
 Open access  Journal Article  DOI:10.1109/TEVC.2009.2023448

Benchmarking a Wide Spectrum of Metaheuristic Techniques for the Radio Network
Design Problem — Source link 

Silvio Priem Mendes, Guillermo Molina, Miguel A. Vega-Rodríguez, Juan A. Gómez-Pulido ...+7 more authors

Institutions: University of Málaga, University of Extremadura, Charles III University of Madrid, University of La Laguna

Published on: 01 Oct 2009 - IEEE Transactions on Evolutionary Computation (IEEE)

Topics: Optimization problem, Algorithmics and Metaheuristic

Related papers:

 Optimization by Simulated Annealing

 Parallel Island-Based Genetic Algorithm for Radio Network Design

 Evaluation of Different Metaheuristics Solving the RND Problem

 Hierarchical parallel approach for GSM mobile network design

 Genetic approach to radio network optimization for mobile systems

Share this paper:    

View more about this paper here: https://typeset.io/papers/benchmarking-a-wide-spectrum-of-metaheuristic-techniques-for-
3e03v5n3by

https://typeset.io/
https://www.doi.org/10.1109/TEVC.2009.2023448
https://typeset.io/papers/benchmarking-a-wide-spectrum-of-metaheuristic-techniques-for-3e03v5n3by
https://typeset.io/authors/silvio-priem-mendes-14g0ow4ott
https://typeset.io/authors/guillermo-molina-auy786eefg
https://typeset.io/authors/miguel-a-vega-rodriguez-4s2w40w5kl
https://typeset.io/authors/juan-a-gomez-pulido-2kxvbshju7
https://typeset.io/institutions/university-of-malaga-3vu4mjof
https://typeset.io/institutions/university-of-extremadura-2s4df8ra
https://typeset.io/institutions/charles-iii-university-of-madrid-3k17u778
https://typeset.io/institutions/university-of-la-laguna-2y4shx1m
https://typeset.io/journals/ieee-transactions-on-evolutionary-computation-1irf0lyu
https://typeset.io/topics/optimization-problem-xnbzp3ib
https://typeset.io/topics/algorithmics-1hyw30je
https://typeset.io/topics/metaheuristic-37i9fnix
https://typeset.io/papers/optimization-by-simulated-annealing-1m73u2vpki
https://typeset.io/papers/parallel-island-based-genetic-algorithm-for-radio-network-1t2gjngoat
https://typeset.io/papers/evaluation-of-different-metaheuristics-solving-the-rnd-3l2ucccsz8
https://typeset.io/papers/hierarchical-parallel-approach-for-gsm-mobile-network-design-4hznt8tmkd
https://typeset.io/papers/genetic-approach-to-radio-network-optimization-for-mobile-2rkfeu8als
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/benchmarking-a-wide-spectrum-of-metaheuristic-techniques-for-3e03v5n3by
https://twitter.com/intent/tweet?text=Benchmarking%20a%20Wide%20Spectrum%20of%20Metaheuristic%20Techniques%20for%20the%20Radio%20Network%20Design%20Problem&url=https://typeset.io/papers/benchmarking-a-wide-spectrum-of-metaheuristic-techniques-for-3e03v5n3by
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/benchmarking-a-wide-spectrum-of-metaheuristic-techniques-for-3e03v5n3by
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/benchmarking-a-wide-spectrum-of-metaheuristic-techniques-for-3e03v5n3by
https://typeset.io/papers/benchmarking-a-wide-spectrum-of-metaheuristic-techniques-for-3e03v5n3by


IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009 1133

Benchmarking a Wide Spectrum of Metaheuristic
Techniques for the Radio Network Design Problem

Sílvio P. Mendes, Guillermo Molina, Miguel A. Vega-Rodríguez, Juan A. Gómez-Pulido, Yago Sáez,

Gara Miranda, Carlos Segura, Enrique Alba, Pedro Isasi, Coromoto León, and Juan M. Sánchez-Pérez

Abstract— The radio network design (RND) is an NP-hard
optimization problem which consists of the maximization of
the coverage of a given area while minimizing the base station
deployment. Solving RND problems efficiently is relevant to many
fields of application and has a direct impact in the engineering,
telecommunication, scientific, and industrial areas. Numerous
works can be found in the literature dealing with the RND
problem, although they all suffer from the same shortfall: a
noncomparable efficiency. Therefore, the aim of this paper is
twofold: first, to offer a reliable RND comparison base reference
in order to cover a wide algorithmic spectrum, and, second,
to offer a comprehensible insight into accurate comparisons of
efficiency, reliability, and swiftness of the different techniques
applied to solve the RND problem. In order to achieve the
first aim we propose a canonical RND problem formulation
driven by two main directives: technology independence and
a normalized comparison criterion. Following this, we have
included an exhaustive behavior comparison between 14 different
techniques. Finally, this paper indicates algorithmic trends and
different patterns that can be observed through this analysis.

Index Terms— Antennae, benchmarking, evolutionary algo-
rithms, metaheuristics, optimization, radio network design
(RND).

I. INTRODUCTION

W ITH THE fast growth and merging of communication

infrastructures and services, the planning and design of
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wireless networks has become a very complex subject. Despite

the attention it has received from the scientific community,

this field of research in optimization is still relatively obscure.

Moreover, present-day industry expertise is generally based on

ad hoc or nonformal approaches. A body of scientific work

has been developed around the radio network design (RND)

optimization problem, but all the studies suffer from the same

shortfall—noncomparable efficiency. RND plays a major role

in various engineering, industrial, and scientific applications

because its outcome usually directly affects cost, profit, or

other heavy-impact business performance metrics. This means

that the quality of applied RND approaches has a direct

bearing on industry economic plans. The evolution of radio

network technology has made this scenario recurrent as a result

of successive experimental approaches to optimization which

mainly consider the technological aspects of the RND problem

instead of its canonical formulation. As a direct consequence,

it remains impossible to identify the most effective formal

method to tackle an instance of the RND problem.

The main purpose of this paper is to offer a reliable base

reference for RND comparison, with foundation-dissimilar

approaches in order to cover a high algorithmic spectrum,

thus converting it into a valuable edifying tool for potential

experimental applications vis-à-vis new or yet-to-come radio

network technology.

Our comparison methodology relies on the canonical RND

problem formulation and is governed by two main directives:

technology independence and a normalized comparison crite-

rion. The technology independence is achieved by neglecting

any of the additional technological constraints that would be

thrown into the problem, as for instance part of the base station

(BS) properties definition (antenna, azimuth, and tilt), path loss

models, bandwidth zone prediction, etc. Instead, we consider a

theoretical isotropic radiating model, which is mainly used as

a reference radiating model. Since RND is a well-known NP-

hard problem [1], technological constraints would only raise

the combinatorial complexity while the problem’s essence

would remain untouched. The normalized comparison criterion

is based on a fitness evaluation effort metric (FEEM) since

real-world applications will spend most of their computing

effort on the evaluation of real-wave-based solutions rather

than of the algorithm per se.

Previous partial experiments have been conducted [2]–[8],

but this paper combines results and scales up to a real-world-

sized problem, in order to accurately compare efficiency,

reliability, and swiftness at such an magnitude.

1089-778X/$26.00 © 2009 IEEE
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This paper is organized as follows. Section II discusses

related work. In Section III, we go on to introduce the RND

problem, and in Section IV we present the clock calibration

model. In Section V we review the canonical models of the

algorithmic approaches, while our main results are presented

in Section VI. Section VII concludes the paper and identifies

areas for future work.

II. RELATED WORK

The purpose of this section is to describe the related work

that is closely associated with the paper’s main subject. The

inclusion of this section is vindicated by the absence of a

formalized RND benchmark, which makes it impossible to

know which is the best RND optimizing formulation. We

divide this section into four distinct areas of impact.

A. RND Research Foundations

Despite some resemblances to Calégari’s [9], [10] work

on genetic algorithmic (GA) approaches for radio network

optimization for mobile systems, developed in the mid-1990s,

this field of research actually focuses on the principle of

minimization of resources rather than on achieving the total

coverage of an area, since in most real-world-problem cases,

these latter scenarios are uncommon. Calégari GAs adopted

the graph-maximum independent-set search method which

attempts to find the largest independent-set in a graph.

Since then, many GAs have been applied with an uncertain

degree of success. Additional examples are [7], [8], [11],

[12], including several parallel and multiobjective implemen-

tations [13]–[16]. Calégari et al. become known for [17]

developing his RND dominating set model (still supported

by the maximum independent-set search method) based on

a hybrid implementation that combines a greedy algorithm

with his previous GA development, and presenting it in form

of a framework formally known as STORMS (software tools

for the optimization of resources in mobile Systems). This

approach had in mind some Universal Mobile Telecommu-

nications System particularities. Several initiatives have been

developed on the STORMS platform. Chamaret et al. [18]

followed Calégari’s work and tested seven different heuris-

tics on the STORMS framework, employing the maximum

independent-set search method.

Nevertheless, several dissimilar approaches have also been

identified. He et al. performed a unique related work [19] that

consists in applying a pattern search algorithm called DIvid-

ing RECTangles (DIRECT) proposed by Joneset et al. [20].

The distinctive feature of this paper is that their algorithmic

approach was connected to a parallel 3-D radio propagation

ray-tracing module running on a 200-node Beowulf cluster of

workstations. A high degree of focus was placed on the 3-D

ray-tracing propagation model, based on geometrical optics,

when computing BS site power levels.

Isolated analytical and heuristic proposals are also found

in this field. Vasquez et al. proposed a Tabu-based heuristic

approach for antenna positioning [21] using the quintuplet BS

compound (site, antenna, tilt, azimuth, and power). Elkam-

chouchi et al. [22] developed work based on a particle swarm

optimization approach and included morphological data in

their internal representation matrix.

Finally, RND-directed research work is found wherein a

demand-based criterion has primarily been taken into account,

i.e., predicting traffic density. This kind of work, while falling

outside the scope of our main subject, is relevant because

of some proposed novelties at algorithmic level. Tutschku

proposes a simple greedy-based heuristic, named SCBPA [23],

applied on the maximal coverage location problem [24] with

heavy restrictions on predicted traffic density. Ibbetson et al.

propose two simple heuristics based on excess traffic redistri-

bution of BS [25], and Fritch et al. propose an approach based

on self-organizing sensory neurons implemented via simulated

annealing [26].

B. Local Area RND Research

The same principles and requirements determined by the

main streaming of wireless LANs (WLAN) also contribute

to this line of research, since the problem itself is equiva-

lent. When positioning access points on WLAN design (also

commonly referred to as indoor network optimization), the log

distance path loss model is an essential requirement for solving

these particular types of RND sub-problems. Kamenetksy

et al. have proposed some solutions based on an extension

of simulated annealing through a pruning scheme to obtain a

reasonable initial solution [27]. Bahri et al. based their work on

a tabu-search algorithm [28], Aguado-Agelet et al. resorted to

a more traditional genetic approach [29], while Fruhwirth et al.

used simple constraint-based programming as an optimization

technique [30], to name only a few. Much more work focusing

on this particular RND problem can be found in [31]–[36].

C. RND Applied Research

Although some works related to RND applied research are

found (namely 2G and 3G), few demonstrate optimization

techniques, preferring to confine themselves to the proposal

of planning methods or procedures [37], [38]. A hierarchical

parallel approach for GSM network design has been proposed

by Talbi et al. [39]. It stands on Alba’s previous work [7],

extending his original proposed GA approaches.

D. RND-Related Commercial Packages

Several RND-related commercial packages are also found,

although little evidence of automatic optimization has been

reported in any of them. A common feature is their assistance

in the designing of a network.

For instance, Mentum Planet [40] provides an optimization

software solution for wireless access networks. It offers a

range of capabilities that support the evolving role of wire-

less network planning solutions, such as the convergence of

multitechnology networks.

France Telecom’s Research and Development Group [41]

manages more than 8400 patents and belongs to the Orange

Lab’s worldwide network. Reports refer to network optimiza-

tion research, although this is not in the public domain.
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(a) (b) (c)

Fig. 1. (a) Three potential BS e1, e2, e3 and the associated cells are
discretized on a grid, (b) a graph, whose edges link transmitters to the location
they cover, and (c) the Bipartite graph representation, where M is the set of
potential transmitters and L is the set of potentially covered locations.

(a) (b) (c)

Fig. 2. (a) Three potential BS M1, M2, M3 and the associated cells
on a discrete surface, (b) a graph set, whose arcs link transmitters to the
location they cover, where the dotted lines represent directed hyperedges
and vertex coloring has been considered for the irradiation sources, and (c)
the hypergraph representation is closely analogous to its discretized surface
counterpart.

E. RND-Related Work Concluding Notes

As a concluding remark, the vastness of the related work

clearly demonstrated to us that there is a repetitive research

cycle each time a new radio-based technology emerges.

Such research in turn typically endeavors to adapt previous

algorithms without any overriding consideration of research

related to previous generation technology. Each of the works

examined tackles a specific RND problem based on specific

technology-dependent features, and they all use a myriad of

optimization approaches. Every work additionally concludes

how good and promising the results achieved are, but indeed it

is very unlikely that all of the previous works achieve reliable

optimal results.

III. RND-ENHANCED PROBLEM FORMULATION MODEL

The RND optimization problem comprises the maximiza-

tion of the coverage of a given geographical area while

minimizing the BS deployment, hence is an intrinsically

multiobjective problem. A BS transmitter is a radio signal

transmitting device that irradiates any type of wave model,

and the part of the area that is covered by a BS is called a

cell. If two or more BS transmitters are close to each other,

their cells can overlap, and the locations inside these areas

might have different degrees of coverage (for example, one

location can be under the influence of two BS transmitters

while another can be inside the cell of only one transmitter;

in this case the second location has a lower level of intensity

of the received signal). Calégari proposes a dominating set

model [42], derived from graph theory, that is very similar

to the minimum dominating set problem [1]. His approach

considers a graph G = (V, E) where V is a set of vertices

and E is a set of edges. The dominating set of G is a subset

V ′ ⊆ V defined by

∀u ∈ V/V ′, ∃v ∈ V ′ such that (v, u) ∈ E . (1)

A dominating set V ′ is said to be minimum if no other

dominating sets have a smaller size (number of vertices).

Afterward, Calégari redefined his initial approach [10] in

a way such that V is in fact the union of two sets M and

L, where M is the set of all possible BS locations, and L is

the set of all potentially covered locations, formulating the

graph G = (M ∪ L , E), where E is a set of edges such

that each transmitter location is linked to the locations it

covers. Related work is also found based upon the maximal

independent-set problem [17]. Dominating sets are closely

related to independent-sets such that a maximal independent-

set in a graph is an upper bound of the minimal dominating

set. However, dominating sets need not be independent. Fig. 1

shows how, according to Calégari, the potentially covered

locations are taken from a discretized geographical area.

Since the objective of RND is to search for the minimum

subset of transmitters that covers a maximum surface of an

area, we are searching for a subset M ′ ⊆ M such that |M ′|

is minimum and such that |Neighbors(M ′, E)| is maximum,

where

Neighbors(M ′, E) = {u ∈ L|∃ v ∈ M ′, (u, v) ∈ E}. (2)

Nevertheless, this model ignores the fact that the same

element can belong to both M and L simultaneously, since

M ⊂ L , which will mostly inflict coverage changes at some

points. In other words, it can be that a potential transmitter

location is also subject to being a covered location, meaning

replication in M and L in such a way that it voids Calégari’s

bipartite representation shown in Fig. 1(c). Additionally, he

also disregards the direction of each E ′ ∈ E .

We propose an alternative model, extended and updated

from the one previously given, which is based on a hypergraph

H = (V, E) (a set of graphs), where E represents the

hyperedges (edges that can contain any subset of vertices of

a hypergraph) and V = M ∪ L . Our hypergraph H is a set

system composed of directed monomial graphs p(x) = x E

in such a way that a central vertex is achieved in each one

of them. Each central vertex represents an irradiating source

(M ′) and hyperedges are arcs in the form of E ′ = (x, y),

directed from x to y [in this case any number of vertices can

belong to E ′ within the (x, y) boundary]. This formal model

tends to be more accurate when compared to the real problem:

1) The bipartite graph is not always possible to achieve (which

means that the problem formulation increases its complexity

level, although its combinatory echelon is not affected) and

2) the radiating sources are directed, as expressed by the arcs,

even if omnidirectional. Fig. 2 shows how the current extended

model can be extracted from a discrete surface.

A fitness function f is required to evaluate the quality of

a BS set H ′. The fitness is described by the ratio of the
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square of the cover rate and the number of BS transmitters

used (3). It has also been reported as being widely adopted in

the telecom industry [10], hence its usage in our experiments.

Our BSs employ an omnidirectional isotropic wave model,

which is a theoretical point source that radiates uniformly in

all directions. The coverage provided by the BSs is recorded on

the coverage grid in order to speed up fitness calculations (no

graph structures have been employed). Topography has been

partially disregarded (wave collision objects or geomorphic

data) to generalize the problem

f (x) =
CoverRate (x)2

Number Transmitters Used (x)
(3)

where

Cover Rate(x) = 100
Neighbors(M ′, E ′)

Neighbors(M, E)
. (4)

The problem we consider reminds of the unicost set cover-

ing problem (USCP), which is a known NP-hard combinatorial

optimization problem [1]. The RND problem differs, however,

from the USCP in that the goal is to select a subset of BS that

ensures a good coverage of a given area, and not to ensure a

total coverage. This emphasizes the principle of minimization

of resources rather than achieving the total coverage of an area,

since in most real-world-problem cases, these latter scenarios

are uncommon. On the other hand, the RND NP-hardness is

maintained in magnitude and is as tightly related to the field

of combinatory mathematics as USCP.

IV. RND FORMAL COMPARISON SPECIFICATION

The RND formal comparison specification describes the

accurate formal process that is used when comparing diverse

implementations that aspire to RND optimization.

The FEEM has been conceived to normalize the comparison

of heterogeneous RND runtime environment discrepancies,

including hardware and software issues (also known as bench-

mark routines for system clock calibration). After conducting

profiling experiments employing an omnidirectional isotropic

reference radiation wave model, we defined a clock-calibration

FEEM that effectively replaces wall-clock measuring, allow-

ing the disregarding of hardware runtime platforms, chiefly

the processor(s) frequency or architecture (like parallelization

through core replication). Software issues are also minimized

whenever using highly optimized code compilers (like gcc) or

intermediate compilers allowed on some interpreting enterprise

runtime platforms (like J2EE), although raw wall clock times

can remain considerably different.

The radio propagation wave model computing effort is

highly correlated with the algorithm’s wall clock. Due to the

complexity of real-wave model calculations, the computing

effort of the algorithm is irrelevant when compared to the total

computing effort. Although this is true in other problems, the

RND problem presents an extreme case of such a scenario.

Population-based approaches rely on light heuristics, intrin-

sically defined by their breeding operators. In these cases, a

whole solution can be evaluated at once. Hence one FEEM

unitary value can be summed each time a solution is evaluated

Algorithms relying on heavy-based heuristics and/or incre-

mental fitness evaluations do not always compute a complete

solution at a given time. In these cases, the elements that

compose the solution are mostly used to partially evaluate

the solution. Consequently l/is FEEM is summed for each

compound-based element that is evaluated, where is represents

the solution instance size. A single algorithm can use both

FEEM profilings in a single run, depending on the type of

evaluations employed. Both methods represent a compatible

additive metric that can be compared.

In this paper, the use of population-based methods implies a

whole objective function evaluation per individual per gener-

ation, because incremental computation of the fitness function

does not pay off, according to our preliminary experimental

data.

V. OPTIMIZATION ALGORITHMS OVERVIEW

In this section, models of the optimization algorithms

employed throughout this paper are provided. The main objec-

tive is to offer an overall picture, including many representative

classes, for instance, direct search techniques, random guided

search techniques, genetics, several evolutionary strategies,

and models that include bio-inspired aspects. A total of

14 significant models are described and further analyzed

(nine distinct approaches and five hybrids or variants). Each

research group has focused on single implementations in order

to reduce variability and achieve the best results. All the

approaches presented below have a common stopping criterion

defined by 5 000 000.00 fitness evaluations in compliance with

the FEEM definition (Section IV-A).

A. Simulated Annealing

Simulated annealing (SA) is a trajectory-based optimization

technique. It was first proposed by Kirkpatrick et al. in [43].

SA is a fairly commonly used algorithm that provides good

results [44]–[48] and constitutes an interesting method to

compare to other optimizing methods.

Simulated Annealing Pseudocode

t ← 0

Initialize (T, Sa)

while not end condition (t, Sa) do

while not cooling condition (t) do

Sn ← Choose neighbor (Sa)

Evaluate (Sa, Sn)

if Accept (Sa, Sn, T ) then

Sa ← Sn

end if

t ← t + 1

end while

Cooldown(T )

end while

return Sa

The algorithm works iteratively and keeps a single tentative

solution Sa at any time. At every iteration, a new solution

Sn is generated from the old one Sa , and depending on some
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acceptance criterion it might replace it. The acceptance crite-

rion is the true core of the algorithm. It works as follows: both

the old Sa and the new Sn solutions have an associated

quality value—determined by a fitness function. If the new

solution is better than the old one, then it will replace it.

If it is worse, there is still some chance that it will replace

it. The replacing probability is calculated using the quality

difference between the two solutions and a special control

parameter T named temperature. An initialization process is

employed to select the starting value of the temperature. Once

the initial solution has been generated, we select a value

of T such that any neighbor of the initial solution will be

accepted with probability 0.8. This is achieved by successively

trying different temperature values with 100 random neighbors

and checking the acceptance criterion until the mentioned

constraint is met. The aim here is to guarantee the initial

randomness of the search process.

The acceptance criterion ensures a way of escaping local

optima by choosing solutions that are actually worse than

the previous one with some probability. That probability is

calculated using Boltzmann’s distribution function

P =
2

1 + exp

(

f i tness(Sa)− f i tness(Sn)

T

) . (5)

As the iterations go on, the value of the temperature para-

meter T is progressively reduced following a cooling schedule,

thus reducing the probability of choosing worse solutions and

increasing the biasing of SA toward good solutions. In this

paper, we employ a geometric rule, such that for every k

(Markov chain length) iterations the temperature is updated as

T (n+1) = αT (n), where 0 < α < 1 is called the temperature

decay. The cooling schedule employed is a standard one. Our

interest was to test the SA archetype, therefore the canonical

form was chosen for the algorithm’s internal operations.

In this paper we employ binary vector variables and bit-flip

mutation to generate new solutions. For the bit-flip procedure,

a mutation probability P is selected. Every bit in the bit string

is sequentially visited, and then with probability P that bit

is flipped. Therefore, for a string of length L, L*P bits are

flipped on average by the bit-flip mutation. For the encoding

a binary vector was employed (each bit uniquely corresponds

to a candidate location site; a 1 indicates that a transmitter is

placed, a 0 indicates that no transmitter is placed).

B. CHC

Eshelman’s cross generational elitist selection, heteroge-

neous recombination, and cataclysmic mutation (CHC) is a

kind of evolutionary algorithm (EA) surprisingly not used

in many studies despite having unique operations usually

leading to very efficient and accurate results [49]. Like most

EAs, CHC relies on a set of solutions (population, hereafter

referred to as Pa). The algorithm proceeds iteratively and at

the end of each iteration some solutions will be replaced by

newly created ones. At every step, a new set of solutions is

produced by selecting pairs of solutions from the population

(the parents) and recombining them. This selection is made in

such a way that individuals that are too similar (Hamming

distance below a given threshold) cannot mate each other,

and recombination is made using a special procedure known

as Half Uniform Crossover. This procedure first copies the

common information for both parents into both offspring, then

translates half the diverging information from each parent to

each of the offsprings. This is done in order to preserve the

maximum amount of diversity in the population, as no new

diversity is introduced during the iteration (there is no mutation

operator). The next population Pn is formed by selecting the

best individuals among the old population and the new set of

solutions (elitist criterion).

As a result of this, at some point in the execution, population

convergence is achieved, so the normal behavior of the algo-

rithm should be to stall on it. The threshold is progressively

reduced to encourage the production of new solutions when

the population begins to converge. When convergence is

finally reached, a special mechanism is used to generate new

diversity: the restart mechanism. When restarting, all of the

solutions except the very best ones are significantly modified

(cataclysmically). This way, the best results of the previous

phase of evolution are maintained and the algorithm can

proceed again. The algorithm’s general procedure is described

in the following pseudocode:

Eshelman’s CHC Pseudocode

t ← 0

Initialize (Pa , convergence count)

while not ending condition (t, Pa) do

Parents ← Selection parents (Pa)

Offspring ← HUX (Parents)

Evaluate (Offspring)

Pn ← Elitist selection (Offspring, Pa)

if not modified(Pa , Pn) then

convergence count ← convergence count−1

if convergence count == 0 then

Pn ← Restart(Pa)

Initialize(convergence count)

end if

end if

t ← t + 1

Pa ← Pn

end while

We employ bit-flip mutation with a flip probability of

35% for the cataclysmic mutation, 100 individuals, and a

crossover rate of 80%. All the parameters were determined

by experimental fine-tuning. Binary encoding was employed.

C. Iterated Local Search

Iterated local search (ILS) is a neighborhood exploration

paradigm that was initially introduced by Lourenço et al. [50].

It is a simple and generally applicable metaheuristic which

iteratively applies local search (LS) to modifications of the

current search point. ILS improves the performance of local

searches by allowing them to escape local-optima trapping and
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continue the search for possible better solutions. The success

of ILS lies in the biased sampling of this set of local optima.

For the resolution of the RND problem, we have defined

specific methods for the generation of the initial solution and

for the perturbation of the solutions. The algorithm’s general

procedure is described in the following pseudocode:

Iterated Local Search Pseudocode

s0 ← generateInitialSolution()

s ← localSearch(s0)

sbest ← s;

while not end condition() do

s′ ← perturbation (s, history)

s′′ ← localSearch(s′)

if s′′ BetterThan sbest then

sbest ← s′′

end if

s ← acceptanceCriterion(s, s′′, history)

end while

return sbest

At the start of the algorithm, an initial solution is generated.

For the generation of the initial solution, we have designed

a specific problem-based heuristic. The developed heuristic

divides the grid of the terrain to be covered into a set of

sub-grids or windows. All windows have size N × N , where

N is randomly selected from the values nearest to twice the

antennae coverage radius. On each window, a base station

transmitter is placed in the most centered location available.

In addition, the central position of the windows can be slightly

displaced from the grid reference coordinates. Afterward,

a local search is performed on this initial solution. Then,

the search loop is repeated until some stopping criterion is

satisfied. In our case, the end condition() function tests whether

the algorithm has performed the total number of evaluations,

which is a common criterion for all algorithms. In each cycle,

a diversification step is first applied by perturbing s to obtain

a new solution s′. Intensification is then performed around

s′ by applying a local search to produce a new solution

s′′. If s′′ satisfies an acceptance criterion, it replaces s and

the next step is carried out from this new solution. The

acceptanceCriterion(s, s′′, history) function returns the best

solution between s and s′′ depending on their fitness values.

The designed perturbation mechanism selects a set of

deployed transmitters to be removed from the solution and

a set of locations in which to include an extra antenna. For

perturbing any solution, the number of transmitters to be

deleted and also the ones to be inserted are determined by

a random value that follows a normal distribution of mean m

and standard deviation sd. The BS to be discarded from the

solution and the ones to be included are randomly selected

from the set of available locations.

Once such modifications have been introduced into the

solution, a final correction is performed: for each base station

location, the fitness of the solution including the transmitter

(if it is currently used in the solution) or excluding it (if it

is not currently considered) is checked and the best choice

is selected for the final solution. This operation is not as

intensive as the local search but easily improves the perturbed

solution. In order to avoid the introduction of search cycles,

the implemented algorithm counts the number of iterations

since the last solution update. If Sbest has not been improved

in the last b search iterations, the search strength is increased.

Initially, the strength is set to 1 and it is increased by 1 every

time the solution has not been improved in the last b iterations.

The strength scales the number of elements to be deleted and

inserted at each perturbation. It adds more diversification to

the search in order to escape from local maximums. If after

a number of i strength increases the search continues to be

trapped in a cycle, the algorithm is restarted from a newly

generated initial solution.

For the intensification of the search, a Hill Climbing local

search is introduced into the implementation. The neighbor-

hood of a solution is defined as follows.

1) For each of the available locations that have not been

used in the solution, one neighbor that includes an

antenna in the corresponding position is created.

2) For each of the available locations where a transmitter

has been placed, a first neighbor that excludes such an

antenna from the solution is created.

3) For each of the available locations that have been used

in the solution, a second neighbor that replaces such a

base station with the nearest one is created.

During the local search, a complete neighborhood is gen-

erated. From the neighbors obtained, the best one is selected

and the process is repeated from the chosen new solution.

The process finishes when the local search reaches a local

maximum or when the steps are repeated a maximum number

of ms times. For the acceptance criterion of the local search

and also for the ILS, the solution with greatest fitness is

selected. The ILS algorithm has been modified to allow the

continuation of the local search when it has not yet arrived

at a local maximum and if after its application s′′ has not

improved Sbest . This growth in the search may lead to better

local optima.

At the end of the search, the best solution found is returned.

The algorithm can introduce some type of memory (history)

in order to avoid getting trapped into search cycles.

For the encoding, we have used a binary vector of size num-

ber_of_available_bs_locations and set “1” if the corresponding

BS is used in the solution or “0” if it is not used.

The ILS algorithm was tested in order to tune the set of

necessary parameters. After a study the following values were

fixed: m = 3, sd = 1, ms = 100, b = 250, and i = 2.

ILS has been successfully applied to many complex com-

binatorial problems, especially in timetabling and schedul-

ing [51]–[54] but the number of applications to networks and

communication problems is not so extensive [55]–[59].

D. Population-Based Incremental Learning

Population-based incremental learning (PBIL) is a method

that combines genetic algorithms with competitive learning

(typical in artificial neural networks) for function optimiza-

tion [60], [61]. PBIL is an extension of the EGA (equilibrium
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genetic algorithm) achieved through reexamination of the

performance of the EGA in terms of competitive learning.

PBIL attempts to create a probability vector from which

samples can be drawn to produce the next generation’s pop-

ulation. The general process of the algorithm is described in

the following pseudocode:

PBIL Pseudocode

P ← InitProbVector (each position Pi = 0.5)

while not end condition() do

for i = 1, . . . , NS do

samplei ← GenerateSampleAccordingP()

evaluationi ← Evaluate (samplei )

end for

max ← FindSampleWithMaximumEvaluation()

while LengthProbVectorP do

Pi ← Pi ⋆ (1.0 − L R) + maxi ⋆ (L R)

end while

while LengthProbVectorP do

if (random (0, 1] < MUT_P) them

Pi ← Pi ⋆ (1.0 − MUT_A)+

random (0.0 or 1.0) ⋆ (MUT_A)

end if

end while

end while

return max

As we can see, the necessary parameters for PBIL are the

population size (NS, number of samples/individuals to produce

per generation), the probability of mutation occurring in each

position of the probability vector (MUT_P), the amount for

mutation to affect the probability vector (MUT_A), and the

learning rate (LR).

Each position in the initial probability vector has the value

0.5 (usual in PBIL). In our case, as we use a binary encoding

(there is or is not a BS in this position); this means that both

possible values (0 or 1) for each position have, initially, the

same probability. After initializing the probability vector P

(each position equal to 0.5), the NS samples (individuals in

the population) are generated. Each sample vector must be

generated according to probabilities in P. Furthermore, each

sample vector is also evaluated using the fitness function.

Then, we look for the best sample max. This max sample

is used in order to update the probability vector P, position

by position, using the learning rate LR.

Finally, we have to mutate the probability vector P, posi-

tion by position, using the mutation probability MUT_P and

the mutation amount MUT_A. Preliminary experiments were

carried out to find the best set of parameter values for PBIL

(in order to solve the RND problem correctly). These values

are: NS = 135, MUT_P = 0.02, MUT_A = 0.05, and

L R = 0.10.

Although PBIL has been used in very diverse optimization

problems ([62]–[65] are some recent examples), surprisingly

it has not been used in many telecommunication studies (only

a few cases exist [66]–[69]).

E. Clustered Genetic Algorithm

A genetic algorithm (GA) uses a set of genetic operators

(selection, crossover, and mutation) to evolve a solution to a

problem. The solution is represented as population individuals,

and the individuals with higher fitness values have higher

probabilities of surviving the selection.

The representation of individuals is one of the most impor-

tant issues. In the canonical GA, each chromosome is usually

represented by a bit string, where each position represents a

transmitter (0 = off, 1 = on). For this problem, we propose

using data-mining techniques in order to determine transmitter

clusters and only allow one active transmitter in each cluster.

This representation makes the search space smaller which is

extremely useful. In the reference domain, the binary search

space is 21000 ≈ 10301 and the new search space using 70

clusters is 1670 ≈ 1084. In this proposal, one individual has

the same number of genes as clusters. A gene is a list of

transmitters in the cluster and a number indicating the active

transmitter. Only one BS can be working in each cluster.

Inactive BSs are indicated by −1.

Clustered Genetic Algorithm Pseudocode

Cl ← Simple_KMeans()

P0 ← generateInitialSolution(Cl )

evaluation(P0)

while not end condition() do

P ′ ← selection(P0)

P ′′ ← crossover(P ′)

Pn+1 ← mutation(P ′′)

evaluation(Pn+1)

end while

2-OPT(Pn)

The first step in the algorithm is to determine the clusters.

For this purpose the WEKA implementation of the k-means

algorithm with the employment of Euclidian distance was

used [70]. Once the clusters are found, the population is

randomly generated and evaluated for the first time. In each

successive generation, part of the population is selected to

breed a new generation. Both roulette wheel and tourna-

ment selections were tested. Roulette wheel selection led us

to a premature convergence in some experiments and we

decided to use stochastic tournament selection in order to

maintain the genetic diversity as much as possible. Hence,

tournament selection was used to select which individuals

evolve to the next generation. This operator runs a tour-

nament among four individuals chosen at random from the

population and selects the one with the best fitness (the

winner) for crossover. The selection pressure was adjusted

by changing the tournament size in several experiments.

In the end, the best results were found from tournaments

of four individuals. Uniform crossover selects one gene of

each parent alternatively and each child receives 50% of the

genetic information of each parent. Mutation occurs according

to a user-definable mutation probability swapping the gene

value.
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Finally, after the stop condition is met, a variant of the

2-OPT (Pairwise Interchange) heuristic is carried out, since

it may redefine the solution at a low cost. The variant of

the 2-OPT heuristic, also known as the pairwise interchange

heuristic [71], has been selected as an LS method. Basically,

the 2-OPT technique follows a procedure that searches all

the neighbors of the solution looking for better solutions.

Briefly explained, the 2-OPT consists of swapping the active

antennas given by the CGA (Clustered Genetic Algorithm)

with their neighbors and checking whether the final solution

improves. These small permutations between antennas can

lead to slightly better solutions. To avoid high computational

cost, the LS is limited only to the neighbors that are closest.

F. Clustered Chromosome Appearance Probability Matrix

The chromosome appearance probability matrix method is

a GA modified in order to deal with micro populations. In

PBIL algorithms, the recombination operator is replaced by a

probability vector for each variable, and sampling this vector

requires the study of the selections made by the algorithm until

that moment. This concept, applied to interactive evolutionary

computation, can be used in order to speed up the evolution

according to the user needs. This was the key motivation for

developing this new method based on the GA. Basically, it

consists of a GA that uses a probability matrix which drives

the mutation operator toward the solution, speeding up the

convergence during the first generations.

Clustered Chromosome Appearance Probability

Matrix Pseudocode

Cl ← Simple_KMeans()

P0 ← generateInitialSolution(Cl )

InitializeStatistics(Ml )

evaluation(P0)

while not end condition() do

P ′ ← selection(P0)

updateProbabilityMatrix(Ml , α)

P ′′ ← crossover(P ′);

P ′′′ ← orientedMutation(P ′′, Ml )

Pn+1 ← cloneRemover(P ′′′)

evaluation(Pn+1)

end while

2-OPT(Pn)

The codification is the same as that explained for the GA,

and the steps of the proposed algorithm are very similar.

The InitializeStatistics() function initializes the probability

matrix with all possible combinations of chromosomes. These

combinations are calculated by multiplying the maximum sizes

of each gene. The probability matrix shows the probability that

each possible combination of alleles has of being chosen. The

OrientedMutation() function takes a specific chromosome as

the base of the mutation process (reference chromosome). This

chromosome is selected from all the possible chromosomes

following a uniform distribution fixed by the probability array.

The higher the value of a chromosome’s likelihood array, the

better the probability of being chosen. The cloneRemover()

function is responsible for mutating all those individuals which

have exactly the same genetic structure as other individuals in

the same population.

All pseudocode steps are explained in detail in [72]–[74].

The main modifications for the proposed algorithm are the

evaluation, selection, and mutation operators. In addition, a

new operator that removes identical individuals and a 2-OPT

search (as in CGA) have been included.

G. Clustered Memetic Algorithm

The memetic algorithm (MA) is a combination of LS

techniques and EAs. It is based on the concept of a meme

introduced by Dawkins [75]. The key idea of a meme is

that an individual can change its genetic code during its life,

improving the evolution process. To simulate this concept

of a meme, it includes an LS in the reproduction operators

(crossover and mutation). The MA with cluster representation

uses the same codification as the ones described earlier (GAs).

The crossover operator is the same as the one used in the GA,

but an LS is done in order to find the best possible crossover.

Ideally the LS should calculate all possible crossover com-

binations and choose the best, but this means too many evalu-

ations per crossover. Therefore the developed LS randomly

chooses a predefined percentage of the previously selected

individuals (by tournament selection as made in the GA) and

then finds the best crossover for those individuals. At this

point, when the crossover is done, both parents are marked in

order to avoid identical crossovers within the same iteration.

The best possible crossover is guaranteed for the selected

individuals and the offspring proceeds to the next step.

The mutation operator is the same as the one used in the GA

plus an LS. In this case, an LS is done to try to find the best

possible mutation. Since we also want to know which permu-

tation of those mutations will improve the solution, we have to

test all possible mutated gene combinations. Ideally, all genes

should be changed in order to find the best possible mutation.

However, as there are too many possible combinations, the

operator instead first calculates the number of mutations for

each individual and then performs a LS limited to pairs of two

genes. This limitation allows the mutation operator to search

for the best combination of values for each pair of mutated

genes. It reduces the computational costs of evaluating all

possible mutation combinations.

Clustered Memetic Algorithm Pseudocode

Cl ← Simple_KMeans()

P0 ← generateInitialSolution(Cl )

evaluation(P0);

while not end condition() do

P ′ ← Selection(P0)

P ′′ ← CrossoverWithLS(P ′, %PCT)

Pn+1 ← MutationWithLS(P ′′, 2)

Pn+1 ← BestMutation(P ′, 2);

evaluation(Pn+1);

end while

2-OPT(Pn)
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H. Differential Evolution

Differential evolution (DE) is an algorithm created by

Price and Storn [76]. Since 1994, DE has been used

for many optimization problems with satisfactory results

[77]–[79].

DE is a very simple population-based stochastic function

minimizer, which can be categorized into the class of floating-

point encoded evolutionary algorithms. It is currently used

in a wide range of optimization problems, including mul-

tiobjective optimization [80]. Generally, the function to be

optimized F is computed by means of optimizing the values

of its parameters, where X denotes a vector composed of

n param objective function parameters. As with all population-

based evolutionary optimization algorithms, DE handles a

population of solutions instead of a single solution for the

optimization of a domain-dependant problem. Population P of

generation G contains n pop solution vectors, each one usually

known as an individual of the population. Consequently, each

vector represents a potential solution for the optimization

problem.

At any time, a population P of generation G ′ contains n pop

individuals, each one containing n param parameters (usually

referred as chromosomes). In order to establish a starting

point for seeking an optimum, the population P(0) (initial

population) must be initialized. This is usually done by seeding

P(0) with random values that are within given boundary

constraints.

The population reproduction scheme of DE is different

from other evolutionary algorithms. From the first generation

onward, the population of the subsequent generation P(G+1)

is created in the following way on the basis of the current pop-

ulation P(G). First, a temporary individual (usually referred to

as a trial) that can possibly populate the subsequent generation

P ′(G+1) is generated as shown in the following:

x
′(G+1)
i, j =

{

x
(G)
Ci , j + F ·

(

x
(G)
Ai , j − x

(G)
Bi , j

)

x
(G)
Ci , j ,

if ri, j ≤ Cr

where

i = 1, . . . , n pop, j = 1, . . . , n param

A = 1, . . . , n pop, B = 1, . . . , n pop, C = 1, . . . , n pop,

Ai �= Bi �= Ci �= i

Cr ∈ [0, 1], F ∈ [0, 2], r ∈ [0, 1]. (6)

xA, xB , and xC are three randomly chosen indexes referring

to three individuals in the population. The offspring (known

as the trial vector) is produced by subtracting the values of

the xB vector from vector xA. Afterward, the previous values

are summed with the values of vector xC .

F, Cr, and n pop are DE control parameters that remain con-

stant during the search process. n pop represents the population

size, F is a real valued factor in the range [0.0, 2.0] that

controls the amplification of differential variations (xA − xB

operations), and Cr is a real-valued crossover factor in the

range [0.0, 1.0] controlling the probability of choosing the

mutated value for x instead of its current value.

The generational scheme of DE also differs from other EAs.

Accordingly, each computed trial vector (known as a donor

vector) is compared with the target vector. The one with the

lower value of the cost function fcos t (X) will remain in the

population of the next generation.

Differential Evolution Pseudocode

P(0) ← Initialize(P(G))

Evaluate(P(0)(X i ))

while not end condition() do

X A ← SelectRandomIndividual(P(G))

X B ← SelectRandomIndividual(P(G))

XTARGET ← SelectRandomIndividual(P(G))

Offspring ← X
(G)
TARGETi,j

+ F × (X
(G)
Ai, j

− X
(G)
Bi, j

)

if ri, j≤Cr

Evaluate(offspring)

If offspring better than XTARGET then

Replace XTARGET with offspring

End while

Return bestIndividual(X i , P(G))

All design issues took into account the differential-

evolution fast convergence, which was proven in previous

works [81], and its canonical self-adapting differential muta-

tion operator.

Additionally, we developed a differential mutation operator

called nearest point differential mutation which uses a DE

differential mutation scheme and enforces the RND hard

constraints. Before fitness computation of the trial vector, each

gene is checked to see if the location is an available BS

location (since differential mutation will create nonlegitimate

alleles). If not, it is replaced with the nearest available location

(Euclidian distance) not yet in the offspring. Encoding is based

on a real-valued vector structure.

From the results produced by previous experiments, we

found the optimal values for the control parameters Cr and

F. Cr was set to 0.3 and F was set to 0.2. In-depth details

about RND DE experiments can be found in [5].

I. GRASP

The greedy randomized adaptive search procedure (GRASP)

is a recognized metaheuristic that has been used success-

fully for solving many combinatorial optimization problems

[82]–[90].

According to the general literature, GRASP is an iterative

process, where each iteration consists of two phases: construc-

tion and local search. The construction phase builds an initial

solution, while the second phase explores the search space

based on the result of the previous phase, hoping to find a

better solution. The best solution computed after all GRASP

iterations is regarded as the final solution. The next sentences

depict the pseudocode for a GRASP procedure.
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GRASP Pseudocode

while not end condition() do

Solution ← GreedyRandomizedConstruction

(Seed)

Solution′ ← LocalSearch(Solution)

BestSolution ←

UpdateBestSolution(Solution′, BestSolution)

end while

return BestSolution

The GRASP metaheuristic is commonly composed of

two main parameters: the number of GRASP iterations

Max_Iterations and the initial seed for pseudorandom numeric

generation. In this paper the Max_Iterations condition has

been replaced by the common 5 000 000.00 fitness evaluation

criterion.

A solution is usually represented as a set of elements. The

construction phase starts from an empty set and iteratively

adds elements to it until reaching a feasible solution. This is

achieved by means of a restricted candidate list (RCL) that

integrates all existing elements sorted by function of their

problem-specific-dependent myopic greedy evaluator. At each

step of the construction phase, the RCL will only be composed

of elements that have not been selected to be included in

the initial solution. Furthermore, each time an element is

added, the cost or fitness of the evolving solution is updated.

Usually, the selected candidates are those that induce the

smallest increment cost; this represents the greedy component

of GRASP. A normal complement is to choose randomly, from

the RCL, the next element to be added to the solution, which

in turn represents the probabilistic component of GRASP. This

allows the building of different feasible solutions at the end

of each GRASP iteration.

The solutions returned by the construction phase are not

guaranteed to be locally optimal with respect to neighboring

concepts. The search phase attempts to improve each initial

construction by means of a local search algorithm that itera-

tively replaces the current solution by a better one.

Furthermore, the construction phase plays an important part,

since good starting solutions are desirable. There are two basic

strategies employed on exploring a solution’s neighborhood.

1) Best-improvement: all neighborhoods are evaluated and

the current solution is replaced by the best neighbor.

2) First-improvement: the current solution is replaced when

finding the first better neighbor solution.

According to [91], in most cases, when applying both

strategies, they achieve the same quality in their final solution,

but generally the first improvement strategy takes a lower com-

putational effort. We also observe that it is more common to

arrive at premature convergence to a nonglobal local optimum

when using best improvement instead of first improvement.

Further details, formal definitions, and GRASP extensions

can be found in [82], [85], [91], and [92], which also include

extensive analysis of GRASP metaheuristics based on many

applications. The internal representation of the GRASP-based

approaches uses real-valued encoded elements, where each one

represents the coordinates of the BS in the solution.

The RND GRASP-based approach developed is summarily

described as follows: Shrinking-RCL (GRASP_SRCL) is a

GRASP implementation that uses a tunable greedy local search

algorithm. The search procedure uses a canonical RCL greedy

mechanism for selecting a new solution iteratively. Each new

solution is computed by exchanging an element for another

that fits better, if one such is available. An RCL size control

parameter is also used to define the greediness of the LS. This

implementation uses a continuously shrinking RCL, rendering

the search deterministic when sizeof(RCL) = 1, and ending it

when sizeof(RCL) = 0. During the iterative search procedure,

the RCL shrinks when the loopsize parameter reaches zero,

ending its execution when the RCL is empty. The optimal

parameters found are RCL (construction phase) = 20, greedy

RCLSize = 5 and Loopsize (LS Phase) = 30.

J. Variable Neighborhood Search

Variable neighborhood search (VNS) is a modern meta-

heuristic introduced by Mladenovic and Hansen [93] based

on systematic changes of the neighborhood search space to

solve optimization problems. Its main strategy is based on

the employment of more than one neighborhood structure

during the search. Its main dynamic focuses on the change

of the neighborhood structure in a systematic way as the

search progresses. This is one of the most recent metaheuris-

tics developed for solving problems in an easier way. It is

acknowledged as being one of the very well-known local

search methods [94], [95], getting more attention day by day

because of its ease of use and its accomplishments in solving

combinatorial optimization problems such as the one currently

being dealt with [96]–[107].

VNS is a simple and effective search procedure that pro-

ceeds by a systematic change of neighborhood. A common

VNS implementation builds an initial solution x ∈ S, where S

is the whole set of search space, controlling it through a two-

level nested loop in which the core one alters and explores

via two main functions named shake and local search. The

outer loop works as an energizer, reiterating the inner loop,

while the inner loop carries the key search. Local search

looks for an enhanced solution within the local neighborhood,

while shake diversifies the solution by changing it randomly

to another local neighborhood. The inner loop iterates as long

as the solutions keep improving, where an integer control

parameter k defines the length of the loop, hence defining

the number of shifting neighborhood structures. Once an

inner loop is completed, the outer loop re-iterates until the

predetermined termination condition is satisfied. Since the set

complementarity of neighborhood functions is the key idea

behind VNS, the neighborhood structure and the heuristic

functions should be carefully chosen to achieve an efficient

VNS implementation. Theoretically speaking, intensification

is achieved by the local search while the shaking of the

neighborhood structure acts as a diversification mechanism,

raising its probabilities of avoiding nonglobal optima.

In order to develop an effective VNS algorithm, two kinds of

neighborhood functions are required: N s
k (x) and N L S

l
(x), each

yielding a particular association of neighboring structures,
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where N s
k (x) and N L S

l
(x) denote neighborhood functions for

shake and local search functions respectively. It is usually

reported [93]–[95] that multiple neighborhood structures may

be used for each function (shake and local search), allowing

them to achieve different views of the search landscape and

allowing the shaking phase to generate new starting solutions

that lie near other local optima. For that reason, the indexes

k and l are to be used for shake and local search functions,

respectively, in order to ease switching from one neighborhood

to another.

VNS Pseudocode

x ← Initialize

while not end condition() do

x′ ← GenerateRandomStartingSolution x ′ǫN s
k (x).

x′′ ← localSearch(N L S(x))

If x′′ is better than x

x ← x′′

end while

Return x

If the local search uses the greedy strategy, then an iterative

procedure tests the entire base, returning the best neighboring

solution until a local minimum is obtained. The shake proce-

dure selects a random solution from the global search space.

There are many variants of variable neighborhood search

such as variable neighborhood decomposition search [108]

and skewed variable neighborhood search [95]. Given the

flexibility of the technique, other variants of this algorithm

can be employed [94].

Two VNS derivates were developed to tackle the RND

optimization problem. These are described as follows.

VNS (EVNS) is a basic canonical VNS implementation with

local search. The internal representation of all VNS-based

approaches uses real-valued encoded elements, where each

one represents the coordinates of the BS in the solution or

search space. The LS operator uses the greedy strategy, i.e.,

it replaces the current element x ′ with the best one found

in the gn neighborhood. If x ′ is the best element, then no

replacement is made. In the case of the RND application,

we employed gn ∈ ℜ+, where gn is computed by means

of an Euclidean distance function, representing the distance

between elements that belong to M . Since we are working

with a coordinate system, the neighborhood structures have

been defined on the grid’s coordinate system, employing a

Euclidean distance function to define gn. The initialization and

shaking phases are carried out through a RCL-like construct.

GRASP VNS (GRASP_VNS) is a VNS-based implementa-

tion that allows dynamic changing of neighborhood range

when executing the local search procedure, increasing it when

no better neighborhood selections are found and decreasing

it while better solutions are continuously found. This is an

implementation that uses the GRASP metaheuristic to power

the global search (replacing the shaking operator). The LS

procedure is the same as in the previous VNS-based descrip-

tion [93]. Experiments were carried out to find the best

set of parameter values for the VNS variants. These values

Fig. 3. Urban scenario (city of Malaga).

are: gn neighborhood size = 45 (150% max. BS radiating

distance), shaking RCL size = 5, initial RCL size = 20, and

neighborhood variance = 15 (GRASP_VNS only).

K. Hybrid and Multistart Variants

Fixed Neighborhood Tabu (MS_FNS) is a hybrid LS pro-

cedure based on the greedy VNS and tabu techniques, mainly

through the prevention of previously visited solutions. The

global search space is managed by a multistart mechanism.

The additional parameter is the tabu tenure = 25 (fitness

evaluations).
As opposed to the previous algorithms, the multistart ver-

sions presented next are all derived from previously presented

algorithms. Although each of the former search procedures has

unique and extendable techniques for avoiding local optima,

several of our experiments gave us an insight that some

pitfalls could not be avoided using a single modeled technique

algorithm (even employing multiple techniques). One of the

options considered during development and experimentation

was to create multistart versions of some of the promising

algorithms that occasionally got trapped in local optima,

yielding high deviation values in their final results. The

result profiling and the high deviation substantiated that the

algorithm could indeed be very effective but also occasionally

very deceptive. To avoid these common problems, multistart

versions of the following algorithms were implemented:
Reversed Unleashed Neighborhood Search (RUFNS) is a

triple hybrid searcher, originally based on the GRASP meta-

heuristic combined with the same VNS neighborhood opera-

tions explained in the previous section and a tabu propagation

technique, mainly through the prevention of previously visited

solutions. The LS operations alternate with the tabu techniques

that are employed. This GRASP version delivers heavy-based

heuristics while executing the LS phase (as opposed to our

light-weighted SRCL_GRASP and GRASP_VNS local search

procedures). The additional parameter is the tabu tenure = 25

(fitness evaluations).
Multistart VNS (MS_VNS) is a multistart version of

EVNS. This version replaces the shaking operator by an MS

mechanism.
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MS Greedy Entropy Perturbation VNS (MS_GEPVNS) is

a hybrid implementation, based on the MS_VNS, employing

both a shaking neighborhood operator and a global-scope

greedy entropy perturbation mechanism. The greedy entropy

perturbation is based on a RCL-like structure and explores

the global search space (a control parameter determines the

greediness of the entropy). The local search procedure remains

unchanged and population elements rely on a simple acquired

immune response system (based on the proximity of neigh-

borhood elements). The IN range or neighborhood structure

is defined and all xi ∈ U ∩ Neighbors(xi , I N ) are summed.

Each element needs to accommodate its immune base level as

shown in

xiimmunity
= I F ·

(

Max
(
∣

∣Neighbors(x ′, I N )
∣

∣

)

− |Neighbors(xi , I N )|)

)

,

xi ∈ U ∀x ′ ∈ U (7)

where IF represents the immunity amplifying factor control

parameter, ranging between [0.1,∞[. High immunity levels

decrease convergence speed; hence the importance of adequate

balancing of the IF factor.

Each time a move is made during the LS phase, if the

element’s current immunity is higher than zero, it is decreased

by 1 and the LS move is not committed.

A multistart mechanism is implemented when stagnation

or premature convergence is detected during runtime. This

approach delivers a double outer-diversity echelon: 1) by its

shaking operator and 2) its multistart uttermost mechanism

that relies on an initialization heuristic. While the previous

approach emphasizes re-initialization (hence being denoted as

GRASP), this one is classified as a multistart variant due to

its controllable initialization method. Preliminary experiments

were carried out to find the best set of parameter values for

MS_GEPVNS. These values are: gn neighborhood size = 45

(150% max. BS radiating distance), IF amplification = 1,

shaking RCL size = 5, and initial RCL size = 20.

VI. RESULTS

In this section we present and describe the experiments

performed with the different optimization algorithms depicted

in Section IV, including some advanced distributed runtime

environments.

A. Heterogeneous Distributed Environments

Although the approaches studied in this paper aim to

reduce the computational effort, the search space is still

considerable, and thus we also resorted to high-throughput

and grid computing. Wall-clock runtime for all algorithms is

bounded between 0.5 and 5 h per experiment. Additionally,

some techniques combining software and hardware were used

in order to accelerate the computations. Some of these are

briefly described as follows.

1) BOINC Desktop Grid Computing: Berkeley open

infrastructure for network computing (BOINC) [109], [110] is

a system for “volunteer computing” and “desktop grid comput-

ing.” Volunteer computing uses computers volunteered by the

general public to do distributed scientific computing. We used
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Fig. 4. Q3 (upper quartile).

the middleware system BOINC in order to perform thousands

different executions of the PBIL algorithm in parallel. In this

way, we were able to do a deep survey of which are the best

parameters and combinations for solving the RND problem.

2) CONDOR Desktop Computing: The executions of the

DE, GRASP, VNS, Hybrids, and MS variant experiments

described in this paper were carried out through the Con-

dor high-throughput computing framework [111]. Specifically,

the Condor framework permits the harvesting of computing

resources that would otherwise be left idle, allowing users with

access to the Condor system to submit batches of independent

tasks. These tasks are then scheduled by the Condor master

over the available computing resources. If a task does not

complete in the assigned machine—for instance, the remote

machine is taken back for interactive usage or the machine is

simply turned off—the execution lease times out after a given

time interval and Condor automatically reschedules the task

to another machine. All of this is in practice transparent to

the application programmer, with application submitters only

providing the binary application.

B. Problem Instance and Experimental Planning Disclosure

A real-world-sized problem instance, defined by the geo-

graphical layout of the city of Malaga (Spain), was used to test

the algorithm performances. This instance, named Malaga1K,

represents an urban area of 27.2 km2 as shown in Fig. 3.

The terrain has been modeled using a 450 × 300 grid, where

each point represents a surface of approximately 15 × 15 m.

This fine-grained discretization enables us to achieve highly

accurate results. A dataset containing 1000 candidate sites for

the BSs, and their corresponding coordinates on the grid, is

used. The dataset can be found on the website [115]. The

cell model for BS coverage, as explained in Section III, is

an omnidirectional isotropic model, with a radius of approxi-

mately one half kilometer (30 grid points). In this scenario, the

maximum coverage that can be attained is 95.522%. There are

two major uncovered areas: the sea (at the bottom of Fig. 3),

and the mountains (Fig. 3, top).

Our experiments promote thoughtful [116], well-planned,

and algorithmic extensive testing, full disclosure of experimen-

tal conditions, including the integrity and reproducibility of
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reported results. The most relevant results we currently present

are based on the following measures.

1) Effectiveness—Defines the fitness-based quality of the

results.

2) Computational Effort—Speed of computation is obvi-

ously a key factor. In this paper the computational

effort is based on the FEEM definition as shown in

Section IV-A. The number of fitness evaluations is used

to define when the average maximal fitness of an algo-

rithm is reached.

3) Algorithmic reliability—Defines a degree of confidence

for a given algorithm to yield good results, according

to its average effectiveness. This is achieved through

the standard deviation of the maximal fitness results

computed by each algorithm.

Additionally, all results were derived from statistical experi-

mental design techniques aiming at the reduction of variability

within the results and promoting a comprehensive report of the

results.

For each of the proposed algorithms, 30 independent runs

were conducted with a stopping criterion of 5 000 000 fitness

evaluations each. All presented results rely on the statistical

values yielded by each of the 30 runs.

C. Normalized Behavior Models

The algorithms can be classified into three quartile groups

according to the averaged fitness of the best solution obtained

in the 30 runs. The first group (the algorithms producing

solutions with the highest fitness) contains MS_GEPVNS,

ILS, CHC, and PBIL. The second group contains MS_FNS,

MS_VNS, and HybridGRASP_RUFNS. Finally, the third

group (the ones producing the lowest fitness) contains

GRASP_EVNS, AGC, MAC, SA, and DE.

Fig. 4 shows the runtime quality distribution of the algo-

rithms in the upper quartile. We observe that the faster the

convergence is achieved, the higher the final fitness (which

is not a usual occurrence). In this sense, MS_GEPVNS is

the algorithm that produces the highest final fitness (164.701)

and is also the first to converge (200 000 FEEM), while PBIL

gets the lowest fitness (162.651) and is the last to converge

(3 500 000 FEEM), with ILS (164.092 fitness and 1 850 000
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FEEM), and CHC (163.278 fitness and 3 300 000 FEEM) being

second and third, respectively.

The median-quality runtime distributions are shown in

Fig. 5. Due to their GRASP and multistart-based foundations,

these algorithms have a common behavior—all three con-

verge very quickly. HybridGRASP_RUFNS converges faster,

after less than 100 000 FEEM. MS_FNS and MS_VNS

both converge at approximately 500 000 FEEM. Hybrid-

GRASP_RUFNS also obtains the highest fitness (162.411),

followed by MS_VNS (162.120) and then MS_FNS (161.884).

The lower quartile behavior is shown in Fig. 6. The algo-

rithms in this quartile present different behaviors. We can

define three behavior segments: the first segment presents a

very fast convergence (GRASP_VNS, DE), the second one

presents a very slow convergence (SA), and the third one starts

with a fast convergence, then a long stagnation, and finally a

sudden fitness rise (AGC, MAC, CAPMC). This sudden rise

remains an inexplicable phenomenon. The algorithms AGC,

MAC, CAPMC, and GRASP_VNS all produce similar fitness

(between 161.352 and 162.134), followed by SA (156.476),

while DE and GRASP_SRCL (148.802) have clearly lower

results.

D. Effectiveness Comparison

We define the effectiveness of an algorithm as the capacity

the algorithm has to achieve good fitness-based results. In

this problem instance, the optimal value is unknown, although

some approximation can be deduced by the combined compar-

ison of the fitness-based results and their standard deviation.

Fig. 7 depicts the average effectiveness (fitness) achieved

per algorithm. This measure is based on the average con-

vergence point P obtained through the AvgSeries runtime

distributions where AvgSeries = Avg
∑30

i=1 P ′
i , where Pivot

P = Max[f (x)] and f (x) represents the function to be maxi-

mized. There seem to be two comprehensible subsets of algo-

rithms. The first contains high-performance RND algorithms,

all producing average fitness values above 161. The second

set, formed by DE, GRASP_SRCL, and SA, are classified as

outsiders since their fitness fall between 148.196 and 156.478.

In the first subset, the algorithms that get the highest fitness

are MS_GEPVNS, ILS, and CHC, respectively.
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E. Computational Effort Comparison

In this section we present the FEEM computational effort

comparison among the algorithms. The convergence point P ′

is defined by the FEEM that have elapsed until the best result

has been found.

This measure is based on the average convergence point P

obtained through the AvgSeries runtime distributions.

Fig. 8 gives an overview of the average convergence

point P ′ obtained through the AvgSeries runtime distributions,

including the standard deviation for P ′ or Avg[Max(f(x))],

established through the DevSeries P distributions, where

DevSeries = Std Dev(
∑30

i=1 FEEM(P ′
i )).

From an inspection of the figure, the algorithms can be

classified into two segments according to their computa-

tional effort. The faster segment contains Hybrid_RUFNS,

GRASP_SRCL, DE, GRASP_VNS, MS_FNS, MS_GEPVNS,

and MS_VNS. On the other hand, the slower segment contains

the rest of the algorithms: ILS, CHC, PBIL, SA, CAPMC,

AGC, and MAC. Additionally, this segment includes ILS

which exhibits a soaring standard deviation to achieve P ′

according to its convergence speed.

As a final observation, it is possible to state that in a

general manner, not a population-based approaches have better

computational effort measures, with the exception of DE.

F. Reliability Comparison

The reliability of an algorithm refers to the extent of

confidence for a given algorithm to achieve good results in

any execution, tightly related to its average effectiveness.

A commonly used measure is the standard deviation of the

fitness of the average convergence point P ′.

Fig. 9 shows, for each algorithm, the DevSeries

standard deviation on P ′ where DevSeries =

StdDev(
∑30

i=1 Max( f (xi ))). The standard deviations are

two orders of magnitude smaller than the average fitness. In

this sense, the least reliable of the algorithms is DE, with a

standard deviation of 1.72% (2.552) of the average fitness. We

also observe that all GRASP, multistart, and ILS algorithms

have a standard deviation under the 0.5 boundary. There

is another interesting detail: the MS_GEPVNS algorithm,

besides presenting itself as the most effective algorithm in

the set, has a standard deviation of 0. This algorithm thus

proves to achieve the maximal result in 100% of conducted

experiments. Nothing can be deduced about its optimality,

but its standard deviation encourages a good provisional

confidence in this matter.

G. Algorithmic Trend Disclosure

Some global patterns or trends have been observed upon

analysis. We defined the slope of each of the algorithmic

runtime quality distributions based on the slope of the lin-

ear regression line for each of the runtime series. These

results pointed to a segmented performance ratio between

population-based and non-population-based approaches, with

the exception of SA (although its results are not outstanding).

DE, which is known for being a very fast population-based

optimizer [76], clearly defines the boundary between the two

segments, also with low quality values, suffering excessively

from a phenomena called stagnation [117].

Overall, we can observe that the GRASP approaches are

very fast but are also strongly disposed toward local-optima

trapping. GRASPs light LSs are unable to explore the search

space in an effective way, although better results are observed

when the LS procedures incorporate heavier heuristics or addi-

tional flow mechanisms (as the HybridGRASP_RUFNS). The

combinatorial complexity of real-world RND instances is not

satisfactory for GRASP approaches that exclusively emphasize

the optimization itself, although these approaches can be used

for interactive computer-aided design tools since they deliver

reasonable quality in a very short amount of time (in seconds).

By the inspection of Fig. 10, it is possible to observe that

LS-based algorithms start with higher fitness values compared

to non-LS-based approaches. This is a common behavior in

many other problems. The same observation is drawn from

the other quartiles.

None of our population-based approaches suffered from

premature convergence (except the previously mentioned DE

phenomena) since these bio-inspired models intrinsically use

their control parameters to avoid such pitfalls, but they also

usually turn out to be slower than most of the contestants,

although yielding good results. Population-based approaches

have the intrinsic burden of having to evaluate all the solutions

that compose the population, while other methods like LS-

based approaches do not. Since FEEM shows that the evalua-

tion function is extremely computing intensive, this burden is

passed on from the implementations and has to be accounted

for in real-world applications. On the other hand, these
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approaches are easily powered up through parallelism. Pre-

processing is irrelevant in this optimization problem (accord-

ing to performance/speed indicators).

The MS_GEPVNS variant, besides delivering high-quality

results (as explained in Section VI-D) is a reasonably fast

optimizer, standing very near to the GRASP-echelon perfor-

mance. The main grounds for success for the MS_GEPVNS

implementation are the tying-in of its immune response sys-

tem, which is the only thing that distinguishes this variant

from the canonical VNS (EVNS) implementation. ILS also

delivers very satisfactory results, although always a step

behind MS_GEPVNS in every aspect, being the slowest LS-

based approach (excepting SA as outsider). Finally, the most

important trend detected is that LS-based search techniques

are the most suitable for this type of problem as they are the

most effective, swiftest, and most reliable (per run).

VII. CONCLUSION AND FUTURE WORKS

In this paper we have presented a multifaceted compar-

ison of a wide algorithmic range. The 14 different algo-

rithms applied to solve the RND problem have followed two

main principles: technology independence and a normalized

comparison. We have stated that the best results, on aver-

age, are yielded by local-search-empowered metaheuristics.

Population-based metaheuristics also deliver high-quality solu-

tions but require additional computer effort in this specific

problem.

In the future, we will bend our research in two main

directions: 1) the inclusion of multiobjective optimization

methods in order to enlarge our optimization approach support

base and 2) the creation of additional specific instances with

landscape simulation features, including path-loss models and

bandwidth demand zones.
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