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ABSTRACT 

For the Staffing and Scheduling a Software Project (SSSP), one has 

to find an allocation of resources to tasks while considering 

parameters such skills and availability to identify the optimal 

delivery of the project. Many approaches have been proposed that 

solve SSSP tasks by representing them as optimization problems 

and applying optimization techniques and heuristics. However, 

these approaches tend to vary in the parameters they consider, such 

as skill and availability, as well as the optimization techniques, 

which means their accuracy, performance, and applicability can 

vastly differ, making it difficult to select the most suitable approach 

for the problem at hand. The fundamental reason for this lack of 

comparative material lies in the absence of a systematic evaluation 

method that uses a validation dataset to benchmark SSSP 

approaches. We introduce an evaluation process for SSSP 

approaches together with benchmark data to address this problem. 

In addition, we present the initial evaluation of five SSSP 

approaches. The results shows that SSSP approaches solving 

identical challenges can differ in their computational time, 

preciseness of results and that our approach is capable of 

quantifying these differences. In addition, the results highlight that 

focused approaches generally outperform more sophisticated 

approaches for identical SSSP problems. 
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1. INTRODUCTION 
Software development is a mixture of complex activities and the 

creation of any non-trivial software system generally requires 

multiple resources with a mix of skills, expertise, and knowledge. 

The assignment of those resources in a software development 

department to projects and tasks within those projects is one of the 

most critical tasks for a project manager, with limited resources, 

dependent tasks, and available skillsets needing to be considered to 

achieve an optimal project delivery time. This problem of staffing 

and scheduling a software project (SSSP) in order to minimize the 

project completion time has been attracting researchers since the 

end of last century [1-4] and different optimization techniques have 

been used to address it in various incarnations [3, 5, 6]. These 

approaches typically consider specific attributes when optimizing 

the resource allocation such as task length, resource availability or 

skills, and the traversal of the optimization space is typically 

performed  by using exact, heuristic, and meta-heuristic techniques 

in order to deal the NP-Complete nature of the allocation problem 

[3]. Project managers typically can select an automated SSSP 

approach to support their allocation process based on the project 

and resource properties they wish to consider. However, 

approaches can have different performance characteristics such as 

the accuracy of the allocation results or computational time 

required, characteristics that are critical for successful SSSP but 

very hard to determine without a systematic manner. Limited 

number of studies in this context [3, 4] were published that compare 

SSSP approaches but neither of these studies performs an empirical 

evaluation of SSSP approaches using a unified basis and data set.  

This article proposes to address that gap by introducing a 

benchmark and using it to evaluate the performance of a set of 

SSSP approaches against well-defined performance measures. 

Specifically, we aim to provide a validation dataset that has both 

resources and detailed project information for a range of SSSP 

challenges. In addition, we aim to compare the SSSP approaches 

using a uniform and expandable set of performance measures that 

can compare SSSP approaches in various categories and supporting 

a range of optimization criteria.  

In addition to the benchmark and initial results of the comparison 

analysis in this article, we also outline our research agenda. To 

further the accuracy and relevance of the performance evaluation 

we aim to perform a comparison of computational approaches and 

current industry standards. This will be complemented with the 

implementation and evaluation of additional SSSP approaches to 

form a complete and comprehensive overview of SSSP approaches 

as well as the means to perform systematic comparisons between 

them. Note that this should not be confused with the comparison of 

the heuristic algorithms. The comparison adopted in this paper 

considers the approaches that propose a model for allocating the 

developers in software projects with modification on the algorithms 

they use. 

The remainder of this paper is organized into five sections. Section 

2 describes the studies carried out in comparing SSSP approaches 

that are related to the work presented in this paper. Section 3 

detailed the workflow of procedures, dataset, criteria proposed to 

evaluate and compare the SSSP approaches, future plan of carrying 

out the rest of study work, and the threats and weaknesses that could 

affect the validity of this study. In section 4, the approaches adopted 

in this study are described and the results of the experiments and 

comparison between the SSSP approaches are shown. Section 5 

discusses the main findings and concludes the paper. 

2. RELATED WORK 
When considering previous work performed in the area of 

evaluating SSSP approaches, only two studies have been published 

that compare and evaluate the optimization approaches of SSSP. 
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Both comparison studies were based on evaluating the approaches 

according to the description provided within the texts. These 

studies have compared the approaches by a comprehensive survey 

[3] or systematic literature review [4] by extracting the text that 

describing the problem and solution of the approaches. Thus, these 

studies are more formally systematic literature review with 

comprehensive survey of wide software project management 

approaches.  

The first study by Pixoto et al [4] evaluates the solution provided 

by SSSP approaches regarding their applicability in real-world 

software development projects. Criteria used by Pixoto et al to 

evaluate the description of solutions are usefulness, work 

compatibility, and ease of use attributes. 52 approaches were 

considered by this study. The comparison shows that few 

approaches among them all are satisfying the criteria adopted and 

capable for the illustrated aspects by this study as the one in [7]. 

Skills and productivity of resources found are the least aspects 

considered by the approaches used by Pixoto et al [4]. In addition, 

time and cost of software projects are the goals adopted by 

overwhelming majority of SSSP approaches. It is also noticeable in 

this study that only 8% of the approaches compared found they 

have used experiments to validate their solution. The overall 

conclusion by this study is that more research is needed to bridge 

the gap between the current practices of software firms and the 

proposed solutions.  As this study provides essential aspects and 

differences between the SSSP approaches, the adoption model of 

criteria and aspects used are based on theoretical models. Criteria 

and aspects however have to be validated by the industry before 

they can make their claims about the usefulness of the approaches 

used in their study.  

The second study presented in Ferucci et al [3] provides a 

comprehensive survey of the approaches use optimization 

techniques to solve software project management problems. Their 

observations and findings highlight the categories of the 

optimization approaches, the important attributes that these 

approaches adopted, and the approaches that match their criteria 

and seen useful to be adopted. The approaches used by this study 

are categorized into minimizing project time, risk-based, overtime 

planning, and effort estimation. This study has also identified the 

future trends and promising areas of resource allocation 

optimization. The areas found require more attention by researchers 

as future trends are interactive optimization, dynamic adaptive 

optimization, multi-objective optimization, co-evolution, software 

project benchmarking, confident estimates, and decision support 

tools. While this study is a comprehensive survey, it can be seen as 

a general study that reports the different types of problems adopted 

by approaches deal with software project management with no 

consideration of further classification or either cross functionality 

between the approaches and how each has opened a new 

knowledge. 

The results presented in these studies are a valuable insight into the 

relation between various SSSP approaches, however neither study 

performs a systematic comparison between the SSSP approaches 

considered based on their implementation and a reference dataset. 

This is due to the fact that a benchmark dataset currently is not 

available in this research area. While two repositories exist for the 

use of software engineering research, which are ISBSG and Tera-

PROMISE, none of these includes a valid dataset containing human 

resource models and detailed project information usable for SSSP 

based research [3]. Accordingly, there is an urgency in this 

particular area for a data that represent a real software project to 

benchmark the SSSP approaches [3]. As a result, comparing and 

benchmarking SSSP approaches based on their behaviour and 

performance has not been carried out even when it has been 

identified as highly important by the community [3]. 

3. A SYSTEMATIC APPROACH FOR 

COMPARING SSSP APPROACHES 

3.1 Overview of the Proposed Approach 
Our proposed approach for performing a systematic and 

reproducible performance comparison of SSSP approaches consists 

of a systematic sequence of steps to be followed combined with an 

evaluation dataset and a suite of evaluation criteria on which the 

SSSP approaches can be compared. The proposed workflow for 

evaluating a set of SSSP approaches consists of the following steps: 
 

1. Select a set of candidate SSSP approaches that are 

capable of solving a resource allocation problem and 

belong to the same class – see section 3.2 -. 

2. Select the suitable dataset from the benchmark dataset 

that belong to the same class of the approaches selected 

containing the desired resource and project properties 

(e.g. skills, task dependencies, etc.) 

3. Run each approach for the configured dataset for a 

substantial number of times, (e.g 100 times). 

4. Record for each run the result of estimated project time, 

and the computation time of that run (see below). 

5. Compile the results and measure their performance using 

the benchmark metric suite (see below). 

6. Rank the candidate SSSP approaches based on their score 

in the overall scoring model (see below). 
 

These steps are depicted in Figure 1. As can be seen in the Figure, 

after identifying the approaches, the classes that they belong to, and 

selecting the suitable benchmark dataset, the datasets located on the 

left down of the figure is fed into each approach. As most 

approaches perform heuristic optimization using a probabilistic 

optimizer, step 3 suggests to perform multiple runs for each of those 

approaches so that their computation time and accuracy can be 

averaged, as well as their mean and standard deviation can be 

determined. The choice for these metrics is motivated by the fact 

that they are seen as the most useful way to represent effectiveness 

and performance among the approaches [8].  

 

Figure 1: Proposed Approach 

3.2 Benchmark Dataset 
The first artefact we introduce to perform a systematic evaluation 

of SSSP approaches is a flexible and configurable benchmark 

dataset. The dataset is a small real world data from a Jordanian 

software company and holds information regarding both software 



project and human resources used to develop that software. This 

data includes information about eight components of the software 

projects, and twelve human resources were available to that project 

assigned to complete it. The project represented in the dataset has 

an estimated time using COCOMO. The time estimated with those 

resources available was 75.16 days, with an estimated Man-Day 

equals to 964. The dataset is composed of five sets the first four 

correspond to the classification made to the SSSP approaches. The 

first four sets describe resource allocation problems of increasing 

complexity and parameters. The final set describes a resource 

allocation problem of a larger size that is intended to analyse the 

scalability of the approaches in class 1. In addition, for each one of 

these classes the optimal solution (referred to as min value) as well 

as the worst-case solution values (referred to as max value). The 

dataset used in this article can be found on 

http://seg.cmp.uea.ac.uk/projects/resource-

optimisation/files/dataset.zip. 

When benchmarking SSSP approaches, it is critical to note that 

proposed approaches generally solve different variations of the 

resource allocation problem, taking into account different 

parameters, such as worker skills, or tasks dependencies. To 

evaluate the relative performance of SSSP approaches they need to 

be applied to the same problem with the exact same inputs, which 

is why we propose to group SSSP approaches into classes 

according to the inputs and constraints required by each. The inputs 

required for resource allocation can be the estimated effort of 

project tasks, task dependencies, skills, and/or resource 

productivity. Each one of these inputs represented in the dataset by 

numbers except the skills. Skills required for developing each task 

or offered by a resource are representing languages and 

technologies, and represented in the dataset using the name of this 

language or technology such as java, or UML. Estimated effort of 

each task is represented by person-day. Each task in the dataset 

moreover has the value of dependency attribute represented as the 

task number that the task is depends on. Productivity of a resource 

is represented by the same metric used by [7]. A resource can be 

productive as a normal person, which is equal to 1, or twice the 

normal person represented by 2.  According to these inputs the 

proposed classes are: 

 Class One. This class contains the approaches that 

require inputs only of estimated effort of project tasks 

and the number and productivity of human resources. 

 Class Two. This class contains the approaches that 

require inputs of estimated effort of project tasks, 

dependencies between these tasks, and number and 

productivity of human resources 

 Class Three. This class contains the approaches that 

require inputs of estimated effort of project tasks, skills 

required for each tasks, and number, skills, and 

productivity of human resources 

 Class Four. This class contains the approaches that 

require inputs of estimated effort of project tasks, 

dependencies between these tasks, skills required for 

each tasks, and the number, skills, and productivity of 

human resources. 
 

Note that some SSSP approaches can possibly be part of multiple 

classes as they are able to determine the optimal allocation of 

resources for simple as well as complex SSSP problems. The 

performance for such approaches can be compared to other 

approaches in both classes with respect to solving identical 

problems. The benchmark data follows this classification as it 

defines optimization challenges within these five distinct classes to 

facilitate the uniform comparison of SSSP approaches 

3.3 Comparison Metrics and Overall Scoring 

Model 
The performance of a SSSP approach is usually measured in terms 

of optimality, i.e. how close the approach gets to the true optimal 

solution [9]. However, this metric only provides a partial view. For 

example, many probabilistic optimizers, such as genetic 

algorithms, vary in the quality of solution they provide due to a 

randomised starting point and the computation time expended to 

them. Accordingly, both of resulted values from the approach for 

the objective function -which in this study is the estimated project 

time- and the computational time expended to produce the results 

are the main metrics of this comparison. In addition to the 

performance measures of optimal solution and computation time, 

behaviour of the approaches have to be recorded too. While each 

approach uses a modified version of optimization technique, it is 

important to capture stability and preciseness of the approach over 

multiple runs. The importance of having a multiple runs is due to 

the probabilistic nature of meta-heuristic algorithm search. This can 

be depicted by the standard deviation of multiple runs of both 

estimated project time and computational time. To get a more 

complete insight into the performance of SSSP approaches we 

propose to use the following metrics: 

1. Estimated Project Time (EPT). The first proposed 

metric is the estimated project time, i.e. the identified 

optimal result by an approach for each run. 

2. Computational Time (CT). Computation time is the 

time consumed by the system to perform the approach 

from the point of feeding the data to the time of 

identifying the (heuristically) optimal result.  

3. Standard Deviation (STDEV). This metric is the 

standard deviation among the collected EPT values. This 

metric is a useful indicator of whether an approach is 

robust and precise. As the standard deviation will 

quantify outcomes produced are closely grouped or not. 

4. Arithmetic average (Mean). The mean of values 

resulting for an SSSP approach over multiple runs. 

5. Minimal EPT. The least possible value for estimated 

project time among the collected values over multiple 

runs. 

Note that metrics such as STDEVB and mean require the 

performance of the approach to be determined over multiple runs 

so that the average behaviour can be established and compared. 

In addition to this suite of metrics, we propose the use of an overall 

scoring model for easy comparison of SSSP approaches, consisting 

of two formulas. The first formula captures the accuracy of a SSSP 

approach using the following equation: 

Optimality of solution = [1-[(V-min)/(max-min)]] x 100 

This formula depicts how close the value calculated by a SSSP 

approach (V) is to the known optimal solution (min).This value is 

normalised using the known worst-case solution (max). Both the 

min and max values are included in the dataset for a given SSSP 

problem. In addition, a model for scoring the computational time 

performance of an approach is depicted by the following equation. 

CTime Score = [ Vct / Max (Class)] 

In this formula Vct is the computation expended by approach V to 

solve the SSSP problem under consideration of Max(Class) which 

is the maximum computation required for all known SSSP 

approaches capable of solving this problem.  

http://seg.cmp.uea.ac.uk/projects/resource-optimisation/files/dataset.zip
http://seg.cmp.uea.ac.uk/projects/resource-optimisation/files/dataset.zip


3.4 Research Agenda for Comparison 

Benchmark of SSSP approaches 
The work described in this paper is a first step towards a systematic 

mechanism for evaluating SSSP approaches with respect to their 

performance and accuracy. The research plan from this point 

focuses on extending the SSSP benchmark method and evaluating 

its usability and applicability in an industrial setting. To this 

purpose, the research plan is divided into four parts: 

 The first part is the refinement of the benchmark dataset 

to include more projects and resource data as well as a 

refined configuration mechanism that allows for easy 

configuration. 

 Second we aim to extend the set of implemented and 

evaluation SSSP approaches to provide a comprehensive 

set of data points that researchers can use to compare 

their own approaches to. 

 Thirdly, we aim to examine a mechanism that allows us 

to easily bridge the gap between SSSP approaches so 

users of the benchmark can more easily evaluate a range 

of SSSP approaches against a set problem with specific 

parameters.  

 Finally, upon establishing a reasonable and balanced 

SSSP benchmarking process we will evaluate its 

suitability and relevance by means of empirical 

evaluation with industrial partners. The results of the 

experienced project managers in allocating resources to 

projects will be compared to SSSP approaches and their 

benchmarking results for this purpose. 

3.5 Threats to Validity and Challenges in 

comparing SSSP approaches 
One of the main threats to validity in this study is that the data 

collected represents a single use of allocation attributes of one 

software firm, which can have an implication regarding the validity 

of the comparison with the different styles adopted in the industry 

regarding the allocation, constraints, and the development method 

within these firms. However as the dataset used to compare the 

approaches is a real-world data, it represent a small project which 

might not be the common scenario in software firms and the 

capabilities offered by various types of SSSP approaches are not 

covered such as dealing with a massive software project. Moreover, 

extending it to cover the capabilities of SSSP approaches while at 

the same time remaining representative can be very challenging. 

Thus, we aim to ensure the relevance of the data, and the 

approaches by expanding the experiments with our industrial 

partners. A further threat to the relevance of our evaluation results 

is the limited detail provided by publications describing SSSP 

approaches. In many cases, vital elements of the approach are not 

described sufficiently and no reference implementation of the 

approach is provided for evaluation. We have addressed this threat 

in our approach by excluding approaches with incomplete 

descriptions that prevented us to implement it. Where possible we 

have liaised with the authors of the approach to clarify ambiguities 

and complement the publication.   

4. BENCHMARK APPLICATION TO 

EXISTING SET OF SSSP APPROACHES 

4.1 Overview 
To assess the accuracy and suitability for our proposed approach 

and benchmark we have performed a preliminary study of five 

SSSP approaches in two different classes. The approaches focus on 

optimizing the software project time using meta-heuristic 

techniques such as Genetic Algorithm (GA) and Simulated 

Annealing (SA) while taking into account various parameters such 

as task dependency to find the optimal or near optimal project time. 

The reason for selecting these approaches in this comparison is 

based on the studies presented in [3, 4]. These approaches are 

presented in Table1 according to the class they belong to. The 

approaches have been classified according to the SSSP classes 

introduced in Section 3.2. The optimization techniques used by the 

approaches are  Genetic Algorithms (GA) by [5, 6, 10, 11], and a 

modified version of Simulated Annealing (SA) called Accelerated 

SA by [7]. Both techniques are belong to the same search algorithm 

class called meta-heuristic. 

Table 1: Approaches Classification 

Class One Two Three Four Five 

Approach  

[10] X     

[11] X     

[7] X  X  X 

 

[5]  X    

[6]  X  X  
 

Work has been accomplished to classify the approaches described 

earlier according to the classes they can use. This table shows the 

applicability of dataset classes too for each approach described 

earlier. 

4.2 Results 
The results were obtained using the Matlab R2013a supported by 

Matlab Global Optimization Toolbox using Intel Core 2 quad 2.66 

Ghz CPU. Each approach was executed 100 times to allow 

determination of mean and deviation values. The comparisons 

performed were between Di Penta et al [10], Di Penta et al [11] and 

Kang et al for the Class 1 benchmark data, and between Chan et al 

and Alba et al for the Class 2 dataset.  

4.2.1 Results of the Class One Dataset Evaluation 

The first results we present are for the Class 1 approaches [10],[11], 

and Kang et al [7]. The dataset used is the Class One dataset, which 

only considers tasks, resources and availability, and has an optimal 

solution of 80.33 for its project schedule. Figure 2 shows how each 

iteration for each approach resulted an EPT in term of days where 

the lowest value amongst the approaches is the one obtained by 

DiPenta et al [10]. Moreover, we can see that the approach in both 

DiPenta [10] and [11] were quite close to the estimate of COCOMO 

presented in Section 3.3.  

The results obtained for Kang et al approach on the other hand is 

overestimating project time when compared to any one of the 

DePinta el al approaches. This is due to the allocation method 

adopted by Kang et al approach as it assigns single resources to 

tasks with least estimated effort, where those that have the biggest 

effort required are each assigned to two resources which results in 

a less accurate approximation. The numeric results for accuracy are 

given in Table 2. It is interesting to observe that DiPenta et al [10] 

is the most accurate and it has managed to identify the actual 

optimal solution (80.33) for the dataset task. DiPenta et al [11] has 

come close to finding the optimal solution but Kang et al struggled 

to come close. A graphical representation of this data as well as the 

behaviour over multiple runs can be found in Figure 2. 



 

Figure 2: Accuracy performance over a 100 runs for Class 

One 

When we examine the computation time results in Table 2. It can 

be seen that DiPenta et al [11] is the least time consuming among 

the approaches whereas Kang et al requires slightly more time. 

DiPenta et al [10] clearly requires the most time to identify an 

optimal solution.  

Table 2: Performance results of Class One 
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[7] 127.90 2.82 111.5 0 111.5 

[10] 285.91 2.57 80.83 1.139 80.33 

[11] 109.65 0.19 85.13 2.61 80.6 

 

An interesting observation as well is that while DiPenta et al [11] 

is not only faster, its standard deviation also is significantly lower 

than the two other approaches, which means the optimization 

behaves more uniformly in repeated experiments. This is a quality 

attribute that can become important when the problem size is scaled 

up, as a small variation in computation time can make solving a 

particular problem infeasible. 

4.2.2 Results of the Class Two Dataset Evaluation 

For the Class 2 approaches [5, 6] their performance was evaluated 

using the Class 2 dataset, where constraints are imposed on project 

schedule corresponding to dependencies between tasks. This 

dataset has an optimal solution of 81.95 days for the project 

schedule. When examining the results in Table 3. It can be seen that 

the approach of Chang et al is capable of identifying the optimal 

solution where the approach by Alba et al is not, however the 

approach of Alba et al gives a more reliable and reproducible results 

for a single run, as illustrated by the standard deviation value. This 

becomes even more clear when examining Figure 3 where Chang 

et al clearly fluctuates per run where the results of Alba et al is more 

tightly grouped together. 

 

Figure 3: Accuracy performance over a 100 runs for Class 

Two 

An interesting picture surfaces when we examine the computation 

time required by both approaches, as depicted in Table 3. It can be 

seen that while Chang et al fluctuates in the accuracy of the answer 

returned per run, on average it completes significantly faster than 

Alba et al. In this case, it is clear that while both approaches apply 

similar techniques Chang et al have sacrificed part of their accuracy 

for improved computation time performance. 

Table 3: Performance results of Class Two 
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[5] 41.88 0.17 86.29 1.52 81.95 

[6] 134.99 1.91 85.1 0.49 82.64 

 

4.3 Ranking SSSP Approaches Comparison 

Using the Scoring Model  
As the final step of our preliminary evaluation, we rank the 

evaluated SSSP approaches using our proposed scoring model. By 

combining the results of the approaches using the computation time 

and estimated project time and the formulas presented in Section3.3 

we can compile the results in Table 4. 

Table 4: Ranking results for the approaches 

Class Approach Optimality of Result CT Score 

Class One [7] 96.5% 0.45 

[10] 99.9% 1 

[11] 99.46% 0.3835 

Class Two [5] 99.37% 0.312 

[6] 99.54 1 
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This table gives an aggregated overview of the evaluation results 

using our dataset and metric suite. It can be seen for the Class 1 

approaches that both approaches proposed by DiPenta et al are very 

close in accuracy but differ in computation time, with Kang et al 

representing a middle ground. For Class 2 a clearer winner can be 

identified with Chang et al offering similar accuracy to Alba et al 

but requiring far less time. We imagine that this aggregated scoring 

model will aid practitioners in comparing SSSP approaches and as 

such, it is one of the important deliverables of our research. Note 

however that in this scoring model at the moment the added value 

of standard deviation for both accuracy and computation is lost. In 

future work, we aim to include these explicitly in the scoring model 

to give a more complete picture. 

5. CONCLUSIONS 
In this article, we have identified that many different optimization 

approaches exist for staffing and scheduling a software projects 

(SSSP), but due to differences in the problem parameters they can 

consider as well as the optimization techniques they use their 

performance and applicability can be hard to assess and compare. 

To address this issue we have introduced a systematic comparison 

method for SSSP approaches together with a set of comparison 

metrics and an overall scoring model that can be used to rank their 

performance. This comparison method is combined with a 

benchmark dataset and reference values that identifies and supports 

four different classes of SSSP approaches based on their 

capabilities and limitations. We have applied our method and 

benchmark data to a set of five SSSP approaches and from these 

early results the applicability and accuracy of our method became 

clear. Our method highlighted that focussed approaches that aim to 

solve a well-defined SSSP problem are more likely to identify an 

accurate solution within a reasonable amount of time rather than 

approaches that can potentially consider a wider range of 

parameters and inputs. 

Our future work and the expected contribution of my dissertation 

lies first in the creation of a more comprehensive method and 

reference dataset for comparing SSSP approaches but also in 

evaluating this with industry experts who are expected to apply the 

method in practice. To achieve this we are planning further 

experiments and evaluation with the intention to expand the dataset 

and add support for the remaining SSSP classes. In addition, we 

aim to expand the range of SSSP problems per class in both 

complexity and size to aid in the evaluation of scalability. Finally, 

we aim to perform an empirical experiment where we ask industry 

experts to apply and evaluate various SSSP approaches and 

compare the results to the evaluation results of our method to 

establish the relevance and accuracy of the method in real-world 

application scenarios. Our eventual goal for this work is to serve as 

an accurate and flexible reference mechanism for both academics 

and practitioners for determining the performance and accuracy of 

SSSP approaches. 
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