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Benchmarking AlphaFold-enabled molecular
docking predictions for antibiotic discovery
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Ashlee M Earl3, Tommi Jaakkola5 & James J Collins1,2,3,6,*

Abstract

Efficient identification of drug mechanisms of action remains a
challenge. Computational docking approaches have been widely
used to predict drug binding targets; yet, such approaches depend
on existing protein structures, and accurate structural predictions
have only recently become available from AlphaFold2. Here, we
combine AlphaFold2 with molecular docking simulations to predict
protein-ligand interactions between 296 proteins spanning Escheri-
chia coli’s essential proteome, and 218 active antibacterial com-
pounds and 100 inactive compounds, respectively, pointing to
widespread compound and protein promiscuity. We benchmark
model performance by measuring enzymatic activity for 12 essen-
tial proteins treated with each antibacterial compound. We con-
firm extensive promiscuity, but find that the average area under
the receiver operating characteristic curve (auROC) is 0.48, indicat-
ing weak model performance. We demonstrate that rescoring of
docking poses using machine learning-based approaches improves
model performance, resulting in average auROCs as large as 0.63,
and that ensembles of rescoring functions improve prediction
accuracy and the ratio of true-positive rate to false-positive rate.
This work indicates that advances in modeling protein-ligand
interactions, particularly using machine learning-based
approaches, are needed to better harness AlphaFold2 for drug
discovery.
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Introduction

A major challenge in drug discovery is the identification of drug-target

interactions. Various approaches to identifying molecular drug targets

have been developed, including those based on biochemical assays,

genetic interactions, and molecular docking (Kitchen et al, 2004;

Schenone et al, 2013). Molecular docking, in particular, has proven

versatile for identifying protein-ligand interactions and drug mecha-

nisms of action. In molecular docking, ligand binding poses within a

targeted binding site of a protein are computationally modeled using

scoring functions, and poses are optimized to provide structural infor-

mation and activity predictions in the form of thermodynamic binding

affinities. While docking has been used to enrich for potential hit

compounds that bind pre-specified proteins in “one target, many com-

pounds” approaches, the process of “reverse docking,” in which a

small molecule is docked across different potential protein targets,

leverages docking to discover binding partners and drug mechanisms

of action (Kharkar et al, 2014; Lee et al, 2016). Although versatile,

reverse docking requires a priori knowledge of the protein structures

of interest, and its application to drug-target identification has been

limited by the number and quality of target protein structures (Chen &

Zhi, 2001; Kharkar et al, 2014; Lee et al, 2016).

Here, we reasoned that the recent release of the AlphaFold2 data-

base of protein structure predictions (Jumper et al, 2021; Varadi et

al, 2022) could enable reverse docking approaches that span Escheri-

chia coli’s essential proteome, allowing for the extensive prediction

of binding targets of antibacterial compounds (Fig 1A). We hypothe-

sized that such an approach could enrich for true protein-ligand

interactions from the large, combinatorial space of all possible inter-

actions between antibacterial compounds and essential proteins. As

computational docking approaches are known to predict many false

positives (Adeshina et al, 2020), the predicted protein-ligand interac-

tions could be experimentally interrogated, in part, using biochemi-

cal assays that measure enzymatic activity, with binding interactions

supported by enzymatic inhibition. In addition to inspiring further

studies that expand on the interactions discovered in this way, these
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experiments could be used to benchmark the performance of our

modeling platform and reveal the prediction accuracy possible with

AlphaFold2-enabled molecular docking simulations.

To this end, we assembled a set of antibacterial compounds aris-

ing from a high-throughput growth inhibition screen against Escheri-

chia coli. We then deployed computational docking simulations using

AutoDock Vina (Eberhardt et al, 2021) and AlphaFold2-predicted pro-

tein structures to identify protein-ligand interactions between these

antibacterial compounds and all proteins from E. coli’s essential pro-

teome. These simulations predicted both specific protein-ligand inter-

actions and widespread compound and protein promiscuity. By

assembling a set of known or inferred antibiotic binding interactions

from the literature, we found that our predictions only partially reca-

pitulate these interactions. To further test our predictions, we mea-

sured enzymatic activity for diverse essential E. coli proteins involved

in DNA replication, transcription, metabolism, and cell wall

synthesis. Treatment of each protein with each antibacterial com-

pound revealed that multiple compounds inhibit enzymatic activity,

confirming extensive promiscuity and enabling statistical benchmark-

ing of model performance. Detailed comparisons of our in silico pre-

dictions with experimental data showed that our approach predicted

empirical protein-ligand interactions with an average accuracy

between 41 and 73%, depending on the binding affinity threshold

used. Independent of the binding affinity threshold, the area under

the receiver operating characteristic curve (auROC) across the essen-

tial proteins tested ranged from 0.18 to 0.71 (average 0.48). Further-

more, model performance was similar using experimentally

determined protein structures. In view of the observation that a ran-

dom model corresponds to an auROC of 0.5, these findings indicate

that molecular docking simulations exhibit weak performance.

Computational docking platforms based on different scoring

functions are widely available. Notably, machine learning-based
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Figure 1. Growth inhibition screens in Escherichia coli reveal 218 active compounds, whose interactions with essential proteins are predicted by combining
AlphaFold2 with molecular docking.

A Schematic of the approach. To define our chemical space of interest, we performed high-throughput screens of growth inhibition against wild-type E. coli. Compounds
that inhibited growth were taken as active, and each active compound was computationally docked with each of 296 AlphaFold2-predicted E. coli essential protein
structures. For comparison, a subset of the inactive compounds was docked in the same way. An interaction matrix showing the thermodynamic binding affinities
predicted by the docking simulations was then constructed. A protein-ligand interaction was predicted to occur if its predicted binding affinity was smaller than a
threshold value. All possible interactions for a subset of essential proteins, including those not predicted to occur, were empirically tested to benchmark model
performance.

B Growth inhibition measurements for 39,128 compounds, from which 218 compounds (including known antibiotics) were identified as active against E. coli BW25113.
Data are shown from two biological replicates. Compounds with mean relative growth less than 0.2 were classified as active (red points), and all other compounds
were classified as inactive (blue points).

C Distribution of the compound classes represented in the 218 active compounds.
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scoring functions have previously been shown to improve docking

performance, as measured by the auROC (Ballester &

Mitchell, 2010; Durrant & McCammon, 2010; Pereira et al, 2016;

W�ojcikowski et al, 2017, 2019). To assess the robustness of our

results to variation in the docking methods used, we considered

alternative docking approaches involving another docking platform

(DOCK6.9; Allen et al, 2015) and machine learning-based scoring

functions. By rescoring our predictions with four machine learning-

based scoring functions—RF-Score (Ballester & Mitchell, 2010), RF-

Score-VS (W�ojcikowski et al, 2017), PLEC score (W�ojcikowski et

al, 2019), and NNScore (Durrant & McCammon, 2010)—we found

improvements in performance, as measured by the auROC, with

three of the four scoring functions (RF-Score, RF-Score-VS, and

NNScore). In contrast, employing DOCK6.9 and rescoring with the

PLEC score did not improve model performance. Lastly, we show

that consensus models comprising several machine learning-based

scoring functions improve prediction accuracy and the ratio of true-

positive rate to false-positive rate. Taken together, these results

demonstrate the need to further develop methods of more accurately

modeling protein-ligand interactions and suggest the potential of

machine learning to improve modeling predictions. By providing a

comprehensive dataset for benchmarking protein-ligand interaction

predictions and demonstrating how machine learning can better

harness AlphaFold2-predicted protein structures for molecular dock-

ing, our work informs the application of AlphaFold2 to drug

discovery.

Results

A screen of 39,128 compounds reveals 218 antibacterial
compounds active against Escherichia coli

We first defined our chemical space of interest by screening a library

of 39,128 unique compounds comprising the most clinically used

antibiotics, natural products, and structurally diverse molecules with

molecular weights between 40 Da and 4,200 Da—a range which

includes those of most known antibiotics—for growth inhibition

against wild-type E. coli K-12 BW25113 (Dataset EV1). Compounds

were screened at 50 μM with cells grown in LB medium, and optical

density values after overnight incubation were measured. Defining

active compounds as those that inhibit relative growth by 80%, we

found 218 structurally diverse compounds with activity (Fig 1B).

Most (∼ 80%) of the 218 active compounds could be classified into

known antibiotic structural classes, including the β-lactam, amino-

glycoside, tetracycline, quinolone, and polyketide classes (Fig 1C).

The remaining active compounds comprised of known antibacterial

compounds—including toxins and antineoplastic compounds—and

additional compounds whose antibacterial activities against E. coli

have not previously been reported (Dataset EV1).

Molecular docking of compounds with AlphaFold2-predicted
Escherichia coli essential protein structures

We next investigated the potential binding targets of all active

compounds, as predicted by molecular docking with AlphaFold2-

predicted protein structures. We reasoned that many active com-

pounds exert their antibacterial activities largely by interacting with

essential proteins in E. coli. Previous studies have identified essen-

tial genes in E. coli using transposon-directed insertion site sequenc-

ing (Goodall et al, 2018) and CRISPR interference screening

(Rousset et al, 2018, 2021). Building on these studies, we shortlisted

genes identified as essential in at least two of the three studies,

resulting in a total of 296 out of ∼ 4,000 total genes in E. coli (Blat-

tner et al, 1997; Materials and Methods and Dataset EV2). As posi-

tive controls for our docking simulations, we additionally included

experimentally determined structures in complex with various

ligands from the Protein Data Bank (Berman et al, 2000; Dataset

EV2). We proceeded to dock all 218 active compounds against the

296 AlphaFold2-predicted essential protein structures using Auto-

Dock Vina, a widely used and benchmarked open-source program

for docking (Pereira et al, 2016; Vieira & Sousa, 2019; Eberhardt et

al, 2021; Fig EV1). We describe and compare our approach with dif-

ferent docking methods and introduce relevant concepts, in Box 1.

In total, our approach resulted in binding pose and binding affinity

predictions for 64,528 protein-ligand pairs (Fig 2A and Dataset

EV2). For comparison, we performed analogous docking simula-

tions for 100 randomly selected inactive compounds, which resulted

in binding pose and affinity predictions for 29,600 protein-ligand

pairs (Fig 2A and Dataset EV2).

Upon analyzing the predicted binding affinities, we found that

our approach predicted widespread compound and protein promis-

cuity for both active and inactive compounds. For a stringent bind-

ing affinity threshold of −7 (−5) kcal/mol—corresponding to the

highest-ranked 9.6% (31%) of the predicted binding affinities (Fig 2

B)—we found that, of the 218 active compounds screened, 187

(207) were predicted to bind to at least three proteins (Fig 2D).

Additionally, of the 296 essential proteins screened, 178 (216) were

predicted to bind to at least three compounds (Fig 2E). Similar bind-

ing affinity thresholds apply to the 100 inactive compounds

screened (Fig 2C), of which 86 (99) were predicted to bind at least

three proteins (Fig 2F), and 137 (204) essential proteins were pre-

dicted to bind to at least three compounds (Fig 2G). These findings

suggest that docking does not distinguish between active and inac-

tive compounds and point to potential limitations in docking perfor-

mance. Nevertheless, as molecular docking is known to produce

many false positives (Adeshina et al, 2020; Bender et al, 2021), we

further investigated the performance of our approach by (i) compar-

ing its predictions with known antibiotic binding targets and (ii)

experimentally interrogating the predicted protein-ligand interac-

tions involving active compounds, as described below.

Comparing model predictions with known antibiotic
binding targets

We first assessed the performance of our approach by comparing its

predictions to known interactions involving commonly used classes

of antibiotics. We searched the literature for previously studied

antibiotic-protein target pairs (as described in detail in Materials

and Methods) and assembled a dataset comprising 142 experimen-

tally evidenced or inferred interactions in E. coli (Dataset EV3). The

compounds in this dataset represent diverse antibiotic classes and

target various proteins, such as the 30S ribosomal subunit and the

enoyl-acyl carrier protein reductase FabI. Of the 142 curated

antibiotic-protein interactions, we found that the model correctly

predicted only 3 interactions with a binding affinity threshold of

� 2022 The Authors Molecular Systems Biology 18: e11081 | 2022 3 of 20
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−7 kcal/mol and 43 interactions with a binding affinity threshold of

−5 kcal/mol, resulting in true-positive rates of 2.1 and 30.3%,

respectively. While an assessment of the false-positive rate with this

data may have limitations—the lack of evidence of an antibiotic-

protein interaction does not necessarily imply that there is no such

interaction—the same binding affinity thresholds encompass 9.6%

(−7 kcal/mol) and 31% (−5 kcal/mol) of the modeled protein-

ligand interactions involving active compounds, as described above.

If true protein-ligand interactions were rare, this would suggest that

the false-positive rates predicted by our model are comparable to its

true-positive rates, even for a stringent binding affinity threshold of

−7 kcal/mol. Consistent with this reasoning, the same binding

affinity thresholds encompass 10% (−7 kcal/mol) and 30%

(−5 kcal/mol) of the modeled protein-ligand interactions involving

inactive compounds (Fig 2C), which are likely to not bind any

essential protein given that they do not inhibit bacterial growth.

This comparison, therefore, suggests that the performance of our

modeling platform is weak. Although various thresholds may be

chosen to reflect one’s desired stringency, based on these results we

assumed −7 kcal/mol to be a stringent binding affinity threshold,

and −5 kcal/mol to be an inclusive binding affinity threshold. We

further compare the results with both thresholds for our assess-

ments of model performance below.

Enzymatic inhibition measurements for 12 essential proteins
reveal widespread promiscuity

Given that our approach generated essential proteome-wide predic-

tions of protein-ligand binding, we aimed to further test a subset

of these predictions experimentally. We reasoned that many

Box 1. Integrating AlphaFold2 with molecular docking.

Different software for performing molecular docking are widely available and commonly used platforms include AutoDock Vina (Eberhardt et al, 2021)
and DOCK (Allen et al, 2015). Docking aims to estimate the binding pose of a ligand interacting with a macromolecule, such as a protein, and associ-
ated quantities such as the binding affinity. How this is done depends on the software used: some platforms, such as AutoDock Vina, rely on empirical
free energy scoring functions that aim to directly estimate the free energy of binding for a pose, while others such as DOCK use force field-based scor-
ing functions that account for intermolecular van der Waals and electrostatic interactions between the protein and ligand. Recent advances in inte-
grating machine learning with docking have resulted in machine learning-based scoring functions, and their use to rescore poses generated by other
docking platforms (Ballester & Mitchell, 2010; Durrant & McCammon, 2010; Pereira et al, 2016; W�ojcikowski et al, 2017, 2019).

As shown in the workflow here, in order to leverage AlphaFold2 for docking, we first downloaded all 296 AlphaFold2-predicted E. coli essential pro-
tein structures from the AlphaFold Protein Structure Database (Jumper et al, 2021; Varadi et al, 2022). We assembled a list of simplified molecular-
input line-entry system (SMILES) strings describing the chemical structures of our 218 antibacterial compounds of interest and prepared the com-
pounds and proteins for docking as required for the program used. As a key input to docking, the active site of each protein must be specified. Blind
docking approaches computationally estimate active sites; alternatively, active sites can be specified based on those empirically evidenced in the
Protein Data Bank. As the active sites for all protein structures were not known, we used blind docking to identify potential active sites and supple-
mented the active site selection with information from the Protein Data Bank (when available) for our assessments of model performance. We used
AutoDock Vina to predict binding poses and binding affinities for all protein-ligand pairs of interest. The resulting binding affinities (kcal/mol) can be
interpreted as the free energy of ligand binding, with lower energies indicating stronger binding. Analogous binding affinities from DOCK6.9 are repre-
sented by grid scores (kcal/mol), which measure binding energy but should not be directly compared with the free energies predicted by AutoDock
Vina. Binding affinities predicted by the machine learning-based rescoring functions considered in this work are represented by pKd values—equal to
the negative logarithm of the dissociation constant—and higher pKd values indicate stronger binding.

Compound
and target
selection

Active site
definition

Molecular
docking

Scoring and
evaluation

Compound SMILES
COC1C=COC2(C)Oc3c(C)....
COC1C=COC2(C)Oc3c(C)....
CCCC[P+](CCCC)(CCCC)C....
CN(C)c1ccc(O)c2c1CC1CC....

......

Compound
and target

preparation
- AlphaFold2 protein structure

- SMILES string of ligand

- Generate 3D coordinates

- Add hydrogens (pH = 7.4)

- Compute a grid box

- Specify the 3D coordinates and 
box size, based on prospective 

ligand binding sites

- Explore conformational space

- Generate energetically favorable
poses

- Rank binding poses based on the
scoring function

- Set binding score thresholds
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predictions could be validated or refuted using in vitro enzymatic

assays, in which proteins with enzymatic activity are reconstituted

and ligand binding is assessed by measuring enzymatic inhibition.

We considered a panel of 12 essential E. coli proteins or protein

complexes for which enzymatic assays were available, including

DNA gyrase (gyrAB), DNA primase (dnaG), DNA helicase (dnaB),

NAD+-dependent DNA ligase (ligA), DNA polymerase III subunit α
(dnaE), RNA polymerase (rpoABCEZ), guanylate kinase (gmk),

GlmU (a bifunctional acetyltransferase), MurA, MurC, MurD, and

MurF (peptidoglycan cell wall synthases; Fig 3A). These proteins
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are diverse and participate in various cellular processes including

DNA replication, transcription, metabolism, and cell wall synthesis

(Fig 3B). We screened all 218 active compounds for enzymatic inhi-

bition against this panel in duplicate at a concentration of 100 μM.

Building on studies indicating that compounds with half-maximal

inhibitory concentrations (IC50) ≤ 50 μM are low enough to be lead-

like (McLay, 2003), we chose the concentration of 100 μM to be

high enough such that hits possess at least mild inhibitory activity

in vitro. We then classified binding interaction hits as those for

which the enzymatic activity was < 50% of that of untreated con-

trols in both replicates. Across all proteins, we found that wide-

spread inhibition of enzymatic activity occurred for treatment with

various compounds (Fig 3B and Dataset EV4). MurA and DNA heli-

case displayed the largest numbers of binding interaction hits, with

94 and 85 hits, respectively; in contrast, we found only 4 hits for

DNA ligase, and 5 hits for MurC, which were the proteins with the

fewest numbers of hits (Fig 3B). To improve reproducibility, we per-

formed dose–response measurements of a small subset of our initial

screening hits and non-hits, which, after curve-fitting, revealed IC50

values between 1.9 and 195.8 μM for hits, and > 100 μM for non-

hits (Fig EV2). These findings suggest that our binding interaction

hits encapsulate a range of binding affinities from strong (micromo-

lar) to weak (hundred-micromolar). However, it is important to note

that, as many antibiotic binding interactions have IC50 values in the

(sub-)micromolar range (Khodursky et al, 1995; Kocaoglu & Carl-

son, 2015), it is possible that only strong binding affinities are rele-

vant to antibacterial action.

Intriguingly, upon statistically analyzing our enzymatic inhibi-

tion screens, we found that 45 compounds promiscuously inhibited

at least three tested proteins. Additionally, as mentioned above, all

tested essential proteins were inhibited by at least four distinct com-

pounds. Although we observed differences between the predicted

and experimentally observed binding interactions (as assessed

below), this observation is consistent with the wide ranges of pro-

tein target and binding compound numbers predicted by our dock-

ing, and the shapes of the empirical distributions are better captured

by docking using more stringent binding affinity thresholds (Fig 3C–
F). To better understand whether the widespread promiscuity pre-

dicted by our docking simulations arises from shared attributes in

protein-ligand interactions, we used t-distributed stochastic neigh-

borhood embedding (t-SNE) to visualize the protein-ligand interac-

tion fingerprint of each docked pose across all empirically tested

proteins (Fig 3G). Here, points that are closer in distance represent

structurally similar protein-ligand interaction fingerprints. This visu-

alization showed that the modeled protein-ligand interactions

formed few large clusters, suggesting that the predicted promiscuity

arises in a protein- and ligand-specific manner from our docking

simulations. Taken together, these results suggest that promiscuity

is an emergent, non-trivial feature of our docking predictions that is

consistent with enzymatic inhibition measurements. Moreover, our

enzymatic inhibition measurements provide empirical data to

directly benchmark the prediction accuracy of our approach.

Benchmarking model performance

We next sought to statistically benchmark the performance of our

modeling platform. Building on our enzymatic inhibition measure-

ments, we compared the experimentally observed binding interac-

tion hits against our predicted interactions with binding affinities

less than −5 kcal/mol and −7 kcal/mol (Fig 4A–C). This compar-

ison revealed that the true-positive rates of our approach, averaged

across all 12 essential proteins tested, were 59% (−5 kcal/mol

threshold) and 30% (−7 kcal/mol threshold), respectively (Fig 4A).

Average false-positive rates were similar, with values of 66 and

24%, respectively (Fig 4B), while the average accuracy was 41%

(−5 kcal/mol threshold) and 73% (−7 kcal/mol threshold), respec-

tively (Fig 4C). As expected, more stringent binding affinity thresh-

olds result in less binding interaction predictions and are associated

with lower true-positive rates and higher accuracy. Nevertheless, as

a random model would, on average, exhibit true-positive rates equal

to false-positive rates, our approach only performs better-than-

random (on average) for the more stringent binding affinity thresh-

old of −7 kcal/mol. Indeed, our approach performs better-than-

random for only 5 (dnaB, dnaE, rpoABCEZ, murA, and murF) of the

12 essential proteins tested for the inclusive binding affinity thresh-

old of −5 kcal/mol and for 9 essential proteins (gyrAB, dnaG, dnaB,

ligA, rpoABCEZ, glmU, murA, murD, and murF) for the stringent

binding affinity threshold of −7 kcal/mol (Fig 4A and B). These

results indicate that model performance can vary from being weak

to moderate depending on the binding affinity threshold used.

It is convenient to assess the performance of our approach inde-

pendently of binding affinity thresholds, a task for which receiver

operating characteristic (ROC) curves are well suited. The ROC curve

of a model plots the false-positive rate against the true-positive rate,

with the diagonal indicating the performance expected from a ran-

dom model. The area under the ROC curve (auROC) can be inter-

preted as the probability of correctly classifying a pair of samples

(e.g., a binding interaction hit and non-hit). We found that the

auROC values across all 12 essential proteins tested ranged from 0.18

(murC) to 0.71 (gyrAB), with an average value of 0.48 (Fig 4D). This

assessment suggests that this approach performs, on average,

marginally worse than random (auROC = 0.50), and further indi-

cates that model performance can vary from being weak to moderate

depending on the protein of interest. Notably, we also found that the

◀ Figure 2. Binding affinity predictions for 218 active compounds, 100 inactive compounds, and 296 AlphaFold2-predicted Escherichia coli essential protein
structures.

A Interaction matrix showing the predicted binding affinities (kcal/mol) between all pairs of active or inactive compounds and essential proteins modeled, discretized
into bins of < −7 kcal/mol (strong predicted binding), < −5 kcal/mol (moderate predicted binding), and > −5 kcal/mol (no predicted binding). Predictions for active
compounds are shown at top, and inactive compounds are shown at bottom.

B, C Rank-ordered binding affinities for the protein-ligand pairs modeled by our approach. Vertical lines indicate binding affinity thresholds of −5 kcal/mol and
−7 kcal/mol. Plots are for protein-ligand interactions involving all 218 active compounds (B) or 100 inactive compounds (C).

D Histograms of numbers of predicted essential protein targets with binding affinity < −5 kcal/mol (left) or < −7 kcal/mol (right), for all 218 active compounds.
E Histograms of numbers of predicted binding compounds with binding affinity < −5 kcal/mol (left) or < −7 kcal/mol (right), for all 296 essential proteins.
F, G Similar to (D–E), but for all 100 inactive compounds modeled.
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auROC is not correlated with AlphaFold2’s prediction confidence, as

measured by the predicted local distance difference test (pLDDT; Fig

EV3; Tunyasuvunakool et al, 2021). We found similar results using

precision-recall (PR) curves, which account for potential class imbal-

ance by plotting the true-positive rate against the positive predicted

value (Figs EV4 and EV5). Here, the area under the PR curve

(auPRC) can be interpreted as the ability of the model to correctly

identify a true protein-ligand binding interaction hit, and a horizontal

line corresponding to the baseline fraction of hits indicates the per-

formance expected from a random model. We found that the auPRC
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values across all 12 essential proteins ranged from 0.01 (murC) to

0.63 (gyrAB), with an average value of 0.21 which is marginally

larger than the average baseline fraction of hits (0.16; Fig EV5). Simi-

lar to the auROC, the auPRC is not correlated with AlphaFold2’s

pLLDT (Fig EV3). 95% confidence intervals for the auROC and

auPRC, as generated by bootstrapping, suggested that these values

were robust to variability in the data (Table EV1). Hence, assessing

model performance using the auROC and auPRC both indicated weak

performance; we therefore aimed to further investigate the causes of

the weak performance and methods of improving it.

Comparing models based on AlphaFold2 structures with
experimentally determined protein-ligand complexes

Having shown that our molecular docking simulations with

AlphaFold2-predicted structures produce a mean auROC of 0.48

(mean auPRC of 0.21), we asked whether the weak performance

was associated with the quality of the protein structures used. To

address this, we repeated our docking simulations by docking each

of the 218 active compounds to each of eight experimentally deter-

mined protein structures. These structures correspond to protein-

ligand complexes or single proteins deposited in the Protein Data

Bank (PDB) and comprise gyrA (4CKL), gyrB (1AJ6), dnaB (6QEM),

ligA (5TT5), glmU (1FWY), murA (1A2N), murC (1P3C), murD

(2VTE), and murF (1GG4). Benchmarking model performance as

before, we found that auROC values were quantitatively similar to

before and ranged from 0.25 (glmU) to 0.69 (gyrAB), with a mean

value of 0.46 (Fig 4D). Analogous results were found for auPRC val-

ues, which ranged from 0.03 (ligA) to 0.56 (gyrAB), with a mean

value of 0.22 (Fig EV5). These findings show that molecular dock-

ing using AlphaFold2-predicted structures is similar to using experi-

mentally determined structures. This is consistent with previous

assessments of AlphaFold’s fidelity to experimentally determined

protein structures (Jumper et al, 2021) and suggests that the weak

performance of our model arises from the docking method, and not

the quality of protein structures.

Benchmarking and improving model performance using
machine learning

Based on the weak performance of our molecular docking approach,

we investigated ways in which performance could be improved. The

foregoing platform uses AutoDock Vina, which employs empirical

free energy scoring functions to evaluate docking poses. To investi-

gate the effects of different docking methods on our benchmarking

results, we extended our approach to utilize DOCK6.9 (Allen et

al, 2015), a benchmarked open-source program that uses force-

based scoring functions for docking. Furthermore, we augmented

our approach with four different machine learning-based scoring

functions, RF-Score (Ballester & Mitchell, 2010), RF-Score-VS

(W�ojcikowski et al, 2017), PLEC score (W�ojcikowski et al, 2019),

and NNScore (Durrant & McCammon, 2010). The RF-Score and RF-

Score-VS—a virtual screening adaptation of RF-Score (W�ojcikowski

et al, 2017)—utilize random forests, or ensembles of decision trees,

to predict protein-ligand binding affinities. In contrast, the PLEC

score employs extended connectivity fingerprints between protein-

ligand pairs, and the NNScore is based on an ensemble of neural

networks. Recent studies have demonstrated improvements in pre-

diction accuracy using the RF-Score, RF-Score-VS, or NNScore to

rescore docking poses predicted by AutoDock Vina (Li et al, 2015;

Pereira et al, 2016; W�ojcikowski et al, 2017), and prior work has

shown that the PLEC score accurately estimates binding affinities in

the PDBbind database (Wang et al, 2004; W�ojcikowski et al, 2019)

of empirical protein-ligand interactions. Here, we employed each

machine learning-based scoring function, trained using the PDBbind

v2016 or directory of useful decoys, enhanced (DUD-E; Mysinger et

al, 2012) databases, to rescore the docking poses predicted by Auto-

Dock Vina. Of note, our test set shared only one overlapping

protein-ligand interaction, rifampicin bound to RNA polymerase

(4KMU), with PDBbind v2016, and none with DUD-E. Accordingly,

testing these models on our enzymatic inhibition data accurately

reflects what each model has learned.

Using DOCK6.9 and each machine learning-based scoring func-

tion applied to AutoDock Vina poses, we predicted the binding affin-

ity between each antibacterial compound and each of the 12

empirically tested essential proteins (Dataset EV5). We then bench-

marked the performance of each approach as before and found aver-

age auROC values between 0.46 and 0.63 (Figs 5A and EV4).

Docking with DOCK6.9 and rescoring AutoDock Vina poses with the

PLEC score resulted, on average, in lower auROC values than those

from AutoDock Vina alone, with auROC values of 0.46 (range of

0.25 to 0.61) for DOCK6.9 and 0.47 (range of 0.28 to 0.63) for the

PLEC score (Figs 5A and EV4). In contrast, rescoring AutoDock

Vina poses with the RF-Score, RF-Score-VS, or NNScore led to

◀ Figure 3. In vitro enzymatic measurements of protein-ligand interactions.

A Interaction matrix showing the predicted binding affinities (kcal/mol) between all pairs of active compounds and 12 essential proteins tested for enzymatic inhibition,
discretized into bins of < −7 kcal/mol, < −5 kcal/mol, and > −5 kcal/mol.

B Rank-ordered mean relative enzymatic activity across all 218 active compounds, at a final concentration of 100 μM, for each of 12 essential proteins experimentally
tested for enzymatic inhibition. Essential proteins correspond to the genes indicated and are involved in DNA replication (purple), transcription (orange), metabolism
(brown), and cell wall synthesis (green). Results show the mean of two biological replicates, and relative activity is measured with respect to untreated controls. Bind-
ing interaction hits are protein-ligand interactions with relative enzymatic activities of < 50% in both replicates (red points). All other interactions are designated as
non-hits (gray points).

C Histogram of numbers of predicted essential protein targets with binding affinity < −5 kcal/mol (left) or < −7 kcal/mol (right), for all 218 active compounds and all
12 essential proteins tested in (B).

D Histogram of numbers of enzymatic inhibition hit proteins, for all 218 active compounds and all 12 essential proteins tested in (B).
E Histogram of numbers of predicted binding compounds with binding affinity < −5 kcal/mol (left) or < −7 kcal/mol (right), for all 218 active compounds and all 12

essential proteins tested in (B).
F Histogram of numbers of enzymatic inhibition hit compounds, for all 218 active compounds and all 12 essential proteins tested in (B).
G t-SNE plot of protein-ligand interaction fingerprints, colored by protein and protein subunit.
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improvements in model performance, with average auROC values of

0.62 (range of 0.53 to 0.69), 0.63 (range of 0.46 to 0.75), and 0.58

(range of 0.41 to 0.69), respectively (Figs 5A and EV4). Our results

were similar for the auPRC, which exhibited a mean value as high

as 0.24 when rescoring with the RF-Score (Fig EV5), and are robust,

as suggested by calculations of 95% confidence intervals for the

auROC and auPRC values (Table EV1). These assessments of model

performance indicate that certain machine learning-based scoring

functions improve prediction accuracy.

Wisdom of crowds improves prediction accuracy and enriches for
true positives

Building on our finding that certain machine learning-based scoring

functions increase the auROC and auPRC, we asked whether combin-

ing rescored models—a “wisdom of crowds” approach—could

improve prediction accuracy and enrich for true positives given strin-

gent binding affinity thresholds. We considered a stringent binding

affinity threshold for the binding energies produced by AutoDock

Vina (−7 kcal/mol), as before. For simplicity, we also considered a

constant, stringent binding affinity threshold for the binding affinities

produced by rescoring (pKd > 7), which corresponds to the top 34,

3.9, 7.3, and 33% of the binding affinities predicted by rescoring

AutoDock Vina poses with the RF-Score, RF-Score-VS, PLEC score,

and NNScore, respectively (Fig 5B). We ensembled our baseline

AutoDock Vina predictions with those of the four machine learning-

based scoring functions used above by defining predicted protein-

ligand interactions as those satisfying the binding affinity thresholds

across all models. Using this consensus approach, we found that pre-

diction accuracy improved with the number of models used (Fig 5C),

as may be expected from the corresponding decrease in the numbers

of predicted protein-ligand interactions (Fig 5D). Less expected is the

fact that the ratio of the true-positive rate to the false-positive rate

increased with the number of models used, from 1.60 with AutoDock

Vina to 4.04 with all models applied (Fig 5E). This result is consistent

with our finding of improved predictive power using certain machine

learning-based scoring functions. It further demonstrates that ensem-

bling molecular docking with machine learning-based models could

allow one to better harness AlphaFold2-predicted protein structures

for drug screens.

Discussion

The advent of AlphaFold2 and other deep neural networks for pro-

tein folding, such as RoseTTAFold (Baek et al, 2021; Humphreys et

al, 2021), has been widely anticipated and celebrated in structural

biology. An important use case of protein structure predictions is

drug discovery, for which the availability of predicted protein struc-

tures for entire proteomes could enable the identification of molecu-

lar drug targets and drug mechanisms of action. Here, we

benchmarked the use of AlphaFold2-enabled molecular docking

simulations to predict protein-ligand interactions for antibiotic drug

discovery. We combined protein structure predictions from Alpha-

Fold2 with docking to predict protein-ligand interactions between

active and inactive antibacterial compounds found in a growth inhi-

bition screen and 296 essential proteins in E. coli (Fig 1 and Box 1).

We found that this approach predicts widespread promiscuity

between both active and inactive compounds and essential protein

targets, as well as known antibiotic-protein interactions with weak-

to-moderate true-positive rates depending on the stringency of the

binding affinity threshold chosen (Fig 2 and Datasets EV2 and EV3).

We further assessed model performance by measuring in vitro enzy-

matic activity for 12 essential E. coli proteins (Fig 3). Although these

measurements supported extensive promiscuity, they also demon-

strated that this approach has weak predictive power in identifying

true protein-ligand interactions. True-positive rates were compara-

ble to false-positive rates and were, on average, higher only for

stringent binding affinity thresholds (Fig 4). Furthermore, assessing

performance independently of binding affinity threshold using the

auROC and auPRC, we found that this approach exhibits weak per-

formance depending on the protein of interest and performs, on

average, comparably to random. Consistent with previous assess-

ments of AlphaFold2’s fidelity to experimentally determined protein

structures (Jumper et al, 2021), the limitations in performance

revealed by our benchmarking did not arise from the AlphaFold2-

predicted protein structures themselves, as repeating our bench-

marking with experimentally determined structures yielded similar

performance (Fig 4). These findings suggest that, although Alpha-

Fold2 can provide rich structural information, methods to more

accurately model protein-ligand interactions are needed to better

harness AlphaFold2 for drug discovery.

Building on these findings and previous machine learning-based

approaches to modeling protein-ligand interactions, we have shown

that rescoring our docking poses with three machine learning-based

scoring functions improved prediction accuracy (Fig 5). In contrast,

docking with a different platform, DOCK6.9, did not (Fig 5). While

other software has been used for molecular docking in addition to

AutoDock Vina and DOCK6.9, prior benchmarking studies using

software including AutoDock Vina, DOCK6, Schrödinger’s Glide,

Surflex, and internal coordinate mechanics (ICM) have shown that

performance is similar on the directory of useful decoys (DUD)

dataset (Durrant et al, 2013; Pereira et al, 2016), suggesting that our

findings do not depend on the docking software used. Thus, our

◀ Figure 4. Benchmarking model performance.

A–C Distributions of true-positive rates (A), false-positive rates (B), and accuracy (C) across all 12 empirically tested essential proteins, for binding affinity thresholds of
−5 kcal/mol and −7 kcal/mol. White points indicate mean values, and gray bars indicate ranges of 25th to 75th percentile values (Q1 and Q3, respectively). The whis-
kers of the gray box plots indicate ranges of values not considered outliers, that is, those between Q1 – 1.5 × IQR and Q3 + 1.5 × IQR, where IQR = Q3 – Q1 is the
interquartile range.

D Receiver operating characteristic (ROC) curves (gray) for all 12 empirically tested essential proteins. Essential proteins correspond to the genes indicated and are
involved in DNA replication (purple), transcription (orange), metabolism (brown), and cell wall synthesis (green). The black diagonal line indicates the benchmark
generated by random guessing. Blue curves are ROC curves generated using experimentally determined protein structures, where available. auROC—area under
the ROC curve.
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work underscores that certain machine learning-based approaches

may better leverage structural information to predict protein-ligand

interactions. Consistent with this finding, refining our model predic-

tions using consensus models and a wisdom-of-crowds approach

increases the prediction accuracy and the ratio of true-positive rate

to false-positive rate (Fig 5). These results should inspire the devel-

opment of additional machine learning-based approaches to comple-

ment the use of AlphaFold2 for drug discovery.
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Although our original model with AutoDock Vina performs

comparably to random on average, we note that its performance

can vary significantly across the 12 essential proteins tested. For

instance, our AutoDock Vina predictions for gyrAB exhibited true-

and false-positive rates of 0.79 and 0.62, respectively, for a bind-

ing affinity threshold of −7 kcal/mol, and an auROC of 0.71

(Fig 4). In contrast, the true- and false-positive rates for murC

were 0.20 and 0.61, respectively, given the same binding affinity

threshold, and the auROC was 0.18 (Fig 4). We observed similar

heterogeneity across the 12 essential proteins tested in rescored

models (Figs 5 and EV4). In view of these observations, it is

important to note that docking has been widely used in “one tar-

get, many compounds” approaches to enrich for screening hits

(Lyu et al, 2019; Bender et al, 2021). Although docking and

rescoring are necessarily imperfect, our benchmarking suggests

that this approach may have acceptable predictive power for cer-

tain proteins, such as gyrAB, and could lead to improvements in

hit rates in a large-scale compound screen for inhibitors of these

proteins. Indeed, combining AlphaFold2 with molecular docking

and rescoring might aid in identifying binding compounds,

enabling the discovery of next-generation antibiotics in a protein-

dependent way. In such approaches, the quantity of interest is no

longer the prediction accuracy across all the compounds tested,

but rather the early enrichment for true positives (Bender et

al, 2021). Our results suggest that, of relevance to both the

reverse docking and the “one target, many compounds” cases,

focusing on proteins for which performance is encouraging may

better enable predictive, AlphaFold2-driven approaches to drug

discovery.

While molecular docking has developed and improved over the

past 40 years (Kuntz et al, 1982; Meng et al, 2011), our study also

indicates that further improvements in the modeling of protein-

ligand interactions are needed to better leverage AlphaFold2 for

drug-target identification. These efforts may include innovations in

both protein structure prediction and docking methods. A clear limi-

tation to AlphaFold2 is that it is unable to distinguish between the

active and inactive conformations of a protein (Mullard, 2021). Con-

comitantly, limitations to the development of more accurate docking

methods are the use of rigid protein docking in this and other bench-

marking studies (Durrant et al, 2013; Pereira et al, 2016) and the

scarcity of benchmarking datasets. Long molecular dynamics simu-

lations that focus on a specific protein of interest could account for

protein conformational changes that, in certain cases like AcrB,

might be important for ligand binding (Vargiu & Nikaido, 2012). A

standard benchmark dataset for evaluating docking performance

has been DUD-E (Mysinger et al, 2012); yet, this dataset has been

evidenced to exhibit hidden bias, which may contribute to mislead-

ing machine learning models (Chen et al, 2019). More recent work,

including the present study, has aimed to acquire and use empirical

data to systematically test docking predictions, including datasets

generated from the chemical synthesis of hundreds of compounds

corresponding to both favorable and unfavorable binding affinity

values (Lyu et al, 2019). Here, we have empirically measured the

enzymatic activity of 12 essential E. coli proteins treated with each

of 218 antibacterial compounds. These measurements include

protein-ligand pairs that were predicted to either interact or not

interact by our approach. Additionally, we have assembled a dataset

comprising 142 experimentally evidenced or inferred antibiotic

binding interactions (Dataset EV3). These data can be used as addi-

tional resources to assess docking predictions, especially as applied

to antibiotics and antibiotic mechanisms of action. Although mea-

suring protein-ligand binding interactions remains experimentally

intensive—relying on methods including enzymatic activity assays,

differential scanning fluorimetry, and surface plasmon resonance—
the creation of datasets that correspond to real use cases of docking

will contribute to the development and accurate benchmarking of

more predictive docking approaches. This is especially timely, as

benchmarking is emerging as a critical foundation of advances in

machine learning.

Moving forward, we expect future work to refine our approach

to further leverage advances in applying machine learning to

molecular docking (Gentile et al, 2020; St€ark et al, 2022) and pro-

tein structure prediction in order to improve the prediction of

protein-ligand interactions for antibiotic drug discovery. We antic-

ipate that similar approaches may be applied to identifying

protein-ligand interactions for diverse, urgently needed classes of

drugs, including antineoplastic and antiviral compounds, and to

the discovery and design of these drug classes. It would also be

intriguing to characterize the proteins with structures that are

uniquely provided by neural network predictions, and for which

the prediction accuracy of docking can be shown to be encourag-

ing. Large-scale docking of compound libraries with such proteins

might lead to improved hit rates in chemical screens, resulting in

leads that target previously difficult-to-drug proteins. As our study

demonstrates, harnessing AlphaFold2 for drug-target prediction

remains a nascent method, and realizing its potential for drug dis-

covery will require substantive improvements in modeling

protein-ligand interactions. By benchmarking the performance of

molecular docking simulations and demonstrating that machine

learning-based approaches can improve prediction accuracy, we

anticipate that our study will inform the use of AlphaFold2 in

drug discovery.

◀ Figure 5. Benchmarking and improving model performance using machine learning.

A Area under the ROC curve (auROC) values for all 12 empirically tested essential proteins, across different molecular docking programs (AutoDock Vina and DOCK6.9)
and different machine learning-based pose scoring functions (RF-Score, RF-Score-VS, PLEC score, and NNScore). White points indicate mean values, and gray bars
indicate ranges of 25th to 75th percentile values (Q1 and Q3, respectively). The whiskers of the gray box plots indicate ranges of values not considered outliers, that is,
those between Q1 – 1.5 × IQR and Q3 + 1.5 × IQR, where IQR = Q3 − Q1 is the interquartile range. The horizontal line at 0.5 indicates the benchmark generated by
random guessing.

B Rank-ordered binding affinities (pKd) for the protein-ligand pairs modeled by applying machine learning-based rescoring functions on AutoDock Vina poses. Curves
are colored according to the rescoring function used in (A). The shaded area indicates a binding affinity threshold of > 7.

C–E Dependence of prediction accuracy, number of predicted positives (protein-ligand interactions), and true-positive rate/false-positive rate on the number of models
used. Single models, based on AutoDock Vina poses, are colored according to (A) as shown at bottom. Model predictions based on the following rescoring functions
were ensembled in sequence: RF-Score, NNScore, PLEC score, and RF-Score-VS.
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Materials and Methods

Bacterial strains and growth

Escherichia coli K-12 BW25113 was used for all experiments

described in this work. Cells were grown in liquid LB medium (pro-

duct 244620, Becton Dickinson, Franklin Lakes, NJ). LB media con-

taining 1.5% agar (Becton Dickinson 244520) was used to grow

individual colonies.

Growth inhibition screening of 39,128 chemical compounds

Compounds were sourced as two differently formatted libraries,

one comprised of 96-well plates and one comprised of 384-well

plates, in dimethyl sulfoxide (DMSO) at 5 mM concentration. The

96-well library is an FDA-approved drug library from MicroSource

Discovery Systems (New Milford, CT) that was described in previ-

ous work (Stokes et al, 2020). The 384-well library is an in-house

library of structurally diverse compounds with molecular weights

between 40 and 4,200 Da. The libraries were kept in a −20°C
freezer for long-term storage. Similar to previous work determin-

ing growth inhibition (Stokes et al, 2020; Wong et al, 2021a,

2021b), E. coli BW25113 was grown overnight in liquid LB

medium in 14 ml Falcon tubes at 37°C with shaking at 300 rpm

in a light-protected incubator, then diluted 1:10,000 in fresh liquid

LB, and plated into clear 96-well flat-bottom plates (product 9018,

Corning, Corning, NY) using 100 μl final working volumes or into

clear 384-well flat-bottom plates (Corning 3680) using 50 μl final

working volumes, with plate type chosen to match the format of

the library screened. Compounds were added to a final concentra-

tion of 50 μM, and plates were incubated in sealed plastic bags at

37°C without shaking overnight (16 to 24 h). After incubation,

the optical density (OD600) was read using a SpectraMax M3 plate

reader (Molecular Devices, San Jose, CA) to quantify bacterial

growth. Plate data were normalized by the interquartile mean of

each plate to determine relative growth. All screens were per-

formed in biological replicate, and the Pearson’s correlation coef-

ficient between relative growth values in replicates is R = 0.84

(P < 10−14), demonstrating good reproducibility between repli-

cates. Chemical library information and all relative growth values

are provided in Dataset EV1.

Determination of essential genes in Escherichia coli

Essential genes in E. coli were compiled from previous studies based

on transposon-directed insertion site sequencing (Goodall et

al, 2018) and CRISPR interference screening (Rousset et al, 2018,

2021). We shortlisted genes identified in at least two of these three

studies, resulting in a total of 295 genes out of ∼ 4,000 total genes

in E. coli (Blattner et al, 1997). In order to accommodate our com-

parisons to experimental data generated from the enzymatic inhibi-

tion of RNA polymerase, this list was supplemented with an

additional gene, rpoZ, which was indicated to be essential in only

one study (Goodall et al, 2018). A list of all 296 genes thus deter-

mined is provided in Dataset EV2. These genes were manually

mapped to corresponding UniProt identifiers based on the E. coli K-

12 reference proteome (UniProt: UP000000625) and used to obtain

the corresponding AlphaFold2-predicted protein structures.

Preparation of files for molecular docking

We used AutoDock Vina 1.2.0 (Eberhardt et al, 2021) to dock

each of our 218 antibacterial compounds with each of the 296

essential E. coli proteins. Our approach is illustrated in Fig EV1A.

Briefly, each of the 296 (unbound) protein structures was down-

loaded as a PDB file from the AlphaFold2 database publicly avail-

able at https://alphafold.ebi.ac.uk/download (Jumper et al, 2021;

Varadi et al, 2022). Compounds were provided as simplified

molecular-input line-entry system (SMILES) strings. As three-

dimensional structures are needed for docking, we used Open-

Babel to convert the SMILES string of each compound into three-

dimensional chemical structures (represented in SDF format). The

PDB (protein) and SDF (compound) files were taken as inputs to

our docking approach.

We next used AutoDock Tools (Zhang et al, 2019) to prepare

each protein and compound for docking, by converting each file into

AutoDock Vina’s PDBQT format. For compound preparation, hydro-

gen atoms were added at pH 7.4, and docking with water molecules

was specified using the -w flag. Each compound was prepared using

the following command on the compound’s SDF file (“input.sdf”):

mk_prepare_ligand.py -I input.sdf -o output.pdbqt –add_hydrogen
–pH 7.4 -w.

As indicated in Dataset EV2, docking with water molecules failed

for 56 of the 218 active compounds (associated with an error of

“water molecules could not be placed by AutoDock Vina”). Hence,

for these 56 active compounds, no water molecules were explicitly

added (the -w flag was removed from the command above), and the

docking was repeated. We also note that one active compound con-

tained a boron atom, which AutoDock Vina does not support (no

force fields available). To enable docking of this compound, we

replaced its boron atom with a carbon atom, as is often done

in molecular docking (Tiwari et al, 2009). Each protein was

prepared using the following command on the protein’s PDB file

(“input.pdb”):

prepare_receptor -r input.pdb -o output.pdbqt.

Following compound and protein preparation, active site coordi-

nates must be specified for docking. Unless otherwise stated, we

used blind docking, in which AutoDock Tools computes a prospec-

tive active site for each protein-ligand pair. To perform blind dock-

ing, we first generated an affinity map for each protein-ligand

pair using the following command on the input PDBQT files

(“compound.pdbqt” and “protein.pdbqt”):

prepare_gpf4.py -l compound.pdbqt -r receptor.pdbqt -y -p

ligand_types”A,NA,C,HD,N,O″ -o output.gpf.

Then, AutoGrid 4 was used to determine the grid coordinates

corresponding to each affinity map (“input.gpf”) as follows:

autogrid4 -p input.gpf -l output.glg.

The grid coordinates stored in each output GLG file, along with

the corresponding compound and ligand PDBQT files, were used for

docking.

Molecular docking with AutoDock Vina

Docking was performed with a default exhaustiveness of 32, which

specifies the number of runs that start with a random ligand confor-

mation, and a default n_poses of 20, which specifies the final num-

ber of ligand poses to report. As positive controls for our docking
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simulations, we re-docked 11 experimentally evidenced protein-

ligand complexes from the RCSB Protein Data Bank (Dataset EV2).

For each complex, a PDB file containing both the protein and the

ligand was downloaded from the Protein Data Bank. The PDB file

was split into separate protein and ligand files using PyMol (version

2.0, Schrödinger Inc., New York, NY), then prepared, and docked as

detailed above to predict binding poses. The predicted binding pose

of each complex was superimposed with the experimentally deter-

mined structure using PyMol. We visually inspected the binding

poses and found excellent agreement with the experimentally deter-

mined structures for all complexes, confirming the soundness of our

docking approach for general screens. All binding affinities pre-

dicted by our docking simulations are reported in Dataset EV2.

To further improve the quality of our docking predictions, we

searched the Protein Data Bank for protein-ligand complexes that

include the 12 empirically tested essential proteins. We found 6

complexes (Dataset EV2). We re-docked the 6 protein-ligand com-

plexes as described above, validating good agreement between the

predicted and experimentally determined binding poses. For each of

these 6 protein structures, we repeated our docking simulations

with each of the 218 antibacterial compounds, setting the active site

to twice the linear dimensions of that in the experimentally deter-

mined protein-ligand complex. This resulted in auROC values

greater than those obtained with blind docking for two proteins,

MurA and GyrAB. Consequently, the reported binding affinities for

MurA and GyrAB are those predicted by simulations using these

empirically determined active sites.

DNA gyrase inhibition assay

Inhibition of E. coli DNA gyrase (GyrA-GyrB complex; DNA topoiso-

merase II) supercoiling was assessed using an in vitro assay devel-

oped by ProFoldin (Hudson, MA), following the manufacturer’s

instructions with some modifications. The assay is based on the

principle that supercoiled DNA and relaxed DNA yield different fluo-

rescent intensities when interacting with the fluorescent dye H19,

with relaxed DNA suppressing the fluorescent intensity more than

the supercoiled form in the presence of magnesium. Each reaction

was performed using 20 μl of reaction mixture including 12 μl ultra-
pure Milli-Q water, 2 μl of 10× buffer T2, 2 μl of 10× relaxed DNA,

2 μl of 10× enzyme, and 2 μl of 10 mM ATP, resulting in final con-

centrations of 20 mM Tris–HCl (pH 8.0), 35 mM NH4OAc, 4.6%

glycerol, 1 mM dithiothreitol, 0.005% Brij-35, 8 mM MgCl2, 25 μg/
ml relaxed plasmid DNA, 1 mM ATP, and 20 nM DNA gyrase. Eigh-

teen μl of diluted buffer containing enzyme and ATP was plated into

standard black 384-well plates (Corning 3575). Where applicable,

0.4 μl of test compound (or DMSO as a negative control) was added,

and plates were incubated at room temperature for at least 5 min.

Two μl of 10× relaxed DNA was then added to each reaction. For

generating standard curves, the amount of substrate (relaxed DNA)

added was decreased in proportion to activity. Plates were incu-

bated at 37°C for 2 h. The provided 10× H19 dilution buffer was

diluted 10-fold with ultrapure Milli-Q water, and the provided H19

dye was diluted 1,500× with 1× H19 dilution buffer. After incuba-

tion, 80 μl of diluted H19 dye was added to each reaction, and mix-

tures were incubated at room temperature for 5 min. The

fluorescence excitation/emission at 485/535 nm was then measured

using a SpectraMax M3 plate reader. For each sample, activity was

determined by linear interpolation with respect to the standard

curves provided that the resulting fluorescence intensity value fell

within the standard curve range. Otherwise, fluorescence intensity

values below that of the zero standard were clipped to that of the

zero standard, and fluorescence intensity values above that of the

highest standard were linearly extrapolated with respect to that of

the highest standard.

DNA primase inhibition assay

Inhibition of E. coli DNA primase (DnaG)—which synthesizes RNA

primers at the DNA replication fork where DnaB unwinds the

double-stranded DNA—was assessed using an in vitro assay devel-

oped by ProFoldin (Hudson, MA), following the manufacturer’s

instructions with some modifications. The assay is based on the

measurement of the RNA primers synthesized by DNA primase in

the presence of DNA template and NTPs. For screening experi-

ments, reactions were performed using 40 μl of reaction mixture

including 24 μl ultrapure Milli-Q water, 4 μl of 10× assay buffer,

4 μl of 10× DNA template, 4 μl of 10× enzyme, and 4 μl of 10×
NTP mix, resulting in final concentrations of 10 mM HEPES (pH

7.5), 5 mM magnesium sulfate, 0.5 mM dithiothreitol, 0.003% Brij-

35, 100 nM DNA, 0.5 mM NTPs, and 100 nM enzyme. Thirty-six

μl of diluted buffer containing enzyme and NTP mix was plated

into standard black 384-well plates (Corning 3575). Where applica-

ble, 0.8 μl of test compound (or DMSO as a negative control) was

added, and plates were incubated at room temperature for at least

5 min. Four μl of 10× DNA template was then added to each reac-

tion. For generating standard curves, the amount of substrate

(DNA template) added was decreased in proportion to activity.

Plates were incubated at 37°C for 2 h. The provided 10× fluores-

cence dye was diluted 10-fold with ultrapure Milli-Q water. After

incubation, 60 μl of 1× dye was added to each reaction, and mix-

tures were incubated at room temperature for 5 min. The fluores-

cence excitation/emission at 485/535 nm was then measured using

a SpectraMax M3 plate reader. For each sample, activity was deter-

mined by linear interpolation with respect to the standard curves

provided that the resulting fluorescence intensity value fell within

the standard curve range. Otherwise, fluorescence intensity values

below that of the zero standard were clipped to that of the zero

standard, and fluorescence intensity values above that of the high-

est standard were linearly extrapolated with respect to that of the

highest standard. For subsequent validation dose–response experi-

ments, half the indicated reaction volumes—that is, 20 μl for each

reaction mixture—was used, and 40 μl of 1× dye was added to

each reaction.

DNA helicase inhibition assay

Inhibition of E. coli DnaB (DnaB)—which hydrolyzes ATP to carry

out the DNA unwinding required by the DNA replication process—
was assessed using an in vitro assay developed by ProFoldin (Hud-

son, MA), following the manufacturer’s instructions. The assay is

based on the measurement of inhibition of the ATPase activity of

DNA helicase, particularly the detection of the phosphate produced

by the ATP hydrolysis reaction in the presence of DNA. For each 10

assay reactions, 297 μl of premix comprising 261 μl of ultrapure

Milli-Q water, 33 μl of 10× assay buffer, and 3.3 μl of 100× DNA
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helicase were prepared. Additionally, 33 μl of 10× enzyme substrate

comprising 3.3 μl of 100× ATP, 3.3 μl of 100× DNA, and 26.4 μl of
ultrapure Milli-Q water were prepared. The final concentrations of

reagents in each assay are as follows: 20 mM HEPES (pH 7.5),

20 mM potassium glutamate, 1 mM dithiothreitol, 0.005% Triton X-

100, 10 mM MgCl2, 250 nM DNA, 0.25 mM ATP, and 200 nM DNA

helicase. For each reaction, 26.4 μl of the premix was plated into

standard clear 384-well plates (ThermoFisher 242757). Where appli-

cable, 0.6 μl of test compound (or DMSO as a negative control) was

added, and plates were incubated at room temperature for at least

5 min. Three μl of 10× enzyme substrate was then added to each

reaction. For generating standard curves, the amount of 10× enzyme

substrate added was decreased in proportion to activity. Plates were

incubated at 37°C for 2 h. After incubation, 45 μl of the provided

MPA3000 dye was added to each reaction, and mixtures were incu-

bated at room temperature for 5 min. The absorbance at 650 nm

was then measured using a SpectraMax M3 plate reader. For each

sample, activity was determined by linear interpolation with respect

to the standard curves provided that the resulting absorbance value

fell within the standard curve range. Otherwise, absorbance values

below that of the zero standard were clipped to that of the zero stan-

dard, and absorbance values above that of the highest standard

were linearly extrapolated with respect to that of the highest stan-

dard.

NAD+-dependent DNA ligase inhibition assay

Inhibition of E. coli NAD+-dependent DNA ligase (LigA)—which cat-

alyzes the formation of phosphodiester linkages between 50-
phosphoryl and 30-hydroxyl groups in double-stranded DNA using

NAD+ as a coenzyme and as the energy source for the reaction—
was assessed using an in vitro assay developed by ProFoldin (Hud-

son, MA), following the manufacturer’s instructions with some

modifications. The assay is based on the measurement of the DNA

ligase product in which the diphosphodiester bond is formed at the

single-strand break of a duplex DNA substrate. Reactions were per-

formed using 20 μl of reaction mixture including 13.8 μl ultrapure
Milli-Q water, 2 μl of 10× buffer LS, 2 μl of 10× DNA, 0.2 μl of 100×
enzyme, and 2 μl of 1 mM NAD+. Twenty μl of diluted buffer con-

taining enzyme and NAD+ was plated into standard black 384-well

plates (Corning 3575). Where applicable, 0.4 μl of test compound

(or DMSO as a negative control) was added, and plates were incu-

bated at room temperature for at least 5 min. Two μl of 10× DNA

was then added to each reaction. For generating standard curves,

the amount of substrate (DNA) added was decreased in proportion

to activity. Plates were incubated at 37°C for 2 h. After incubation,

70 μl of Reagent T, then 10 μl of the provided fluorescent dye (di-

luted to 1× in ultrapure Milli-Q water) was added to each reaction,

and mixtures were incubated at room temperature for 15 min. The

fluorescence excitation/emission at 485/535 nm was then measured

using a SpectraMax M3 plate reader. For each sample, activity was

determined by linear interpolation with respect to the standard

curves provided that the resulting fluorescence intensity value fell

within the standard curve range. Otherwise, fluorescence intensity

values below that of the zero standard were clipped to that of the

zero standard, and fluorescence intensity values above that of the

highest standard were linearly extrapolated with respect to that of

the highest standard.

DNA polymerase III inhibition assay

Inhibition of E. coli DNA polymerase III’s catalytic α subunit (DnaE)

—which synthesizes DNA using the RNA primer made by the DNA

primase at the DNA replication fork—was assessed using an in vitro

assay developed by ProFoldin (Hudson, MA), following the manu-

facturer’s instructions with some modifications. Reactions were per-

formed using 20 μl of reaction mixture including 12 μl ultrapure

Milli-Q water, 2 μl of 10× buffer DP, 2 μl of 10× DNA, 2 μl of 10×
enzyme, and 2 μl of 10× dNTP mix. Twenty μl of diluted buffer con-

taining enzyme and dNTP mix was plated into standard black 384-

well plates (Corning 3575). Where applicable, 0.4 μl of test com-

pound (or DMSO as a negative control) was added, and plates were

incubated at room temperature for at least 5 min. Two μl of 10×
DNA was then added to each reaction. For generating standard

curves, the amount of substrate (DNA) added was decreased in pro-

portion to activity. Plates were incubated at 37°C for 2 h. After incu-

bation, 40 μl of the provided fluorescent dye (diluted to 1× in

ultrapure Milli-Q water) was added to each reaction, and mixtures

were incubated at room temperature for 5 min. The fluorescence

excitation/emission at 485/535 nm was then measured using a

SpectraMax M3 plate reader. For each sample, activity was deter-

mined by linear interpolation with respect to the standard curves

provided that the resulting fluorescence intensity value fell within

the standard curve range. Otherwise, fluorescence intensity values

below that of the zero standard were clipped to that of the zero stan-

dard, and fluorescence intensity values above that of the highest

standard were linearly extrapolated with respect to that of the high-

est standard.

RNA polymerase inhibition assay

Inhibition of E. coli RNA polymerase (RpoA, RpoB, RpoC, RpoZ,

RpoE holoenzyme, with a molecular mass of ∼ 390 kDa)—which

synthesizes mRNA, tRNA, and rRNA in cells—was assessed using

an in vitro assay developed by ProFoldin (Hudson, MA), following

the manufacturer’s instructions. The assay is based on the measure-

ment of the RNA synthesized by the RNA polymerase using a DNA

template. Each reaction was performed using 30 μl of reaction mix-

ture including 18 μl ultrapure Milli-Q water, 3 μl of 10× buffer, 3 μl
of 10× DNA template, 3 μl of 10× enzyme, and 3 μl of 10× NTP

mix. Twenty-seven μl of diluted buffer containing enzyme and NTP

mix was plated into standard black 384-well plates (Corning 3575).

Where applicable, 0.6 μl of test compound (or DMSO as a negative

control) was added, and plates were incubated at room temperature

for at least 5 min. Three μl of 10× DNA template was then added to

each reaction. For generating standard curves, the amount of sub-

strate (DNA template) added was decreased in proportion to activ-

ity. Plates were incubated at 37°C for 2 h. After incubation, 30 μl of
the provided fluorescent dye was added to each reaction, and mix-

tures were incubated at room temperature for 5 min. The fluores-

cence excitation/emission at 485/535 nm was then measured using

a SpectraMax M3 plate reader. For each sample, activity was deter-

mined by linear interpolation with respect to the standard curves

provided that the resulting fluorescence intensity value fell within

the standard curve range. Otherwise, fluorescence intensity values

below that of the zero standard were clipped to that of the zero stan-

dard, and fluorescence intensity values above that of the highest
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standard were linearly extrapolated with respect to that of the high-

est standard.

Guanylate kinase inhibition assay

Inhibition of E. coli guanylate kinase (gmk)—which catalyzes the

ATP-dependent phosphorylation of GMP into GDP in order to recy-

cle GMP and cGMP—was assessed using an in vitro assay developed

by ProFoldin (Hudson, MA), following the manufacturer’s instruc-

tions. Reactions were performed using 30 μl of reaction mixture

including 12 μl ultrapure Milli-Q water, 3 μl of 10× reaction buffer,

3 μl of 10× GMP, 3 μl of 10× ATP, and 3 μl of 10× kinase. 24 μl of
diluted buffer containing enzyme, GMP, and ATP was plated into

standard clear 384-well plates (ThermoFisher 242757). Where appli-

cable, 0.6 μl of test compound (or DMSO as a negative control) was

added, and plates were incubated at room temperature for at least

5 min. Three μl of 10× GMP was then added to each reaction, and

the reaction was incubated at room temperature for 2 min. To each

reaction, 3 μl of 10× MUK reagent A was added, followed by 3 μl of
MUK reagent B. For generating standard curves, the amount of sub-

strate (GMP) added was decreased in proportion to activity. Plates

were incubated at 37°C for 2 h. After incubation, 30 μl of the pro-

vided fluorescent dye (diluted to 1× in ultrapure Milli-Q water) was

added to each reaction, and mixtures were incubated at room tem-

perature for 5 min. The fluorescence excitation/emission at 485/

535 nm was then measured using a SpectraMax M3 plate reader.

For each sample, activity was determined by linear interpolation

with respect to the standard curves provided that the resulting fluo-

rescence intensity value fell within the standard curve range. Other-

wise, fluorescence intensity values below that of the zero standard

were clipped to that of the zero standard, and fluorescence intensity

values above that of the highest standard were linearly extrapolated

with respect to that of the highest standard.

GlmU inhibition assay

Inhibition of E. coli GlmU (UDP-N-acetylglucosamine pyrophosphory-

lase)—which transfers acetyl and uridyl groups to glucosamine-1-P,

generating UDP-GlcNAc (a peptidoglycan precursor)—was assessed

using an in vitro assay developed by ProFoldin (Hudson, MA), follow-

ing the manufacturer’s instructions. The assay is based on the mea-

surement of the pyrophosphate generated from the GlmU reaction. For

each 10 assay reactions, 297 μl of premix comprising 257.4 μl of ultra-
pure Milli-Q water, 33 μl of 10× assay buffer, and 3.3 μl of 100× GlmU

(500 nM) were prepared. Additionally, 33 μl of 10× enzyme substrate

comprising 3.3 μl of the provided 100× enzyme substrate (2.5 mM

glucosamine-1-P, 2.5 mM acetyl-CoA, and 2.5 mM UTP) and 29.7 μl
of ultrapure Milli-Q water were prepared. For each reaction, 26.4 μl of
the premix was plated into standard clear 384-well plates (Thermo-

Fisher 242757). Where applicable, 0.6 μl of test compound (or DMSO

as a negative control) was added, and plates were incubated at room

temperature for at least 5 min. Three μl of 10× enzyme substrate was

then added to each reaction. For generating standard curves, the

amount of 10× enzyme substrate added was decreased in proportion

to activity. Plates were incubated at 37°C for 2 h. After incubation,

45 μl of the provided MPA3000 dye was added to each reaction, and

mixtures were incubated at room temperature for 5 min. The absor-

bance at 650 nm was then measured using a SpectraMax M3 plate

reader. For each sample, activity was determined by linear interpola-

tion with respect to the standard curves provided that the resulting

absorbance value fell within the standard curve range. Otherwise,

absorbance values below that of the zero standard were clipped to that

of the zero standard, and absorbance values above that of the highest

standard were linearly extrapolated with respect to that of the highest

standard.

MurA inhibition assay

Inhibition of E. coli MurA (UDP-N-acetylglucosamine enolpyruvyl

transferase)—which transfers enolpyruvate from phosphoenolpyru-

vate (PEP) to uridine diphospho-N-acetylglucosamine (UNAG), gen-

erating enolpyruvyl-UDP-N-acetylglucosamine (EP-UNAG) and

inorganic phosphate—was assessed using an in vitro assay devel-

oped by ProFoldin (Hudson, MA), following the manufacturer’s

instructions. The assay is based on the measurement of the inorganic

phosphate generated from the MurA reaction. For each 10 assay reac-

tions, 297 μl of premix comprising 261 μl of ultrapure Milli-Q water,

33 μl of 10× assay buffer, and 3.3 μl of 100× MurA (5 μM) were pre-

pared. Additionally, 33 μl of 10× enzyme substrate comprising 3.3 μl
of 100× PEP, 3.3 μl of 100× UDP-N-acetylglucosamine (UGN), and

26.4 μl of ultrapure Milli-Q water were prepared. For each reaction,

26.4 μl of the premix was plated into standard clear 384-well plates

(ThermoFisher 242757). Where applicable, 0.6 μl of test compound

(or DMSO as a negative control) was added, and plates were incu-

bated at room temperature for at least 5 min. Three μl of 10× enzyme

substrate was then added to each reaction. For generating standard

curves, the amount of 10× enzyme substrate added was decreased in

proportion to activity. Plates were incubated at 37°C for 2 h. After

incubation, 45 μl of the provided MPA3000 dye was added to each

reaction, and mixtures were incubated at room temperature for

5 min. The absorbance at 650 nm was then measured using a Spec-

traMax M3 plate reader. For each sample, activity was determined by

linear interpolation with respect to the standard curves provided that

the resulting absorbance value fell within the standard curve range.

Otherwise, absorbance values below that of the zero standard were

clipped to that of the zero standard, and absorbance values above

that of the highest standard were linearly extrapolated with respect

to that of the highest standard.

MurC inhibition assay

Inhibition of E. coli MurC (UDP-N-acetylmuramic acid:L-alanine

ligase)—which catalyzes the addition of L-alanine into the nucleo-

tide precursor UDP-MurNAc, generating UDP-MurNAc-L-Ala and

whose ligation reaction is coupled to the hydrolysis of ATP, forming

ADP and inorganic phosphate—was assessed using an in vitro assay

developed by ProFoldin (Hudson, MA), following the manufac-

turer’s instructions. The assay is based on the measurement of the

inorganic phosphate generated from the MurC reaction. For each 10

assay reactions, 297 μl of premix comprising 261 μl of ultrapure

Milli-Q water, 33 μl of 10× assay buffer, and 3.3 μl of 100× MurC

(5 μM) were prepared. Additionally, 33 μl of 10× enzyme substrate

comprising 3.3 μl of 100× UDP-MurNAc (4 mM), 3.3 μl of 100× L-

Ala (4 mM), 3.3 μl of 100× ATP (10 mM), and 23.1 μl of ultrapure
Milli-Q water were prepared. For each reaction, 26.4 μl of the

premix was plated into standard clear 384-well plates
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(ThermoFisher 242757). Where applicable, 0.6 μl of test compound

(or DMSO as a negative control) was added, and plates were incu-

bated at room temperature for at least 5 min. Three μl of 10×
enzyme substrate was then added to each reaction. For generating

standard curves, the amount of 10× enzyme substrate added was

decreased in proportion to activity. Plates were then incubated at

37°C for 2 h. After incubation, 45 μl of the provided MPA3000 dye

was added to each reaction, and mixtures were incubated at room

temperature for 5 min. The absorbance at 650 nm was then mea-

sured using a SpectraMax M3 plate reader. For each sample, activity

was determined by linear interpolation with respect to the standard

curves provided that the resulting absorbance value fell within the

standard curve range. Otherwise, absorbance values below that of

the zero standard were clipped to that of the zero standard, and

absorbance values above that of the highest standard were linearly

extrapolated with respect to that of the highest standard.

MurD inhibition assay

Inhibition of E. coli MurD (UDP-N-acetylmuramoylalanine:D-

glutamate ligase)—which catalyzes the addition of D-glutamic acid

to UDP-MurNAc-L-Ala, generating UDP-MurNAc-dipeptide, and

whose ligation reaction is coupled to the hydrolysis of ATP, forming

ADP and inorganic phosphate—was assessed using an in vitro assay

developed by ProFoldin (Hudson, MA), following the manufac-

turer’s instructions. The assay is based on the measurement of the

inorganic phosphate generated from the MurD reaction. For each 10

assay reactions, 297 μl of premix comprising 261 μl of ultrapure

Milli-Q water, 33 μl of 10× assay buffer, and 3.3 μl of 100× MurD

(2 μM) were prepared. Additionally, 33 μl of 10× enzyme substrate

comprising 3.3 μl of 100× UDP-MurNAc-L-Ala (UMA), 3.3 μl of

100× D-Glu, 3.3 μl of 100× ATP, and 23.1 μl of ultrapure Milli-Q

water were prepared. For each reaction, 26.4 μl of the premix was

plated into standard clear 384-well plates (ThermoFisher 242757).

Where applicable, 0.6 μl of test compound (or DMSO as a negative

control) was added, and plates were incubated at room temperature

for at least 5 min. Three μl of 10× enzyme substrate was then added

to each reaction. For generating standard curves, the amount of 10×
enzyme substrate added was decreased in proportion to activity.

Plates were then incubated at 37°C for 2 h. After incubation, 45 μl
of the provided MPA3000 dye was added to each reaction, and mix-

tures were incubated at room temperature for 5 min. The absor-

bance at 650 nm was then measured using a SpectraMax M3 plate

reader. For each sample, activity was determined by linear interpo-

lation with respect to the standard curves provided that the resulting

absorbance value fell within the standard curve range. Otherwise,

absorbance values below that of the zero standard were clipped to

that of the zero standard, and absorbance values above that of the

highest standard were linearly extrapolated with respect to that of

the highest standard.

MurF inhibition assay

Inhibition of E. coli MurF (UDP-N-acetylmuramoyl-tripeptide:D-

alanyl-D-alanine ligase)—which catalyzes the addition of D-Ala-D-Ala

to UDP-MurNAc-tripeptide, and whose ligation reaction is coupled to

the hydrolysis of ATP, forming ADP and inorganic phosphate—was

assessed using an in vitro assay developed by ProFoldin (Hudson,

MA), following the manufacturer’s instructions. The assay is based on

the measurement of the inorganic phosphate generated from the MurF

reaction. For each 10 assay reactions, 297 μl of premix comprising

261 μl of ultrapure Milli-Q water, 33 μl of 10× assay buffer, and 3.3 μl
of 100× MurF (2 μM) were prepared. Additionally, 33 μl of 10×
enzyme substrate comprising 3.3 μl of 100× UDP-MurNAc-tripeptide

(UMAG-DAP), 3.3 μl of 100× D-Ala-D-Ala, 3.3 μl of 100× ATP, and

23.1 μl of ultrapure Milli-Q water were prepared. For each reaction,

26.4 μl of the premix was plated into standard clear 384-well plates

(ThermoFisher 242757). Where applicable, 0.6 μl of test compound

(or DMSO as a negative control) was added, and plates were incubated

at room temperature for at least 5 min. Three μl of 10× enzyme sub-

strate was then added to each reaction. For generating standard

curves, the amount of 10× enzyme substrate added was decreased in

proportion to activity. Plates were then incubated at 37°C for 2 h. After

incubation, 45 μl of the provided MPA3000 dye was added to each

reaction, and mixtures were incubated at room temperature for 5 min.

The absorbance at 650 nmwas then measured using a SpectraMax M3

plate reader. For each sample, activity was determined by linear inter-

polation with respect to the standard curves provided that the result-

ing absorbance value fell within the standard curve range. Otherwise,

absorbance values below that of the zero standard were clipped to that

of the zero standard, and absorbance values above that of the highest

standard were linearly extrapolated with respect to that of the highest

standard.

Analysis of in vitro protein inhibition experiments

For proteins with subunits (GyrAB and RpoABCEZ), a binding affin-

ity was assigned to the protein by taking the minimum binding

affinity across all subunits. To estimate IC50 values in the dose–
response curves shown in Fig EV2, we used nonlinear least-squares

fitting (the lsqcurvefit function in MATLAB, Mathworks, Natick,

MA) to fit mean activity values to Hill functions of the form

H xð Þ ¼ b0 þ mxβ

xβ0:5 þ xβ
;

while enforcing H(0) = 1 and H ≥ 0 for all x. IC50 values were

determined by numerically solving the best-fit Hill function for x

given H(x) = 0.5.

Antibiotics and antibacterial compounds

Compounds were sourced in bulk for additional validation in the

dose–response experiments shown in Fig EV2. Ceftibuten hydrate

(product 25334, Cayman Chemical Company, Ann Arbor, MI), ceftio-

fur sodium (product HY-B0898, MedChemExpress, Princeton, NJ),

demeclocycline hydrochloride (MedChemExpress HY-17560), oxyte-

tracycline (Cayman 18076), minocycline hydrochloride hydrate

(Cayman 14454), rifampicin (Cayman 14423), rifapentine (MedChem-

Express HY-B0269), WIN 64338 hydrochloride (BRD-K22662557; pro-

duct 1057, Bio-Techne, Minneapolis, MN), mitoquinone mesylate

(BRD-K00003362; product S8978, Selleck Chemicals, Houston, TX),

and PF-477736 (BRD-K03063480; Selleck S2904) were dissolved and

serially diluted in DMSO (MilliporeSigma D5879). Ciprofloxacin (Milli-

poreSigma 17850) was dissolved in dilute acid (0.1 M HCl) and seri-

ally diluted in ultrapure Milli-Q water.
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t-SNE visualization of protein-ligand fingerprints

For each docked protein-ligand pair, we used the Open Drug Discov-

ery Toolkit (ODDT)’s SimpleInteractionFingerprint() function to

generate an amino acid-based fingerprint of constant size across all

proteins and ligands (W�ojcikowski et al, 2015). t-SNE was per-

formed using sklearn’s TSNE() function with a perplexity parameter

of 30 and the Jaccard metric as the distance.

Docking using experimentally determined protein structures

To compare our AlphaFold-based docking predictions to those from

experimentally determined structures, we searched the Protein Data

Bank for protein-ligand complexes that include the 12 empirically

tested essential proteins. We found 3 protein structures (dnaB,

6QEM; murC, 1P3C; murF, 1GG4) in addition to the 6 protein-ligand

complexes detailed above in Molecular docking with AutoDock Vina.

We repeated our docking simulations using each protein structure

as described above in Molecular docking with AutoDock Vina. Of

note, blind docking was used for protein structures without ligands.

For each protein-ligand complex, the active site was set to twice the

linear dimensions of that in the experimentally determined struc-

ture, as detailed above in Molecular docking with AutoDock Vina.

Calculation of ROC curves, PR curves, and confidence intervals

The receiver operating characteristic (ROC) curves and area under

the ROC curve (auROC) values shown in Figs 4 and 5, and EV4 were

calculated using the perfcurve function in MATLAB. For each

protein-ligand pair, the ground truth value was obtained by binariz-

ing the relative enzymatic activity value (1 if the relative enzymatic

activity was less than 0.5 in both biological replicates, and 0 other-

wise). The input scores, which represent classifier predictions, were

taken to be −1 times the binding affinity estimates (for AutoDock

Vina or DOCK6.9 predictions) or equal to the binding affinity esti-

mates (for AutoDock Vina predictions rescored using RF-Score,

PLEC score, or NNScore). 95% confidence intervals for the auROC

and auPRC, as shown in Table EV1, were calculated by bootstrap-

ping with 100 samples for each protein. Each sample was of size

equal to the number of tested compounds (218) and was sampled

with replacement.

Molecular docking simulations with DOCK6.9

As described in the main text, we employed another docking plat-

form, DOCK6.9 (Allen et al, 2015), to further benchmark our dock-

ing predictions. Our approach is illustrated in Fig EV1B, and

docking simulations using DOCK6.9 were performed only for the 12

empirically tested essential proteins in this work. First, compounds

were converted into three-dimensional structures (MOL2 format)

using OpenBabel. Next, we prepared each protein and each ligand

for docking. We used a Python script that employs the DockPrep

function from UCSF Chimera (Pettersen et al, 2004; Allen, 2018) to

add hydrogens and partial charges. We found that 65 antibacterial

compounds contained unknown atom names and/or types (as indi-

cated in Dataset EV5). For these compounds, hydrogens and partial

charges were manually added using DockPrep, available under

Tools → Structure Editing in Chimera’s graphical user interface.

Each protein and each compound structure were then saved in

MOL2 format.

In DOCK6.9, the molecular surface of a protein contains informa-

tion about the van der Waals forces experienced in any ligand inter-

action. The molecular surface and active site of each protein are

needed for docking. In order to generate the molecular surface, we

used the WriteDMS function from UCSF Chimera, which reports the

protein regions accessible to ligand binding in a DMS file. Given the

DMS file, a sphere generation function (Sphgen) was used to gener-

ate spheres within empty spaces and/or hydrophobic pockets of

each protein. The generated spheres represent plausible locations

for ligand binding, and this blind docking approach was employed

for all 12 essential proteins of interest. Spheres were filtered by set-

ting the minimum and maximum radii to 1.4 and 4.0 �A, respec-

tively, and an output SPH file comprising all clusters within a

protein was generated. The largest cluster, which typically contains

the predicted active site, was retained, and all other clusters were

manually removed from the SPH file.

As a final step before docking, it is convenient to precompute an

energy grid centered on the sphere cluster using the Grid function;

doing so reduces the number of computations required for docking.

The resulting energy scoring function estimates molecular mechan-

ics interaction energies, comprising van der Waals and electrostatic

components, at a pre-specified grid spacing of 4.0 �A. Finally, we

used flex docking, in which the ligand has full rotational freedom,

in DOCK6.9 to predict binding poses and binding affinities. The

binding affinity of each protein-ligand pair of interest is represented

by DOCK6.9’s grid score and reported in Dataset EV5. As previously

shown to occur when using DOCK (Jiang & Rizzo, 2015; Zhang et

al, 2020), the software may fail to dock protein-ligand pairs due to

the inability to complete growth in its anchor-and-grow search algo-

rithm. Consistent with these reports, we found that DOCK failed to

dock a subset (26%) of the protein-ligand pairs of interest. These

failures are reported to have a binding affinity of 0 kcal/mol in

Dataset EV5 and were removed from our analysis for calculation of

the auROC values shown in Fig 5. We note here that, as additional

controls for our modeling platform using DOCK6.9, we re-docked 7

protein-ligand complexes from the Protein Data Bank as controls.

As detailed in Molecular docking with AutoDock Vina, these protein-

ligand complexes include seven of the empirically tested essential

proteins. The resulting binding pose of each protein-ligand complex

was confirmed to be in good agreement with the experimentally evi-

denced pose.

Rescoring docking poses with machine learning-based
scoring functions

We rescored the docking poses generated by AutoDock Vina using

the Open Drug Discovery Toolkit (ODDT)’s implementations

(W�ojcikowski et al, 2015) of RF-Score (Ballester & Mitchell, 2010),

PLEC score (W�ojcikowski et al, 2019), and NNScore (Durrant &

McCammon, 2010). The PDBQT files of all docked ligands and all

12 essential proteins tested were read using ODDT. For rescoring

with the PLEC score, the underlying model used was linear regres-

sion, and the parameters used were depth_protein = 5, depth_li-

gand = 1, and size = 65,536. These scoring functions were trained

with protein-ligand interaction data from PDBbind v2016, using

ODDT’s internal scorer.train() function. RF-Score-VS (W�ojcikowski
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et al, 2017) is not implemented in ODDT, but is available in binary

format, trained on the DUD-E dataset (Mysinger et al, 2012), from

https://github.com/oddt/rfscorevs_binary. The binary file was exe-

cuted using the PDBQT files of all docked ligands, and all 12 essen-

tial proteins tested as inputs. The binding affinity (pKd) predictions

generated by all rescoring methods are reported in Dataset EV5.

Calculation of pLDDT values

For all 12 empirically tested essential proteins, AlphaFold2-

predicted protein structures in PDB format were downloaded from

https://alphafold.ebi.ac.uk. The mean predicted local distance dif-

ference test (pLDDT) value of each protein was extracted and calcu-

lated from the B-factor column containing the pLDDT value per

atom and per residue (Tunyasuvunakool et al, 2021). For each pro-

tein, the protein-averaged pLDDT value shown in Fig EV3 was cal-

culated as the average pLDDT value across all residues.

Data availability

Data generated from chemical screens, molecular docking simula-

tions and analyses, and enzymatic inhibition assays are available as

Datasets EV1–EV5. The enzymatic inhibition assay results have also

been deposited on BioStudies (https://www.ebi.ac.uk/biostudies/

studies/S-BSST863?key=082576e6-3bd2-4589-9640-f04b8092f5cb)

to improve accessibility and provide a benchmarking dataset for

antibiotic-protein-ligand interactions.

Expanded View for this article is available online.

Acknowledgments
We thank the Broad Institute Center for the Development of Therapeutics for

assistance with compound management. Molecular graphics and analyses for

DOCK6.9 were performed with UCSF Chimera, developed by the Resource for

Biocomputing, Visualization, and Informatics at the University of California,

San Francisco, with support from NIH P41-GM103311. FW was supported by

the James S. McDonnell Foundation. AK was supported by the Swiss National

Science Foundation under grant number SNSF_203071. AME and ALM were

supported by federal funds from the National Institute of Allergy and Infec-

tious Diseases, National Institutes of Health, Department of Health and

Human Services, under grant number U19AI110818 to the Broad Institute. JJC

was supported by the National Institutes of Health (grant number R01-

AI146194), the Broad Institute of MIT and Harvard, and an anonymous donor.

This work is part of the Antibiotics-AI Project, which is directed by JJC and sup-

ported by the Audacious Project, Flu Lab, LLC, the Sea Grape Foundation, and

Rosamund Zander and Hansjorg Wyss for the Wyss Foundation.

Author contributions
Felix Wong: Conceptualization; data curation; software; formal analysis;

supervision; validation; investigation; visualization; methodology; writing –
original draft; writing – review and editing. Aarti Krishnan: Data curation;

software; formal analysis; validation; investigation; visualization; methodology;

writing – original draft; writing – review and editing. Erica J Zheng: Data

curation; investigation; writing – original draft; writing – review and editing.

Hannes Stärk: Formal analysis; writing – review and editing. Abigail L Man-

son: Software; formal analysis; writing – original draft; writing – review and

editing. Ashlee M Earl: Software; formal analysis; writing – original draft;

writing – review and editing. Tommi Jaakkola: Formal analysis; writing –
review and editing. James J Collins: Conceptualization; supervision; funding

acquisition; writing – original draft; writing – review and editing.

In addition to the CRediT author contributions listed above, the contribu-

tions in detail are:

FW and JJC conceived and supervised the research. FW and AK designed mod-

els and experiments, performed experiments and analysis, and wrote the

paper. EJZ performed experiments. HS, ALM, AME, and TJ performed analysis

and assisted with data interpretation. All authors assisted with manuscript

editing.

Disclosure and competing interests statement
JJC is scientific co-founder and scientific advisory board chair of EnBiotix, an

antibiotic drug discovery company, and PhareBio, a non-profit venture focused

on antibiotic drug development. The remaining authors declare no competing

interests. JJC is an editorial advisory board member. This has no bearing on the

editorial consideration of this article for publication.

References

Adeshina YO, Deeds EJ, Karanicolas J (2020) Machine learning classification

can reduce false positives in structure-based virtual screening. Proc Natl

Acad Sci U S A 117: 18477–18488
Allen WJ (2018) DOCK 6.9 user manual. Accessed 22 Febuary 2022 https://

dock.compbio.ucsf.edu/DOCK_6/dock6_manual.htm

Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA,

Kuntz ID, Rizzo RC (2015) DOCK 6: impact of new features and current

docking performance. J Comput Chem 36: 1132–1156
Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J,

Cong Q, Kinch LN, Schaeffer RD et al (2021) Accurate prediction of protein

structures and interactions using a three-track neural network. Science

373: 871–876
Ballester PJ, Mitchell JBO (2010) A machine learning approach to predicting

protein–ligand binding affinity with applications to molecular docking.

Bioinformatics 26: 1169–1175
Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM, Stein RM, Fink EA, Balius

TE, Carlsson J, Irwin JJ et al (2021) A practical guide to large-scale docking.

Nat Protoc 16: 4799–4832
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov

IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–
242

Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-

Vides J, Glasner JD, Rode CK, Mayhew GF et al (1997) The complete

genome sequence of Escherichia coli K-12. Science 277: 1453–1462
Chen YZ, Zhi DG (2001) Ligand-protein inverse docking and its potential use

in the computer search of protein targets of a small molecule. Proteins 43:

217–226
Chen L, Cruz A, Ramsey S, Dickson CJ, Duca JS, Hornak V, Koes DR, Kurtzman

T (2019) Hidden bias in the DUD-E dataset leads to misleading

performance of deep learning in structure-based virtual screening. PLoS

One 14: e0220113

Durrant JD, McCammon JA (2010) NNScore: a neural-network-based scoring

function for the characterization of protein-ligand complexes. J Chem Inf

Model 50: 1865–1871
Durrant JD, Friedman AJ, Rogers KE, McCammon JA (2013) Comparing neural-

network scoring functions and the state of the art: applications to

common library screening. J Chem Inf Model 53: 1726–1735

� 2022 The Authors Molecular Systems Biology 18: e11081 | 2022 19 of 20

Felix Wong et al Molecular Systems Biology

 17444292, 2022, 9, D
ow

nloaded from
 https://w

w
w

.em
bopress.org/doi/10.15252/m

sb.202211081, W
iley O

nline L
ibrary on [30/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/oddt/rfscorevs_binary
https://alphafold.ebi.ac.uk
https://www.ebi.ac.uk/biostudies/studies/S-BSST863?key=082576e6-3bd2-4589-9640-f04b8092f5cb
https://www.ebi.ac.uk/biostudies/studies/S-BSST863?key=082576e6-3bd2-4589-9640-f04b8092f5cb
https://doi.org/10.15252/msb.202211081
https://casrai.org/credit/
https://dock.compbio.ucsf.edu/DOCK_6/dock6_manual.htm
https://dock.compbio.ucsf.edu/DOCK_6/dock6_manual.htm


Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2.0:

new docking methods, expanded force field, and Python bindings. J Chem

Inf Model 61: 3891–3898
Gentile F, Agrawal V, Hsing M, Ton AT, Ban F, Norinder U, Gleave ME,

Cherkasov A (2020) Deep Docking: a deep learning platform for

augmentation of structure based drug discovery. ACS Cent Sci 6: 939–949
Goodall ECA, Robinson A, Johnston IG, Jabbari S, Turner KA, Cunningham AF,

Lund PA, Cole JA, Henderson IR (2018) The essential genome of Escherichia

coli K-12. MBio 9: e02096-17

Humphreys IR, Pei J, Baek M, Krishnakumar A, Anishchenko I, Ovchinnikov S,

Zhang J, Ness TJ, Banjade S, Bagde SR et al (2021) Computed structures of

core eukaryotic protein complexes. Science 374: eabm4805

Jiang L, Rizzo RC (2015) Pharmacophore-based similarity scoring for DOCK. J

Phys Chem B 119: 1083–1102
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O,
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