2021.

[125] J. M. Herruzo et al., “Enabling Fast and Energy-Efficient FM-Index Exact
Matching Using Processing-Near-Memory,” The Journal of Supercom-
puting, 2021.

[126] G. Singh et al., “Fpga-based Near-memory Acceleration of Modern Data-
intensive Applications,” IEEE Micro, 2021.

[127] G. Singh et al., “Accelerating Weather Prediction using Near-Memory
Reconfigurable Fabric,” ACM TRETS, 2021.

[128] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark
Suite for Evaluating Data Movement Bottlenecks,” IEEE Access, 2021.

[129] A. Boroumand et al., “Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks,” in
PACT, 2021.

[130] A. Boroumand et al., “Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks,”
arXiv preprint arXiv:2109.14320, 2021.

[131] A. Denzler et al., “Casper: Accelerating stencil computation using near-
cache processing,” arXiv preprint arXiv:2112.14216, 2021.

[132] U. Kang et al., “Co-Architecting Controllers and DRAM to Enhance
DRAM Process Scaling,” in The Memory Forum, 2014.

[133] J. Liu et al., “An Experimental Study of Data Retention Behavior
in Modern DRAM Devices: Implications for Retention Time Profiling
Mechanisms,” in ISCA, 2013.

[134] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” IMW,
2013.

[135] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014.

[136] O. Mutlu, “The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser,” in DATE, 2017.

[137] S. Ghose et al., “What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study,” in SIGMETRICS, 2018.

[138] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in
Memory Systems,” SUPERFRI, 2014.

[139] J. S. Kim et al., “Revisiting RowHammer: An Experimental Analysis of
Modern DRAM Devices and Mitigation Techniques,” in ISCA, 2020.

[140] O. Mutlu and J. S. Kim, “RowHammer: A Retrospective,” IEEE TCAD,
2019.

[141] P. Frigo et al., “TRRespass: Exploiting the Many Sides of Target Row
Refresh,” in S&P, 2020.

[142] J. Kim et al., “Solar-DRAM: Reducing DRAM Access Latency by
Exploiting the Variation in Local Bitlines,” in ICCD, 2018.

[143] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in
ISCA, 2012.

[144] O. Mutlu, “Main Memory Scaling: Challenges and Solution Directions,”
in More than Moore Technologies for Next Generation Computer Design.
Springer, 2015.

[145] J. A. Mandelman et al., “Challenges and Future Directions for the Scaling
of Dynamic Random-Access Memory (DRAM),” IBM JRD, 2002.

[146] B. C. Lee et al., “Architecting Phase Change Memory as a Scalable
DRAM Alternative,” in ISCA, 2009.

[147] L. Cojocar et al., “Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers,” in S&P, 2020.

[148] A. G. Yağlikçi et al., “BlockHammer: Preventing RowHammer at Low
Cost by Blacklisting Rapidly-Accessed DRAM Rows,” in HPCA, 2021.

[149] M. Patel et al., “The Reach Profiler (REAPER): Enabling the Mitigation
of DRAM Retention Failures via Profiling at Aggressive Conditions,” in
ISCA, 2017.

[150] S. Khan et al., “The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study,” in SIGMET-
RICS, 2014.

[151] S. Khan et al., “PARBOR: An Efficient System-Level Technique to
Detect Data Dependent Failures in DRAM,” in DSN, 2016.

[152] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Fail-
ures by Exploiting Current Memory Content,” in MICRO, 2017.

[153] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case,” in HPCA, 2015.

[154] D. Lee et al., “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,”
in SIGMETRICS, 2017.

[155] K. K. Chang et al., “Understanding Reduced-Voltage Operation in
Modern DRAM Devices: Experimental Characterization, Analysis, and
Mechanisms,” in SIGMETRICS, 2017.

[156] K. K. Chang et al., “Understanding Latency Variation in Modern DRAM
Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[157] K. K. Chang et al., “Improving DRAM Performance by Parallelizing
Refreshes with Accesses,” in HPCA, 2014.

[158] J. Meza et al., “Revisiting Memory Errors in Large-Scale Production
Data Centers: Analysis and Modeling of New Trends from the Field,”
in DSN, 2015.

[159] H. David et al., “Memory Power Management via Dynamic Voltage/Fre-
quency Scaling,” in ICAC, 2011.

[160] Q. Deng et al., “Memscale: Active Low-power Modes for Main Mem-
ory,” in ASPLOS, 2011.

[161] S. Hong, “Memory Technology Trend and Future Challenges,” in IEDM,
2010.

[162] S. Kanev et al., “Profiling a Warehouse-Scale Computer,” in ISCA, 2015.
[163] M. K. Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT)

Aware Refresh for DRAM Systems,” in DSN, 2015.
[164] L. Orosa et al., “A Deeper Look into RowHammer’s Sensitivities: Ex-

perimental Analysis of Real DRAM Chips and Implications on Future
Attacks and Defenses,” in MICRO, 2021.

[165] H. Hassan et al., “Uncovering In-DRAM RowHammer Protection Mech-
anisms: A New Methodology, Custom RowHammer Patterns, and Impli-
cations,” in MICRO, 2021.

[166] M. Patel et al., “Harp: Practically and effectively identifying uncor-
rectable errors in memory chips that use on-die error-correcting codes,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 623–640.

[167] Hybrid Memory Cube Consortium, “HMC Specification 2.0,” 2014.
[168] JEDEC, “High Bandwidth Memory (HBM) DRAM,” Standard No.

JESD235, 2013.
[169] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-Stacked

Memory Bandwidth at Low Cost,” TACO, 2016.
[170] S. Ghose et al., “Demystifying Complex Workload-DRAM Interactions:

An Experimental Study,” in SIGMETRICS, 2019.
[171] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,”

CAL, 2015.
[172] M. Gokhale et al., “Hybrid Memory Cube Performance Characterization

on Data-Centric Workloads,” in IA3, 2015.
[173] E. Kültürsay et al., “Evaluating STT-RAM as an Energy-Efficient Main

Memory Alternative,” in ISPASS, 2013.
[174] D. B. Strukov et al., “The Missing Memristor Found,” Nature, 2008.
[175] H.-S. P. Wong et al., “Metal-Oxide RRAM,” Proc. IEEE, 2012.
[176] B. C. Lee et al., “Phase Change Memory Architecture and the Quest for

Scalability,” CACM, 2010.
[177] M. K. Qureshi et al., “Scalable High Performance Main Memory System

Using Phase-Change Memory Technology,” in ISCA, 2009.
[178] P. Zhou et al., “A Durable and Energy Efficient Main Memory Using

Phase Change Memory Technology,” in ISCA, 2009.
[179] B. C. Lee et al., “Phase-Change Technology and the Future of Main

Memory,” IEEE Micro, 2010.
[180] H.-S. P. Wong et al., “Phase Change Memory,” Proc. IEEE, 2010.
[181] H. Yoon et al., “Efficient Data Mapping and Buffering Techniques for

Multilevel Cell Phase-Change Memories,” ACM TACO, 2014.
[182] H. Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid

Memories,” in ICCD, 2012.
[183] P. Girard et al., “A Survey of Test and Reliability Solutions for Magnetic

Random Access Memories,” Proceedings of the IEEE, 2020.
[184] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark

Suite for Evaluating Data Movement Bottlenecks,” arXiv:2105.03725
[cs.AR], 2021.

[185] K. Hsieh et al., “Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation,” in ICCD, 2016.

[186] G. Singh et al., “NERO: A Near High-Bandwidth Memory Stencil
Accelerator for Weather Prediction Modeling,” in FPL, 2020.

[187] R. Hadidi et al., “CAIRO: A Compiler-assisted Technique for Enabling
Instruction-level Offloading of Processing-in-Memory,” ACM TACO,
vol. 14, 2017.

[188] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”
arXiv:1905.09822 [cs.AR], 2020.

[189] V. Seshadri and O. Mutlu, “The Processing Using Memory Paradigm:
In-DRAM Bulk Copy, Initialization, Bitwise AND and OR,”
arXiv:1610.09603 [cs:AR], 2016.

[190] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce Data
Movement,” in Advances in Computers, Volume 106, 2017.

VOLUME 4, 2016 39

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

[191] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” CAL,
2015.

[192] A. Ankit et al., “PUMA: A Programmable Ultra-Efficient Memristor-
Based Accelerator for Machine Learning Inference,” in ASPLOS, 2019.

[193] A. Ankit et al., “PANTHER: A Programmable Architecture for Neu-
ral Network Training Harnessing Energy-efficient ReRAM,” IEEE TC,
2020.

[194] J. Ambrosi et al., “Hardware-software Co-design for an Analog-digital
Accelerator for Machine Learning,” in ICRC, 2018.

[195] P. Bruel et al., “Generalize or Die: Operating Systems Support for
Memristor-based Accelerators,” in ICRC, 2017.

[196] S. Huang et al., “Mixed Precision Quantization for ReRAM-based DNN
Inference Accelerators,” in ASP-DAC, 2021.

[197] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP)
in DRAM,” in ISCA, 2012.

[198] UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM)
on DRAM Accelerator (White Paper),” 2018.

[199] F. Devaux, “The True Processing In Memory Accelerator,” in Hot Chips,
2019.

[200] D. Weber et al., “Current and Future Challenges of DRAM Metalliza-
tion,” in IITC, 2005.

[201] Y. Peng et al., “Design, Packaging, and Architectural Policy Co-
optimization for DC Power Integrity in 3D DRAM,” in DAC, 2015.

[202] M. Yuffe et al., “A Fully Integrated Multi-CPU, GPU and Memory
Controller 32nm processor,” in ISSCC, 2011.

[203] R. Christy et al., “8.3 A 3GHz ARM Neoverse N1 CPU in 7nm FinFET
for Infrastructure Applications,” in ISSCC, 2020.

[204] T. Singh et al., “3.2 Zen: A Next-generation High-performance x86
Core,” in ISSCC, 2017.

[205] O. Mutlu, “Lecture 18c: Fine-Grained Multithreading,”
https://safari.ethz.ch/digitaltechnik/spring2020/lib/exe/fetch.php?
media=onur-digitaldesign-2020-lecture18c-fgmt-beforelecture.pptx,
video available at http://www.youtube.com/watch?v=bu5dxKTvQVs,
2020, Digital Design and Computer Architecture. Spring 2020.

[206] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quantita-
tive Approach, 5th Edition, Chapter 3: Instruction-level Parallelism and
Its Exploitation. Morgan Kaufmann, 2012.

[207] B. J. Smith, “A Pipelined, Shared Resource MIMD Computer,” in ICPP,
1978.

[208] B. J. Smith, “Architecture and Applications of the HEP Multiprocessor
Computer System,” in SPIE, Real-Time signal processing IV, 1981.

[209] J. E. Thornton, CDC 6600: Design of a Computer, 1970.
[210] O. Mutlu, “Lecture 19: SIMD Processors,” https://safari.

ethz.ch/digitaltechnik/spring2020/lib/exe/fetch.php?media=
onur-digitaldesign-2020-lecture19-simd-beforelecture.pptx, video
available at http://www.youtube.com/watch?v=2XZ3ik6xSzM, 2020,
Digital Design and Computer Architecture. Spring 2020.

[211] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quantita-
tive Approach, 5th Edition, Chapter 4: Data-level Parallelism in Vector,
SIMD, and GPU Architectures. Morgan Kaufmann, 2012.

[212] M. J. Flynn, “Very High-speed Computing Systems,” Proc. IEEE, 1966.
[213] UPMEM, “UPMEM User Manual. Version 2021.1.0,” 2021.
[214] SAFARI Research Group, “PrIM Benchmark Suite,”

https://github.com/CMU-SAFARI/prim-benchmarks.
[215] S. Williams et al., “Roofline: An Insightful Visual Performance Model

for Multicore Architectures,” CACM, 2009.
[216] G. Hager and G. Wellein, Introduction to High Performance Computing

for Scientists and Engineers, Chapter 5: Basics of Parallelization. CRC
Press, 2010.

[217] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving
Large Scale,” in AFIPS, 1967.

[218] J. L. Gustafson, “Reevaluating Amdahl’s Law,” CACM, 1988.
[219] A. Saini, “Design of the Intel Pentium Processor,” in ICCD, 1993.
[220] D. Jaggar, “ARM Architecture and Systems,” IEEE Annals of the History

of Computing, 1997.
[221] A. S. Waterman, “Design of the RISC-V Instruction Set Architecture,”

Ph.D. dissertation, UC Berkeley, 2016.
[222] Y. Kim and O. Mutlu, Computing Handbook: Computer Science and

Software Engineering, 3rd Edition, Chapter 1: Memory Systems. CRC
Press, 2014.

[223] O. Mutlu, “Lecture 2b: Data Retention and Memory Refresh,” https:
//bit.ly/3KhVgAq, video available at http://www.youtube.com/watch?v=
v702wUnaWGE, 2020, Computer Architecture. Fall 2020.

[224] O. Mutlu, “Lecture 3b: Memory Systems: Challenges and Opportuni-
ties,” https://bit.ly/3sQIfYu, video available at http://www.youtube.com/
watch?v=Q2FbUxD7GHs, 2020, Computer Architecture. Fall 2020.

[225] O. Mutlu, “Lecture 4a: Memory Systems: Solution Directions,”
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=
onur-comparch-fall2020-lecture4a-memory-solutions-afterlecture.pptx,
video available at http://www.youtube.com/watch?v=PANTCVTYe8M,
2020, Computer Architecture. Fall 2020.

[226] JEDEC, “JESD79-4 DDR4 SDRAM standard,” 2012.
[227] UPMEM, “UPMEM Website,” https://www.upmem.com, 2020.
[228] V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address Transla-

tion to Improve the Spatial Locality of Non-Unit Strided Accesses,” in
MICRO, 2015.

[229] Intel, “Intel Xeon Silver 4215 Processor,” https:
//ark.intel.com/content/www/us/en/ark/products/193389/
intel-xeon-silver-4215-processor-11m-cache-2-50-ghz.html, 2019.

[230] Intel, “Intel Xeon Silver 4110 Processor,” https:
//ark.intel.com/content/www/us/en/ark/products/123547/
intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html, 2017.

[231] R. Jodin and R. Cimadomo, “UPMEM. Personal Communication,” Octo-
ber 2020.

[232] O. Mutlu, “Lecture 20: Graphics Processing Units,” https:
//safari.ethz.ch/digitaltechnik/spring2020/lib/exe/fetch.php?media=
onur-digitaldesign-2020-lecture20-gpu-beforelecture.pptx, video
available at http://www.youtube.com/watch?v=dg0VN-XCGKQ, 2020,
Digital Design and Computer Architecture. Spring 2020.

[233] T. Rauber and G. Rünger, Parallel Programming, 2nd Edition, Chapter
3: Parallel Programming Models. Springer, 2013.

[234] UPMEM, “UPMEM Software Development Kit (SDK).” https://sdk.
upmem.com, 2021.

[235] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in CGO, 2004.

[236] UPMEM, “Compiler Explorer,” https://dpu.dev, 2020.
[237] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current

High Performance Computers,” IEEE TCCA newsletter, 1995.
[238] LLVM, “Compiler-RT, LLVM project,” https://github.com/llvm/

llvm-project/tree/main/compiler-rt/lib/builtins, 2021.
[239] P. R. Luszczek et al., “The HPC Challenge (HPCC) Benchmark Suite,”

in SC, 2006.
[240] Intel, “Intel Advanced Vector Extensions Programming Reference,”

2011.
[241] Intel, “Intel Xeon Processor E3-1225 v6,” https:

//ark.intel.com/content/www/us/en/ark/products/97476/
intel-xeon-processor-e3-1225-v6-8m-cache-3-30-ghz.html, 2017.

[242] Intel, “Intel Advisor,” 2020.
[243] L. S. Blackford et al., “An Updated Set of Basic Linear Algebra Subpro-

grams (BLAS),” ACM TOMS, 2002.
[244] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition,

Chapter 1: Parallel Implementations. SIAM, 2003.
[245] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition,

Chapter 3: Sparse Matrices. SIAM, 2003.
[246] W. Liu and B. Vinter, “CSR5: An Efficient Storage Format for Cross-

platform Sparse Matrix-vector Multiplication,” in ICS, 2015.
[247] K. Kanellopoulos et al., “SMASH: Co-designing Software Compression

and Hardware-Accelerated Indexing for Efficient Sparse Matrix Opera-
tions,” in MICRO, 2019.

[248] S. Ceri and G. Gottlob, “Translating SQL into Relational Algebra:
Optimization, Semantics, and Equivalence of SQL Queries,” IEEE TSE,
1985.

[249] G. E. Blelloch, “Scans as Primitive Parallel Operations,” IEEE TC, 1989.
[250] J. Gómez-Luna et al., “In-Place Data Sliding Algorithms for Many-Core

Architectures,” in ICPP, 2015.
[251] S. Yan et al., “StreamScan: Fast Scan Algorithms for GPUs without

Global Barrier Synchronization,” in PPoPP, 2013.
[252] D. E. Knuth, “Optimum Binary Search Trees,” Acta informatica, 1971.
[253] C.-C. M. Yeh et al., “Matrix profile I: All Pairs Similarity Joins for Time

Series: a Unifying View that Includes Motifs, Discords and Shapelets,”
in ICDM, 2016.

[254] Y. Zhu et al., “Matrix Profile XI: SCRIMP++: Time Series Motif Discov-
ery at Interactive Speeds,” in ICDM, 2018.

[255] A. Bundy and L. Wallen, “Breadth-first Search,” in Catalogue of Artificial
Intelligence Tools. Springer, 1984.

40 VOLUME 4, 2016

https://safari.ethz.ch/digitaltechnik/spring2020/lib/exe/fetch.php?media=onur-digitaldesign-2020-lecture18c-fgmt-beforelecture.pptx
https://safari.ethz.ch/digitaltechnik/spring2020/lib/exe/fetch.php?media=onur-digitaldesign-2020-lecture18c-fgmt-beforelecture.pptx
http://www.youtube.com/watch?v=bu5dxKTvQVs
https://safari.ethz.ch/digitaltechnik/spring2020/lib/exe/fetch.php?media=onur-digitaldesign-2020-lecture19-simd-beforelecture.pptx
https://safari.ethz.ch/digitaltechnik/spring2020/lib/exe/fetch.php?media=onur-digitaldesign-2020-lecture19-simd-beforelecture.pptx
https://safari.ethz.ch/digitaltechnik/spring2020/lib/exe/fetch.php?media=onur-digitaldesign-2020-lecture19-simd-beforelecture.pptx
http://www.youtube.com/watch?v=2XZ3ik6xSzM
https://bit.ly/3KhVgAq
https://bit.ly/3KhVgAq
http://www.youtube.com/watch?v=v702wUnaWGE
http://www.youtube.com/watch?v=v702wUnaWGE
https://bit.ly/3sQIfYu
http://www.youtube.com/watch?v=Q2FbUxD7GHs
http://www.youtube.com/watch?v=Q2FbUxD7GHs
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture4a-memory-solutions-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture4a-memory-solutions-afterlecture.pptx
http://www.youtube.com/watch?v=PANTCVTYe8M
https://www.upmem.com
https://ark.intel.com/content/www/us/en/ark/products/193389/intel-xeon-silver-4215-processor-11m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/193389/intel-xeon-silver-4215-processor-11m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/193389/intel-xeon-silver-4215-processor-11m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html
https://safari.ethz.ch/digitaltechnik/spring2020/lib/exe/fetch.php?media=onur-digitaldesign-2020-lecture20-gpu-beforelecture.pptx
https://safari.ethz.ch/digitaltechnik/spring2020/lib/exe/fetch.php?media=onur-digitaldesign-2020-lecture20-gpu-beforelecture.pptx
https://safari.ethz.ch/digitaltechnik/spring2020/lib/exe/fetch.php?media=onur-digitaldesign-2020-lecture20-gpu-beforelecture.pptx
http://www.youtube.com/watch?v=dg0VN-XCGKQ
https://sdk.upmem.com
https://sdk.upmem.com
https://dpu.dev
https://github.com/llvm/llvm-project/tree/main/compiler-rt/lib/builtins
https://github.com/llvm/llvm-project/tree/main/compiler-rt/lib/builtins
https://ark.intel.com/content/www/us/en/ark/products/97476/intel-xeon-processor-e3-1225-v6-8m-cache-3-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/97476/intel-xeon-processor-e3-1225-v6-8m-cache-3-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/97476/intel-xeon-processor-e3-1225-v6-8m-cache-3-30-ghz.html

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

[256] D. B. Kirk et al., Programming Massively Parallel Processors, 3rd Edi-
tion, Chapter 12 - Parallel Patterns: Graph Search. Morgan Kaufmann,
2017.

[257] L. Luo et al., “An Effective GPU Implementation of Breadth-first
Search,” in DAC, 2010.

[258] G. E. Hinton, “Learning Translation Invariant Recognition in a Massively
Parallel Networks,” in PARLE, 1987.

[259] S. Needleman and C. Wunsch, “A General Method Applicable to the
Search for Similarities in the Amino Acid Sequence of Two Proteins,”
Journal of Molecular Biology, 1970.

[260] J. Gómez-Luna et al., “An Optimized Approach to Histogram Computa-
tion on GPU,” MVAP, 2013.

[261] R. Rabenseifner, “Optimization of Collective Reduction Operations,” in
ICCS, 2004.

[262] M. Harris, “Optimizing Parallel Reduction in CUDA,” Nvidia Developer
Technology, 2007.

[263] S. G. De Gonzalo et al., “Automatic Generation of Warp-level Primitives
and Atomic Instructions for Fast and Portable Parallel Reduction on
GPUs,” in CGO, 2019.

[264] D. B. Kirk et al., Programming Massively Parallel Processors, 3rd
Edition, Chapter 8 - Parallel Patterns: Prefix Sum: An Introduction to
Work Efficiency in Parallel Algorithms. Morgan Kaufmann, 2017.

[265] S. Sengupta et al., “Efficient Parallel Scan Algorithms for GPUs,”
NVIDIA Technical Report NVR-2008-003, 2008.

[266] Y. Dotsenko et al., “Fast Scan Algorithms on Graphics Processors,” in
ICS, 2008.

[267] A. Cayley, “II. A Memoir on the Theory of Matrices,” Philosophical
Transactions of the Royal Society of London, 1858.

[268] T. W. Hungerford, Abstract Algebra: An Introduction, 3rd Edition. Cen-
gage Learning, 2012.

[269] I.-J. Sung et al., “In-place Transposition of Rectangular Matrices on
Accelerators,” in PPoPP, 2014.

[270] J. Gomez-Luna et al., “In-place Matrix Transposition on GPUs,” IEEE
TPDS, 2016.

[271] I.-J. Sung et al., “DL: A Data Layout Transformation System for Hetero-
geneous Computing,” in Innovative Parallel Computing, 2012.

[272] J. Gómez-Luna et al., “Performance Modeling of Atomic Additions on
GPU Scratchpad Memory,” IEEE TPDS, 2013.

[273] R. F. Boisvert et al., “Matrix Market: A Web Resource for Test Matrix
Collections,” in Quality of Numerical Software, 1996.

[274] E. Cho et al., “Friendship and Mobility: User Movement in Location-
Based Social Networks,” in KDD, 2011.

[275] D. Chakrabarti et al., “R-MAT: A Recursive Model for Graph Mining,”
in SDM, 2004.

[276] J. H. van Hateren and A. van der Schaaf, “Independent Component
Filters of Natural Images Compared with Simple Cells in Primary Visual
Cortex,” Proceedings of the Royal Society of London. Series B: Biological
Sciences, 1998.

[277] NVIDIA, “NVIDIA Titan V,” https://www.nvidia.com/en-us/titan/
titan-v/, 2017.

[278] NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White
Paper,” https://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf, 2017.

[279] Intel Open Source, “RAPL Power Meter,” https://01.org/
rapl-power-meter, 2014.

[280] NVIDIA, “NVIDIA System Management Interface Program,”
http://developer.download.nvidia.com/compute/DCGM/docs/
nvidia-smi-367.38.pdf, 2016.

[281] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual,”
Volume 3B: System Programming Guide, 2011.

[282] NVIDIA, “CUDA Samples v. 11.2,” 2021.
[283] N. Bell and J. Hoberock, “Thrust: A Productivity-Oriented Library for

CUDA,” in GPU Computing Gems, Jade Edition, 2012.
[284] G.-J. van den Braak et al., “Simulation and Architecture Improvements

of Atomic Operations on GPU Scratchpad Memory,” in ICCD, 2013.
[285] D. Merrill and NVIDIA-Labs, “CUDA Unbound (CUB) Library,”

NVIDIA-Labs, 2015.
[286] B. Catanzaro et al., “A Decomposition for In-place Matrix Transposi-

tion,” in PPoPP, 2014.
[287] J. Gómez-Luna et al., “Chai: Collaborative Heterogeneous Applications

for Integrated-architectures,” in ISPASS, 2017.
[288] V. Seshadri, “Simple DRAM and Virtual Memory Abstractions to Enable

Highly Efficient Memory Systems,” Ph.D. dissertation, Carnegie Mellon
University, 2016.

[289] L. Song et al., “GraphR: Accelerating Graph Processing using ReRAM,”
in HPCA, 2018.

[290] A. Boroumand et al., “Polynesia: Enabling Effective Hybrid Trans-
actional/Analytical Databases with Specialized Hardware/Software Co-
Design,” arXiv:2103.00798 [cs.AR], 2021.

[291] A. Boroumand et al., “Mitigating Edge Machine Learning Inference
Bottlenecks: An Empirical Study on Accelerating Google Edge Models,”
arXiv:2103.00768 [cs.AR], 2021.

[292] M. A. Alves et al., “Opportunities and Challenges of Performing Vector
Operations inside the DRAM,” in MEMSYS, 2015.

[293] W. Huangfu et al., “MEDAL: Scalable DIMM Based Near Data Process-
ing Accelerator for DNA Seeding Algorithm,” in MICRO, 2019.

[294] N. Hajinazar et al., “The Virtual Block Interface: A Flexible Alternative
to the Conventional Virtual Memory Framework,” in ISCA, 2020.

[295] D. Lavenier et al., “DNA Mapping using Processor-in-Memory Architec-
ture,” in BIBM, 2016.

[296] D. Lavenier et al., “Variant Calling Parallelization on Processor-in-
Memory Architecture,” in BIBM, 2020.

[297] V. Zois et al., “Massively Parallel Skyline Computation for Processing-
in-Memory Architectures,” in PACT, 2018.

[298] J. Nider et al., “Processing in Storage Class Memory,” in HotStorage,
2020.

[299] C. Giannoula et al., “SparseP: Towards Efficient Sparse Matrix Vector
Multiplication on Real Processing-In-Memory Systems,” arXiv preprint
arXiv:2201.05072, 2022.

[300] H. Shin et al., “McDRAM: Low latency and energy-efficient matrix
computations in DRAM,” IEEE TCADICS, 2018.

[301] S. Cho et al., “McDRAM v2: In-Dynamic Random Access Memory
Systolic Array Accelerator to Address the Large Model Problem in Deep
Neural Networks on the Edge,” IEEE Access, 2020.

[302] S. Che et al., “Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing,” in IISWC, 2009.

[303] J. Gómez-Luna et al., “Benchmarking Memory-Centric Computing Sys-
tems: Analysis of Real Processing-in-Memory Hardware,” in IGSC,
2021.

[304] J. Gómez-Luna et al., “Benchmarking a New Paradigm: An Ex-
perimental Analysis of a Real Processing-in-Memory Architecture,”
arXiv:2105.03814 [cs.AR], 2021.

VOLUME 4, 2016 41

https://www.nvidia.com/en-us/titan/titan-v/
https://www.nvidia.com/en-us/titan/titan-v/
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://01.org/rapl-power-meter
https://01.org/rapl-power-meter
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174101, IEEE Access

J. Gómez-Luna et al.: Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

JUAN GÓMEZ-LUNA is a senior researcher
and lecturer at SAFARI Research Group @ ETH
Zürich. He received the BS and MS degrees in
Telecommunication Engineering from the Uni-
versity of Sevilla, Spain, in 2001, and the PhD
degree in Computer Science from the Univer-
sity of Córdoba, Spain, in 2012. Between 2005
and 2017, he was a faculty member of the Uni-
versity of Córdoba. His research interests fo-
cus on processing-in-memory, memory systems,

heterogeneous computing, and hardware and software acceleration of
medical imaging and bioinformatics. He is the lead author of PrIM
(https://github.com/CMU-SAFARI/prim-benchmarks), the first publicly-
available benchmark suite for a real-world processing-in-memory architec-
ture, and Chai (https://github.com/chai-benchmarks/chai), a benchmark suite
for heterogeneous systems with CPU/GPU/FPGA.

IZZAT EL HAJJ is an Assistant Professor in the
Department of Computer Science at the American
University of Beirut. He received his M.S. and
Ph.D. in Electrical and Computer Engineering in
2018 from the University of Illinois at Urbana-
Champaign, where he received the Dan Vivoli
Endowed Fellowship. Prior to that, he received
his B.E. in Electrical and Computer Engineering
in 2011 from the American University of Beirut,
where he received the Distinguished Graduate

Award. His research interests are in application acceleration and program-
ming support for emerging accelerators and memories, with a particular
interest in GPUs and processing-in-memory.

IVAN FERNANDEZ received his B.S. degree
in computer engineering and his M.S. degree
in mechatronics engineering from University of
Malaga in 2017 and 2018, respectively. He is
currently working toward the Ph.D. degree at the
University of Malaga. His current research in-
terests include processing in memory, near-data
processing, stacked memory architectures, high-
performance computing, transprecision comput-
ing, and time series analysis.

CHRISTINA GIANNOULA Christina Giannoula
is a Ph.D. student at the School of Electrical and
Computer Engineering of the National Technical
University of Athens. She received a Diploma in
Electrical and Computer Engineering from NTUA
in 2016, graduating in the top 2% of her class.
Her research interests lie in the intersection of
computer architecture and high-performance com-
puting. Specifically, her research focuses on the
hardware/software co-design of emerging applica-

tions, including graph processing, pointer-chasing data structures, machine
learning workloads, and sparse linear algebra, with modern computing
paradigms, such as large-scale multicore systems and near-data processing
architectures. She is a member of ACM, ACM-W, and of the Technical
Chamber of Greece.

GERALDO F. OLIVEIRA received a B.S. degree
in computer science from the Federal University
of Viçosa, Viçosa, Brazil, in 2015, and an M.S.
degree in computer science from the Federal Uni-
versity of Rio Grande do Sul, Porto Alegre, Brazil,
in 2017. Since 2018, he has been working toward
a Ph.D. degree with Onur Mutlu at ETH Zürich,
Zürich, Switzerland. His current research interests
include system support for processing-in-memory
and processing-using-memory architectures, data-

centric accelerators for emerging applications, approximate computing, and
emerging memory systems for consumer devices. He has several publica-
tions on these topics.

ONUR MUTLU is a Professor of Computer Sci-
ence at ETH Zurich. He is also a faculty member
at Carnegie Mellon University, where he previ-
ously held the Strecker Early Career Professor-
ship. His current broader research interests are
in computer architecture, systems, hardware secu-
rity, and bioinformatics. A variety of techniques
he, along with his group and collaborators, has
invented over the years have influenced industry
and have been employed in commercial micro-

processors and memory/storage systems. He obtained his PhD and MS in
ECE from the University of Texas at Austin and BS degrees in Computer
Engineering and Psychology from the University of Michigan, Ann Arbor.
He started the Computer Architecture Group at Microsoft Research (2006-
2009), and held various product and research positions at Intel Corporation,
Advanced Micro Devices, VMware, and Google. He received the IEEE
High Performance Computer Architecture Test of Time Award, the IEEE
Computer Society Edward J. McCluskey Technical Achievement Award,
ACM SIGARCH Maurice Wilkes Award, the inaugural IEEE Computer
Society Young Computer Architect Award, the inaugural Intel Early Career
Faculty Award, US National Science Foundation CAREER Award, Carnegie
Mellon University Ladd Research Award, faculty partnership awards from
various companies, and a healthy number of best paper or "Top Pick" paper
recognitions at various computer systems, architecture, and security venues.
He is an ACM Fellow, IEEE Fellow for, and an elected member of the
Academy of Europe (Academia Europaea). His computer architecture and
digital logic design course lectures and materials are freely available on
YouTube (https://www.youtube.com/OnurMutluLectures), and his research
group makes a wide variety of software and hardware artifacts freely
available online (https://safari.ethz.ch/). For more information, please see
his webpage at https://people.inf.ethz.ch/omutlu/.

42 VOLUME 4, 2016

