
Benchmarking and Comparison of Software Project
Human Resource Allocation Optimization Approaches

Sultan M Al Khatib
School of Computing Sciences

University of East Anglia
Norwich Research Park

Norwich NR4 7TJ
United Kingdom

s.al-khatib@uea.ac.uk

Joost Noppen
School of Computing Sciences

University of East Anglia
Norwich Research Park

Norwich NR4 7TJ
United Kingdom

j.noppen@uea.ac.uk

ABSTRACT

For the Staffing and Scheduling a Software Project (SSSP), one has

to find an allocation of resources to tasks while considering

parameters such skills and availability to identify the optimal

delivery of the project. Many approaches have been proposed that

solve SSSP tasks by representing them as optimization problems

and applying optimization techniques and heuristics. However,

these approaches tend to vary in the parameters they consider, such

as skill and availability, as well as the optimization techniques,

which means their accuracy, performance, and applicability can

vastly differ, making it difficult to select the most suitable approach

for the problem at hand. The fundamental reason for this lack of

comparative material lies in the absence of a systematic evaluation

method that uses a validation dataset to benchmark SSSP

approaches. We introduce an evaluation process for SSSP

approaches together with benchmark data to address this problem.

In addition, we present the initial evaluation of five SSSP

approaches. The results shows that SSSP approaches solving

identical challenges can differ in their computational time,

preciseness of results and that our approach is capable of

quantifying these differences. In addition, the results highlight that

focused approaches generally outperform more sophisticated

approaches for identical SSSP problems.

Keywords

Human Resource Allocation; Software Project Management;

Optimization Techniques in Software Engineering; Comparative

Study; Performance Evaluation

1. INTRODUCTION
Software development is a mixture of complex activities and the

creation of any non-trivial software system generally requires

multiple resources with a mix of skills, expertise, and knowledge.

The assignment of those resources in a software development

department to projects and tasks within those projects is one of the

most critical tasks for a project manager, with limited resources,

dependent tasks, and available skillsets needing to be considered to

achieve an optimal project delivery time. This problem of staffing

and scheduling a software project (SSSP) in order to minimize the

project completion time has been attracting researchers since the

end of last century [1-4] and different optimization techniques have

been used to address it in various incarnations [3, 5, 6]. These

approaches typically consider specific attributes when optimizing

the resource allocation such as task length, resource availability or

skills, and the traversal of the optimization space is typically

performed by using exact, heuristic, and meta-heuristic techniques

in order to deal the NP-Complete nature of the allocation problem

[3]. Project managers typically can select an automated SSSP

approach to support their allocation process based on the project

and resource properties they wish to consider. However,

approaches can have different performance characteristics such as

the accuracy of the allocation results or computational time

required, characteristics that are critical for successful SSSP but

very hard to determine without a systematic manner. Limited

number of studies in this context [3, 4] were published that compare

SSSP approaches but neither of these studies performs an empirical

evaluation of SSSP approaches using a unified basis and data set.

This article proposes to address that gap by introducing a

benchmark and using it to evaluate the performance of a set of

SSSP approaches against well-defined performance measures.

Specifically, we aim to provide a validation dataset that has both

resources and detailed project information for a range of SSSP

challenges. In addition, we aim to compare the SSSP approaches

using a uniform and expandable set of performance measures that

can compare SSSP approaches in various categories and supporting

a range of optimization criteria.

In addition to the benchmark and initial results of the comparison

analysis in this article, we also outline our research agenda. To

further the accuracy and relevance of the performance evaluation

we aim to perform a comparison of computational approaches and

current industry standards. This will be complemented with the

implementation and evaluation of additional SSSP approaches to

form a complete and comprehensive overview of SSSP approaches

as well as the means to perform systematic comparisons between

them. Note that this should not be confused with the comparison of

the heuristic algorithms. The comparison adopted in this paper

considers the approaches that propose a model for allocating the

developers in software projects with modification on the algorithms

they use.

The remainder of this paper is organized into five sections. Section

2 describes the studies carried out in comparing SSSP approaches

that are related to the work presented in this paper. Section 3

detailed the workflow of procedures, dataset, criteria proposed to

evaluate and compare the SSSP approaches, future plan of carrying

out the rest of study work, and the threats and weaknesses that could

affect the validity of this study. In section 4, the approaches adopted

in this study are described and the results of the experiments and

comparison between the SSSP approaches are shown. Section 5

discusses the main findings and concludes the paper.

2. RELATED WORK
When considering previous work performed in the area of

evaluating SSSP approaches, only two studies have been published

that compare and evaluate the optimization approaches of SSSP.

Copyright is held by the author.

Both comparison studies were based on evaluating the approaches

according to the description provided within the texts. These

studies have compared the approaches by a comprehensive survey

[3] or systematic literature review [4] by extracting the text that

describing the problem and solution of the approaches. Thus, these

studies are more formally systematic literature review with

comprehensive survey of wide software project management

approaches.

The first study by Pixoto et al [4] evaluates the solution provided

by SSSP approaches regarding their applicability in real-world

software development projects. Criteria used by Pixoto et al to

evaluate the description of solutions are usefulness, work

compatibility, and ease of use attributes. 52 approaches were

considered by this study. The comparison shows that few

approaches among them all are satisfying the criteria adopted and

capable for the illustrated aspects by this study as the one in [7].

Skills and productivity of resources found are the least aspects

considered by the approaches used by Pixoto et al [4]. In addition,

time and cost of software projects are the goals adopted by

overwhelming majority of SSSP approaches. It is also noticeable in

this study that only 8% of the approaches compared found they

have used experiments to validate their solution. The overall

conclusion by this study is that more research is needed to bridge

the gap between the current practices of software firms and the

proposed solutions. As this study provides essential aspects and

differences between the SSSP approaches, the adoption model of

criteria and aspects used are based on theoretical models. Criteria

and aspects however have to be validated by the industry before

they can make their claims about the usefulness of the approaches

used in their study.

The second study presented in Ferucci et al [3] provides a

comprehensive survey of the approaches use optimization

techniques to solve software project management problems. Their

observations and findings highlight the categories of the

optimization approaches, the important attributes that these

approaches adopted, and the approaches that match their criteria

and seen useful to be adopted. The approaches used by this study

are categorized into minimizing project time, risk-based, overtime

planning, and effort estimation. This study has also identified the

future trends and promising areas of resource allocation

optimization. The areas found require more attention by researchers

as future trends are interactive optimization, dynamic adaptive

optimization, multi-objective optimization, co-evolution, software

project benchmarking, confident estimates, and decision support

tools. While this study is a comprehensive survey, it can be seen as

a general study that reports the different types of problems adopted

by approaches deal with software project management with no

consideration of further classification or either cross functionality

between the approaches and how each has opened a new

knowledge.

The results presented in these studies are a valuable insight into the

relation between various SSSP approaches, however neither study

performs a systematic comparison between the SSSP approaches

considered based on their implementation and a reference dataset.

This is due to the fact that a benchmark dataset currently is not

available in this research area. While two repositories exist for the

use of software engineering research, which are ISBSG and Tera-

PROMISE, none of these includes a valid dataset containing human

resource models and detailed project information usable for SSSP

based research [3]. Accordingly, there is an urgency in this

particular area for a data that represent a real software project to

benchmark the SSSP approaches [3]. As a result, comparing and

benchmarking SSSP approaches based on their behaviour and

performance has not been carried out even when it has been

identified as highly important by the community [3].

3. A SYSTEMATIC APPROACH FOR

COMPARING SSSP APPROACHES

3.1 Overview of the Proposed Approach
Our proposed approach for performing a systematic and

reproducible performance comparison of SSSP approaches consists

of a systematic sequence of steps to be followed combined with an

evaluation dataset and a suite of evaluation criteria on which the

SSSP approaches can be compared. The proposed workflow for

evaluating a set of SSSP approaches consists of the following steps:

1. Select a set of candidate SSSP approaches that are

capable of solving a resource allocation problem and

belong to the same class – see section 3.2 -.

2. Select the suitable dataset from the benchmark dataset

that belong to the same class of the approaches selected

containing the desired resource and project properties

(e.g. skills, task dependencies, etc.)

3. Run each approach for the configured dataset for a

substantial number of times, (e.g 100 times).

4. Record for each run the result of estimated project time,

and the computation time of that run (see below).

5. Compile the results and measure their performance using

the benchmark metric suite (see below).

6. Rank the candidate SSSP approaches based on their score

in the overall scoring model (see below).

These steps are depicted in Figure 1. As can be seen in the Figure,

after identifying the approaches, the classes that they belong to, and

selecting the suitable benchmark dataset, the datasets located on the

left down of the figure is fed into each approach. As most

approaches perform heuristic optimization using a probabilistic

optimizer, step 3 suggests to perform multiple runs for each of those

approaches so that their computation time and accuracy can be

averaged, as well as their mean and standard deviation can be

determined. The choice for these metrics is motivated by the fact

that they are seen as the most useful way to represent effectiveness

and performance among the approaches [8].

Figure 1: Proposed Approach

3.2 Benchmark Dataset
The first artefact we introduce to perform a systematic evaluation

of SSSP approaches is a flexible and configurable benchmark

dataset. The dataset is a small real world data from a Jordanian

software company and holds information regarding both software

project and human resources used to develop that software. This

data includes information about eight components of the software

projects, and twelve human resources were available to that project

assigned to complete it. The project represented in the dataset has

an estimated time using COCOMO. The time estimated with those

resources available was 75.16 days, with an estimated Man-Day

equals to 964. The dataset is composed of five sets the first four

correspond to the classification made to the SSSP approaches. The

first four sets describe resource allocation problems of increasing

complexity and parameters. The final set describes a resource

allocation problem of a larger size that is intended to analyse the

scalability of the approaches in class 1. In addition, for each one of

these classes the optimal solution (referred to as min value) as well

as the worst-case solution values (referred to as max value). The

dataset used in this article can be found on

http://seg.cmp.uea.ac.uk/projects/resource-

optimisation/files/dataset.zip.

When benchmarking SSSP approaches, it is critical to note that

proposed approaches generally solve different variations of the

resource allocation problem, taking into account different

parameters, such as worker skills, or tasks dependencies. To

evaluate the relative performance of SSSP approaches they need to

be applied to the same problem with the exact same inputs, which

is why we propose to group SSSP approaches into classes

according to the inputs and constraints required by each. The inputs

required for resource allocation can be the estimated effort of

project tasks, task dependencies, skills, and/or resource

productivity. Each one of these inputs represented in the dataset by

numbers except the skills. Skills required for developing each task

or offered by a resource are representing languages and

technologies, and represented in the dataset using the name of this

language or technology such as java, or UML. Estimated effort of

each task is represented by person-day. Each task in the dataset

moreover has the value of dependency attribute represented as the

task number that the task is depends on. Productivity of a resource

is represented by the same metric used by [7]. A resource can be

productive as a normal person, which is equal to 1, or twice the

normal person represented by 2. According to these inputs the

proposed classes are:

 Class One. This class contains the approaches that

require inputs only of estimated effort of project tasks

and the number and productivity of human resources.

 Class Two. This class contains the approaches that

require inputs of estimated effort of project tasks,

dependencies between these tasks, and number and

productivity of human resources

 Class Three. This class contains the approaches that

require inputs of estimated effort of project tasks, skills

required for each tasks, and number, skills, and

productivity of human resources

 Class Four. This class contains the approaches that

require inputs of estimated effort of project tasks,

dependencies between these tasks, skills required for

each tasks, and the number, skills, and productivity of

human resources.

Note that some SSSP approaches can possibly be part of multiple

classes as they are able to determine the optimal allocation of

resources for simple as well as complex SSSP problems. The

performance for such approaches can be compared to other

approaches in both classes with respect to solving identical

problems. The benchmark data follows this classification as it

defines optimization challenges within these five distinct classes to

facilitate the uniform comparison of SSSP approaches

3.3 Comparison Metrics and Overall Scoring

Model
The performance of a SSSP approach is usually measured in terms

of optimality, i.e. how close the approach gets to the true optimal

solution [9]. However, this metric only provides a partial view. For

example, many probabilistic optimizers, such as genetic

algorithms, vary in the quality of solution they provide due to a

randomised starting point and the computation time expended to

them. Accordingly, both of resulted values from the approach for

the objective function -which in this study is the estimated project

time- and the computational time expended to produce the results

are the main metrics of this comparison. In addition to the

performance measures of optimal solution and computation time,

behaviour of the approaches have to be recorded too. While each

approach uses a modified version of optimization technique, it is

important to capture stability and preciseness of the approach over

multiple runs. The importance of having a multiple runs is due to

the probabilistic nature of meta-heuristic algorithm search. This can

be depicted by the standard deviation of multiple runs of both

estimated project time and computational time. To get a more

complete insight into the performance of SSSP approaches we

propose to use the following metrics:

1. Estimated Project Time (EPT). The first proposed

metric is the estimated project time, i.e. the identified

optimal result by an approach for each run.

2. Computational Time (CT). Computation time is the

time consumed by the system to perform the approach

from the point of feeding the data to the time of

identifying the (heuristically) optimal result.

3. Standard Deviation (STDEV). This metric is the

standard deviation among the collected EPT values. This

metric is a useful indicator of whether an approach is

robust and precise. As the standard deviation will

quantify outcomes produced are closely grouped or not.

4. Arithmetic average (Mean). The mean of values

resulting for an SSSP approach over multiple runs.

5. Minimal EPT. The least possible value for estimated

project time among the collected values over multiple

runs.

Note that metrics such as STDEVB and mean require the

performance of the approach to be determined over multiple runs

so that the average behaviour can be established and compared.

In addition to this suite of metrics, we propose the use of an overall

scoring model for easy comparison of SSSP approaches, consisting

of two formulas. The first formula captures the accuracy of a SSSP

approach using the following equation:

Optimality of solution = [1-[(V-min)/(max-min)]] x 100

This formula depicts how close the value calculated by a SSSP

approach (V) is to the known optimal solution (min).This value is

normalised using the known worst-case solution (max). Both the

min and max values are included in the dataset for a given SSSP

problem. In addition, a model for scoring the computational time

performance of an approach is depicted by the following equation.

CTime Score = [Vct / Max (Class)]

In this formula Vct is the computation expended by approach V to

solve the SSSP problem under consideration of Max(Class) which

is the maximum computation required for all known SSSP

approaches capable of solving this problem.

http://seg.cmp.uea.ac.uk/projects/resource-optimisation/files/dataset.zip
http://seg.cmp.uea.ac.uk/projects/resource-optimisation/files/dataset.zip

3.4 Research Agenda for Comparison

Benchmark of SSSP approaches
The work described in this paper is a first step towards a systematic

mechanism for evaluating SSSP approaches with respect to their

performance and accuracy. The research plan from this point

focuses on extending the SSSP benchmark method and evaluating

its usability and applicability in an industrial setting. To this

purpose, the research plan is divided into four parts:

 The first part is the refinement of the benchmark dataset

to include more projects and resource data as well as a

refined configuration mechanism that allows for easy

configuration.

 Second we aim to extend the set of implemented and

evaluation SSSP approaches to provide a comprehensive

set of data points that researchers can use to compare

their own approaches to.

 Thirdly, we aim to examine a mechanism that allows us

to easily bridge the gap between SSSP approaches so

users of the benchmark can more easily evaluate a range

of SSSP approaches against a set problem with specific

parameters.

 Finally, upon establishing a reasonable and balanced

SSSP benchmarking process we will evaluate its

suitability and relevance by means of empirical

evaluation with industrial partners. The results of the

experienced project managers in allocating resources to

projects will be compared to SSSP approaches and their

benchmarking results for this purpose.

3.5 Threats to Validity and Challenges in

comparing SSSP approaches
One of the main threats to validity in this study is that the data

collected represents a single use of allocation attributes of one

software firm, which can have an implication regarding the validity

of the comparison with the different styles adopted in the industry

regarding the allocation, constraints, and the development method

within these firms. However as the dataset used to compare the

approaches is a real-world data, it represent a small project which

might not be the common scenario in software firms and the

capabilities offered by various types of SSSP approaches are not

covered such as dealing with a massive software project. Moreover,

extending it to cover the capabilities of SSSP approaches while at

the same time remaining representative can be very challenging.

Thus, we aim to ensure the relevance of the data, and the

approaches by expanding the experiments with our industrial

partners. A further threat to the relevance of our evaluation results

is the limited detail provided by publications describing SSSP

approaches. In many cases, vital elements of the approach are not

described sufficiently and no reference implementation of the

approach is provided for evaluation. We have addressed this threat

in our approach by excluding approaches with incomplete

descriptions that prevented us to implement it. Where possible we

have liaised with the authors of the approach to clarify ambiguities

and complement the publication.

4. BENCHMARK APPLICATION TO

EXISTING SET OF SSSP APPROACHES

4.1 Overview
To assess the accuracy and suitability for our proposed approach

and benchmark we have performed a preliminary study of five

SSSP approaches in two different classes. The approaches focus on

optimizing the software project time using meta-heuristic

techniques such as Genetic Algorithm (GA) and Simulated

Annealing (SA) while taking into account various parameters such

as task dependency to find the optimal or near optimal project time.

The reason for selecting these approaches in this comparison is

based on the studies presented in [3, 4]. These approaches are

presented in Table1 according to the class they belong to. The

approaches have been classified according to the SSSP classes

introduced in Section 3.2. The optimization techniques used by the

approaches are Genetic Algorithms (GA) by [5, 6, 10, 11], and a

modified version of Simulated Annealing (SA) called Accelerated

SA by [7]. Both techniques are belong to the same search algorithm

class called meta-heuristic.

Table 1: Approaches Classification

Class One Two Three Four Five

Approach

[10] X

[11] X

[7] X X X

[5] X

[6] X X

Work has been accomplished to classify the approaches described

earlier according to the classes they can use. This table shows the

applicability of dataset classes too for each approach described

earlier.

4.2 Results
The results were obtained using the Matlab R2013a supported by

Matlab Global Optimization Toolbox using Intel Core 2 quad 2.66

Ghz CPU. Each approach was executed 100 times to allow

determination of mean and deviation values. The comparisons

performed were between Di Penta et al [10], Di Penta et al [11] and

Kang et al for the Class 1 benchmark data, and between Chan et al

and Alba et al for the Class 2 dataset.

4.2.1 Results of the Class One Dataset Evaluation

The first results we present are for the Class 1 approaches [10],[11],

and Kang et al [7]. The dataset used is the Class One dataset, which

only considers tasks, resources and availability, and has an optimal

solution of 80.33 for its project schedule. Figure 2 shows how each

iteration for each approach resulted an EPT in term of days where

the lowest value amongst the approaches is the one obtained by

DiPenta et al [10]. Moreover, we can see that the approach in both

DiPenta [10] and [11] were quite close to the estimate of COCOMO

presented in Section 3.3.

The results obtained for Kang et al approach on the other hand is

overestimating project time when compared to any one of the

DePinta el al approaches. This is due to the allocation method

adopted by Kang et al approach as it assigns single resources to

tasks with least estimated effort, where those that have the biggest

effort required are each assigned to two resources which results in

a less accurate approximation. The numeric results for accuracy are

given in Table 2. It is interesting to observe that DiPenta et al [10]

is the most accurate and it has managed to identify the actual

optimal solution (80.33) for the dataset task. DiPenta et al [11] has

come close to finding the optimal solution but Kang et al struggled

to come close. A graphical representation of this data as well as the

behaviour over multiple runs can be found in Figure 2.

Figure 2: Accuracy performance over a 100 runs for Class

One

When we examine the computation time results in Table 2. It can

be seen that DiPenta et al [11] is the least time consuming among

the approaches whereas Kang et al requires slightly more time.

DiPenta et al [10] clearly requires the most time to identify an

optimal solution.

Table 2: Performance results of Class One

A
p

p
ro

a
ch

Computation

Time
Accuracy of Solution

M
ea

n

S
T

D
E

V

M
ea

n

S
T

D
E

V

M
in

im
a

l

E
P

T

[7] 127.90 2.82 111.5 0 111.5

[10] 285.91 2.57 80.83 1.139 80.33

[11] 109.65 0.19 85.13 2.61 80.6

An interesting observation as well is that while DiPenta et al [11]

is not only faster, its standard deviation also is significantly lower

than the two other approaches, which means the optimization

behaves more uniformly in repeated experiments. This is a quality

attribute that can become important when the problem size is scaled

up, as a small variation in computation time can make solving a

particular problem infeasible.

4.2.2 Results of the Class Two Dataset Evaluation

For the Class 2 approaches [5, 6] their performance was evaluated

using the Class 2 dataset, where constraints are imposed on project

schedule corresponding to dependencies between tasks. This

dataset has an optimal solution of 81.95 days for the project

schedule. When examining the results in Table 3. It can be seen that

the approach of Chang et al is capable of identifying the optimal

solution where the approach by Alba et al is not, however the

approach of Alba et al gives a more reliable and reproducible results

for a single run, as illustrated by the standard deviation value. This

becomes even more clear when examining Figure 3 where Chang

et al clearly fluctuates per run where the results of Alba et al is more

tightly grouped together.

Figure 3: Accuracy performance over a 100 runs for Class

Two

An interesting picture surfaces when we examine the computation

time required by both approaches, as depicted in Table 3. It can be

seen that while Chang et al fluctuates in the accuracy of the answer

returned per run, on average it completes significantly faster than

Alba et al. In this case, it is clear that while both approaches apply

similar techniques Chang et al have sacrificed part of their accuracy

for improved computation time performance.

Table 3: Performance results of Class Two

A
p

p
ro

a
ch

Computation

Time
Accuracy of Solution

M
ea

n

S
T

D
E

V

M
ea

n

S
T

D
E

V

M
in

im
a

l

E
P

T

[5] 41.88 0.17 86.29 1.52 81.95

[6] 134.99 1.91 85.1 0.49 82.64

4.3 Ranking SSSP Approaches Comparison

Using the Scoring Model
As the final step of our preliminary evaluation, we rank the

evaluated SSSP approaches using our proposed scoring model. By

combining the results of the approaches using the computation time

and estimated project time and the formulas presented in Section3.3

we can compile the results in Table 4.

Table 4: Ranking results for the approaches

Class Approach Optimality of Result CT Score

Class One [7] 96.5% 0.45

[10] 99.9% 1

[11] 99.46% 0.3835

Class Two [5] 99.37% 0.312

[6] 99.54 1

60.00

70.00

80.00

90.00

100.00

110.00

120.00

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

D
ay

s

Run

Kang et al 2011 DiPenta et al 2004 DiPenta et al 2005

78

80

82

84

86

88

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

D
ay

s

Run

Alba et al 2007 Chang et al 2001

This table gives an aggregated overview of the evaluation results

using our dataset and metric suite. It can be seen for the Class 1

approaches that both approaches proposed by DiPenta et al are very

close in accuracy but differ in computation time, with Kang et al

representing a middle ground. For Class 2 a clearer winner can be

identified with Chang et al offering similar accuracy to Alba et al

but requiring far less time. We imagine that this aggregated scoring

model will aid practitioners in comparing SSSP approaches and as

such, it is one of the important deliverables of our research. Note

however that in this scoring model at the moment the added value

of standard deviation for both accuracy and computation is lost. In

future work, we aim to include these explicitly in the scoring model

to give a more complete picture.

5. CONCLUSIONS
In this article, we have identified that many different optimization

approaches exist for staffing and scheduling a software projects

(SSSP), but due to differences in the problem parameters they can

consider as well as the optimization techniques they use their

performance and applicability can be hard to assess and compare.

To address this issue we have introduced a systematic comparison

method for SSSP approaches together with a set of comparison

metrics and an overall scoring model that can be used to rank their

performance. This comparison method is combined with a

benchmark dataset and reference values that identifies and supports

four different classes of SSSP approaches based on their

capabilities and limitations. We have applied our method and

benchmark data to a set of five SSSP approaches and from these

early results the applicability and accuracy of our method became

clear. Our method highlighted that focussed approaches that aim to

solve a well-defined SSSP problem are more likely to identify an

accurate solution within a reasonable amount of time rather than

approaches that can potentially consider a wider range of

parameters and inputs.

Our future work and the expected contribution of my dissertation

lies first in the creation of a more comprehensive method and

reference dataset for comparing SSSP approaches but also in

evaluating this with industry experts who are expected to apply the

method in practice. To achieve this we are planning further

experiments and evaluation with the intention to expand the dataset

and add support for the remaining SSSP classes. In addition, we

aim to expand the range of SSSP problems per class in both

complexity and size to aid in the evaluation of scalability. Finally,

we aim to perform an empirical experiment where we ask industry

experts to apply and evaluate various SSSP approaches and

compare the results to the evaluation results of our method to

establish the relevance and accuracy of the method in real-world

application scenarios. Our eventual goal for this work is to serve as

an accurate and flexible reference mechanism for both academics

and practitioners for determining the performance and accuracy of

SSSP approaches.

6. REFERENCES

1. Tsai, H.-T., H. Moskowitz, and L.-H. Lee, Human

resource selection for software development projects

using Taguchi’s parameter design. European Journal of

Operational Research, 2003. 151(1): p. 167-180.

2. Di Penta, M., M. Harman, and G. Antoniol, The use of

search‐based optimization techniques to schedule and

staff software projects: an approach and an empirical

study. Software: Practice and Experience, 2011. 41(5): p.

495-519.

3. Ferrucci, F., M. Harman, and F. Sarro, Search-Based

Software Project Management, in Software Project

Management in a Changing World, G. Ruhe and C.

Wohlin, Editors. 2014, Springer Berlin Heidelberg. p.

373-399.

4. Peixoto, D.C., G.R. Mateus, and R.F. Resende. The

Issues of Solving Staffing and Scheduling Problems in

Software Development Projects. in Computer Software

and Applications Conference (COMPSAC), 2014 IEEE

38th Annual. 2014. IEEE.

5. Chang, C.K., M.J. Christensen, and T. Zhang, Genetic

algorithms for project management. Annals of Software

Engineering, 2001. 11(1): p. 107-139.

6. Alba, E. and J.F. Chicano, Software project management

with GAs. Information Sciences, 2007. 177(11): p. 2380-

2401.

7. Kang, D., J. Jung, and D.H. Bae, Constraint‐based

human resource allocation in software projects.

Software: Practice and Experience, 2011. 41(5): p. 551-

577.

8. Kwok, Y.-K. and I. Ahmad, Benchmarking and

comparison of the task graph scheduling algorithms.

Journal of Parallel and Distributed Computing, 1999.

59(3): p. 381-422.

9. Kwok, Y.-K. and I. Ahmad, Static scheduling algorithms

for allocating directed task graphs to multiprocessors.

ACM Computing Surveys (CSUR), 1999. 31(4): p. 406-

471.

10. Antoniol, G., M. Di Penta, and M. Harman. A robust

search-based approach to project management in the

presence of abandonment, rework, error and uncertainty.

in Software Metrics, 2004. Proceedings. 10th

International Symposium on. 2004. IEEE.

11. Antoniol, G., M. Di Penta, and M. Harman. Search-based

techniques applied to optimization of project planning

for a massive maintenance project. in Software

Maintenance, 2005. ICSM'05. Proceedings of the 21st

IEEE International Conference on. 2005. IEEE.

	1. INTRODUCTION
	2. RELATED WORK
	3. A SYSTEMATIC APPROACH FOR COMPARING SSSP APPROACHES
	3.1 Overview of the Proposed Approach
	3.2 Benchmark Dataset
	3.3 Comparison Metrics and Overall Scoring Model
	3.4 Research Agenda for Comparison Benchmark of SSSP approaches
	3.5 Threats to Validity and Challenges in comparing SSSP approaches

	4. BENCHMARK APPLICATION TO EXISTING SET OF SSSP APPROACHES
	4.1 Overview
	4.2 Results
	4.2.1 Results of the Class One Dataset Evaluation
	4.2.2 Results of the Class Two Dataset Evaluation

	4.3 Ranking SSSP Approaches Comparison Using the Scoring Model

	5. CONCLUSIONS
	6. REFERENCES

