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Abstract 26 

Gene set scoring (GSS) has been routinely conducted for gene expression analysis of bulk or 27 

single-cell RNA-seq data, which helps to decipher single-cell heterogeneity and cell-type-28 

specific variability by incorporating prior knowledge from functional gene sets. Single-cell 29 

assay for transposase accessible chromatin using sequencing (scATAC-seq) is a powerful 30 

technique for interrogating single-cell chromatin-based gene regulation, and genes or gene sets 31 

with dynamic regulatory potentials can be regarded as cell-type specific markers as if in 32 

scRNA-seq. However, there are few GSS tools specifically designed for scATAC-seq, and the 33 

applicability and performance of RNA-seq GSS tools on scATAC-seq data remain to be 34 

investigated. We systematically benchmarked ten GSS tools, including four bulk RNA-seq 35 

tools, five single-cell RNA-seq (scRNA-seq) tools, and one scATAC-seq method. First, using 36 

matched scATAC-seq and scRNA-seq datasets, we find that the performance of GSS tools on 37 

scATAC-seq data is comparable to that on scRNA-seq, suggesting their applicability to 38 

scATAC-seq. Then the performance of different GSS tools were extensively evaluated using 39 

up to ten scATAC-seq datasets. Moreover, we evaluated the impact of gene activity conversion, 40 

dropout imputation, and gene set collections on the results of GSS. Results show that dropout 41 

imputation can significantly promote the performance of almost all GSS tools, while the impact 42 

of gene activity conversion methods or gene set collections on GSS performance is more GSS 43 

tool or dataset dependent. Finally, we provided practical guidelines for choosing appropriate 44 

pre-processing methods and GSS tools in different scenarios.  45 

Keywords: Single-cell ATAC-seq; Gene set scoring; Pathway analysis; Single-cell RNA-46 

seq; Benchmark 47 

Introduction 48 

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) is a powerful and 49 

the most widely used epigenomic technique for interrogating chromatin accessibility on a 50 

genome-wide scale [1]. In particular, the advent of single-cell ATAC-seq (scATAC-seq) has 51 

made it possible to profile chromatin-accessibility variations in single cells, which allows to 52 

illuminate chromatin-based gene regulation with an unprecedented cellular resolution and 53 

discover new cell subpopulations [2, 3]. One of the ultimate goals for analyzing single-cell 54 

chromatin accessibility data is to quantitatively understand the relationship between the 55 

variation of chromatin accessibility and that of the expression of nearby genes [4]. A first step 56 

toward this goal is to link regulatory DNA elements with their target genes on a genome-wide 57 

scale and predict gene activity (GA) score by modelling the chromatin accessibility at the gene 58 
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level. Several tools are currently in progress to convert chromatin accessibility signals to GA 59 

scores, including Cicero [4], MAESTRO [5], ArchR [6], snapATAC [7], and Signac [8]. The 60 

inferred GA scores facilitate the integrative analysis of single-cell RNA-seq (scRNA-seq) and 61 

scATAC-seq data, and the scores of key marker genes can be used for accurate annotation of 62 

cell types as if in scRNA-seq [4, 6, 9].  63 

In addition to single gene analysis, gene set analysis, analogue to pathway analysis, has 64 

become a routine step for analyzing gene expression data, which has proven to be effective in 65 

estimating the activity of pathways or transcription factors (TFs) for uncovering transcriptional 66 

heterogeneity and disease subtypes [10-12]. In single-cell RNA-seq studies, gene set scoring 67 

(GSS), or commonly referred to as pathway activity transformation, has been broadly 68 

conducted to quantify the enrichment and relevance of gene sets in individual cells. GSS 69 

converts the gene-level data into gene set-level information; gene sets contain genes 70 

representing distinct biological processes (e.g., the same Gene Ontology annotation) or 71 

pathways (e.g., the Molecular Signature Database (MSigDB) [13]). Therefore, GSS helps to 72 

decipher single-cell heterogeneity and cell-type-specific variability by incorporating prior 73 

knowledge from functional gene sets or pathways [14, 15]. A wide spectrum of GSS tools have 74 

been designed for scRNA-seq data, such as Pagoda2 [16], Vision [17], and AUCell [18], which 75 

infer pathway-level information from the gene expression profile for the characterization of 76 

transcriptional heterogeneity of cell populations. Similarly, gene sets with dynamic regulatory 77 

potentials inferred from scATAC-seq can also be regarded as cell-type specific markers as if 78 

in scRNA-seq [5].  79 

Single-cell ATAC-seq data and RNA-seq data have analogous characteristic structures, 80 

both of which suffer from similar sparsity and noise. In recent years, great breakthroughs have 81 

been made in the computational modelling of scRNA-seq data, such as dropout imputation, 82 

dimensionality reduction, cell type identification, GSS, and regulatory networks inference [19-83 

22]. In contrast, the progress on computational modelling in the field of scATAC-seq lags far 84 

behind that of scRNA-seq [23, 24]. As a compromise, many scRNA-seq analysis methods are 85 

directly applied to scATAC-seq data. For example, Liu et al. [25] benchmarked tools dedicated 86 

to imputing scRNA-seq data (e.g., MAGIC [26] and SAVER [27]) for recovering dropout 87 

peaks in scATAC-seq data and found that most scRNA-seq imputation tools can be readily 88 

applied to scATAC-seq data. Tools for alignment, quality control, peak calling, and differential 89 

peak analysis for RNA-seq and/or ChIP-seq data are widely used for ATAC-seq data [23]. This 90 

series of evidence indicates that GSS tools for scRNA-seq could in principle be applicable to 91 

scATAC-seq as well. However, due to the close-to-binary nature and extreme sparsity of the 92 
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scATAC-seq data, it remains elusive whether these limitations would distort or confound the 93 

results produced by the direct application of RNA-seq methods to scATAC-seq. To the best of 94 

our knowledge, currently only one tool, UniPath [28], provides a function dedicated to scoring 95 

gene sets for scATAC-seq, therefore, it is timely and imperative to further investigate the 96 

applicability and performance of more GSS tools designed for bulk or single-cell RNA-seq on 97 

scATAC-seq data. 98 

Currently the performance of GSS tools designed for bulk or single-cell RNA-seq on 99 

scRNA-seq data sequenced with diverse scRNA-seq protocols has been comprehensively 100 

evaluated. Zhang et al. [15] evaluated the performance of eleven pathway activity 101 

transformation tools on 32 scRNA-seq datasets and found Pagoda2 [16] exhibited the best 102 

overall performance. Holland et al. [14] compared the performance of six TFs or pathway 103 

activity estimators on simulated and real scRNA-seq data, which found that bulk tools can be 104 

applied to scRNA-seq, partially outperforming scRNA-seq tools. These studies focused only 105 

on scRNA-seq, to the best of our knowledge, there has been no systematic benchmark study to 106 

evaluate the performance of GSS tools on scATAC-seq data. Here we systematically evaluated 107 

the performance of ten GSS tools using ten scATAC-seq datasets, including four tools designed 108 

for bulk RNA-seq, five tools designed for scRNA-seq, and one method proposed for scATAC-109 

seq. The performance was quantitively evaluated under four scenarios of dimensionality 110 

reduction, clustering, classification, and cell type determination, which are critical steps of 111 

single-cell analysis in most scRNA-seq and scATAC-seq studies. Our benchmark results 112 

provide abundant evidence that GSS tools designed for RNA-seq are also applicable to 113 

scATAC-seq. Using three matched scATAC-seq and scRNA-seq datasets, results showed that 114 

the performance of GSS tools for scATAC-seq data on clustering cells or distinguishing cell 115 

types was comparable to that for scRNA-seq. In particular, the performance of several GSS 116 

tools designed for RNA-seq exceeds the current only method dedicated to scATAC-seq, under 117 

diverse evaluation scenarios. Moreover, we evaluated the impact of data preprocessing of 118 

scATAC-seq on GSS, including dropout imputation and GA transformation. Benchmark results 119 

show that dropout imputation can significantly promote the performance of almost all GSS 120 

tools. In contrast, the performance of different GA transformation methods varies greatly across 121 

different GSS tools and different datasets. In addition, we also evaluated the performance of 122 

GSS tools using different gene set collections in the context of clustering and found that 123 

different GSS tools and different datasets have different degrees of robustness to different gene 124 

collections. Our benchmark results provide practical guidelines for choosing appropriate GSS 125 
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tools for raw scATAC-seq data or data after dropout imputation, and also provide important 126 

clues on how to preprocess the scATAC-seq data for more effective GSS. 127 

Results 128 

Overview of the benchmark workflow 129 

We benchmarked ten GSS tools, including four tools for bulk RNA-seq (PLAGE [29], z-score 130 

[30], ssGSEA [31], and GSVA [32]), five tools for scRNA-seq (AUCell [18], Pagoda2 [16], 131 

Vision [17], VAM [33], and UniPath [28]) and one function provided in the UniPath for scoring 132 

gene sets from scATAC-seq (hereinafter called UniPathATAC), using ten real scATAC-seq 133 

datasets with different number of cells and cell types (Figure 1). UniPathATAC can score gene 134 

sets directly from scATAC-seq data, using the peak-cell matrix as the input to obtain the gene 135 

set score matrix. In contrast, the input of RNA-seq GSS tools is the gene-cell matrix, thus the 136 

peak-level profile obtained from scATAC-seq data needs to be converted into the GA matrix, 137 

using a GA transformation tool. Four GA tools, including MAESTRO [5], Signac [8], ArchR 138 

[6], and snapATAC [7], were examined. MAESTRO obtains the GA matrix from the peak-cell 139 

matrix, while other three GA tools from the fragment file (Materials and methods). Unless 140 

otherwise specified, Signac was used as the default GA conversion tool as it runs fast and has 141 

good performance in our preliminary test. But we also conducted in-depth evaluation on the 142 

impact of different GA tools on GSS. Moreover, the pipeline for evaluating GSS tools involves 143 

an additional preprocessing step -- imputation of dropout peaks. We adopted three popular 144 

imputation tools developed for scRNA-seq (MAGIC [26], DrImpute [34], and SAVER [27]) 145 

and one tool designed for scATAC-seq (SCALE [35]). It should be noted that the imputation is 146 

performed on the peak-cell matrix rather than the fragment file, therefore, only MAESTRO [5] 147 

can be used for GA conversion from the imputed data. In addition, we examined six gene set 148 

collections from MSigDB (version 7.1), including KEGG (Kyoto Encyclopedia of Genes and 149 

Genomes), GO:BP (GO Biological Process), GO:MF (GO Molecular Function), GO:CC (GO 150 

Cellular Component), REACTOME, and TFT (Transcription Factor Target) (Table S1). Unless 151 

otherwise specified, KEGG that contains 186 gene sets in MSigDB was used as the default 152 

prior information. We benchmarked GSS tools under diverse scenarios of dimensionality 153 

reduction, clustering, classification and cell type determination. Each GSS tool was used to 154 

obtain the gene set score matrix from each scATAC-seq dataset (hereafter called GSS-ATAC), 155 

which was then evaluated in the context of each evaluation scenario. 156 

GSS tools designed for RNA-seq are applicable to scATAC-seq 157 
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We used three matched datasets of scATAC-seq and scRNA-seq that are derived from the same 158 

cells, including Brain, PBMC3K, and PBMC10K (Table S2), to examine whether GSS tools 159 

designed for RNA-seq are applicable to scATAC-seq data. First, we used Signac to convert the 160 

peak-cell matrix to the GA matrix and then performed each GSS tool to obtain the GSS-ATAC 161 

matrix. We also used the nine RNA-seq GSS tools to score gene sets for the matched scRNA-162 

seq data to obtain the corresponding gene set score matrix for scRNA-seq (hereafter called 163 

GSS-RNAseq). Then the performances of different GSS tools were evaluated by 164 

dimensionality reduction measured by Silhouette, clustering measured by ARI and 165 

classification measured by accuracy based on the GSS-ATAC or the GSS-RNAseq matrix 166 

obtained by different tools. We conducted the pipeline for each dataset and then calculated the 167 

average value of each performance indicator of the three datasets. For both scRNA-seq and 168 

scATAC-seq data, two methods, Pagoda2 and PLAGE, generally provide better performance 169 

than other methods in terms of all the three performance indicators (Figure 2A). Other GSS 170 

tools exhibit comparable and moderate performance. Although the performance of GSS tools 171 

on scRNA-seq and scATAC-seq is comparable, most GSS tools provide slightly better 172 

performance on scRNA-seq than on scATAC-seq. This is not unexpected because that these 173 

tools, except for UniPathATAC, were designed for RNA-seq and the reference cell types of 174 

scATAC-seq datasets were determined by the scRNA-seq data rather than scATAC-seq. Still, 175 

the consistency between clustering results obtained by GSS-ATAC and the reference cell types, 176 

measured by ARI, is even slightly higher than that of GSS-RNAseq obtained by several tools, 177 

including GSVA, VAM, and Vision (GSVA: 0.51 vs. 0.47; VAM: 0.38 vs. 0.36; Vision: 0.50 178 

vs. 0.49). In particular, the performance of the two tools with the best performance, Pagoda2 179 

and PLAGE, is higher than UniPathATAC, a method designed specifically for scATAC-seq, 180 

under all evaluation schemes (e.g., ARI of Pagoda2 = 0.60, PLAGE = 0.57, UniPathATAC = 181 

0.55). Moreover, 2D embeddings of both GSS-ATAC and GSS-RNAseq matrices obtained by 182 

different GSS tools show comparable discrimination of the cell types (Figure 2B).  183 

In addition to Signac, we also used three other GA tools for transforming the peak profile 184 

to the gene-level activity scores and then calculated the GSS-ATAC matrix using different GSS 185 

tools. Results on the PBMC10K data show that the GSS-ATAC matrix based on the GA matrix 186 

obtained by different GA tools yields comparable ARI score to that using scRNA-seq data 187 

(Figure 2C), demonstrating again the applicability of RNA-seq GSS tools to scATAC-seq. 188 

Among the four GA tools, ArchR is less robust than other three GA tools for the PBMC10K 189 

data (Figure 2C). Taken together, these results preliminarily show that GSS tools designed for 190 

RNA-seq have comparable performance on both scRNA-seq and scATAC-seq data and thus 191 
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are applicable to scATAC-seq data. In the following benchmark evaluation, we used more 192 

scATAC-seq datasets and considered different factors, including pre-processing steps, gene set 193 

collections, and GA methods, to evaluate different GSS tools more comprehensively. 194 

Evaluation of GSS tools using different scATAC-seq datasets 195 

Having preliminarily demonstrated that GSS tools designed for RNA-seq are applicable to 196 

scATAC-seq, next we used eight scATAC-seq datasets (Table S2), which are from human and 197 

mouse with number of cells ranging from 500 to 10K, to further evaluate the performance of 198 

different GSS tools.  Generally, the performance of GSS tools is highly dependent on datasets 199 

(Figure 3). Regardless of the evaluation scenario, the performance of all tools on 200 

Hematopoiesis, Leukemia, and SNAREmix is extremely poor, significantly lower than that on 201 

other five datasets. We then examined the raw scATAC-seq data to check whether the datasets 202 

with generally poor GSS results have low data quality. Indeed, we found significantly lower 203 

consistency between the clusters and the reference cell types of the three datasets with poor 204 

GSS results than the other five datasets (Figure S1). Although different GSS tools have varied 205 

performance on different datasets, Pagoda2 and PLAGE perform overall better than other tools. 206 

For example, the average ARI scores of all the eight datasets of Pagoda2 and PLAGE are much 207 

higher than that of the third tool UniPathATAC (Pagoda2 = 0.32, PLAGE = 0.30, 208 

UniPathATAC = 0.24). Of note, UniPathATAC is specially designed for scATAC-seq. 209 

Similarly, according to the scenario of classification, the average accuracy of PLAGE and 210 

Pagoda2 is also much higher than other tools (PLAGE=0.72, Pagoda2=0.67, other tools=0.62). 211 

These results revealed that the performance of the scATAC-seq specific tool, UniPathATAC, 212 

is only moderate, which is generally lower than that of two GSS tools for RNA-seq, Pagoda2 213 

and PLAGE, suggesting again the feasibility of applying RNA-seq GSS tools to scATAC-seq 214 

data. 215 

Evaluation of the impact of dropout imputation on GSS 216 

Similar to scRNA-seq, scATAC-seq is plagued by extremely high sparsity and noise, therefore 217 

single-cell dropout peaks are usually recovered before downstream analysis. In contrast to the 218 

considerable progress that has been made in dropout imputation of scRNA-seq data, much 219 

fewer imputation tools for scATAC-seq are available. Till now, SCALE [35] is the only 220 

imputation method specially designed for scATAC-seq. A previous benchmark study [25] 221 

suggested that imputation tools designed for scRNA-seq are also applicable to scATAC-seq. 222 

Therefore, in addition to SCALE, we also considered three widely used scRNA-seq imputation 223 

tools, including MAGIC, DrImpute, and SAVER. Of note, the recovered peak-cell matrix can 224 

only be transformed into gene-cell activity matrix by MAESTRO, whereas the other three GA 225 
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tools cannot because they use the fragment file for GA conversion. The performance of 226 

different GSS tools was compared under three evaluation scenarios -- dimensional reduction, 227 

clustering, and classification, using nine scATAC-seq datasets.  228 

In general, regardless of imputation methods or GSS tools used, the performance of GSS 229 

using recovered peak profile is significantly improved compared with that using the raw peak 230 

profile (Figure 4A). Among the four imputation methods, SCALE that is designed for scATAC-231 

seq provides the overall best performance, ranking first or second in almost all comparisons. 232 

Among the three scRNA-seq imputation methods, the overall performance of DrImpute is the 233 

best, followed by MAGIC. Except that the performance of SAVER is apparently the worst in 234 

most cases, the performance of the other three tools is relatively close. Moreover, the impact 235 

of the same imputation tool on the performance of different GSS tools is quite consistent, and 236 

no GSS tool relies on a specific imputation method. Next, we examined in detail the change of 237 

ARI scores of different GSS tools before and after imputation by SCALE under the clustering 238 

scenario (Figure 4B). In almost all cases, regardless of datasets or GSS tools, ARI scores based 239 

on recovered data are increased significantly. However, the performance improvement of 240 

different datasets after imputation varies greatly; the increase of ARI value under Leukemia, 241 

Hematopoiesis, and Brain is much slighter than that under other six datasets. Moreover, after 242 

imputation, the performance of different GSS tools on the same dataset also varies greatly. For 243 

example, after imputation, the ARI score of different tools on InSilico varies from 0.41 by 244 

UniPathATAC to 0.88 by Vision; the ARI score on GM12878HL varies from 0.02 by VAM to 245 

0.79 by Pagoda2. In addition, the performance ranking of these tools changes after imputation. 246 

Pagoda2 and PLAGE are top performers using the raw data (Figures 2 & 3), while their ranking 247 

falls to a medium level after imputation. The performance of almost all tools has been greatly 248 

improved using data after imputation, but none is obviously the best -- several tools, including 249 

GSVA, Vision, Pagoda2, ssGSEA, and AUCell, achieve comparably good performance. 250 

Interestingly, the ARI score of Pagoda2 on raw data of InSilico and PBMC3K is much higher 251 

than that of other tools, however, the performance after imputation is even lower than that 252 

before imputation or most other tools. This result indicates that the impact of data imputation 253 

for a tool that already performs well on the raw data may be limited. In contrast, some GSS 254 

tools have very poor performance before imputation, while a substantial improvement was 255 

obtained after imputation. For example, the ARI score of Vision on the InSilico raw data is only 256 

0.13, while it is increased greatly to 0.88 using data after imputation. The UMAP visualization 257 

of the GSS-ATAC matrix obtained from the InSilico data shows significantly more 258 

distinguishable cell types using data after imputation (Figure 4C). These results demonstrate 259 
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that the performance of GSS tools can be significantly improved by the incorporation of the 260 

imputation step in data preprocessing, particularly for those GSS tools having poor 261 

performance on the raw data.  262 

Evaluation of GSS tools by the enrichment analysis of marker gene sets 263 

Next, we used marker genes of known cell types as the reference to further evaluate the 264 

accuracy of cell type recognition using gene sets quantified by different GSS tools (Materials 265 

and Methods, Table S3). Considering the abundance of cell types and the availability of cell 266 

marker information in the CellMarker database [36], here we used the two PBMC datasets with 267 

25 sub-types for evaluation. ssGSEA has the highest accuracy of cell type recognition when 268 

only the top one to three gene sets were used (Figure 5). For example, when identifying cell 269 

types only based on the top one gene set, the accuracy of ssGSEA is ~71%, which is much 270 

higher than other tools (Vision = 51% in the second place). Several other tools also achieve 271 

comparable accuracy to ssGSEA when using ≥ 3 top gene sets, including VAM, Pagoda2, and 272 

Vision, which reach an accuracy of > 82% using top five gene sets.  Surprisingly, for PLAGE 273 

which has comparable performance with Pagoda2 in other evaluation scenarios (Figures 2 & 274 

3), none of the top gene sets identified by PLAGE is enriched on correct cell types. In particular, 275 

although UniPathATAC is designed purposely for scATAC-seq, its performance is 276 

consistently lower than several other GSS tools for RNA-seq. Taken together, among the ten 277 

GSS tools, six tools, including ssGSEA, VAM, Pagoda2, Vision, AUCell, and z-score, provide 278 

overall better performance than other tools. UniPathATAC and GSVA rank at the second level, 279 

while UniPath and PLAGE perform the worst. 280 

Evaluation of the impact of GA transformation on GSS 281 

GA conversion is a necessary step before using RNA-seq GSS tools on scATAC-seq data. Here 282 

we evaluated the performance of different GA tools by calculating the correlation between the 283 

GA profile from scATAC-seq and the gene expression profile from scRNA-seq, using three 284 

matched scRNA-seq and scATAC-seq datasets (Brain, PBMC3K, and PBMC10K). Generally, 285 

Signac and snapATAC provide better consistency between GA inferred from scATAC-seq and 286 

gene expression level from scRNA-seq than MAESTRO and ArchR (Figure 6A). Using the 287 

SCALE-imputed data for GA conversion by MAESTRO, the consistency measured by 288 

correlation is increased (P value < 5.8e-108 between MAESTRO/SCALE and MAESTRO/raw 289 

for each dataset), suggesting that imputation could increase the performance of GA conversion. 290 

Next, we compared the effect of GA tools on GSS using more scATAC-seq datasets. Since GA 291 

tools except for MAESTRO are only applicable to the raw scATAC-seq peak profile, we used 292 

the raw data without imputation for evaluation. GA matrix obtained by GA tools were used as 293 
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the input for the ten GSS tools to score gene sets. There is no clear consensus on which 294 

approach is the best; no GA method has significantly higher impact on the performance of all 295 

GSS tools than other methods (Figure 6B). Among the ten GSS tools, the performance variation 296 

of different GA methods on AUCell and UniPath is greater than that on other GSS tools. 297 

Among the four GA tools, the performance of different GSS tools on GA matrix obtained by 298 

Signac and snapATAC is more robust and relatively higher than that by MAESTRO or ArchR. 299 

Moreover, different from other GSS tools for RNA-seq that can only score gene sets from the 300 

GA matrix, UniPathATAC can score gene sets directly from the peak profile without GA 301 

transformation, while its performance is inferior than several GSS tools designed for RNA-seq, 302 

such as Pagoda2 and PLAGE. Collectively, Signac and snapATAC provide relatively better 303 

results than MAESTRO and ArchR in both evaluation scenarios, whereas MAESTRO has the 304 

unique ability to obtain GA from imputed data.  305 

Evaluation of the impact of different gene set collections on GSS 306 

Next, we investigated the impact of six gene set collections from MSigDB (Table S1) on the 307 

performance of GSS tools, using nine scATAC-seq datasets. In the evaluation pipeline, we 308 

used SCALE for dropout imputation, followed by MAESTRO for GA transformation. Then 309 

we applied different GSS tools to each GA matrix to calculate the GSS-ATAC matrix based 310 

on each gene set collections, and evaluated the performance in the context of clustering. The 311 

impact of different gene set collections on GSS performance is not as evident as that of 312 

imputation tools (Figure 7A vs. Figure 4A). The average ARI score using TFT or GO:BP is 313 

slightly lower than that using other four gene set collections (TFT = 0.367; GO:BP = 0.389; 314 

others: 0.4 to 0.419). Moreover, different GSS tools have different degree of robustness to 315 

different gene set collections on different datasets (Figure 7B). For four datasets (Brain, 316 

Hematopoiesis, Leukemia, and PBMC3K), the performance of all GSS tools is relatively stable, 317 

regardless of which gene set collection is used (Figure 7C). In contrast, for the other five 318 

datasets, the performance of different GSS tools is more affected by gene set collections. For 319 

example, for InSilico which shows overall high performance, AUCell, GSVA, and Vision are 320 

much less sensitive to gene sets than other tools (Figure 7B). Among the ten GSS tools, the 321 

performance of Vision and UniPath is the least affected by gene sets, while UniPathATAC is 322 

the most sensitive to gene sets (Figure 7C). In particularly, Pagoda2 is the top performer on 323 

raw scATAC-seq data according to our evaluation (Figures 2A & 3), however, its robustness 324 

to different gene sets is only moderate (Figures 7B & C). Overall, Vision has relatively more 325 

robust and generally high performance across different gene set collections.  326 

Running time evaluation 327 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 17, 2023. ; https://doi.org/10.1101/2023.01.14.524081doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.14.524081


The computing speed of Vision and z-score is significantly faster than that of other tools. Even 328 

when the number of cells and gene sets increases, the running time only increases slightly 329 

(Figure 8). In contrast, GSVA and VAM run fast when the data size is small, while the running 330 

time increases significantly with the increase of data size. Among these tools, ssGSEA and 331 

UniPath take significantly more computing time than other tools. Nevertheless, among these 332 

experiments, it only takes up to six hours (Unipath: 328.84 min) even for the longest case by 333 

these two tools. PLAGE and Pagoda2, which show the best performance on the raw data, are 334 

quite efficient, which are second in line to the fastest tools, Vision and z-score. However, 335 

Pagoda2 failed to complete calculation in some cases, which needs to be used with caution. 336 

According to the calculation speed, the ranking for the top three tools with overall high 337 

performance on data after imputation is Vision > Pagoda2 > ssGSEA. In addition, 338 

UniPathATAC, a tool specially designed for scATAC-seq, has a medium computing speed, 339 

which is close to Pagoda2.  340 

Practical guidelines for choosing GSS tools 341 

Here we summarized the performance of different GSS tools on ten scATAC-seq datasets in 342 

various evaluation pipelines in the context of clustering, considering different GA tools, 343 

imputation tools, and gene set collections (Figure 9A). For the preprocessing of scATAC-seq 344 

data in the GSS pipeline, our results showed that dropout imputation can significantly improve 345 

the GSS results, and SCALE or DrImpute provide overall better performance than the other 346 

two imputation tools. In contrast, using different GA tools or gene set collections has  much 347 

less impact on GSS results. Regardless of gene set collections, for peak-cell data after dropout 348 

imputation by SCALE (only MAESTRO can be used for GA transformation in this case), 349 

Vision and GSVA show an overall better performance on the SCALE-recovered data than other 350 

GSS tools (average ARI: GSVA = 0.47, Vision = 0.46, others = 0.29 to 0.44). For raw peak-351 

cell data, Pagoda2 in conjunction with snapATAC (ARI = 0.31) or Signac (ARI = 0.29) 352 

performs the best, followed by PLAGE. In particular, it is worth noting that RNA-seq GSS 353 

tools are only applicable to scATAC-seq when the peak-level open-chromatin profile of 354 

scATAC-seq has been converted into gene-level activity scores by GA tools. Although our 355 

benchmark demonstrates that dropout imputation greatly improves the performance of GSS 356 

tools, only MAESTRO can be applied to the recovered peak-cell matrix for GA transformation, 357 

while other GA tools cannot due to that the fragment file needed for GA conversion cannot be 358 

imputed.  359 

Based on our comprehensive evaluation and unique features of different tools, we propose 360 

some practical guidelines for choosing appropriate tools for GSS (Figure 9B). For GSS from 361 
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raw scATAC-seq data without dropout imputation, we recommend two tools with overall best 362 

performance and high speed, PLAGE and Pagoda2, combined with snapATAC or Signac for 363 

GA transformation (Figures 2 and 8). Meanwhile, users can also use SCALE to recover the 364 

peak-cell profile, followed by GA conversion with MAESTRO, and then adopt Vision, which 365 

has relatively good performance (Figures 4, 5, and 7) and speed (Figure 8) for data after 366 

imputation. Since the performance of different GSS tools on data after imputation is greatly 367 

improved and becomes closer (Figure 4), users can also try multiple GSS tools with comparable 368 

performance to Vision, such as GSVA, Pagoda2, ssGSEA, and AUCell, for comparative 369 

analysis, especially when the data size is small. If users want to perform GSS without GA 370 

conversion, then UniPathATAC is the only tool available at present. In addition, considering 371 

that different gene set collections have relatively limited and uncertain impact on the 372 

performance of GSS tools (Figure 7) but are important for biological interpretation, it is 373 

recommended to try different gene set collections in the GSS pipeline. 374 

Discussion 375 

GSS has been widely conducted in bulk or single-cell RNA-seq studies, which helps to 376 

decipher single-cell heterogeneity and cell-type-specific variability by incorporating prior 377 

knowledge from functional gene sets or pathways. ScATAC-seq is a powerful epigenetic 378 

technique for interrogating single-cell chromatin-based gene regulation, and genes or gene sets 379 

with dynamic regulatory potentials can be regarded as cell-type specific markers as if in 380 

scRNA-seq. The GA score transformed from the chromatin accessibility profile of scATAC-381 

seq is potentially a reliable predictor of gene expression and can be used for cell type annotation 382 

[4-8]. GA scores facilitate the use of RNA-seq GSS tools to score gene sets for scATAC-seq 383 

data. Taking the GSS results of the matched scRNA-seq datasets and those of UniPathATAC 384 

as the reference, we confirmed that RNA-seq GSS tools are applicable to scATAC-seq. First, 385 

we performed GSS for the matched scATAC-seq and scRNA-seq data from PBMCs and Brain, 386 

and found that the performance of GSS tools on scATAC-seq for clustering cells or 387 

distinguishing cell types was comparable to that on scRNA-seq (Figure 2). Second, by the 388 

enrichment analysis of marker gene sets for cell types using PBMC10K scATAC-seq data, we 389 

found that the top few (1-10) gene sets with high scores can be used to determine the cell types 390 

of most cells (Figure 5). Third, the comprehensive evaluation of various scATAC-seq datasets 391 

shows that several RNA-seq GSS tools, e.g., Pagoda2, PLAGE, and Vision, even have much 392 

better results under different evaluation scenarios than the GSS tool specially designed for 393 

scATAC-seq -- UniPathATAC (Figures 2-6). After demonstrating the applicability of RNA-seq 394 
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GSS tools on scATAC-seq, we systematically evaluated 10 GSS tools and found that Pagoda2 395 

and PLAGE have the best overall performance for the raw peak-cell profile, which is similar 396 

to the previous benchmark results of GSS tools on scRNA-seq data [15]. In particular, Pagoda2 397 

is developed for scRNA-seq and PLAGE is for bulk RNA-seq, both of which are PCA-based 398 

RNA-seq methods but also provide good performance on scATAC-seq. Several previous 399 

studies have shown that GSS tools developed for bulk RNA-seq are applicable to scRNA-seq 400 

data [14, 15], and tools for scRNA-seq imputation is also widely used in recovering scATAC-401 

seq dropouts [25]. Our benchmark further confirmed that GSS tools designed for RNA-seq is 402 

also suitable for scATAC-seq data. 403 

We also comprehensively evaluated the impact of data preprocessing of scATAC-seq on 404 

GSS, including dropout imputation and GA transformation. We found that GSS results using 405 

data after imputation are significantly better than those using raw data, regardless of GSS tools 406 

or imputation tools (Figure 4). Among the four imputation tools, SCALE performs generally 407 

better than other three scRNA-seq tools, while the scRNA-seq tool DrImpute provides 408 

comparable performance to SCALE. Previously, Liu et al. [25] benchmarked multiple scRNA-409 

seq imputation tools on scATAC-seq including MAGIC and SAVER, and found that MAGIC 410 

provides much better performance than SAVER. This is consistent to our observation that 411 

SAVER shows the worst performance on scATAC-seq data. Moreover, the two tools included 412 

in our benchmark that have overall high performance, SCALE and DrImpute, were not 413 

involved in the previous benchmark [25]. Particularly, the performance of Pagoda2 and 414 

PLAGE, which provide the best performance on raw data, is not significantly improved after 415 

imputation, while the performance of several other tools, including GSVA, Vision, Pagoda2, 416 

ssGSEA, and AUCell, is greatly improved after imputation, surpassing Pagoda2 and PLAGE 417 

(Figure 4). Compared to the positive impact of dropout imputation on GSS, the impact of 418 

different GA methods or gene set collections on GSS is uncertain and limited (Figures 6 & 7). 419 

Therefore, we recommend users to try different GA tools and different gene sets for GSS in 420 

practical applications. Moreover, we found that although the open-chromatin profile obtained 421 

from scATAC-seq data can be preprocessed using different imputation tools and different GA 422 

tools, GSS results are highly dependent on scATAC-seq datasets. Some datasets, such as 423 

Hematopoiesis and Leukemia, have extremely poor results regardless of the evaluation 424 

scenarios (dimensionality reduction, clustering or classification) or the representation of the 425 

data (peak profile, gene-level activity score or gene set score) (Figures 3,4, and S1). The low 426 

quality of the raw scATAC-seq data could be alleviated to some extent by dropout imputation 427 
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rather than choosing a different GA tool. However, no matter how the raw data is preprocessed, 428 

GSS results on data with very poor quality of raw data often cannot reach the ideal level.  429 

In our benchmark study, the performance of GSS tools was quantitively evaluated under 430 

four scenarios of dimensionality reduction, clustering, classification, and cell type 431 

determination. These scenarios, especially clustering, are critical steps of single-cell analysis 432 

in most scRNA-seq and scATAC-seq studies. We acknowledged that the ARI score that 433 

represents the consistency between the predicted cell type labels from clustering and the true 434 

reference is not high throughout our benchmarking of GSS tools (< 0.5 in most cases), which 435 

means that the clustering results solely based on gene set scores may be poor. However, for 436 

scATAC-seq data, which is even sparser than the already sparse scRNA-seq data, the ARI value 437 

is normally very low. For example, the ARI value in these pioneering scATAC-seq studies [25, 438 

37-39] is also < 0.5 in most cases. Nevertheless, clustering is a routine step in most single-cell 439 

analysis pipelines and the outputs of different tools or methods are frequently used as the input 440 

for clustering algorithms to produce clustering results. Therefore, evaluating the clustering 441 

ability would be a useful measure for assessing the performance of different GSS tools. We 442 

estimated that the value of ARI can reflect the performance of different GSS tools under the 443 

clustering scenario. At the same time, the low ARI value indicates that the clustering results 444 

should be used in caution. Moreover, we also speculated that the low ARI value may be also 445 

due to the poor annotation or high similarity of some cell types, and/or the inability to 446 

completely restore the true cell types only through the scATAC-seq data. As such, integrating 447 

information of additional modalities with gene set scores, such as the gene expression profile 448 

from scRNA-seq and the peak-level profile from scATAC-seq, would help to obtain better 449 

clustering results for better cell type distinguishing.  450 

Currently, matched scRNA-seq and scATAC-seq data on dynamic processes (e.g. 451 

differentiation of induced pluripotent stem cells) are increasingly available [40-44]. It would 452 

be interesting to examine whether and how well the cell transition trajectory could be inferred 453 

based on gene set scores obtained by different GSS tools. However, trajectory analysis is a 454 

more complex procedure that requires more biological interpretation than clustering analysis, 455 

and its results are difficult to quantify using performance indicators like ARI in clustering 456 

analysis. Nevertheless, evaluating GSS tools under the scenario of trajectory analysis could be 457 

a future direction upon the availability of appropriate quantification methods for evaluation the 458 

accuracy of trajectory inference. 459 

Material and methods 460 
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Datasets 461 

We used ten publicly available scATAC-seq datasets (Table S2), including InSilico [2], 462 

GM12878HEK [3], GM12878HL [3], Leukemia [45], Hematopoiesis [46], Forebrain [47], 463 

SNAREmix [48], and three matched datasets from 10X Genomics (Brain, PBMC3K, and 464 

PBMC10K) [8]. The InSilico dataset is an in silico mixture of four independent scATAC-seq 465 

experiments performed on different cell lines [2]. The GM12878HEK and GM12878HL 466 

datasets are mixtures of two commonly-used cell lines, respectively [3]. The Leukemia dataset 467 

includes mononuclear cells and lymphoid-primed pluripotent progenitor cells isolated from a 468 

healthy human donor, and leukemia stem cells and blast cells isolated from two patients with 469 

acute myeloid leukemia [45]. The Forebrain dataset is derived from P56 mouse forebrain cells 470 

[47]. The Hematopoiesis dataset was used to characterize the epigenome pattern and 471 

heterogeneity of human hematopoiesis [46]. The Brain, PBMC3K, and PBMC10K datasets are 472 

publicly available datasets generated by 10x Genomics [8], which jointly profiled mRNA 473 

abundance and DNA accessibility in human peripheral blood mononuclear cells (PBMCs) and 474 

human healthy brain tissue of cerebellum, respectively. The SNAREmix dataset is a mixture 475 

of cultured human BJ, H1, K562, and GM12878 cells [48]. These diverse datasets were 476 

generated from both microfluidics-based and cellular indexing platforms with substantially 477 

different number of cells and peaks, which were widely used in previous studies for 478 

benchmarking [25] or validating computational tools for scATAC-seq, such as scMVP [38], 479 

scABC [49], SCALE [50], and Signac [8]. We used Azimuth [51] to annotate cell types in the 480 

PBMC3K and PBMC10K datasets by label transfer from a publicly available multimodal 481 

PBMC reference dataset [51] and in Brain dataset by label transfer from the human cerebellum 482 

dataset [52]. Cell types of other datasets were obtained from relevant studies. 483 

Preprocessing of scATAC-seq data 484 

For scATAC-seq datasets without publicly available peak-cell matrix, the raw FASTQ files 485 

downloaded from NCBI were aligned to the reference genome (human: hg19; mouse: mm10) 486 

using Bowtie 2 [53], resulting in alignment files of BAM format. Then these BAM files were 487 

used as inputs for MACS2 [54] for peak calling and then SnapTools 488 

(https://github.com/r3fang/SnapTools) was adopted to generate the peak-cell matrix. Similar to 489 

the previous study [55], we filtered peaks with read counts >=2 and present in at least 10 cells 490 

for InSilico, GM12878HEK and GM12878HL data. We filtered peaks with read counts >=2 491 

and present in at least 50 cells for Forebrain. For Hematopoiesis, Leukemia, SNAREmix, Brain, 492 

PBMC3K and PBMC10K, we followed the routine preprocessing following the tutorial of 493 

Signac to filter peaks and cells.  494 
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We chose four tools for dropout imputation of scATAC-seq data, including SCALE [35] 495 

which is currently the only method specifically designed for scATAC-seq and three widely used 496 

scRNA-seq tools – MAGIC [26], DrImpute [34] and SAVER [27]. The peak-cell matrix was 497 

used as the input for these tools with default parameters for recovering dropout peaks. Of note, 498 

because Signac, ArchR, and snapATAC require a fragment file of the raw scRNA-seq data to 499 

calculate gene-level activity, we can only use MAESTRO [5] to obtain GA matrix directly from 500 

the recovered peak-cell matrix. We used liftOver [56] to convert coordinates between different 501 

genome versions, if necessary. 502 

GA conversion 503 

The peak-level profile of scATAC-seq data needs to be converted into the gene-level activity 504 

before using RNA-seq GSS tools. We chose four GA tools, including MAESTRO [5], Signac 505 

[8], ArchR [6], and snapATAC [7], to transform the open-chromatin profile obtained from 506 

scATAC-seq into the gene-level activity scores. MAESTRO obtains a regulatory weight based 507 

on the distance from the peak center to the gene transcription start site, and associates it with 508 

the peak-cell matrix to get the gene activity score. Signac is used in the Seurat package [22] for 509 

GA conversion, which simply sums the gene body with the peaks that intersect in the 2-kbp 510 

upstream region in each cell. SnapATAC obtains a score for each gene by normalizing the 511 

number of fragments overlapping genes in cells. ArchR infers gene expression from chromatin 512 

accessibility by using a custom distance-weighted accessibility model. Among these tools, 513 

MAESTRO use the peak-cell matrix for GA conversion, while other three tools use the 514 

fragment file. The fragment file [8] is a coordinate-sorted file for storing scATAC-seq data, 515 

which contains five columns: chromosome, start coordinate, end coordinate, cell barcode, and 516 

duplicate count. This file can be generated from a BAM file using Cellranger or the Sinto 517 

package (https://pypi.org/project/sinto/). It should be noted that, only the peak-cell matrix 518 

rather than the fragment file can be imputed by imputation tools, therefore, only MAESTRO 519 

can be used for GA conversion on the peak-cell data after imputation. 520 

We used three matched scRNA-seq and scATAC-seq datasets (Brain, PBMC3K, and 521 

PBMC10K) to evaluate the performance of different GA tools in predicting the gene expression 522 

level from scATAC-seq data. First, we used each GA tool to convert the raw peak-cell matrix 523 

into the GA matrix for each dataset. As MAESTRO is applicable to the imputed peak-cell 524 

profile, we also used MAESTRO to obtain the GA matrix based on the SCALE-imputed peak-525 

cell matrix. Then we calculated the Pearson's correlation between the raw or imputed GA 526 

profile from scATAC-seq and the gene expression profile from scRNA-seq for each cell. The 527 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 17, 2023. ; https://doi.org/10.1101/2023.01.14.524081doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.14.524081


correlation profiles of all cells obtained from the four GA tools for each matched scRNA-seq 528 

and scATAC-seq dataset were compared. 529 

GSS tools 530 

Ten GSS tools were evaluated in our benchmark. We run these tools with default parameters 531 

according to the tutorials provided in the respective studies. 532 

PLAGE (Pathway Level Analysis of Gene Expression) [29] scores gene sets for RNA-seq 533 

by singular value decomposition (SVD). The gene expression matrix is normalized, and the 534 

first coefficient of the right singular vector obtained by SVD is considered as the gene set score. 535 

Combined z-score (z-score) [30] is a classic strategy to aggregate the expression of 536 

multiple genes. Gene expression is scaled by the mean and standard deviation of the cells. Then, 537 

gene expression levels of all genes within each gene set are averaged to score the gene set of 538 

each cell. 539 

ssGSEA (Single Sample Gene Set Enrichment Analysis) [31] is an extension of GSEA. 540 

ssGSEA ranks genes by expression levels within each cell individually, then scores gene sets 541 

by enrichment analysis using random walk statistics such as Kolmogorov-Smirnov (K-S) 542 

statistic. 543 

GSVA (Gene Set Variation Analysis) [32] utilizes the K-S statistic to assess gene set 544 

variation. GSVA first estimates the cumulative density function for each gene, using the classic 545 

maximum deviation method by default. The score matrix is obtained by calculating the score 546 

of the gene set from the gene density profile using the K-S statistic. 547 

AUCell [18] employs the area under the curve (AUC) to calculate the enrichment of a 548 

pathway (i.e., gene set) in the expressed genes of each cell. AUCell first ranks genes based on 549 

their expression levels in each cell, resulting in a ranking matrix. The AUC of the recovery 550 

curve is then used to determine whether the gene set is enriched at top genes in each cell. To 551 

calculate AUC, only the top 5% of genes are used by default, which means to examine how 552 

many genes in the gene set are within the top 5% genes in the respective cell.  553 

Pagoda2 (Pathway and Gene Set Overdispersion Analysis) [16] is a computational 554 

framework to detect cellular heterogeneity from scRNA-seq data. The method fits an error 555 

model to each cell to characterize its properties, and then renormalizes the residual variance 556 

for each gene in the cell. Then, the scoring matrix for each gene set is quantified by its first 557 

weighted principal component. 558 

Vision [17] uses autocorrelation statistics to identify biological variation across cells, 559 

which performs directly on the manifold of cell-cell similarity. It first identifies the K-Nearest 560 
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Neighbors (KNNs) of each cell to generate a KNN map of the cell, then the GSS matrix is 561 

calculated based on the average gene expression of each gene set. 562 

VAM (Variance-Adjusted Mahalanobis) [33] is a fast and accurate method for cell-specific 563 

gene set evaluation, which is integrated with the Seurat framework to accommodate the 564 

characteristics of high technical noise, sparsity and large sample size of scRNA-seq data. It 565 

calculates cell-specific pathway scores to convert a gene-by-gene matrix into a pathway-by-566 

pathway matrix that can be used for data visualization and statistical enrichment analysis.  567 

UniPath [28] is a uniform approach for pathway and gene-set based analysis for both 568 

scRNA-seq and scATAC-seq. For scRNA-seq, it first converts gene expression profiles to p-569 

values assuming a Gaussian distribution, according to the mean and variance of each cell. Then 570 

p-values of genes in each gene set are combined using Brown’s method and then an adjusted 571 

p-value is obtained for each gene set. For scATAC-seq, UniPath first highlights enhancers by 572 

normalizing read counts of scATAC-seq peaks using their global accessibility scores and 573 

performs a hypergeometric or binomial test using proximal genes of peaks, which then converts 574 

the open-chromatin profile to pathway enrichment scores for gene sets. UniPath provides 575 

functions for scoring gene sets in scRNA-seq and scATAC-seq, respectively. In this study, we 576 

referred to the method for scRNA-seq as UniPath and the method for scATAC-seq as 577 

UniPathATAC. 578 

Benchmarking gene set scoring tools 579 

Cell type clustering  580 

We evaluated the performance of different GSS tools in the context of unsupervised clustering, 581 

using Louvain which is imbedded in the Seurat package. Given a GSS-ATAC matrix obtained 582 

by a GSS tool, we employed PCA for dimensionality reduction and then performed Louvain 583 

clustering on the first 10 PCs. Louvain clustering provides a tuneable parameter ‘resolution’ 584 

for determining the number of clusters based on a binary search algorithm, which was set to 585 

0.5 in our benchmark. We used ARI (Adjust Random Index), a widely-used indicator, to 586 

measure the consistency between two clustering results. The ARI is the adjusted value of the 587 

raw RI (Random Index) score; the RI computes a similarity metric between two clustering 588 

results by considering all sample pairs and counting pairs assigned in the same or different 589 

clusters in the predicted and true clusters (Eq. 1). An ARI close to 0 means random labelling 590 

and ARI = 1 means perfect matching of the two clustering results. ARI is calculated with the 591 

‘adjustedRandIndex’ function in the mclust [57] package. 592 

 𝐴𝑅𝐼 =
𝑅𝐼−𝐸𝑥𝑝(𝑅𝐼)

max(𝑅𝐼)−𝐸𝑥𝑝(𝑅𝐼)
 (1) 593 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 17, 2023. ; https://doi.org/10.1101/2023.01.14.524081doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.14.524081


Dimensionality reduction  594 

We first performed dimensionality reduction by PCA on the GSS-ATAC matrix obtained by a 595 

GSS tool with Seurat (PCs = 10). Then UMAP (Uniform Manifold Approximation and 596 

Projection) [58] was performed with the first 10 PCs and the average Silhouette width of all 597 

cells was calculated using the ‘silhouette’ function provided in the R package cluster. The 598 

Silhouette score was used to evaluate the performance of dimensionality reduction for each 599 

GSS-ATAC matrix. Silhouette score ranges from -1 to 1, with a high value indicating that cells 600 

of the same cell type group together and are far from cells of a different type. The silhouette 601 

score for cell 𝑖 is defined as:   602 

 𝑠(𝑖) =

{
 
 

 
 1 −

𝑥(𝑖)

𝑦(𝑖)
𝑖𝑓 𝑥(𝑖) < 𝑦(𝑖)

        0      𝑖𝑓 𝑥(𝑖) = 𝑦(𝑖)
𝑦(𝑖)

𝑥(𝑖)
− 1 𝑖𝑓 𝑥(𝑖) > 𝑦(𝑖)

 (2) 603 

Here, 𝑥(𝑖) and 𝑦(𝑖)  is the average distance from cell 𝑖 to all other cells in cell 𝑖's cluster 604 

and cell 𝑖's nearest cluster, respectively.  605 

Classification  606 

To evaluate the performance of GSS tools in the context of classification, we implemented a 607 

multi-normal logistic regression model with k-fold cross-validation using the Python scikit-608 

learn package. The inverse of the regularization strength of the multinormal logistic regression 609 

model was set to 1. The parameter 𝑘  of the k-fold cross-validation was set to 5. Gene set scores 610 

in the GSS-ATAC matrix were scaled between 0 and 1 before model training and testing. The 611 

classification accuracy of the test dataset is calculated. 612 

Enrichment analysis of marker gene sets 613 

Similar to the previous study [28], we used marker genes of known cell types as the reference 614 

to examine whether gene sets scored by different GSS tools are enriched on known cell types. 615 

We obtained human marker genes from CellMarker [36] to make a collection of gene sets for 616 

467 cell types (Table S3) and then organized these gene sets as the form of the gene set 617 

representation in MSigDB. Each GSS tool was used to score these marker gene sets for each 618 

scATAC-seq dataset to obtain a GSS-ATAC matrix. Based on the GSS-ATAC matrix, for each 619 

cell the top 𝑁 gene sets ranking by the gene set score can be obtained. If a cell's cell type falls 620 

within cell types of the top N gene sets, then the cell is considered as correctly recognized. 621 

Finally, given a scATAC-seq dataset, the percentage of cells annotated with correct cell type 622 

was calculated for each GSS tools. 623 

Running time evaluation  624 
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We used scATAC-seq datasets and gene sets with different sizes to test the running time of 625 

GSS tools. Three datasets with different orders of magnitude were used for evaluation, 626 

including InSilico, Hematopoiesis and PBMC10K, which contain approximately 500, 2000 and 627 

10K cells, respectively. Four sources of gene sets with different sizes were selected from 628 

MSigDB, including KEGG (186 pathways), TFT (1133 pathways), REACTOME (1797 629 

pathways) and GO:BP (7350 pathways). The computer processor for evaluation is 630 

intel@Xeon(R) CPU E5-2680 v4 @ 2.40GHz × 56. One CPU core is allocated to each task of 631 

running a GSS tool on a dataset with given gene sets. Only the running time of the GSS tool is 632 

counted, excluding the time consumption of data and package loading, preprocessing, data 633 

imputation and gene activity conversion. 634 
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 785 

Figure legends 786 

Figure 1  Overview of the benchmark workflow  787 

Before applying GSS tools, scATAC-seq dropout peaks can be recovered by imputation tools 788 

and then the peak-level open-chromatin profile is converted into gene-level activity scores 789 

using GA transforming tools. Using gene sets from MSigDB as prior information, ten GSS 790 

tools are benchmarked in the context of diverse evaluation scenarios of dimensionality 791 

reduction, clustering, classification and cell type determination based on a variety of 792 

performance indicators. Tools marked with solid borders, including SCALE, the four GA tools 793 

and UniPathATAC, are specifically designed for scATAC-seq. MAESTRO can be used for 794 

GA transformation from both raw peaks and recovered peaks, while other three GA tools can 795 

be only applied to raw peaks as they require a fragment file which is not available for the 796 

imputed peak data. GSS, gene set scoring; scATAC-seq, single-cell assay for transposase 797 

accessible chromatin using sequencing; GA, gene activity; MSigDB, the molecular signatures 798 

database. 799 

Figure 2  GSS results using matched datasets of scATAC-seq and scRNA-seq  800 

A. Comparison of the performance of GSS tools on scRNA-seq (RNA) and scATAC-seq 801 

(ATAC) data in the context of dimensionality reduction measured by Silhouette, clustering 802 

measured by ARI, and classification measured by accuracy. Signac was employed to convert 803 

the peak-cell matrix into the gene-cell activity matrix, and KEGG gene sets were used as prior 804 

information. Three datasets including Brain, PBMC3K, and PBMC10K were used and the 805 

average performance was calculated. B. UMAP visualization of cell types using gene set scores 806 

obtained by applying different GSS tools on scRNA-seq and scATAC-seq PBMC10K data, 807 
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respectively. The plot was created using the DimPlot function provided in the Seurat package. 808 

C. Comparison of the impact of different GA transformation tools on GSS of the PBMC10K 809 

data. Signac, MAESTRO, ArchR, and snapATAC were used for transformation and then ten 810 

GSS tools were applied on the GA matrix for scoring gene sets. Each violin plot summarizes 811 

ARI scores of the ten GSS tools, with each dot representing one tool. P values of Wilcoxon 812 

Rank Sum test used to compare ARI values between the scRNA-seq group and the other four 813 

groups of Signac, MAESTRO, ArchR, and snapATAC are 0.60, 0.60, 0.22, and 0.86, 814 

respectively. ARI, adjust random index; UMAP, uniform manifold approximation and 815 

projection. 816 

Figure 3. Comparison of the performance of GSS tools 817 

The comparison was performed in the context of dimensionality reduction measured by 818 

Silhouette, clustering measured by ARI and classification measured by accuracy. In each 819 

column, the index values of the top performer for the respective dataset are displayed in red. 820 

The 'Average' column is the average score of each row. 821 

Figure 4. Comparison of the impact of different dropout imputation tools on GSS 822 

A. Average performance of GSS tools on nine scATAC-seq datasets before or after imputation 823 

in the context of dimensionality reduction measured by Silhouette, clustering measured by ARI 824 

and classification measured by accuracy. B. The change of ARI scores of different GSS tools 825 

before and after imputation by SCALE. In each column, the index value of the best performer 826 

for the respective dataset is coloured in red. The 'Avg.' column is the average score of each 827 

GSS tools on the nine datasets before (RAW) or after imputation (SCALE). C. UMAP 828 

visualization of cell types using gene set scores obtained from the raw or imputed peak profile 829 

of the InSilico data by each GSS tool. Datasets: Leuke., Leukemia; Hemat., Hematopoiesis; 830 

HL., GM12878HL; HEK., GM12878HEK; Fore., Forebrain; SNAR., SNAREmix; InSil., 831 

InSilico; PBMC., PBMC3K. 832 

Figure 5. Evaluation of the enrichment and relevance of gene sets in single cells quantified 833 

by different GSS tools 834 

PBMC3K and PBMC10K datasets were used, with six main cell types and 25 sub-types. 835 

Marker genes of 467 known cell types from the CellMarker database were used as the reference. 836 

Each GSS tool was used to score the 467 marker gene sets for each PBMC dataset, and the top 837 

N gene sets ranking by the gene set score can be obtained for each cell. If a cell's cell type falls 838 

within cell types of the top N gene sets, then the cell is considered as correctly recognized. The 839 

Y-axis denotes the average percentage of cells annotated with correct cell type of the two 840 
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PBMC datasets based on the results of each GSS tool. The X-axis denotes the number of top 841 

gene sets used for cell type recognition. 842 

Figure 6. Comparison of the impact of different GA transformation tools on GSS 843 

A. The correlation between the GA profile obtained by four GA transformation tools from 844 

scATAC-seq and the gene expression profile from scRNA-seq for three matched scRNA-seq 845 

and scATAC-seq datasets. Labels with 'raw' means the GA tools was performed on the raw 846 

scATAC-seq profile, while 'SCALE' means that MAESTRO was used on the SCALE-imputed 847 

scATAC-seq profile. B. Average performance on seven datasets in the context of 848 

dimensionality reduction measured by Silhouette, clustering measured by ARI and 849 

classification measured by accuracy. Results of UniPathATAC that is designed for scATAC-850 

seq without needing GA transformation are displayed as horizontal dotted lines for comparison. 851 

For three of the ten scATAC-seq datasets used in this study (GM12878HEK, GM12878HL, 852 

and SNAREmix), the fragment file that is needed for GA conversion of Signac, snapATAC, 853 

and ArchR was not available, therefore, the remaining seven datasets were used here for 854 

evaluation, including Leukemia, Hematopoiesis, Forebrain, InSilico, PBMC3K, PBMC10K, 855 

and Brain.  856 

Figure 7. Comparison of the impact of different gene sets on GSS 857 

A. Average ARI score of ten GSS tools on nine scATAC-seq datasets using six gene set 858 

collections from MSigDB. Dots in the 'Average' column represent the average ARI score of all 859 

GSS tools using the respective gene set collection. Average ARI scores: GO:CC = 0.419; 860 

GO:MF = 0.412; REACTOME = 0.401; KEGG = 0.4; GO:BP = 0.388; TFT = 0.368. Dropout 861 

peaks in each scATAC-seq dataset were recovered by SCALE, followed by MAESTRO for 862 

GA transformation. B. Each boxplot summarizes the ARI scores by applying a GSS tool on the 863 

six gene set collections. KEGG, Kyoto encyclopedia of genes and genomes; GO, gene ontology; 864 

GO:BP, GO biological process; GO:MF, GO molecular function; GO:CC, GO cellular 865 

component; TFT, transcription factor target. C. Standard deviation (SD) of ARI scores on 866 

different datasets (left) or GSS tools (right). To obtain the SD for each dataset, the average of 867 

the SD of ARI scores of all GSS tools using different gene set collections was calculated. To 868 

obtain the SD for each GSS tool, SD of ARI scores of the GSS tool on each dataset using 869 

different gene set collections was calculated. Then the average of SD on different datasets for 870 

each GSS tool was calculated.  871 

Figure 8. Evaluation of running time (in minute) of different GSS tools 872 

Three datasets were tested, including InSilico, Hematopoiesis and PBMC10K, which contain 873 

approximately 500, 2000, and 10,000 cells, respectively. Four gene set collections were used, 874 
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including KEGG, TFT, REACTOME, and GO:BP, which contain approximately 200, 1000, 875 

2000, and 7000 pathways, respectively. Cases where Pagoda2 failed to complete the calculation 876 

are marked with ‘-’. 877 

Figure 9. Summarization of the performance of different GSS tools in various evaluation 878 

pipelines measured by ARI 879 

A. ARI scores of different scATAC-seq datasets were averaged. Cases guiding the tool 880 

recommendation are coloured in red. Each column denotes an evaluation task, which involves 881 

GA transformation with each of the four tools, dropout imputation (no imputation or imputation 882 

with each of the four tools), and selection of six gene set collections. Of note, when the dropout 883 

imputation is performed for the peak-cell matrix, only MAESTRO can be used for GA 884 

transformation because the other three GA tools are only applicable to the fragment file. B. 885 

Practical guidelines for choosing appropriate tools for GSS. The GSS tool with border is the 886 

most recommended tool with the best overall performance in the respective group. 887 

Supplementary materials 888 

Figure S1  UMAP plots showing 2D-embeddings of the raw peak-cell matrix of eight 889 

scATAC-seq datasets 890 

Table S1 Size of gene set collections used in this study 891 

Table S2  Detailed information of scATAC-seq and scRNA-seq datasets used in this 892 

study 893 

Table S3.  Human marker gene sets collected from the CellMarker database 894 

 895 

 896 
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Figure S1. UMAP plots showing 2D-embeddings of the raw

peak-cell matrix of eight scATAC-seq datasets.
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