
Benchmarking Dataflow Systems
for Scalable Machine Learning

vorgelegt von

Dipl.-Ing. Christoph Boden

geb. in Berlin

von der Fakultät IV - Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

- Dr. Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Tilmann Rabl

Gutachter: Prof. Dr. Volker Markl

Gutachter: Prof. Dr. Klaus-Robert Müller

Gutachter: Prof. Dr. Asterios Katsifodimos

Tag der wissenschaftlichen Aussprache: 21. September 2018

Berlin 2018

i

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Volker Markl for introducing

me to the academic world of database systems research and for providing me with the

opportunity to carry out this research. This thesis would not have been possible without

the great research environment he created and his continuing support. I would also like

to thank Prof. Tilmann Rabl for introducing me to the world of Benchmarking and for

his relentless support and fruitful advice. Furthermore, I want to express my gratitude to

Prof. Klaus-Robert Müller and Prof. Asterios Katsifodimos for agreeing to review this

thesis.

I’d like to thank my colleagues, first and foremost Dr. Sebastian Schelter whose

supportive and insightful advice was invaluable in the pursuit of my research as well

as Dr. Alan Akbik for sharing his academic curiosity and enthusiasm. I would like to

thank my collaborators and co-authors Alexander Alexandrov and Andreas Kunft as well

as all of my current and former colleagues at the Database Systems and Information

Management Group at TU Berlin who made this an inspiring place to pursue my research,

including Max Heimel and Marcus Leich who helped me advance my research through

advice and discussions. I am also grateful for having had the opportunity to advise the

DIMA students André Hacker and Andrea Spina who carried out excellent thesis work.

Finally I would like to thank my proof readers Dr. Alan Akbik, Steve Aurin, Dr.

Conrad Friedrich, Felix Neutatz and Prof. Tilmann Rabl.

ii

iii

Abstract
The popularity of the world wide web and its ubiquitous global online services have led

to unprecedented amounts of available data. Novel distributed data processing systems
have been developed in order to scale out computations and analysis to such massive
data set sizes. These "Big Data Analytics" systems are also popular choices to scale out
the execution of machine learning algorithms. However, it remains an open question how
efficient they perform at this task and how to adequately evaluate and benchmark these
systems for scalable machine learning workloads in general. In this thesis, we present
work on all crucial building blocks for a benchmark of distributed data processing systems
for scalable machine learning including extensive experimental evaluations of distributed
data flow systems.

First, we introduce a representative set of distributed machine learning algorithms
suitable for large scale distributed settings which have close resemblance to industry-
relevant applications and provide generalizable insights into system performance. We
specify data sets, workloads, experiments and metrics that address all relevant aspects of
scalability, including the important aspect of model dimensionality. We provide results of
a comprehensive experimental evaluation of popular distributed dataflow systems, which
highlight shortcomings in these systems. Our results show, that while being able to
robustly scale with increasing data set sizes, current state of the art data flow systems are
surprisingly inefficient at coping with high dimensional data, which is a crucial requirement
for large scale machine learning algorithms.

Second, we propose methods and experiments to explore the trade-off space between
the runtime for training a machine learning model and the model quality. We make the
case for state of the art, single machine algorithms as baselines when evaluating distributed
data processing systems for scalable machine learning workloads and present such an
experimental evaluation for two popular and representative machine learning algorithms
with distributed data flow systems and single machine libraries. Our results show, that
even latest generation distributed data flow systems require substantial hardware resources
to provide comparable prediction quality to a state of the art single machine library
within the same time frame. This insight is a valuable addition for future systems papers
as well as for scientists and practitioners considering distributed data processing systems
for applying machine learning algorithms to their problem domain.

Third, we present work on reducing the operational complexity of carrying out
benchmark experiments. We introduce a framework for defining, executing, analyzing
and sharing experiments on distributed data processing systems. On the one hand, this
framework automatically orchestrates experiments, on the other hand, it introduces a
unified and transparent way of specifying experiments, including the actual application
code, system configuration, and experiment setup description enabling the sharing of
end-to-end experiment artifacts. With this, our framework fosters reproducibility and
portability of benchmark experiments and significantly reduces the "entry barrier" to
running benchmarks of distributed data processing systems.

iv

Zusammenfassung
Die Popularität des World Wide Web und seiner allgegenwärtigen global verfügbaren

Online-Dienste haben zu beispiellosen Mengen an verfügbaren Daten geführt. Im Lichte
dieser Entwicklung wurden neuartige, verteilte Datenverarbeitungssysteme (sogenannte
“Big Data Analytics”-Systeme) entwickelt, um Berechnungen und Analysen auf solch
massive Datengrößen skalieren zu können. Diese Systeme sind ebenfalls beliebte Aus-
führungsumgebungen für das Skalieren von Algorithmen des maschinellen Lernens. Es
ist jedoch eine offene Frage, wie effizient diese “Big Data Analytics”-Systeme bei der
Ausführung von skalierbaren Verfahren des maschinellen Lernens sind und wie man solche
Systeme adäquat evaluieren und benchmarken kann. In dieser Doktorarbeit stellen wir
Arbeiten für alle essenziellen Bausteine einer solchen Evaluierung von verteilten Datenver-
arbeitungssystemen für skalierbare Methoden des Maschinellen Lernens, inklusive einer
umfassenden experimentellen Evaluierung von verteilten Datenflusssystemen, vor.

Zunächst stellen wir einen repräsentativen Satz verteilter maschineller Lernalgorith-
men vor, welche für den Einsatz in massiv verteilten Umgebungen passend sind. Diese
Lernalgorithmen besitzen substanzielle Ähnlichkeit zu einer breiten Palette von industri-
erelevanten Verfahren und bieten daher verallgemeinerbare Einblicke in die Systemleistung.
Wir definieren Datensätze, Algorithmen, Experimente und Metriken, die alle relevanten
Aspekte von Skalierbarkeit, einschließlich des wichtigen Aspekts der Modelldimension-
alität abdecken. Wir präsentieren und diskutieren die Ergebnisse unserer umfassenden
experimentellen Evaluierung gängiger verteilter Datenflusssysteme. Unsere Ergebnisse
zeigen, dass die untersuchten aktuellen Datenflusssysteme zwar robust bzgl. der An-
zahl der Rechner sowie der Datengröße skalieren können, jedoch bei der Skalierung der
Modelldimensionalität substanzielle Schwächen aufweisen. Diese Ineffizienz überrascht,
da die Bewältigung hochdimensionaler Daten eine Kernanforderung für das Ausführen
skalierbarer Maschineller Lernverfahren darstellt.

Zweitens, schlagen wir Methoden und Experimente vor, um den zwischen Laufzeit
des Trainings eines Modells des maschinellen Lernens und der Vorhersagequalität dieses
Modells aufgespannten Raum zu erkunden. Wir argumentieren, dass effiziente, dem
Stand der Technik entsprechende, Einzelmaschinenbibliotheken als Basis in vergleichenden
Experimenten herangezogen werden sollen. Wir präsentieren Ergebnisse einer solchen
Evaluierung für zwei populäre und repräsentative Algorithmen des maschinellen Lernens
auf verteilten Datenflusssystemen und mit Einzelmaschinenbibliotheken. Die Ergebnisse
unserer Experimente zeigen, dass selbst die neuesten verteilten Datenflusssysteme sub-
stanzielle Hardwareressourcen benötigen, um eine vergleichbare Vorhersagequalität zu
Einzelmaschinenbibliotheken innerhalb vergleichbarer Trainingszeiträume zu erreichen.
Dies ist eine wichtige Erkenntnis, welche für zukünftige Forschung und Entwicklung im
Bereich der Datenverarbeitungssysteme zur Kenntnis genommen werden muss, aber auch
eine relevante Information für Wissenschaftler und Anwender dieser Systeme, welche die
Anwendung von verteilten Datenflusssystemen für Algorithmen des maschinellen Lernens
in ihrer Domäne in Betracht ziehen.

Drittens, präsentieren wir Arbeiten zur Reduzierung der operativen Komplexität
bei der Durchführung von Benchmark-Experimenten. Wir stellen ein Framework für

v

die Definition, Ausführung und Analyse von Experimenten auf verteilten Datenverar-
beitungssystemen vor. Auf der einen Seite orchestriert unser Framework automatisch
Experimente, auf der anderen Seite führt es eine einheitliche und transparente Art und
Weise, Experimente zu spezifizieren, ein. Hierbei werden neben der eigentlichen Implemen-
tierung der Benchmarkalgorithmen auch sämtliche Parameter der Systemkonfiguration
und die Beschreibung des Experimentaufbaus und der beteiligten Systeme und Kom-
ponenten inkludiert. Somit wird eine transparente Verfügbarmachung und das Teilen
von kompletten “End-to-End” Experimentartefakten ermöglicht. Hierdurch fördert unser
Framework die Reproduzierbarkeit und Portabilität von Benchmark-Experimenten und
reduziert die "Eintrittsbarriere" bzgl. der Durchführung von Benchmarks für verteilte
Datenverarbeitungssysteme signifikant.

vi

Contents

1 Introduction 1

1.1 Thesis Statement . 4

1.2 Main Contributions . 4

1.3 Thesis Outline . 7

2 Background 9

2.1 A Brief History of Big Data Analytics Systems 9

2.2 Key Concepts in Scalability and Parallelism 14

2.2.1 Amdahl’s Law. 14

2.2.2 Gustafson’s Law. 15

2.2.3 Scalable Algorithms and Scalable Systems 16

2.2.4 Parallelism . 17

2.3 Massively Parallel Data Processing Models and Systems 17

2.3.1 Distributed File Systems and HDFS 17

2.3.2 MapReduce and Hadoop . 19

2.3.3 PACTs, Stratosphere and Apache Flink 21

2.3.4 Resilient Distributed Data Sets and Apache Spark 22

2.4 Machine Learning . 24

2.4.1 Unsupervised Learning . 25

2.4.2 Supervised Learning . 26

Logistic Regression . 28

Gradient Descent Methods in MapReduce 29

2.5 Benchmarking . 31

vii

3 Benchmarking Scalability 34

3.1 Problem Statement . 34

3.2 Contributions . 36

3.3 Overview . 37

3.4 Benchmark Workloads . 37

3.4.1 Supervised Learning . 38

Solvers . 38

Implementation . 39

3.4.2 Unsupervised learning . 42

3.5 Benchmark Dimensions and Settings . 45

3.5.1 Scalability . 45

3.5.2 Absolute and Single Machine Runtimes 46

3.5.3 Model Quality . 47

3.5.4 Cluster Hardware . 47

3.5.5 Data Sets . 48

3.6 System Parameter Configuration . 49

3.6.1 Parallelism . 49

3.6.2 Caching . 50

3.6.3 Buffers . 52

3.6.4 Serialization . 52

3.6.5 Broadcast . 52

3.7 Benchmark Results: Experiments and Evaluation 53

3.7.1 Supervised Learning . 53

Production Scaling . 53

Strong Scaling . 55

Scaling Model Dimensionality. 57

Comparison to single-threaded implementation 60

3.7.2 Unsupervised Learning . 62

3.8 Related Work . 63

3.9 Discussion . 65

viii

4 Benchmarking Performance and Model Quality 67

4.1 Problem Statement . 67

4.2 Contributions . 68

4.3 Overview . 69

4.4 The Case for Single Machine Baselines . 69

4.5 Machine Learning Methods and Libraries 70

4.5.1 Gradient Boosted Trees . 71

Trees as weak learners . 72

XGBoost . 76

LightGBM . 76

Apache Spark MLLib . 76

4.5.2 Logistic Regression . 77

Vowpal Wabbit (VW) . 77

Apache Spark MLLib . 77

4.6 Methodology . 77

4.6.1 Feature Extraction . 77

4.6.2 Parameter Tuning . 78

4.6.3 Measurements . 78

4.6.4 Data Set . 80

4.6.5 Cluster Hardware . 80

4.7 Experiments . 80

4.7.1 Experiment 1: Logistic Regression 81

4.7.2 Experiment 2: Gradient Boosted Trees 82

4.8 Related Work . 84

4.9 Discussion . 85

5 Reproducibility of Benchmarks 88

5.1 Problem Statement . 88

5.2 Contribution . 90

5.3 Overview . 92

5.4 Running Example: Benchmarking a Supervised Machine Learning Workload 92

5.5 Experiments and ExperimentSuites . 95

ix

5.5.1 Data Sets . 95

5.5.2 Experiment . 98

5.5.3 System . 98

5.5.4 ExperimentSuite . 98

5.6 PEEL Bundles . 99

5.7 Environment Configurations . 100

5.7.1 Configuration Layers. 102

5.8 Execution Workflow . 104

5.9 Results Analysis . 105

5.10 Extending PEEL . 106

5.11 Related Work . 106

5.12 Discussion . 106

6 Conclusion 108

6.1 Summary . 108

6.2 Outlook . 111

List of Figures 114

List of Tables 116

1

1 Introduction

The advent of the World Wide Web has led to a massive increase of available data. In

light of rapidly decreasing storage costs, the ubiquity of global online services and smart

mobile phones, text, audio, and video data as well as user interaction logs are being

collected at an unprecedented scale. This data has successfully been leveraged to build

and tremendously improve data-driven applications [70]. The availability of this data

has also revolutionized scientific research as it became possible to test hypotheses on

samples several orders of magnitude larger and significantly more diverse than before.

In computational social sciences for example, the increased availability of online social

interaction data has offered new opportunities to map out the network structure of

diffusion processes, i.e., the adoption of products or ideas through interpersonal networks

of influence. Empirical analysis showed that, contrary to a longstanding hypothesis,

adoptions resulting from long chains of referrals, as the analogy to the spreading of

diseases would suggest, are extremely rare. The vast majority of cascades are small, and

are described by a handful of simple tree structures that terminate within one degree of an

initial adopting seed node [62]. Next to web and user interaction data, scientists are also

collecting, releasing and aggregating massive amounts of observational and simulation data

that enable anyone to perform their own analysis. For example, in Material Science, the

NOMAD repository [93] makes available millions of total-energy calculations of materials

data that have been produced by by CPU-intensive computations. The Sloan Digital Sky

Survey [107] transformed astronomy by making available hundreds of terabytes of data

including deep multi-color images of one third of the sky, and spectra for more than three

million astronomical objects. In genomics, next-generation sequencing (NGS), which can

produce billions of short DNA or RNA fragments in excess of a few terabytes of data in a

single run, leads to massive data-sets driving personalized cancer treatment and precision

medicine research [102]. All of these phenomena have been subsumed under the term Big

Chapter 1. Introduction 2

Data or Big Data Analytics.

In order to enable the processing and analysis of web scale data, the large web

companies, foremost Google, developed novel storage and processing systems based on the

use of large shared-nothing clusters of commodity hardware. Google’s MapReduce [47],

based on the Google File System (GFS) [60], was built to simplify large-scale special-

purpose computations like the construction of inverted indices from a raw Web crawl

for Web search [49] through automatic parallelization and distribution of computation.

MapReduce abstracts away the complexity of scheduling a program’s execution on large

clusters, managing the inter-machine communication as well as coping with machine

failures by exposing a simple functional programming API to users. It handles semi-

structured data and does not require a pre-defined schema, enabling it to process a

large variety of input data. Its open-source implementation Hadoop [8] and the Hadoop

Distributed File System (HDFS) [105] have been widely adopted as a solution to robustly

scale data-intensive applications to very large data sets on clusters of commodity hardware

and are commonly referred to as Big Data Analytics Systems.

The availability of massive data sets and large scale data processing systems com-

bined with machine learning algorithms have enabled remarkable breakthroughs in a

number of core tasks including ranking web search results [31, 48], personalized content

recommendation [46, 73], statistical language models for speech recognition and machine

translation [64], click-through rate prediction for online advertisements [84,98], credit scor-

ing, fraud detection and many other applications [52]. It became apparent that for several

problem settings, comparatively simple algorithms could attain superior performance to

more complex and mathematically sophisticated approaches when being trained with

enough data [64] . This effect, sometimes referred to as "the unreasonable effectiveness of

data" became most obvious in the domain of statistical natural language processing [27].

Thus, in consequence of the sheer size of available data sets and the remarkable successes of

machine learning algorithms for a variety of tasks, an unprecedented demand to efficiently

scale the execution of machine learning algorithms materialized.

As focus shifted from rather simple "extract-transform-load" and aggregation jobs

to the scalable execution of more complex workflows such as inferring statistical models

and machine learning algorithms, it quickly became apparent that Hadoop MapReduce

was inherently inefficient at executing such workloads [71, 100]. While many popular

Chapter 1. Introduction 3

machine learning algorithms can easily be formulated in the functional MapReduce

programming model [43] on a logical level, the acyclic data flow model underlying

Hadoop’s implementation and the intricacies of its distributed implementation lead

to unsatisfactory performance. Particularly the fixed Map-Shuffe-Reduce pipeline, the

inability to efficiently execute iterative computations as well as ad-hoc analysis turned

out to be major drawbacks of Hadoop [71, 100].

This shortcoming sparked the development of a multitude of novel approaches and

systems aiming to improve the performance and ease of implementation of more complex

iterative workloads such as distributed machine learning algorithms in the distributed

systems and database systems research communities [33, 53,55,81,113].

However, while these Second Generation Big Data Analytics Systems have been shown

to outperform Hadoop MapReduce for canonical iterative workloads [18,80,113], it remains

an open question how effectively they perform for actual large scale machine learning

problems due to at least two major factors. First, the learning algorithms chosen in the

corresponding systems papers are those that fit well onto the system’s paradigm (e.g.,

batch gradient descent solvers for linear models) rather than state of the art methods,

which would be chosen to solve a supervised learning problem in the absence of these

systems’ constraints and provide state of the art performance with respect to prediction

quality.

Second, the experiments in scientific publications associated with these systems also

generally fail to address aspects of scalability that are inherent to machine learning

algorithms such as scaling the data and model dimensionality. However, understanding

the systems’ behaviour is crucial for machine learning practitioners, who need to assess

the systems suitability to their problem setting. For this, machine learning researchers

and other potential users who want to design and implement machine learning or analysis

algorithms on top of these systems, need to understand the trade-offs these systems

possess.

Finally, different workloads and implementations, usage of libraries, data sets and

hardware configurations make it hard if not impossible to leverage the published experi-

ments for an objective comparison of the performance of each system. It is a challenge to

assess how much of reported performance gain is due to a superior paradigm or design

and how much is due to a more efficient implementation of algorithms, which ultimately

Chapter 1. Introduction 4

impairs the scientific process due to a lack of verifiability. These shortcomings limit

progress in the research and development of novel (distributed) machine learning systems.

For this reason, it is crucial to enable and establish benchmarks for big data analytics

systems with respect to scaling machine learning algorithms in order to steer systems

research into a fruitful direction.

1.1 Thesis Statement

In order to objectively assess how the systems resting on the paradigm of distributed

dataflow perform at scaling machine learning algorithms and to guide future systems

research for distributed machine learning, it is imperative to benchmark and evaluate

these systems for relevant and representative end-to-end machine learning workloads in a

reproducible manner and to address all aspects of scalability. In this thesis, we present work

in all of these areas. Our work identifies significant shortcomings in current distributed

data processing systems with respect to efficiently executing machine learning algorithms.

1.2 Main Contributions

Benchmarking Scalability. We present a Distributed Machine Learning Benchmark for

distributed data analytics systems, an in-depth description of the individual algorithms,

metrics and experiments to assess the performance and scalability characteristics of the

systems for representative machine learning workloads as well as a detailed analysis and

discussion of the comprehensive experimental evaluations. To ensure reproducibility we

provide our benchmark algorithms on top of Apache Flink and Apache Spark as open-

source software defining and executing experiments for distributed systems and algorithms.

We provide a comprehensive set of experiments to assess their scalability with respect to

both: data set size and dimensionality of the data based on mathematically equivalent

versions of these algorithms. The results of our experimental evaluation indicate that

while being able to robustly scale with increasing data set sizes, current state of the art

data flow systems for distributed data processing such as Apache Spark or Apache Flink

struggle with the efficient execution of machine learning algorithms that train models

Chapter 1. Introduction 5

on high dimensional data. Being able to assess the limitations and trade-offs inherent to

these systems is crucial for machine learning researchers as well as other scientists who

intend to apply distributed data flow systems to their problem domain.

Benchmarking Performance and Model Quality. We argue that systems should

consider state of the art, single machine algorithms as baselines. Solely evaluating

scalability and comparing with other distributed systems is not sufficient and provides

insufficient insights. Distributed data processing systems for large scale machine learning

should be benchmarked against sophisticated single machine libraries that practitioners

would choose to solve an actual machine learning problem and evaluated with respect

to both: runtime as well as prediction quality metrics. We present such a Benchmark

and provide an experimental evaluation of state of the art machine learning libraries

XGBoost, LightGBM and Vowpal Wabbit for supervised learning and compare them to

Apache Spark MLlib, one of the most widely used distributed data processing system for

machine learning workloads. Results indicate that while distributed data flow systems

such as Apache Spark do provide robust scalability, it takes a substantial amount of

extra compute resources to reach the performance of a single threaded or single machine

implementation. The current lack of such experiments and evaluations is most likely

due to the division of the communities conducting research in data processing systems

on the one hand and machine learning systems on the other hand. While runtime of

algorithms tends to be at best a secondary concern in machine learning research, the

out-of-sample prediction performance of trained machine learning models is of little to no

concern to systems researchers who frequently only report per-iteration runtimes without

any information on model quality at all. With this work we intend to connect these

research communities since understanding the trade-offs with respect to runtime and

model quality in the context of distributed data processing systems is essential to both:

machine learning researchers aiming to develop novel algorithms on these systems as well

as systems researchers aiming to improve the systems for machine learning use cases.

Reproducibility of Benchmarks. In order to foster reproducible and portable

experiments, our benchmarks are grounded in a framework to define, execute, analyze,

and share experiments, enabling the transparent specification of benchmarking workloads

and system configuration parameters. On the one hand, this framework automatically

Chapter 1. Introduction 6

orchestrates experiments and handles the systems’ setup, configuration, deployment, tear-

down and cleanup as well as automatic log collection. On the other hand, it introduces a

unified and transparent way of specifying experiments, including the actual application

code, system configuration, and experiment setup description enabling the sharing of end-

to-end experiment artifacts, thus fostering reproducibility and portability of benchmark

experiments. It also allows for the hardware independent specification of these parameters,

therefore enabling portability of experiments across different hardware setups. As a

significant step towards adequate benchmarking of distributed data processing systems,

this approach and framework contributes to guiding future systems research into a fruitful

direction.

The core parts of this thesis have been published as follows:

• Christoph Boden, Andrea Spina, Tilmann Rabl, Volker Markl: Bench-

marking Data Flow Systems for Scalable Machine Learning Algorithms and Systems

for MapReduce and Beyond (BeyondMR) Workshop at SIGMOD 2017

• Christoph Boden, Alexander Alexandrov, Andreas Kunft, Tilmann Rabl

and Volker Markl: PEEL: A Framework for benchmarking distributed systems

and algorithms 9th TPC Technology Conference on Performance Evaluation and

Benchmarking (TPCTC) at VLDB 2017

• Christoph Boden, Tilmann Rabl and Volker Markl: Distributed Machine

Learning - but at what COST? ML Systems Workshop @ NIPS 2017

In preliminary research that we contributed to, we identified the shortcomings of the

MapReduce paradigm and its Hadoop implementation with respect to scaling machine

learning algorithms for recommendation systems:

• Sebastian Schelter, Christoph Boden, Martin Schenck, Alexander Alexan-

drov and Volker Markl Distributed Matrix Factorization with MapReduce using

a series of Broadcast-Joins ACM Recommender Systems conference, RecSys 2013

• Sebastian Schelter, Christoph Boden, Volker Markl Scalable Similarity-

Based Neighborhood Methods with MapReduce ACM Recommender Systems 2012

Chapter 1. Introduction 7

The insights obtained were a crucial prerequisite for developing and conducting the

benchmark experiments we present in this thesis.

Impact

The benchmarking framework as well as code for all of our experiments are available

as open source software on GitHub and have been used by other researchers, students and

practitioners, for example by researchers of the ZUSE Institute Berlin (ZIB). The papers

we published on the topics presented in this thesis have been published and presented

to an international academic audience and have been cited multiple times by state of

the art research papers. Next to the academic venues, we also presented our research to

interested audiences, for example the SPEC Research Big Data Group.

1.3 Thesis Outline

The remainder of this thesis is structured as follows:

In Chapter 2 we provide the background necessary for the later chapters of this thesis.

We retrace the evolvement of distributed data processing systems from the perspective

of a database researcher and emphasize for which requirements these systems were

originally conceived. After reviewing fundamental concepts in scalability and parallelism

we introduce the relevant massively parallel data processing systems and models. Next,

we provide a concise introduction to machine learning on these data processing systems

and also provide an overview of benchmarking efforts in the context of database systems.

In Chapter 3 we present our work on the important aspect of scalability in the

context of benchmarking distributed dataflow systems for machine learning workloads

including the important one of feature space and model dimensionality. We define and

characterize data sets, workloads, experiments and metrics and report experimental results

for all of the defined experiments for the state of the art data flow systems Apache Spark

and Apache Flink. Our results show that while both systems robustly cope with scaling

the number of compute nodes or the data set size, they severely struggle with increasing

model dimensionality.

In Chapter 4 we present our work on exploring the model quality and runtime

performance trade-off for distributed and single machine implementations of machine

learning algorithms. Given the main memory sizes generally available today, we deem

Chapter 1. Introduction 8

it necessary to evaluate strong single machine baselines to assess the performance and

potential benefit of scaling out machine learning algorithms on distributed data flow

systems. We present data sets, selected algorithms and a methodology to explore the

model quality vs. runtime trade-off for single machine and distributed approaches. Our

results show that even latest generation distributed data flow systems such as Apache

Spark require substantial hardware resources to provide comparable performance to a

state of the art single machine library.

In Chapter 5 we present our work on reducing the operational complexity of bench-

mark experiments. With PEEL, we introduce a framework for defining, executing,

analyzing and sharing experiments on distributed data processing systems. We present

a domain model and the core abstractions to specify the configurations and system

environments of all systems involved, as well as the experiments and parameters to be

varied. The PEEL framework has been successfully applied for all benchmark evaluations

presented in this thesis and can easily be extended to include other systems.

Finally in Chapter 6 we summarize our findings and discuss their implications for

the systems research and benchmarking community and beyond. We examine limitations

of our approach and outline interesting research questions that could be the subject of

future work.

9

2 Background

This chapter introduces the major concepts and the background necessary for the the

remainder of this thesis. First, we provide a brief historical overview of the development

of large scale data processing systems from the perspective of the database research

community in Section 2.1, emphasizing the use-cases and requirements each system

was originally built to fulfill. We introduce fundamental concepts and terminology

in parallelism and scalability in Section 2.2 and present the massively parallel data

processing abstractions and systems relevant to this thesis in sufficient detail in Section

2.3. This overview provides the basis to understand benchmark results as well as inherent

limitations of the different systems in later chapters. After having established both the

historical development as well as the technological foundation of the relevant systems,

we introduce essential terminology and concepts of machine learning in Section 2.4,

including relevant models and algorithms. We succinctly discuss fundamental aspects of

implementing machine learning algorithms in the context of distributed data processing

systems. Finally, in Section 2.5 we provide a concise overview of benchmarking efforts in

the field of database systems.

2.1 A Brief History of Big Data Analytics Systems

While the enormous hype surrounding the term "Big Data" in the last years may suggest

this is a recent phenomena, the database research community and database vendors

have actually been proposing and building solutions to handle "very large" data sets for

decades [25]. Based on the relational model invented by Ted Codd in 1970 [44], relational

database systems gained commercial adoption as enterprise data management systems in

the early 1980’s. Eventually, the focus shifted from merely processing and storing day-to-

day transactional data to analyzing historical business data with large relational queries in

Chapter 2. Background 10

data warehouses to drive reporting and business analytics. This led to the development of

software-based parallel database systems based on a shared-nothing architecture [50]. The

shared-nothing architecture implies a set of interconnected but independent machines, each

equipped with their own processors, main memory and storage as well as operating system

and software. The machines can only communicate via message passing, necessitating

that all inter-machine coordination and data exchange take place over the network. Based

on this shared-nothing architecture, parallel database systems introduced the usage of

divide-and-conquer parallelism based on hash partitioning the data for both storage as well

as the execution of relational operators for query processing. Examples of such parallel

database systems include GAMMA [51], GRACE, [58], Teradata [103] (the first successful

commercial parallel database system [25]) as well as IBM DB2 Parallel Edition [20].

The advent of the world wide web and the unprecedented growth of available content

and data that needed to be indexed and queried at the end of the 1990’s led to new

requirements and challenges. Efforts aiming to built large scale search engines for this

massive amount of web data considered the aforementioned (parallel) database technology,

but deemed it inapropriate [30] due two the following reasons. On a practical level, the

existing database systems were simply too slow as they did not contain explicit support

for (full) text search and thus left significant room for improvement to be exploited

by specialized systems. On a conceptual level, the ACID1 properties guaranteed for

transactions by relational database systems turned out to be a miss-match for web search

engines, as they are faced with read only queries that never cause updates and tend to

value high availability and freshness over consistency. Next to serving read only web

search queries, the web search scenario also led to other kinds of unusual workloads as

the companies involved started to exploit the graph structure of the web to improve the

ranking of web search results [31] and to personalize the advertising to be displayed next

to search results based on users interaction histories with machine learning algorithms.

The response to these web-scale data management problems was the in-house devel-

opment of custom pieces of technology tailored for these requirements instead of applying

established database systems technology. Most prominently, Google built and later pub-

lished the Google File System (GFS) [60] - a distributed file system for extremely large

files (e.g., web crawls) and MapReduce [47] - a framework for large scale data processing

1acronym for atomicity, consistency isolation, and durability

Chapter 2. Background 11

tasks based on a functional programming model resting on shared-nothing clusters of

commodity hardware. In this surprisingly simple framework, users only have to implement

the two functions: map and reduce. The computations expressed in these functions are

automatically executed in parallel on partitioned data. The scientific publications of both

GFS and MapReduce have been adopted to built the open-source variants Hadoop [8] and

the Hadoop Distributed File System (HDFS) [105] which have been widely adopted to

scale data-intensive computations such as Web indexing or clickstream and log analysis

to very large data sets. A rich ecosystem of open-source tools, including higher-level

declarative languages that are compiled down to MapReduce, like Pig [12] or Hive [9],

soon evolved. In retrospect, from the viewpoint of a database systems researcher, the

GFS and MapReduce publications together with the Hadoop and HDFS open source

implementations started the Big Data hype.

The popularity of the MapReduce paradigm and its open-source implementation

Hadoop also evoked critics, which led to a fierce debate regarding the advantages and

disadvantages of MapReduce and parallel database management systems which is best

summarized in [49, 106]. The debate commenced, when Pavlo et al. [95] presented a

benchmark evaluating MapReduce as well as two parallel database management systems.

Their experiments showed that although the process to load data into and the tuning

of parameters of the parallel database management systems took much longer than for

MapReduce, the measured performance of the parallel database systems was significantly

better for the evaluated data processing tasks.

It became apperant that several advantages of MapReduce other than plain per-

formance probably contributed to the success and widespread adoption of it for large

scale data processing. On the one hand, the absence of licensing fees for the Hadoop

open source implementation as well as the choice to operate on inexpensive commodity

hardware by providing robust fault tolerance rather than operating on more reliable,

but costly high-end servers made MapReduce the more economical choice. On the other

hand, the storage and schema independence of MapReduce allow for the processing of

arbitrarily structured data that does not have to be cleaned and curated up front and can

be read from a huge variety of data sources. Furthermore, MapReduce is quite effective

for the “read-once” tasks it was purpose-build for, such as constructing an inverted index

of crawled web documents since it does not require loading the data into a database before

Chapter 2. Background 12

processing it. And finally, MapReduce allows users to express complex transformations

(e.g., information extraction tasks) that are too complicated to be expressed in a SQL

query. It was also acknowledged that the "out-of-the-box" performance of the evaluated

parallel database management systems is surprisingly sub-optimal and requires extensive

tuning of various parameters compared to Hadoop MapReduce, which happens to perform

quite well on its default settings [106].

As use cases shifted from rather simple "extract-transform-load" and aggregation jobs

to executing machine learning algorithms and other, usually highly iterative computations,

it quickly became clear that Hadoop MapReduce was inherently inefficient at executing

such workloads [71, 100].

Early on, it has been shown that a large variety of popular machine learning algorithms,

including k-means clustering, supervised methods such as logistic regression, naive Bayes,

support vector machines, dimensionality reduction methods such as principal component

analysis and back-propagation for neural networks, can be written in “summation form”,

which can easily be formulated in the functional MapReduce programming model on

a logical level [43]. The academic and open source community engaged to reformulate

and redesign further machine learning algorithms, for example item-based collaborative

filtering [99], such that they could be scaled using MapReduce and created Apache

Mahout [10], an open source machine learning library implemented on top of Hadoop

MapReduce.

However, early excitement vanished, as it became apparent that the acyclic data

flow model underlying Hadoop’s implementation and the intricacies of its distributed

implementation lead to unsatisfactory performance. Particularly the fixed Map-Shuffe-

Reduce pipeline which persists data to disk to provide fault tolerance is a poor fit for

iterative algorithms, where each iteration has to be scheduled as a single MapReduce job

with a high start-up cost (potentially up to tens of seconds). Further, the system creates

a lot of unnecessary I/O and network traffic as all static, iteration-invariant data has to

be re-read from disk and re-processed during each iteration and the intermediary result

of each iteration has to be materialized in the distributed file system. This inability to

efficiently execute iterative computations as well as a lack of support for asynchronous

computations turned out to be major drawbacks of Hadoop MapReduce when it comes

to efficiently executing machine learning algorithms. [71, 100]

Chapter 2. Background 13

While some suggested workaround solutions that simply avoid iterative algorithms

as much as possible [77], these shortcomings of Hadoop MapReduce also sparked the

development of a multitude of novel approaches and systems aiming to improve the

performance and ease of implementation of more complex iterative workloads such as

distributed machine learning algorithms. While HaLoop [33] and Twister [53] extended

the MapReduce runtime with broadcast and cache to support iterative computations

efficiently, other systems rest on entirely new paradigms.

Apache Spark [13] introduced the concept of data-parallel transformations on

Resilient Distributed Datasets (RDDs) [113]: read-only collections of data partitioned

across nodes, which can be cached and recomputed in case of node failures, to support

the efficient execution of iterative algorithms.

Apache Flink [7, 36] (formerly Stratosphere [18]) introduced a general data flow

engine supporting the flexible execution of a more rich set of operators such as map,

reduce and co-group as well as a native operator for iterative computations [55]. Flink

jobs are compiled and optimized by a cost-based optimizer before being scheduled and

executed by the distributed streaming data flow engine. This distributed runtime allows

for pipelining of data. With this, Stratosphere (re-)introduced concepts from (parallel)

database systems into the large scale distributed data processing systems field.

While both Apache Spark and Flink essentially stuck to the data flow model, other

approaches such as GraphLab [81] introduced an asynchronous graph-based execution

model which was subsequently distributed [80].

All of these so-called Second Generation Big Data Analytics Systems have been shown

to outperform Hadoop MapReduce for canonical iterative workloads [18, 80,113] in the

research papers presenting the systems. However, it remains an open question how

effectively they perform for actual large scale machine learning problems in general. We

present the two most prominent representative systems, which managed to morph from

research prototypes into production systems enjoying widespread adoption in industry,

Apache Spark and Apache Flink in detail in Section 2.3 and use them throughout the

experiments in this thesis.

Chapter 2. Background 14

2.2 Key Concepts in Scalability and Parallelism

In this section we will introduce the concept of scalability and notions of parallelism to

achieve scalability. While there is no universally agreed upon definition of scalability [66],

there is a certain consensus in the distributed systems, high performance computing and

database community. As described in [50] in the context of parallel database systems,

there are two notions of scalability which are of interest for a parallel system:

• strong scaling: The change in runtime for a varying number of processors and a

fixed problem size. Let tp,l denote the runtime for a particular problem of input

size l (e.g., lines of text) on p parallel processors. The speed-up is then defined as:

SpeedUp :=
t1,l

tp,l

In the ideal setting, speed-up is linear, adding p processors will accelerate the

processing time p-times

• weak scaling: The change in runtime for a fixed problem size per processor. Ideally

an N-times larger system can process an N-times larger problem in the same elapsed

time as the smaller system. This property is commonly referred to as scale-up

ScaleUp :=
tpsmall,lsmall

tpbig ,lbig

In the ideal setting this equation evaluates to one, which translates to linear ScaleUp.

2.2.1 Amdahl’s Law.

Already in 1967, Gene M. Amdahl published thoughts on the theoretical limits of speedup

and scalability in a parallel setting [19] known today colloquially as Amdahls Law. It

assumes a fixed workload with a runtime that decomposes to a non-parallelizable sequential

fraction s, and a parallelizable fraction π whose execution can be sped up by running in

parallel on the available resources that sum to one such that s+π = 1 and thus s = 1−π.

The maximum possible speed-up under these assumptions is given by:

Chapter 2. Background 15

SpeedUpAmdahl(n) =
t1

tn
=

s+ π

s+ π
n

=
1

s+ π
n

Assuming infinite available resources, we can evaluate the limit case where the

paralellizable fraction of the runtime collapses to zero and thus arrive at the theoretical

maximum speedup according to Amdahl:

SpeedUpAmdahl,max = lim
n→∞

SpeedUpAmdahl(n) = lim
n→∞

1

s+ π
n

=
1

s+ 0
=

1

s

So, according to Amdahl’s Law, even if only 10% of the sequential runtime is non-

paralellizable, a plausible assumption for real world problems, the maximum possible

speedup is 10, regardless how large a cluster of compute nodes is used for the problem.

This is a somewhat surprising insight, in particular in light of the huge popularity of

massively parallel processing systems and large compute clusters e.g., Hadoop installations

with tens of thousands of machines.

2.2.2 Gustafson’s Law.

However, as Gustafson [63] pointed out already in 1988, Amdahl made the assumption

that the non-parallelizable runtime fraction s remains constant for growing problem

sizes, implying that the absolute sequential runtime grows linearly with the problem size,

ultimately leading to very large sequential runtimes for problems running on massive

data sets. This assumption seems implausible, as non-paralellizable sequential runtime is

often due to system overheads, start-up and caching cost, quantities which are unlikely

to grow linearly with data set size. Also, the assumption of a fixed problem set size

seems unrealistic. To quote Gustafson: "One does not take a fixed-sized problem and

run it on various numbers of processors except when doing academic research" [63, pp.

532-533]. In practical applications, the problem size much more likely scales with the

number of processors, however the maximum runtime is usually fixed, e.g., daily reports

have to be available at a fixed deadline. Gustafson found empirically that the amount

of work that can be done in parallel varies linearly with the number of processors and

achieved speedup factors very close to the number of processors (scale-up of 1021 on a

Chapter 2. Background 16

1024-processor system). Gustafson thus reformulated the problem such that the execution

time on a single node which has n times "less parallelism" than the parallel setup is given

by s+ (π · n), and the so-called "scaled speed-up", also referred to as Gustafson’s Law is

given by:

scaledSpeedUp(n) :=
s+ (π · n)

s+ π
= s+ (π · n)

Thus, the main difference between Amdahl’s and Gustafson’s approach to parallelism

lies in their assumptions. The latter captures the core idea that also underlies the concept

of Big Data as well: scale out the computations on data sets of rapidly increasing size in

order to obtain feasible runtimes.

2.2.3 Scalable Algorithms and Scalable Systems

In the context of Big Data Analytics an ideal scalable algorithm has at worst linear

runtime complexity, i.e., O(n), and exhibits scalability behaviour in accordance with

Gustafsons law. With this property, applications can be scaled out by merely adding

machines in proportion to growing data set sizes (i.e., due to an increasing user base). In

the context of cloud computing, this can be automated by elastically adding or removing

virtual machines via auto-scaling, which makes the scalable execution of workloads cost

effective.

A scalable algorithm only contains a small non-parallelizable sequential fraction of

runtime that does not increase with growing input size. Thus with twice the amount of

input data, an ideal scalable algorithm should take at most twice the runtime, and given

a cluster twice the size, the same algorithm should take no more than half as long to

run. [76, pp. 13-14] Ideally, a scalable algorithm maintains these properties for various

size and distribution of input data as well as for different execution clusters. However, for

many real world problems there are no known algorithms exhibiting this ideal behaviour,

since the coordination and communication cost tend to grow with increasing parallelism

and most algorithms contain a non-parallelizable part.

Scalable systems A scalable system is one which, given a scalable algorithm, does

preserve its scalability characteristics and thus guarantee overall linear scalability and

speedup.

Chapter 2. Background 17

2.2.4 Parallelism

A popular means to achieve performance gains and thus to provide scalability is to

parallelize and potentially distribute the execution of algorithms. In the context of parallel

database systems [50], we can distinguish the following canonical forms of parallelism:

• Data Parallelism refers to the simultaneous execution of analogous tasks on

multiple parts of the inputs, e.g., data partitions on large data sets that have been

split using methods such as hash, range or round-robin partitioning. For so-called

embarrassingly parallel tasks, data parallelism is straightforward, as computation

can be split into concurrent sub-tasks which require no inter-communication that

can run independently on separate data partitions.

• Task Parallelism refers to segmenting the overall algorithm into potentially par-

allelizable parts. Contrary to data parallelism where the same task is run on

many data partitions in parallel, task parallelism is characterized by running many

different tasks on the same data simultaneously.

2.3 Massively Parallel Data Processing Models and Systems

In this section we will discuss the individual Big Data Analytics Systems that will be the

subjects of our benchmark evaluations in later chapters in detail. First, we will introduce

the Google Distributed Filesystem (GFS) whose main architecture is still of relevance, as

its open source variant Hadoop Distributed File System (HDFS) constitutes the storage

layer of many systems deployed in production today. Second, we will present the original

MapReduce model, the PACT Programming Model making up Stratosphere (now called

Apache Flink) and Resilient Distributed Data Sets (RDD) that constitute Apache Spark.

2.3.1 Distributed File Systems and HDFS

Most Big Data Analytics systems, certainly Hadoop MapReduce, Spark and Flink, run

on the Hadoop Distributed File System (HDFS) [105], an open source implementation

inspired by GFS: the Google File System. In 2003, Google developed GFS [60] as a

scalable distributed file system for large distributed data-intensive applications to satisfy

Chapter 2. Background 18

the storage needs and to service the application workloads they faced at that time while

adhering to the requirements set out by the technological environment present. Even

back then, GFS was already deployed on clusters providing hundreds of terabytes of

storage across thousands of disks on over a thousand machines that were concurrently

accessed by hundreds of clients. Since Google’s main task was the crawling of web data

and the construction of inverted indices for their Web Search Engine on large clusters

of inexpensive shared-nothing commodity hardware, GFS was built according to the

following assumptions and requirements: as component failures are the norm rather

than the exception for the utilized commodity hardware, fault tolerance was a major

design goal and the system must tolerate and rapidly recover from frequent component

failures. The web content stored by Google lead to unusually large files ranging from

hundreds of megabytes to gigabytes. The common access patterns to this data include

large, sequential writes that append data to files (e.g., crawling) and large streaming

reads. For these, high sustained bandwidth is more important than low latency. Updates

to files once written are extremely rare as practically all applications actually mutate files

by appending rather than overwriting. The distributed file system comprises three types

of components: a single master server, several chunkservers that hold the data and clients

that run the data-intensive applications. The master only keeps a record of file and chunk

locations by regularly polling the chunkservers at start-up and by monitoring the status

of the chunkservers with regular so-called HeartBeat messages. When a client application

requests access to a particular file, the master responds with the corresponding chunk

handle and location. The subsequent data transfer is only occurring directly between

clients and chunkservers, which may be running on the same machine, preserving data

locality and never via the master. The chunks (called blocks in HDFS) are generally

large, 64MB by default, and are replicated across multiple chunkservers to provide fault-

tolerance and maintain high availability. The master server maintains the meta-data for

all files and chunks and always persists a replicated write-ahead log of critical meta-data

changes before responding to a client operation. The master furthermore executes all

namespace operations, manages chunk replicas throughout the system and coordinates

various system-wide activities to keep chunks fully replicated and to balance the load

across all chunkservers.

Throughout our experiments in this thesis we use HDFS, the open source version

Chapter 2. Background 19

of GFS as storage layer for the distributed data processing systems. HDFS follows the

major design decisions laid out in the GFS publication. However, there are also some

notable differences. In GFS the master is replicated and in case its machine or disks fail,

monitoring infrastructure outside GFS starts a new master process elsewhere with the

replicated operation log. HDFS only has a single master called NameNode that fullfills

similar functions as the master in GFS and a secondary NameNode which regularly backs

up the directory information of the NameNode, however it cannot take over in case the

NameNode fails. Also, HDFS is append only and does not permit update to files.

2.3.2 MapReduce and Hadoop

MapReduce is a programming model and an associated distributed data processing system

build by Google to simplify their data-intensive computations that process large amounts

of raw data, such as crawled documents or web request logs and to abstract away the

complexities introduced by parallelizing the computation, distributing the data and

managing machine failures [47].

In MapReduce, the user has to specify algorithms as first-order functions supplied

to the second-order functions map and reduce The map function takes as input a set of

key/value tuples of type (k1, v1), transforms them according to the user specified code and

emits a different set of intermediate key/value tuples of type (k2, v2). The MapReduce

system groups all of these tuples such that all values associated with a particular key of

type k2 are delivered to the same reduce function. The reducers function takes as input a

key of type k2 and the set of values of type v2 for this key supplied via an iterator. The

reduce function itself is once again specified by the user and generally computes some

aggregate, merging together the input values and producing a most likely smaller set of

output values of type v2.

map : (k1, v1) → list (k2, v2)

reduce : (k2, list ((v2)) → list (v2)

For the map function, the input key/value tuples (k1, v1) are thus potentially drawn

from a different domain than the output key/value tuples (k2, v2). Contrary to the model

Chapter 2. Background 20

described above which is based on [47], Hadoop MapReduce emits list (k3, v3) at the end

of the reduce phase.

The MapReduce framework automatically parallelizes the program and takes care of

details such as scheduling the program’s execution on the cluster, managing the inter-

machine communication as well as coping with machine failures. It has a similar design

as the distributed files system GFS introduced above where one master server coordinates

the execution and several workers carry out the computations. MapReduce actually runs

on top of such a distributed file system. At the beginning of a MapReudce computation,

the input file is divided into logical file input splits, which generally correspond to GFS

chunks. In the first phase workers are assigned map tasks for input splits. The MapReduce

framework attempts to schedule map task on machines that contain a replica of the

corresponding input spit preserving data locality. The map tasks read the input key/value

tuples of type (k1, v1) and execute the user defined map function on it. The resulting

intermediate key/value tuples of type (k2, v2) are buffered in memory on the worker

machine and periodically persisted to the local disk. The location of these buffered

pairs are then passed back to the master who notifies reduce workers of the appropriate

locations. Once a worker successfully processed all its input splits, reduce workers read

the buffered data from these locations via remote reads. Next, the reduce worker sorts

all intermediate tuples of type (k2, v2) to group all values for a particular key together.

Next, the reduce worker iterates over this sorted data. For each unique key of type k2

encountered, it passes the key and the corresponding set values of type list(v2) to the user

provided reduce function which appends its output to a final output file for this reduce

partition. During a MapReduce execution, the master pings every worker periodically

with HeartBeats. If no response is received, the worker is marked as failed and its map

tasks are re-assigned to other available workers, making MapReduce resilient to large-scale

worker failures. The master may also schedule backup executions of very long running

map-tasks, so-called stragglers, in order to speed-up overall execution time, marking the

task as complete as soon as either the original task or the backup finishes the computation.

Apache Hadoop is a popular and widely deployed open source implementation of this

MapReduce paradigm.

Chapter 2. Background 21

2.3.3 PACTs, Stratosphere and Apache Flink

Apache Flink, formerly known as Stratosphere [18], is essentially a streaming data

flow engine designed to process both stream and batch workloads [36]. Originally,

the Startosphere system was centered around the Parallelization Contracts (PACTS)

programming model [22], which is a superset of MapReduce. Next to the map() and

reduce() functions it introduces an extended set of operators and allows arbitrary

chaining of those into a directed acyclic graph - in contrast to the fixed Map-Shuffle-

Reduce execution pipeline in Hadoop MapReduce. Just as in MapReduce, PACTs are also

second order functions that takes a user defined first order function and executes them

in accordance with the semantics of the individual operators. The PACT programming

model comprises the following operators: map(), reduce(), cross() (a cartesian product

of two inputs) match() (essentially a join of two inputs) and cogroup() which groups

together tuples with a similar key from two input relations.

The main API for batch processing today is centered around the concept of a DataSet

- a distributed typed collection comprising the elements of the data set to be processed.

Users can specify functional transformations on these DataSets, e.g., map(), filter(),

reduce() essentially resembling the parallelization contracts.

Flink programs are executed lazily: the data loading and transformations do not

happen immediately. Rather, each operation is created and added to the program’s plan.

The operations are only executed when one of the execute() methods is invoked on the

ExecutionEnvironment object.

Analogous to query optimization in databases, the program is transformed to a logical

plan and then compiled and optimized by a cost-based optimizer, which automatically

chooses a physical execution strategy for each operator in the program based on various

parameters such as data size or number of machines in the cluster. The final physical

plan is then scheduled and executed by the distributed streaming data flow engine, which

is capable of pipelining the data.

Apache Flink does not allow the user to specify DataSets to be cached in memory

directly, but it does provide its very own native iterations operator, for specifying iterative

algorithms by providing a user defined step function f . This step function is repeatedly

executed until some termination criterion is reached, e.g., the computations converged to

Chapter 2. Background 22

a fix point s where s = fk(s) or after a fixed number of iterations as provided by the user.

The Flink optimizer detects this and adds caching operators to the physical plan,

ensuring that loop-invariant data is not re-read from the distributed file system in each

iteration. In contrast, Spark does not provide an own operator for iterative computations,

but implements iterations as regular for-loops and executes them by loop unrolling.

2.3.4 Resilient Distributed Data Sets and Apache Spark

Apache Spark is a distributed big data analytics framework centered around the concept of

Resilient Distributed Datasets (RDDs) [113]. A RDD is a distributed memory abstraction

in the form of a read-only collection of objects partitioned across a set of machines that

can be rebuilt if a partition is lost, thus providing fault tolerance. The main motivation

for introducing RDDs was the inefficiency of predominant distributed data processing

frameworks at the time for applications that reuse intermediate results across multiple

computations, e.g., iterative machine learning and graph mining algorithms like PageRank,

K-means clustering, or logistic regression. RDDs provide an interface based on coarse

grained transformations (e.g., map(), filter() or join()) and actions (e.g., count(),

reduce()). They can only be created through transformations on other RDDs or data

that is read from disk. Transformations on RDDs are lazily evaluated, thus computed

only when needed, e.g., by an action and can be pipelined. RDD actions trigger the

computation and thus execution of transformations on RDDs. Fault tolerance is provided

by logging the transformations applied on an RDD to build a data set (its so-called

lineage) rather than checkpointing the actual data. If a partition of an RDD is lost due to

failure, Spark has enough information how it was derived to recompute the lost partition.

Users can control two main aspects of RDDs: its persistence and its partitioning:

Users can indicate which RDDs they intend to reuse in future operations and would thus

like to persist in memory and choose a StorageLevel for them (e.g., MemoryOnly). Spark

keeps persistent RDDs in memory by default, but it can spill them to disk if there is not

enough RAM. Users can also force a custom partitioning to be applied to an RDD, based

on a key in each record.

As illustrated in Figure 2.1, Spark’s execution model is centered around a directed

acyclic graph of so called stages: whenever a user runs an action on an RDD, the Spark

Chapter 2. Background 23

Narrow Dependency Wide Dependency

Figure 2.1: Two Spark stages containing an example of narrow and
wide dependencies respectively. (The rectangles represent RDDs and their

partitions.)

scheduler examines that RDD’s lineage graph to build such a directed acyclic graph

(DAG) to execute. Spark differentiates two different kinds of sets of dependencies between

and RDD and its parents: narrow dependencies where each partition of the parent RDD

is used by at most one partition of the child RDD and wide dependencies, where multiple

child partitions may depend on a parent RDD partition.

Narrow dependencies allow for pipelined execution of multiple RDD transformations

on one cluster node. This allows for very efficient recovery in case of failure, since

only one parent RDD partition has to be recomputed in case a child RDD partition is

lost. In contrast, in a lineage graph with wide dependencies, a single failed node might

Chapter 2. Background 24

cause the loss of some partition from all the ancestors of an RDD, requiring a complete

re-execution. Therefore, Spark generally materializes intermediate records on the nodes

holding parent partitions with wide dependencies to simplify fault recovery in a similar

manner to MapReduce, which materializes map outputs. Spark also offers the ability to

checkpoint RDDs to stable storage, which is particularly helpful for applications with

very long lineage graphs such as iterative computations.

2.4 Machine Learning

Machine Learning (ML) can be defined as "a set of methods that can automatically detect

patterns in data, and then use the uncovered patterns to predict future data, or to perform

other kinds of decision making under uncertainty." [87]. Machine Learning is a currently

enormously popular field that comprises many different types of methods and settings. In

this thesis, we restrict ourselves to the methods that have shown to be effective and are

thus of relevance to the Big Data Analytics and distributed data processing setting.

The two canonical problems in Machine Learning are unsupervised learning, where the

task is to discover "interesting patterns" in unlabeled data and supervised learning where

we leverage labeled training data to learn a mapping from the inputs to the output labels

to be used for prediction on unseen data. In order to apply methods of machine learning

to real world data, we first have to find an appropriate (ideally numerical) representation

of the real world objects in question, called features, through a process known as feature

extraction. In the web setting, this may include the integration and parsing of massive

amounts of log files from user-facing web applications or raw textual content from the web

and subsequent extraction and transformation of various signals into numerical features

in the form of feature vectors x = (x1, . . . xn)
T . The entire training data set is usually

represented as a data matrix X ∈ R
(n×d) that contains all n training data samples where

d is the dimensionality of the feature space. In the context of distributed data processing

systems this matrix has to be partitioned across different machines. The most common

representation for this is a RowMatrix, where each row (ergo each sample vector x) of the

matrix is stored as an element of the distributed data set such as an Resilient Distributed

Data Set in Spark or a DataSet in Flink. This assumes that each row is small enough to

fit into the main memory of a single machine of the distributed data processing system, a

Chapter 2. Background 25

fair assumption in particular since most data sets tend to be highly sparse and can thus

be efficiently encoded. For the supervised learning setting, the label is usually stored in

the same element of the distributed data set as part of a labeled point data structure

that comprises both the sparse row vector and the associated label. In the remainder of

the section we will briefly introduce the notation and algorithmic concepts necessary for

the discussions in later chapters.

2.4.1 Unsupervised Learning

In unsupervised learning, we are faced with just a data matrix X ∈ R
(n×d) without any

associated label or class information. The task is then to discover interesting structures,

patterns or classes in the data that may be used as input to subsequent learning tasks

or to interpret the data. The most common unsupervised learning task is clustering.

Clustering partitions the data into subsets (or clusters) such that elements within one

cluster are similar to each other yet as dissimilar as possible to other clusters according to

some particular similarity function. Popular large scale applications of clustering methods

include: clustering of web text documents into categories, clustering of web search queries

into semantically similar groups or clustering of gene expressions into functionally-similar

clusters. A popular algorithm for clustering is k-means, which minimizes the intra-cluster

distances between the data points xi in a cluster j and it’s center (or centroid) µj : by

solving the following objective:

min

k
∑

j=1

∑

i∈Cj

||xi − µj | |
2

over the training data set X. Note that i ∈ Cj represents the indices of the data points

xi that are currently assigned to Cluster Cj . It assumes a Euclidean space and that the

number of clusters k be known beforehand. In k-means, the optimization problem is

solved with the heuristic laid out in Algorithm 1 where k cluster centers are initially

sampled from the data set, the euclidean distance to each of these so-called centroids,

where cj is the centroid of the j-th cluster, is computed for each data point and every

data point is assigned to its closest centroid, and the centroids subsequently updated for

each cluster that resulted.

Chapter 2. Background 26

Algorithm 1: k-means algorithm

choose k data points as the initial centroids (cluster centers) C

while k clusters did not converge do

forall xi ∈ X do

forall cj ∈ C do

compute the distance from xi to centroid cj

assign xi to the closest centroid cmin

re-compute the centroid using the current cluster memberships

Even for this simple yet quite common unsupervised learning algorithm we can see

the the algorithm is iterative in nature, and we will have to access the data set multiple

times, a circumstance that is problematic in the Hadoop MapReduce system.

2.4.2 Supervised Learning

In supervised learning, the canonical problem is to find a function f : X → Y that

accurately predicts a label y ∈ Y for unseen data based on a set of training samples

(xi, yi) ∈ X × Y which are commonly assumed to have been generated from the joint

distribution PX,Y . The objective of a supervised machine learning algorithm is to learn

a function f : R
N → R in the case of regression, or f : R

N → {0, 1} in the case of

classification, that accurately predicts the labels y on previously unseen data.

The actual task of learning is to fit the parameters (also called model weights) w of the

function fw : X → Y based on the training data and a loss function l : Y × Y → R which

encodes the fit between the known label y and the prediction fw (x). In order to avoid

that the model w captures idiosyncrasies of the input data rather than generalize well to

unseen data, a so-called regularization term Ω(w) that captures the model complexity

is often added to the objective (e.g., the L1 or L2 norm of w). With this, the generic

optimization problem which serves as a template of a supervised learning problem is given

by:

ŵ = argmin
w

∑

(x,y)∈(X,Y)

l (fw (x) , y) + λ · Ω (w)

Chapter 2. Background 27

Of course the optimization cannot be carried out on the actual data set we want to predict

on, but rather on a training set that already has the corresponding labels yi. We thus

aim to learn a prediction function that generalizes well from the training data used for

optimization to unseen data. Different instantiations of the function f , which may be

selected from different function classes, and the loss function l yield different learning

algorithms.

Solvers. The most commonly used loss functions have been designed to be both

convex and differentiable, which guarantees the existence of a minimizer ŵ. It also enables

the application of Batch Gradient Descent (BGD) as a solver. This algorithm performs

the following step using the gradient of the loss until convergence:

w′ = w − η

∑

(x,y)∈(X,Y)

∂

∂w
l (fw (x) , y) + λ

∂

∂w
Ω (w)

This generalized formulation of a gradient-decent update encodes the solutions to

a variety of data analytics tasks which be framed as convex optimization problems.

However, this solver requires iterating over the entire training data set multiple times

in a batch fashion. A more popular alternative is given by stochastic gradient descent

(SGD), where each data point, or a small "mini-batch" of data, is used to update the

model independently:

w′ = w − η

(

∂

∂w
l (fw (x) , y) + λ

∂

∂w
Ω (w)

)

We can see that both Stochastic Gradient Descent as well as Batch Gradient Descent

contain two so-called hyperparameters that are usually data set specific and have to be

searched for using held-out validation data: the learning rate η and the regularization

weight λ. Heuristics for the learning rate tend to use formulations that decay with

increasing number of iterations τ , for example: η√
τ

which we also rely on for some of

our experiments. Before we consider implementations of these methods on MapReduce

systems, we will first explore a very popular model class, namely logistic regression.

Chapter 2. Background 28

Logistic Regression

One of the most popular examples of supervised learning methods that fit this optimization

based approach is logistic regression, which is a generalized linear model for binary

classification leveraging the so-called logistic, logit or sigmoid function.

sigmoid (x) :=
1

1 + e−x

Logistic regression has empirically been shown to provide competitive if not superior

prediciton quality for large scale high-dimensional data [37] and has a long standing

history as a statistical method used in a variety of academic fields such as medical

research, econometrics or the social sciences in general. It is also a very popular choice

for supervised machine learning [14] - or at least seen as a solid baseline.

In logistic regression, the prediction function fw to be learned becomes:

fw (x) :=
1

1 + e−wT x

For a binary classification setting y ∈ {0, 1} we assume a Bernoulli distribution for y:

P (y|x,w) = Ber(y|µ(x))

and define µ(x) := fw(x) such that:

P (y|x,w) = (fw(x)
y(1− fw(x))

(1−y)

Learning the model then translates to minimizing the log-likelihood of the data given the

model:

l(w) = log(L(W)) = log(
n
∏

i=1

P (yi|xi, w)) = log(
n
∏

i=1

(fw(xi))
yi(1− fw(xi))

(1−yi))

the optimization problem to find the model weights then becomes:

argmax
w

−l(w) = argmax
w

−
n
∑

i=1

yi · log(fw(xi)) + (1− yi) · log(1− fw(xi)) + λ · Ω(xi)

Chapter 2. Background 29

There is no closed form solution for this problem. One does thus rely on methods such as

Gradient Descent or Newton-Raphson to solve it iteratively [92]. We will stick to gradient

descent methods for now. The derivative evaluates to

∂

∂wj
l(w) =

n
∑

i=1

(yi − fw(xi))x
(j)
i +

λ

n
w(j)

which can be used for the Gradient Descent updates as laid out above. Different

parametrizations of the components fw, l (fw (x) , y) and Ω(w) yield different super-

vised learning algorithms to which gradient descent can be applied analogously.

Gradient Descent Methods in MapReduce

While the implementation of Batch Gradient Descent (BGD) is rather straightforward

in the MapRedce model, given the fact that the loss function and thus also the gradient

decompose linearly, the implementation of Stochastic Gradient Descent is problematic.

For BGD, the partial sums of gradient updates can be computed locally on data partitions

in mappers, while a reducer sums up all gradient contributions or partial sums thereof

and subsequently performs the model update. Figure 2.2 illustrates this. The updated

model then has to be redistributed to the mappers by use of the distributed cache. For

Stochastic Gradient Descent however, the updated model has to be communicated to all

nodes after each update, so essentially after each single data point, which is practically

in-feasible. However since the execution of multiple global iterations (over the entire data

set as in BGD) is quite expensive in MapReduce, it has been proposed [71] to integrate

Stochastic Gradient Descent into a solution. In this model the mappers perform one or

more local, comparatively fast, SGD passes over their local data partitions to train one of

M local model fi(x) and the reducer then assembles a so-called ensemble model of the

data by averaging the individual model weights from the mappers

ŷ = argmax
y

M
∑

k=1

αkfk(x)

where αk = 1∀k by default. Alternatively, the ensemble prediction can be computed by

taking a majority vote of all trained models when classifying unseen data [83]. It has

Chapter 2. Background 30

map1

compute point-wise

gradients in mappers on

partitioned data (𝑋𝑘, 𝑌𝑘) ∈ (𝑋, 𝑌) map2 mapk

… 𝜕𝜕𝑤 𝑙(𝑓𝑤 𝑥 , 𝑦)

reduce

1. sum up partial gradient information

from all mappers

2. perform model update

current model w send to mappers via distributed cache

external driver programm triggers T

iterations of MapReduce computations

𝜕𝜕𝑤 𝑙(𝑓𝑤 𝑥 , 𝑦) 𝜕𝜕𝑤 𝑙(𝑓𝑤 𝑥 , 𝑦)

 𝜕𝜕𝑤 𝑙(𝑓𝑤 𝑥 , 𝑦)𝑥,𝑦 ∈(𝑋,𝑌)

𝑤′ = 𝑤 − 𝜂 𝜕𝜕𝑤 𝑙 𝑓𝑤 𝑥 , 𝑦 − 𝜆 𝜕𝜕𝑤Ω(𝑤)𝑥,𝑦 ∈(𝑋,𝑌)

Figure 2.2: Batch Gradient Descent computation in MapReduce: the
mappers compute partial sums of gradient information. A reduce oper-
ator aggregates all partial sums and performs the model update. This
computation is repeated for T iterations which have to be triggered by an

external driver iteration.

been shown empirically, that training an ensemble model on multiple partitions of the

data actually tends to deliver superior test set accuracy than running training one single

model using SGD on the same data [71]. A not entirely surprising effect since averaging

models characterized by similar inductive biases in an ensemble leads to a reduction of

the variance component of the ensemble when compared to an individual model [15].

Another approach is to use an averaged ensemble from all the mappers as a "warm-

start" initialization for a couple of global optimization steps (involving iterations of all

Chapter 2. Background 31

data partitions), potentially using a more sophisticated solver e.g., quasi-Newton methods

such as L-BFGS [17]. Such a hybrid model has been shown to significantly boost the

improvement of prediction quality per iteration of the warm-started global model.

As second generation data analytics systems like Spark and Flink all support the

efficient execution of iterative algorithms, one does not have to rely on such "algorith-

mic workarounds" designed to circumvent the deficiencies of MapReduce, but instead

implement global solvers. An interesting alternative is proposed with the HOGWILD!

algorithm [91]. The authors suggest asynchronous stochastic gradient descent (SGD)

solvers implemented without any locking, but rather permitting conflicting model updates

still converge and thus provide a more performant alternative to batch-type solvers.

However, neither Apache Spark nor Apache Flink are able to train models asynchronously,

thus we do not consider this approach. Interesting alternative system architectures called

Parameter Server have been proposed for this setting [74] that are beyond the scope of

this thesis.

2.5 Benchmarking

Benchmarking of data processing systems has a long standing history in the database

community and is largely driven by industry-controlled consortia. One of them, the

Transaction Processing Performance Council (TPC) grew out of an effort to provide a

suitable benchmark and benchmarking process for the evaluation of online transaction

processing (OLTP) systems [54] that were rapidly gaining popularity in the 1980s. Its

goal is to define transaction processing and database benchmarks and to disseminate

objective, verifiable TPC performance data to the industry. On the other hand, the

Standard Performance Evaluation Corporation (SPEC) has a somewhat broader focus

as it establishes, maintains and endorses standardized benchmarks and tools to evaluate

hardware and software components. Both exist in the form of a non-profit corporation.

The main objective of standardized benchmarks is to enable a fair, reproducible

and relevant comparison of data processing systems and products. Kistowski et al.

define a benchmark as a “Standard tool for the competitive evaluation and comparison of

competing systems or components according to specific characteristics, such as performance,

dependability, or security” [108]. This is a challenging problem given that vendors compete

Chapter 2. Background 32

fiercely in the market for data processing systems and may fall for the temptation of

indulging in benchmarketing. The main objective of the aforementioned industry driven

consortia is thus to create a level playing field and to ensure that the benchmark workloads

do in fact represent popular customer applications and that the measurements and metrics

are relevant and results repeatable. Additionally all systems, products, and technologies

used for these benchmarks have to be generally available to users. The process of

developing and accepting Benchmark carried out by consortia such as SPEC or TPC are

usually carried out under consortia confidentiality agreements. [108] In this context there

exist two different kinds of benchmarks: specification based benchmarks where only the

workload is specified leaving the implementation of that specification up to the user of

the benchmark. Lately, express benchmarks that come with a "kit" that already includes

the workload implementations have also been introduced [68].

The benchmarks most relevant to the topics covered in the thesis are:

• TPC Express™ Big Bench (TPCx-BB) is an application benchmark for Big

Data targeting Big Data Analytics Systems (BDAS) with simple ETL and analytical

workloads [21,59]. It does not cover machine learning workloads.

• TPC Express Benchmark™ HS (TPCx-HS) is a benchmark developed to

evaluate commercial Apache Hadoop File System API compatible software distribu-

tions such as Apache Hadoop itself or Apache Spark. It aims to provide verifiable

performance, price-performance and availability metrics and comprises an extended

version of the TeraSort [88].

• TPC Benchmark™ DS (TPC-DS) is a benchmark targeting general purpose

decision support systems [89]. The associated workload contains both business

intelligence queries as well as data maintenance aspects.

While these benchmarks are widely accepted in industry, the motivation when devel-

oping and carrying out benchmark experiments in academia is usually different. While

the resulting workloads, metrics and experiments might very well be adopted by industry

consortia for future benchmarks, the primary goal in an academic setting is to "stress"

the systems in order to discover potential shortcomings that can serve as a starting point

Chapter 2. Background 33

for further investigation and development, rather than running a competitive evaluation

of different products.

In [56] the authors provide a summary of the requirements a "good benchmark" ought

to fulfill: First, the benchmark should be targeting a substantial target audience and

measure relevant, typical operations in the targeted problem domain while remaining

be simple, understandable and affordable to run. Second, the implementation of the

benchmark should be fair and portable, repeatable, configurable and comprehensive

enough to cover all major features of the systems under test. Finally, a good benchmark

should provide a flexible performance analysis framework which allows the users to

configure and customize the workloads of the benchmark. The workloads themselves

should be representative, scalable and be measured with meaningful and understandable

metrics.

34

3 Benchmarking Scalability

3.1 Problem Statement

In this chapter, we present one of the most important aspects in the context of bench-

marking data processing systems for scalable machine learning workloads: addressing

all relevant dimensions of scalability. In Section 2.1, we have stressed the fact that the

major design goals and requirements that distributed data processing systems were built

to adhere to are: to robustly scale data-intensive computations to very large data sets

on clusters of commodity hardware. The second generation data processing systems

presented in Section 2.3 essentially stuck to the paradigm of distributed dataflow when

trying to address the identified shortcomings of the first generation systems, namely

efficiently executing iterative computations. However, these second generation systems

were still designed as general purpose data processing systems that also excel at scaling

up the execution of machine learning algorithms - and not as systems that solely and

efficiently support the scalable execution of machine learning systems.

We consider the two most prominent representative systems that managed to morph

from research prototypes into production systems enjoying widespread adoption in in-

dustry: Apache Spark and Apache Flink as introduced in Section 2.3. However the

experiments outlined are of relevance to a broader set of systems that target similar

workloads. While these second generation big data analytics systems have been shown to

outperform Hadoop for canonical iterative workloads [55,113], it remains an open question

how they perform in executing large scale machine learning algorithms. In this context,

the motivations to scale up computations tend to be much broader than facing a high

volume of data [23].

Consider the prominent problem of click-through rate prediction for online advertise-

ments, a crucial building block in the multi-billion dollar online advertisement industry,

Chapter 3. Benchmarking Scalability 35

as an example for large scale machine learning. To maximize revenue, platforms serving

online advertisements must accurately, quickly and reliably predict the expected user

behaviour for each displayed advertisement. These prediction models are trained on hun-

dreds of terabytes of data with hundreds of billions of training samples . The data tends

to be very sparse (10-100 non-zero features) but at the same time very high-dimensional

(up to 100 billion unique features [35]). For this important problem, algorithms such as

regularized logistic regression that we introduced in Section 2.4.2 are still the method of

choice [39,65,78,84]). Generalized linear methods, such as logistic regression, are a popular

choice for general supervised learning settings [14] with very large data sets [71]. Since

they cannot handle feature dependencies directly, combinations of features ("crossings")

have to be added manually. This feature crossing leads to very high-dimensional training

data sets after expansion even if the original data dimensionality was modest.

In the context of scalable, distributed machine learning, there are thus multiple

dimensions of scalability that are of particular interest:

1. Scaling the Data: scaling the training of (supervised) machine learning models

to extremely large data sets (in terms of the number of observations contained) is

probably the most well-established notion of scalability in this context, as it has

been shown that even simple models can outperform more complex approaches

when trained on sufficiently large data sets [28, 64]. The widespread dissemination

of global web applications that generate tremendous amounts of log data pushed

the relevance of this dimension of scalabiliy early on.

2. Scaling the Model Size: many large-scale machine learning problems exhibit very

high-dimensionality. For example, classification algorithms that draw on textual

data based on individual words or n-grams easily contain 100 million dimensions

or more in particular in light of combinations of features, models for click-through

rate prediction for online advertisements can reach up to 100 billion dimensions [35].

For these use cases, being able to efficiently handle high-dimensional models is a

crucial requirement as well.

Chapter 3. Benchmarking Scalability 36

3. Scaling the Number of Models: To optimize hyper-parameters, many models

with sightly different parameters are usually trained in parallel to perform grid

search for these parameters.

Ideally, a system suited for scalable machine learning should efficiently support all

three of these dimensions. However, since scaling the number of models to be trained in

parallel is an embarrassingly parallel problem, we focus on the first two aspects: scaling

the data and scaling the model dimensionality.

3.2 Contributions

We introduce a representative set of distributed machine learning algorithms that are

suitable for large scale distributed settings comprising logistic regression and k-means

clustering, which have close resemblance to industry-relevant applications and provide

potentially generalizable insights into system performance. We implement mathematically

equivalent versions of these algorithms in Apache Flink and Apache Spark, tune relevant

system parameters and run a comprehensive set of experiments to assess their performance.

Additionally, we explore efficient single-node and single-threaded implementations of these

machine learning algorithms to investigate the overhead that is incurred due to the use of

the JVM and Scala as well as the distributed setting and to put the scalability results

into perspective as has been suggested in [85].

Contrary to existing benchmarks, which assess the performance of Flink, Spark or

Hadoop with non-representative workloads such as WordCount, Grep or Sort, we evaluate

the performance of these systems for scalable machine learning algorithms.

In order to solve the problem of how to objectively and robustly assess and compare

the performance of distributed data processing platforms for machine learning workloads,

we present the following major contributions:

1. We present a distributed machine learning benchmark for distributed data pro-

cessing systems, an in-depth description of the individual algorithms, metrics and

experiments to assess the performance and scalability characteristics of the sys-

tems for representative machine learning workloads as well as a detailed analysis

Chapter 3. Benchmarking Scalability 37

and discussion of comprehensive experimental evaluations of distributed dataflow

systems.

2. To ensure reproducibility, we provide our benchmark algorithms on top of Apache

Flink and Apache Spark as open-source software. By providing simple reference

implementations of a small set of core algorithms, we want to make it easier for new

software frameworks to compare themselves to existing frameworks.

3. The results of our experimental evaluation indicate that, while being able to robustly

scale with increasing data set sizes, current state-of-the-art data flow systems for

distributed data processing, such as Apache Spark or Apache Flink, struggle with

the efficient execution of machine learning algorithms on high-dimensional data, an

issue that deserves further investigation.

3.3 Overview

The rest of this chapter is structured as follows: in Section 3.4 we present a detailed

discussion of the chosen machine learning workloads and their implementations in the

data flow systems. In Section 3.6 we provide important parameters that have to be set

and tuned in each system under test. Section 3.5 introduces the metrics and experiments

that constitute the benchmark and Section 3.7 provides concrete results and a discussion

of the comprehensive experimental evaluation of the benchmark workloads and systems

under evaluation. In Section 3.8 we discuss related work in the area of benchmarking

distributed data processing systems before we conclude and summarize our findings in

Section 3.9.

3.4 Benchmark Workloads

In this section, we outline the main algorithms that constitute the benchmark workloads.

As was laid out in the introduction, our goal is to provide a fair and insightful benchmark,

which is in line with the desiderata outlined in Section 2.5 and reflects the requirements

of real-world machine learning applications that are deployed in production and generates

meaningful results. To achieve this, we propose algorithms that are successfully applied

Chapter 3. Benchmarking Scalability 38

in the context of very large data sets and strive for truly equivalent and thus fair

implementations of these algorithms on the various systems under test. We do not rely on

existing library implementations, but use the very same data structures and abstractions

for vectors and mathematical operations.

3.4.1 Supervised Learning

As was introduced in Section 2.4.2, the goal in supervised learning is to learn a function fw,

which can accurately predict the labels y ∈ Y for data points x ∈ X given a set of labeled

training examples (xi, yi). The actual task of learning a model is to fit the parameters w

of the function fw based on the training data and a loss function l (fw (x) , y). To avoid

overfitting, a regularization term Ω (w) that captures the model complexity is added to the

objective. Different parametrizations of the components fw, l (fw (x) , y) and Ω (w) yield

a variety of different supervised learning algorithms including SVMs, LASSO and RIDGE

regression as well as logistic regression. For the important problem of click-through rate

prediction for online advertisements, algorithms, such as regularized logistic regression,

are still the method of choice [39, 65, 78, 84]. We choose regularized logistic regression

for this workload, however, as long as we ensure that we always measure the exact same

methods on all systems, the results of our experiments provide generlizable insights into

the systems performance.

Solvers

The most commonly used loss functions were designed to be both convex and differentiable,

which guarantees the existence of a minimizer ŵ. This circumstance enables the application

of batch gradient descent (BGD) as a solver, as we introduced in Section 2.4.2. This

algorithm performs the following step using the gradient of the loss until convergence:

w′ = w − η

∑

(x,y)∈(X,Y)

∂

∂w
l (fw (x) , y) + λ

∂

∂w
Ω (w)

We choose and implement this solver, because, while not being the method of choice,

it actually represents the data flow and I/O footprint exhibited by a wide variety of

(potentially more complex) optimization algorithms [92], such as L-BFGS [79] or TRON

Chapter 3. Benchmarking Scalability 39

[75]. While different parametrizations of loss function l (fw (x) , y), regularizer Ω(w)

and prediction function fw may lead to different algorithms. They can all be learned

with batch gradient descent solvers or similar algorithms that express a comparable

"computational footprint". All of these gradient descent solvers can be captured by

the Iterative Map-Reduce-Update pattern [32]. In this pattern, an iterative algorithm is

subdivided into a map to compute the gradient components, a reduce to globally aggregate

all components and an update step to revise the machine learning model vector.

Implementation

Rather than depending on existing machine learning library implementations, we imple-

ment all learning algorithms from scratch, to ensure that we analyze the performance

of the underlying systems and not implementation details. As a common linear algebra

abstraction we use the Breeze library1 for numerical processing. Data points are repre-

sented as SparseVectors that maintain two arrays: one containing the indices of non-zero

dimensions and one containing the values for these non-zero dimensions. The labeled data

points are represented by the class LabeledPoint that included the SparseVectors and

ensured that they could properly serialized by all systems under test. As we discussed

in Section 2.4.2, the straightforward implementation strategy for batch gradient descent

is as follows (depicted in Figure 3.1): each mapper reads the local partitions of training

data from the distributed file system and processes it each data point at a time. Inside

the mapper, we compute the gradient per point and emit one summand for the global

update which is performed inside a reducer.

Alternatively, we can leverage the MapPartition operator in both Spark and Flink,

which provides us with an iterator of the entire data partition, rather than just a data point

per function call. This enables the pre-aggregation of partial sums inside the user-defined

function as depicted in Figure 3.2. While both Spark and Flink should automatically add

a combiner to the aforementioned MapReduce implementation, which also pre-aggregates

the gradient contributions on the mapper side, the MapPartition-based implementation

ensures that we do not unnecessarily serialize and deserialze partial sum vectors before

aggregating them. Additionally, Spark also provides an operator seemingly tailored

1https://github.com/scalanlp/breeze

https://github.com/scalanlp/breeze

Chapter 3. Benchmarking Scalability 40

map1
map2 mapk

… 𝜕𝜕𝑤 𝑙(𝑓𝑤 𝑥 , 𝑦)

reduce

1. sum up partial gradient information

from all mappers

2. perform model update

current model w distributed via broadcast variable

𝜕𝜕𝑤 𝑙(𝑓𝑤 𝑥 , 𝑦) 𝜕𝜕𝑤 𝑙(𝑓𝑤 𝑥 , 𝑦)

 𝜕𝜕𝑤 𝑙(𝑓𝑤 𝑥 , 𝑦)𝑥,𝑦 ∈(𝑋,𝑌)

𝑤′ = 𝑤 − 𝜂 𝜕𝜕𝑤 𝑙 𝑓𝑤 𝑥 , 𝑦 − 𝜆 𝜕𝜕𝑤Ω(𝑤)𝑥,𝑦 ∈(𝑋,𝑌)

compute point-wise

gradients in mappers on

partitioned data (𝑋𝑘, 𝑌𝑘) ∈ (𝑋, 𝑌)

Figure 3.1: Batch Gradient Descent using Map and Reduce

towards aggregating model updates called TreeAggregate. It combines the partials sums

in a tree-like multi-level aggregation on a small set of executors before sending the results

to the driver. We evaluated all available implementation variants and their performance.

The results are shown in Figure 3.5 and discussed in Section 3.7.1. Based on these

findings, we choose the following implementations for the benchmark experiments: In

Flink, we implement batch gradient descent as MapPartition functions, which compute

the individual BGD updates and pre-aggregate partial sums of gradients, which are

ultimately summed up in a global reduce step. This is the more performant alternative to

using a map() to compute the gradients and summing them up in a subsequent reduce()

step during experimental evaluation as we later show in our experimental evaluation

Chapter 3. Benchmarking Scalability 41

MapPartition1
MapPartition2 MapPartitionk

…

reduce

1. aggregate partial sums from all

partitons

2. perform model update

current model w distributed via broadcast variable

 𝜕𝜕𝑤 𝑙(𝑓𝑤 𝑥 , 𝑦)𝑥,𝑦 ∈(𝑋1,𝑌1) 𝜕𝜕𝑤 𝑙(𝑓𝑤 𝑥 , 𝑦)𝑥,𝑦 ∈(𝑋𝑘,𝑌𝑘) 𝜕𝜕𝑤 𝑙(𝑓𝑤 𝑥 , 𝑦)𝑥,𝑦 ∈(𝑋2,𝑌2)

compute gradients for all

data points in data

partition (𝑋𝑘, 𝑌𝑘) ∈𝑋, 𝑌 and aggreagte

data in partial sum

Figure 3.2: Batch Gradient Descent using MapPartition

(see Figure 3.5). To efficiently iterate over the training data set, we utilize Flink’s batch

iterate() operator, which feeds data back from the last operator in the iterative part of

the data flow to the first operator in the iterative part of the data flow and thus attempts

to keep loop-invariant data in memory. The weight vector of the model is distributed to

the individual tasks a broadcast variable.

In Spark, we leverage the TreeAggregate() to perform the batch gradient descent

computation and update, aggregating the partial updates in a multi-level tree pattern.

The weight vector of the model is also distributed to the individual tasks as a broadcast

variable. The TreeAggregate() implementation is more robust (i.e. crashes less often

with OutOfMemory exceptions) for higher dimensionalities than a MapPartition imple-

mentation and more performant than a map() - reduce() implementation as we later

show (see Figure 3.5). The iterations are simply encoded as plain loops in Scala, thus no

Chapter 3. Benchmarking Scalability 42

specific operator for iterative computations is needed.

Listing 3.1: Flink implementation of the k-means algorithm

1 def computeBreezeClustering(points: DataSet[BDVector[Double]], centroids:

2 DataSet[(Int, BDVector[Double])], iterations: Int): DataSet[(Int,

3 BDVector[Double])] = {

4 val finalCentroids: DataSet[(Int, BDVector[Double])] =

5 centroids.iterate(iterations) { currentCentroids =>

6 val newCentroids = points

7 .map(new breezeSelectNearestCenter).withBroadcastSet(currentCentroids, "centroids")

8 .groupBy(0)

9 .reduce((p1, p2) => {(p1._1, p1._2 + p2._2, p1._3 + p2._3)}).withForwardedFields("_1")

10

11 val avgNewCentroids = newCentroids

12 .map(x => {

13 val avgCenter = x._2 / x._3.toDouble

14 (x._1, avgCenter)

15 }).withForwardedFields("_1")

16

17 avgNewCentroids

18 }

19

20 finalCentroids

21 }}

3.4.2 Unsupervised learning

For unsupervised learning, we choose to implement the popular k-means clustering

algorithm introduced in Section 2.4.1. As we introduced in Section 2.4.2, it solves the

following objective:
min

k
∑

j=1

∑

i∈C
||xi − µj | |

2

with the heuristic where k cluster centers are sampled from the data set. This is once

again an iterative algorithm, which is implemented using a loop in Spark and the native

iteration operator in Apache Flink. The centroids are sent to the worker / executor

machines as broadcast variables. We use a RichMapFunction() in Flink and a map()

in Spark to compute the nearest centers for all data points in the partition. Next, we

aggregate the results by centroids, which boils down to the usage of the groupBy()

and reduce() operator in Flink and the reduceByKey() operator in Spark. Listings 3.1

Chapter 3. Benchmarking Scalability 43

and 3.2 show the implementation in Flink and Spark respectively. In Listing 3.1, the

@ForwardedFields function annotation provides a hint to the Flink optimizer to generate

an efficient execution plan. Such annotations declare fields that are not manipulated

by the annotated function and thus forwarded untouched at the same position to the

output. Spark provides the reduceByKey() operator to be used instead of groupByKey()

which would need to be shuffled around all the key-value pairs and a subsequent map()

to aggregate. reduceByKey() indicates to Spark that it can combine output tuples with

the same key on each partition before shuffling the data points.

Chapter 3. Benchmarking Scalability 44

Listing 3.2: Spark implementation of the k-means algorithm

1 def computeBreezeClustering(data: RDD[BDVector[Double]],

2 centroids: Array[(Int, BDVector[Double])],

3 maxIterations: Int): Array[(Int,

4 BDVector[Double])] = {

5 var iterations = 0

6 var currentCentroids = centroids

7

8 while(iterations < maxIterations) {

9

10 val bcCentroids = data.context.broadcast(currentCentroids)

11

12 val newCentroids: RDD[(Int, (BDVector[Double], Long))] = data.map (point => {

13 var minDistance: Double = Double.MaxValue

14 var closestCentroidId: Int = -1

15 val centers = bcCentroids.value

16

17 centers.foreach(c => { // c = (idx, centroid)

18 val distance = squaredDistance(point, c._2)

19 if (distance < minDistance) {

20 minDistance = distance

21 closestCentroidId = c._1

22 }

23 })

24

25 (closestCentroidId, (point, 1L))

26 }).reduceByKey(mergeContribs)

27

28 currentCentroids = newCentroids

29 .map(x => {

30 val (center, count) = x._2

31 val avgCenter = center / count.toDouble

32 (x._1, avgCenter)

33 }).collect()

34

35 iterations += 1

36 }

37 currentCentroids

38 }

Chapter 3. Benchmarking Scalability 45

3.5 Benchmark Dimensions and Settings

In this section, we present the data generation strategies, data sets, experiments as well

as metrics and measurements that constitute the scalability benchmark. Furthermore,

we provide the specification of the hardware that we relied upon for our experimental

evaluation.

3.5.1 Scalability

As we discussed in Section 2.2, traditionally, in the context of high performance computing

(HPC), scalability is evaluated in two different notions:

Strong Scaling: is defined as how the runtime of an algorithm varies with the

number of processors of nodes for a fixed total problem size.

Weak Scaling: is defined as how the runtime of an algorithm varies with the number

of nodes for a fixed problem size per node, thus a data size proportional to the number of

nodes.

While these metrics have their merit in the evaluation of scalability of distributed

algorithms on distributed systems, when it comes to scaling machine learning algorithms

on distributed systems for real-world use cases, two other aspects become the primary

concern, namely:

Scaling the Data: How does the algorithm runtime behave when the size of the

data (number of data points) increases?

Scaling the Model Dimensionality: How does the algorithm runtime behave when

the size of the model (number of dimensions) increases?

The main motivation for introducing distributed processing systems into production

environments is usually the ability to robustly scale an application with a growing

production workload (e.g. growing user base), by simply adding more hardware nodes.

However, in the short run, the hardware setup is usually fixed (e.g. assuming an on-

premise solution). We thus need to introduce two new experiments to adequately capture

the desired scaling dimensions data and model :

Experiment 1: Production Scaling: Measure the runtime for training a model

while varying the size of the training data set for a fixed cluster setup (model size fixed)

Chapter 3. Benchmarking Scalability 46

Experiment 2: Model Dimensionality Scaling: Measure the runtime for training

a model on a fixed-size cluster setup and fixed training data set size.

We complete the scalability experiments by adding a the traditional scaling experiment:

Experiment 3: Strong Scaling: Measure the runtime for training a model for a

varying number of cluster compute nodes while holding the data set size and dimensionality

fixed.

Figure 3.3 illustrates these three experiments and the parameters that are varied

within each of them. In practice, the ability to scale the number of models i.e. to

evaluate different hyperparameter settings is also a relevant dimension, however, since

this is essentially an embarrassingly parallel task, we consider it outside the scope of this

thesis.

nodes # data points # dimensions

Production Scaling const. const.

Strong Scaling const. const.

Model Scaling const. const.

Figure 3.3: Overview of the different scalability experiments and associ-
ated parameters to be varied.

3.5.2 Absolute and Single Machine Runtimes

Next to analyzing the scalability properties of the systems under test, we also measure and

report the absolute runtimes for a fixed data set size and compare these to the runtime

of single machine and single threaded implementations of the algorithms presented in

Section 3.4.1 as suggested in [85]. We choose the LibLinear2 solver as an efficient C++

single-threaded implementation and transformed the implementation of the solver to plain

batch gradient descend (BGD) to foster a fair comparison.

Experiment 4: Evaluation of Single Machine Performance Measure the run-

time for training a model while varying the number of machines and model dimensionality

2https://www.csie.ntu.edu.tw/~cjlin/liblinear/

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

Chapter 3. Benchmarking Scalability 47

(keeping the size of the training data set fixed) as well as the runtime of a single-threaded

implementation

3.5.3 Model Quality

The main focus of the work presented in this chapter is on evaluating the scalability

behavior of distributed data processing systems when executing machine learning work-

loads. We do not evaluate prediction quality directly as part of this component of the

benchmark. Contrary to traditional benchmarks of database systems and distributed

data processing systems we introduced in Section 2.5, it cannot be assumed that all

queries will produce the same result set. In machine learning different algorithms - or even

variants of the same algorithm - can produce different results. To ensure that potentially

different convergence properties of the optimization algorithms have no impact on the

measurements, we decided to rely on mathematically equivalent implementations for

both supervised and unsupervised workloads across all systems. We validated that all

implementations do converge to the same model weights given the same data and verified

that the prediction accuracy is identical across systems as well as within the expected

range. All experiments are then executed for a fixed number of iterations, which is the

same across all systems.

Figure 3.3 provides an overview of all the proposed experiments and the parameters

that are varied within each of them.

3.5.4 Cluster Hardware

We run our supervised and unsupervised learning benchmark experiments on the following

homogeneous cluster nodes:

Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz CPU with 8 hyperthreads, 16 GB

RAM, 3x1TB hard disks (linux software RAID0) which are connected via 1 GBit Ethernet

NIC via a HP 5412-92G-PoE+-4G v2 zl switch.

Chapter 3. Benchmarking Scalability 48

3.5.5 Data Sets

We rely on generated data for the unsupervised learning experiments. We sample 100-

dimensional data from k Gaussian distributions and add uniform random noise to the

data, similar to the data generation for k-means in Mahout [10] and HiBench [67].

For the supervised learning experiments, we use parts of the Criteo Click Logs3 data

set. This data set contains feature values and click feedback for millions of display ads

drawn from a portion of Criteo’s traffic over a period of 24 days. Its purpose is to

benchmark algorithms for click through rate (CTR) prediction. It consists of 13 numeric

and 26 categorical features. In its entirety, the data set spawns about 4 billion data points,

has a size of 1.5 TB. Our experiments are based on days 0,1,2,3,5 and 6 of the data set.

Criteo part num data points raw size in GB
day0 195,841,983 46.35
day1 199,563,535 47.22
day2 196,792,019 46.56
day3 181,115,208 42.79
day5 172,548,507 40.71
day6 204,846,845 48.50
total 1,150,708,097 272.14

Table 3.1: Subset of the Criteo data set used in the experiments.

As a pre-processing step, we expand the categorical features in the data set using the

hashing trick [111]. The hashing trick vectorizes the categorical variables by applying a

hash function to the feature values and using the hash values as indices. Potential collisions

do not significantly reduce the accuracy in practice and do not alter the computational

footprint of the training algorithm. This allows us to control the dimensionality of the

training data set via the size of the hash vector. Experiments with fixed dimensionality d

were executed for d = 1000. The subset based on days 0,1,2,3,5 and 6 results in a data

set of roughly 530 GB in size, when hashed to 1000 dimensions. As collisions become

less likely with higher dimensional hash vectors, the data set sizes increases slightly with

higher dimensionality. However, since the data set size is always identical for all systems,

this effect does not perturb our findings. Different data set sizes have been generated by

3http://labs.Criteo.com/downloads/download-terabyte-click-logs/

 http://labs.Criteo.com/downloads/download-terabyte-click-logs/

Chapter 3. Benchmarking Scalability 49

sub- and super-sampling the data. A scaling factor of 1.0 refers to the Criteo subset as

presented in Table 3.1 which contains about 1.15 billion data points.

3.6 System Parameter Configuration

In Section 2.3 we already introduced the systems background necessary. While Apache

Flink and Spark are both data flow systems, the architecture and configuration settings

that have to be set and potentially tuned by the user differ substantially between the

two systems. We will present and discuss the concepts behind the relevant parameters

as well as the rationale for setting or tuning them in this section. In general, we rely on

"reasonable best effort” for tuning, referring to best practices published in each system’s

documentation as well as the associated open source mailing lists and related work.

3.6.1 Parallelism

In a Flink cluster, each node runs a TaskManager with a fixed number of processing

slots, generally proportional to the number of available CPUs per node. Flink executes

a program in parallel by splitting it into subtasks and scheduling these subtasks to

individual processing slots. Once set, the number of slots serves as the maximum of

possible parallel tasks and is used as the default parallelism of all operators. We follow

the Flink recommendation outlined in the configuration guide and set the number of task

slots equal to the number of available CPU cores in the cluster. This generally triggers an

initial re-partitioning phase in a job, as the number of HDFS blocks is rarely equivalent

to the desired number of subtasks.

In Spark, each worker node runs Executors with the ability to run executor.cores

number of tasks concurrently. The actual degree of parallelism (number of tasks per

stage) is furthermore determined by the number of partitions of the RDD (number of

HDFS blocks the input data set by default), where the resulting parallelism is given by:

min (numExecutors× coresPerExecutor, numPartitions)

Chapter 3. Benchmarking Scalability 50

Following the Spark recommendation outlined in the configuration guide, we set executor.cores

equal to the number of cpu cores available in the cluster and set the parallelism (number

of RDD partitions) to three times the number of CPU cores available in the cluster.

Figure 3.4: l2-regularized logistic regression training in Apache Spark
with increasing data set size for a fixed number of nodes and different
RDD StorageLevels. The left-hand side contains the runtimes for small

data set sizes.

3.6.2 Caching

Contrary to Flink, Spark allows for the explicit caching of RDDs in Memory. For this,

the user can choose one of four different Storage Levels4:

MEMORY_ONLY stores the RDD as deserialized Java objects in the JVM. If the RDD

does not fit in memory, some partitions will not be cached and will be recomputed on the

fly each time that they are needed.

MEMORY_AND_DISK stores the RDD as deserialized Java objects in the JVM. However,

if the RDD does not fit in memory, partitions that do not fit are stored on disk, and read

from there whenever they are needed.

4https://spark.apache.org/docs/1.6.2/programming-guide.html#rdd-persistence

https://spark.apache.org/docs/1.6.2/programming-guide.html#rdd-persistence

Chapter 3. Benchmarking Scalability 51

MEMORY_ONLY_SERIALIZED: the RDD is stored as serialized Java objects (one byte

array per partition). This representation is generally more space-efficient than deserialized

objects but more CPU-intensive to read.

MEMORY_AND_DISK_SERIALIZED: the RDD is stored as serialized Java objects (one

byte array per partition), but partitions that do not fit into memory are spilled to disk

instead of recomputing them on the fly each time that they are needed. Note that since

the partitions which are spilled to disk are also written out in serialized form, the disk

footprint is smaller than in the MEMORY_AND_DISK case.

In order to understand the impact of the different Storage Levels for a typical

machine learning workload, we run ten iterations of gradient descent training of a l2-

regularized logistic regression model on the Criteo data set for different StorageLevel

settings on 30 compute nodes (details in Section 3.5.4).

Figure 3.4 shows the runtime results of our evaluation for increasing input data set

sizes. It is apparent that the RDDs no longer fit into the combined memory of the cluster

for the two non-serialized StorageLevels above a data set size of 0.2. Performance

significantly degrades, as partitions that do not fit into memory have to be re-read from

disk or re-computed, where re-computation (MEMORY_ONLY) seems to be more expensive

than re-reading partitions from disk (MEMORY_AND_DISK). The two serialized strategies

show significantly better performance after a data set size of 0.2, as the serialized RDD

partitions are more compact and still fit into the combined memory up until a data set size

of 0.6. Beyond this point, partitions have to be re-read from disk or re-computed as well,

where once again the StorageLevel relying on re-reading partitions from disk performs

slightly better than the one that recomputes partitions that do not fit into memory.

Based on these results, we chose (MEMORY_AND_DISK_SERIALIZED) as the StorageLevel

for all subsequent benchmark experiments. It consistently outperforms all other storage

strategies, except for very small data set sizes (data set size 0.1 - 0.2) where it still

shows comparable performance to the non-serialized StorageLevels. Interestingly, the

overhead incurred for serializing and writing out to disk seems to be limited, such that

MEMORY_ONLY is only the fastest caching strategy at comparatively small data set sizes

(0.1) and quickly outperformed by MEMORY_AND_DISK at a data scaling factor of 0.2 as can

be seen on the left-hand side of Figure 3.4.

Apache Flink does not allow the user to cache DataSets explicitly, but provides

Chapter 3. Benchmarking Scalability 52

a native iteration operator which prompts the optimizer to cache the data. We thus

implemented all benchmark algorithms with this operator.

3.6.3 Buffers

Network buffers are a critical resource of communication. They are used to buffer records

before transmission over a network, to buffer incoming data before dissecting it into

records and handing them to the application. In Flink, the user can adjust both the

number and size of the buffers. While Flink suggests to use approximately

numCores2 × numMachines× 4

buffers, we found that a higher setting is advantageous for machine learning workloads and

thus set the buffers to: numberOfBuffers = 16384 and bufferSizeInBytes = 16384.

3.6.4 Serialization

By default, Spark serializes objects using the Java serialization framework, however,

Spark can also use the Kryo5 library to serialize objects more quickly when classes are

registered. Flink on the other hand comes with its own custom serialization framework

which attempts to assess the data type of user objects with help of the Scala compiler and

represent it via TypeInformation. Each TypeInformation provides a serializer for the

corresponding data type which it represents. For any data type that cannot be identified

as another type, Flink returns a serializer that delegates serialization to Kryo. In order to

ensure a fair assessment of the systems under test, decided to force both systems to use

Kryo as a serializer and provided custom serialization routines for the data points in both

Spark and Flink.

3.6.5 Broadcast

Both Spark and Flink provide means to make available variables inside operators that

run distributed across machines by declaring them as so-called broadcast variables. While

Flink does not allow the user to control the broadcast method used, Spark actually

5https://github.com/EsotericSoftware/kryo

https://github.com/EsotericSoftware/kryo

Chapter 3. Benchmarking Scalability 53

provides multiple alternative broadcast strategies that can be chosen. Next to the tra-

ditional HttpBroadcast, Spark also offers TorrentBroadcast. Here the driver machine

that orchestrates the executers which carry out the actual computations, divides the

broadcast variable into multiple chunks after it has been serialized and broadcasts the

chunks to different executors. Subsequently, executors can fetch chunks individually

from other executors that have fetched the chunks previously, rather than having to

rely on communication to the driver alone, which can quickly become the bottleneck

when broadcasting large broadcast variables such as weight vectors of machine learn-

ing models after an update computation. We thus set spark.broadcast.factory to

TorrentBroadcastFactory for all of our experiments.

3.7 Benchmark Results: Experiments and Evaluation

In this section, we present the results of our experimental evaluation of the presented

systems for the different benchmark workloads. We ran all experiments using Flink 1.0.3

and Spark 1.6.2 in stand-alone mode.

3.7.1 Supervised Learning

Production Scaling

Figure 3.5 shows the runtimes for 5 iterations of batch gradient descent learning of a

l2-regularized logistic regression model. We evaluate different implementation strategies

(MapReduce, MapPartition and TreeAggregate) as introduced in Section 3.4.1 in both

Spark and Flink. We measure the runtime for different data set sizes by scaling the Criteo

data set, which was hashed to 1000 dimensions.

While Flink strives to be declarative and to delegate the choice of physical execution

plans to the optimizer, this experiment clearly shows that even for simple workloads

such as batch gradient descent, the choice of implementation strategy matters and has

a noticeable effect on performance for both Spark and Flink. Users must thus still be

aware of the performance implications of implementation choices in order to efficiently

implement scalable machine learning algorithms on these data flow systems. It can be seen

that the MapPartition-based implementations, which pre-aggregate the partial gradient

Chapter 3. Benchmarking Scalability 54

Figure 3.5: Production scaling experiment: We measure the runtime
of different implementation strategies for l2 regularized logistic regression
on a fixed set of 23 nodes for linearly growing data set sizes with 1000

dimensions.

sums in the user code, as well as the TreeAggregate implementation in Spark outperform

the MapReduce-based implementation which rely on the system to place combiners on map

outputs to efficiently aggregate the individual gradients. The slightly worse performance

of Flink is due to unfortunate use of a newer version of the Kryo library, leading to

constant re-building of cached fields for the Breeze SparseVectors, which are aggregated in

the reduce phase. Overall, however, all implementations on all systems show the desired

scaling behaviour and exhibit linearly increasing runtime with increasing data set sizes.

It is also noteworthy that both Spark and Flink show seamless out-of-core performance

as the data set is scaled from moderate 230 million up to about 4.6 billion data points.

We observe no performance degradation as the data set grows beyond the size of the

combined main memory of the 23 compute nodes (which would be the case beyond a

scaling factor of 0.5).

Chapter 3. Benchmarking Scalability 55

Figure 3.6: Strong scaling for different implementations of l2 regularized
logistic regression in Spark and Flink for 1000 dimensions and 530 GB.

Strong Scaling

Figure 3.6 shows the results of our strong scaling experiments for the batch gradient

descent workload for the Criteo data set hashed to 1000 dimensions. Figures 3.7 and

3.8 show the performance details for a run with 25 nodes and Figures 3.9 and 3.10

for a run with three nodes. In this figures, it is evident that while Flink tends to run

faster on smaller cluster configurations, Spark has runs faster on settings with many

machines. The resource consumption shows that on three nodes, both system have to

re-read significant portions of the data set in each iteration. However starting at about

ten nodes, the amount of data read from disk per iteration continuously decreases in

Spark, while it remains more or less constant in Flink. In the run with with 25 nodes

depicted in Figures 3.7 and 3.8, Spark reads almost no data from disk at all, allowing

for much higher CPU utilization compared to Flink, which is still practically I/O bound.

This is most likely due to the different architecture with respect to memory management.

Chapter 3. Benchmarking Scalability 56

Figure 3.7: Performance details for training a l2 regularized logistic
regression model with Flink on 25 nodes (logistic regression) (blue = total,

yellow = read/sent)

While Spark schedules the tasks for each iteration separately, Flink actually instantiates

the entire pipeline of operators in the plan a-priori and spreads the available memory

equally amongst all memory consuming operators (reducers), leaving significantly less of

the physically available main memory for the iterative computation than in Spark. In the

highly resource-constrained setting of two or three nodes, Flink’s memory management

and robust out of core performance lead to superior performance compared to Spark. In

general, both systems show the desired scaling behaviour which ensures that growing

production workloads can be handled by adding more compute nodes, if the need arises.

Chapter 3. Benchmarking Scalability 57

Figure 3.8: Performance details for training a l2 regularized logistic
regression model with Spark on 25 nodes (logistic regression)

Scaling Model Dimensionality.

As was described in the introduction, supervised learning models in production are

not only trained on very sparse data sets of massive size, but also tend to have a very

high-dimensionality. As it is computed from the sum of the sparse gradients of all data

points, the model is always a DenseVector whose size is directly proportional to its

dimensionality. In order to evaluate how well the systems can handle high-dimensional

DenseVectors, which have to be broadcasted after each iteration, we generate data sets

of different dimensionality via adjusting the feature hashing in the pre-processing step.

Figure 3.11 show the result of these experiments for two different data set sizes (a scaling

factor of 0.2 and 0.8 of the Criteo data set) for both Spark and Flink on 20 nodes. While

Chapter 3. Benchmarking Scalability 58

Figure 3.9: Performance details for training a l2 regularized logistic
regression model with Flink on 3 nodes (logistic regression)

the smaller data set has a total size comparable to the combined main memory of the 20

nodes, the larger version is significantly larger than main memory thus forcing the system

to go out of core.

For the smaller data set (lower curves) both systems tend to exhibit rather similar

performance for lower model dimensionalities, however Spark runs become more and

more unstable, frequently failing with OutOfMemory exceptions starting at 5 million

dimensions. We did not manage to successfully run Spark jobs for models with more than

8 million dimensions at all, since Spark fails due to a lack of memory. Flink on the other

hand, robustly scales to 10 million dimensions.

The situation becomes significantly worse for the larger data set: Spark runtimes are

Chapter 3. Benchmarking Scalability 59

Figure 3.10: Performance details for training a l2 regularized logistic
regression model with Spark on 3 nodes (logistic regression)

severely longer that Flink’s, and Spark does not manage to train models beyond 6 million

dimensions at all. Given the importance of being able to train models with at least 100

million if not billions of dimensions [35, 78,84], this is a dissatisfying result. It seems the

Broadcast Variable feature was simply not designed or intended to handle truly large

objects. The systems allot an insufficient amount of memory for the boadcast vector

variable, a fact that cannot be alleviated by the user, as both Spark and Flink do not

expose parameters to alter the amount of main memory reserved for broadcast variables.

Chapter 3. Benchmarking Scalability 60

Figure 3.11: Scaling the model: Runtimes for training a l2 regularized
logistic regression model of different dimensions on 20 nodes. Results shown
for two different data set sizes: small (about the size of main memory)

and large (significantly larger than main memory).

Comparison to single-threaded implementation

In order to gain an understanding of how the performance of the distributed systems

Spark and Flink compare to state of the art single core implementations we run experi-

ments with the LibLinear solver, which provides a highly optimized single-threaded C++

implementation. However we did change the actual computation implementation to batch

gradient descent similar to the Spark and Flink implementations. As this library is limited

to data sets which fit into the main memory of a machine, we generate a smaller version of

the Criteo data set containing almost 10 million data points with dimensionalities ranging

from 10 to 1,000,000,000. Figure 3.12 shows the runtime for 10 iterations of LibLinear

training. To compare, we also run the Spark and Flink Solvers on one and two cores on

these smaller data sets. It is apparent that while the runtimes for Spark and Flink are

larger on one node (which has four cores), both systems run faster than LibLinear with

Chapter 3. Benchmarking Scalability 61

Figure 3.12: Comparison to single-threaded implementation:

Runtimes for training a l2 regularized logistic regression model of different
dimensions different amounts of nodes for a small sub-sample (approx.
4GB) of the Criteo data set compared to a single-threaded implementation

(modified LibLinear).

two nodes (or 8 cores). It can thus be assessed that the hardware configuration required

before the systems outperform a competent single-threaded implementation (COST) is

between 4 and 8 cores. That is significantly less than observed for graph mining workloads

by McSherry et al. [85]. A possible explanation could be that the ratio of computation to

communication is much higher in ML workloads compared to graph processing workloads

which can exhibit both: computation-intensive and communication-intensive phases.

However, we were not able to successfully train models with 100 million dimensions in

both Flink and Spark, even though the data set is significantly smaller than the main

memory of even one node. Furthermore, we observe a strong increase in runtime for 1 and

10 million dimensions for both Spark and Flink. This reemphasizes the observation of the

dimensionality scaling experiment, that both data flow systems struggle to train truly

large models due to apparent limitations in their support for large broadcast variables.

Chapter 3. Benchmarking Scalability 62

3.7.2 Unsupervised Learning

Figure 3.13: k-means strong scaling experiments for Spark and Flink in
200 GB of generated data with 100 dimensions and k=10 clusters

In order to evaluate the effectiveness of the reduceByKey() operator in Spark and

the groupBy() and reduce() operator in Flink, we conduct both strong scaling and

production scaling experiments with the unsupervised learning workload k-means. The

production scaling experiments in Figure 3.14 show that the runtime of both Spark

and Flink linearly increases with the data set size. Furthermore, both systems show no

performance degradation once the data set does not fit into main memory anymore, but

rather gracefully scale out-of-core. The strong scaling experiments in Figure 3.13 appear

to confirm the observation already apparent for supervised learning workloads: Flink

performs better for the resource-constrained setting with a few nodes, while Spark performs

better once enough main memory is available due to the addition of compute nodes. This

aspect is also reflected in the production scaling experiment. Apache Flink’s approach to

memory management, namely instantiating the entire pipeline a priori and distributing

Chapter 3. Benchmarking Scalability 63

Figure 3.14: k-means production scaling experiments for Spark and
Flink on 30 nodes with k=30

the available memory amongst the memory-consuming operators of the pipeline, seems to

be able to cope better with limited main memory than Spark’s approach of separately

scheduling each task.

3.8 Related Work

In the last years, several papers have been published on the comparison and evaluation of

distributed data processing systems for very specific workloads:

Cai et al. [34] present an evaluation of statistical machine learning algorithms such

as GMMs, HMMs and LDA on Spark, GraphLab, Giraph and SimSQL. They focus on

users who want to implement their own ML algorithms, and thus evaluate the ease of

implementation and the absolute runtime of the systems. However, they do not focus

on providing comprehensive scalability evaluations but rather detailed discussions of the

implementation details of the hierarchical statistical models on the different systems.

Chapter 3. Benchmarking Scalability 64

The results are mixed, since no system clearly outperforms the others in all evaluated

dimensions. However, since they utilized the Python API of Spark and noticed in the

end of the paper, that it provides substantially slower performance than the JAVA API,

the runtime results are not directly comparable to our experimental evaluation.

More closely related is the work by Shi et a. [104], which presents an experimental

evaluation of Apache Spark and MapReduce for Large Scale Data Analytics. They consider

the workloads word count, sort, k-means and PageRank. Contrary to our approach, the

authors rely on third party implementations in libraries (Mahout for MapReduce and

Spark MLlib), so that it remains unclear if performance differences are due to algorithmic

variations or the systems themselves. Furthermore, experiments were carried out on a

cluster consisting of only four nodes, which is hardly the targeted setup for deployments

of both systems, thus insights gained from these experiments may not be applicable for

common setups. While the authors do investigate in detail where performance differences

may stem from, the paper does not contain scale-out experiments and does not vary the

dimensionality of the models.

In a very similar manner, Marcu et. al. [82] present a performance analysis of the big

data analytics frameworks Apache Spark and Apache Flink, for the workloads word count,

grep, TeraSort, k-means, PageRank and connected components. Their results show, that

while Spark slightly outperforms Flink at word count and grep, Flink slightly outperforms

Spark at k-means, TeraSort and the graph algorithms PageRank and connected components.

Contrary to our approach, the authors only consider simple workloads and do not evaluate

distributed machine learning algorithms with respect to the crucial aspect of model

dimensionality.

In a very similar manner [110] presents a performance evaluation of the systems

Apache Flink, Spark and Hadoop. Contrary to our work they purely rely on existing

libraries and example implementations for the workloads word count, grep, TeraSort,

k-means, PageRank and connected components. Their results confirm that while Spark

slightly outperforms Flink at word count and grep, Flink outperforms Spark at the graph

algorithms PageRank and connected components. However, contrary to the findings of [82],

Spark outperforms Flink for the k-means workload. An observation, that our findings

confirm.This is due to improvements in Spark 1.6.1. (e.g. project Tungsten) which were

not present in the Spark version used in [82]. Once again, the work [110] only considers

Chapter 3. Benchmarking Scalability 65

simple workloads and does not evaluate distributed machine learning algorithms with

respect to the crucial aspect of model dimensionality.

3.9 Discussion

In this chapter, we introduced crucial building blocks of a comprehensive benchmark

to evaluate and assess distributed data flow systems for distributed machine learning

applications. In order to understand the scalability of the systems and paradigms, we

presented mathematically equivalent implementations of supervised and unsupervised

learning methods that constitute the benchmark workloads. We motivated and described

different experiments and measurements for evaluating the scalability of distributed data

processing systems for all the aspects that arise when executing large scale machine learning

algorithms. Next to Strong Scaling and Production Scaling experiments which assess the

systems ability for scaling the data set size, we also introduced Model Dimensionality

Scaling to evaluate the ability to scale with growing model dimensionality as well as a

comparison to a single-threaded implementation.

Our comprehensive experimental evaluation of different implementations in Apache

Spark and Apache Flink on up to 4.6 billion data points revealed that both systems scale

robustly with growing data set sizes. However, the choice of implementation strategy has

a noticeable impact on performance, requiring users to carefully choose physical execution

strategies when implementing machine learning algorithms on these data flow systems.

When it comes to scaling the model dimensionality however, Spark fails to train

models beyond a size of 6 million dimensions. Both systems did not manage to train a

model with 100 million dimensions even on a small data set. This issue occurs because the

systems allot insufficient amounts of memory to the broadcast variables, a circumstance

that cannot be corrected by the user, as both systems do not expose parameters to alter

the memory provisioning for broadcast variables. Finally, experiments with a state of

the art single-threaded implementation showed, that two nodes (8 cores) are a sufficient

hardware configuration to outperform a competent single-threaded implementation in an

experiment with a fixed number of iterations.

Since being able to train models with hundreds of millions if not billions of dimensions

is a crucial requirement in practice, these results are unsatisfactory. ParameterServer

Chapter 3. Benchmarking Scalability 66

architectures [74] may pose a viable alternative, as they have been shown to scale to very

high dimensionalities. However, they require asynchronous algorithms, which usually

only approximate optimal solutions. Furthermore the significant communication cost

associated with this approach is also a challenge [101]. It thus remains an open challenge to

provide an adequate solution to the problem of robustly and efficiently scaling distributed

machine learning algorithms with respect to both data set size and model dimensionality

at the same time.

Limitations. Potential limitations of our approach to benchmarking are due to the

pursuit of fairness via equivalent implementations across systems. To achieve this goal,

some system-specific features that are not available in others may not be leveraged in the

implementations. Furthermore, beneficial adjustments of machine learning algorithms, e.g.

to speed up the convergence, that may only be implementable in specific systems, cannot

be applied in our approach. The use of one specific data set may also limit generalizability

of the experimental results to some extend.

The scalability experiments introduced in this chapter, in particular Model Dimen-

sionality Scaling, which has not been addressed previously, should be a core part of

experimental evaluations of distributed data processing systems and an integral part

of any benchmark to evaluate distributed data processing systems for scalable machine

learning workloads. The shortcomings identified by our experiments can serve as starting

point for future research and developments, for example in the area of adaptive memory

management for distributed data processing systems.

67

4 Benchmarking Performance and

Model Quality

4.1 Problem Statement

In this chapter we address another important aspect in the context of benchmarking

distributed data processing systems for scalable machine learning workloads: the dimension

of model quality. Contrary to traditional relational database queries that have an exact

result set which will always be returned regardless of the physical execution plan chosen

by the database optimizer, different machine learning algorithms are known to produce

models of different prediction quality when applied to a supervised learning problem on

the same data set [37, 38]. Even for one particular machine learning method, e.g., logistic

regression introduced in Section 2.4.2, different solvers for the underlying optimization

problem may possess different convergence properties and thus produce models of different

prediction quality after a fixed runtime. Different machine learning methods and solvers

possess different runtime complexity and thus scalability proprieties with respect to

the number of data points in the training set. Given a fixed time budget, we are thus

faced with a trade-off space spanned by runtime and model quality. More complex

algorithms may ultimately lead to superior prediction quality, but take longer - potentially

prohibitively long - to run until convergence.

When these machine learning algorithms are scaled out using second generation

distributed data flow systems, additional complexity arises, as different algorithms may

be more or less well suited for distribution using this paradigm. The learning algorithms

chosen to evaluate the second generation distributed data flow systems in the associated

research papers tend to be those that fit well onto the system’s paradigm (e.g., gradient

descent solvers for generalized linear models) rather than state of the art methods which

Chapter 4. Benchmarking Performance and Model Quality 68

would be chosen to solve a supervised learning problem in the absence of the systems’

constraints.

In order to accurately assess how well the systems resting on the paradigm of distributed

data flow perform for the task of scaling out the training of machine learning methods,

it is thus imperative to benchmark and evaluate them for relevant and representative

machine learning algorithms and to explore the trade-off between runtime and model

quality. Such an evaluation is also crucial for scientists and practitioners, we intend

to apply machine learning algorithms to their problem domain and want to assess the

applicability of distributed data processing systems to their setting.

4.2 Contributions

In this chapter we present the position that benchmarking distributed data processing

systems for scalable machine learning workloads needs to take into account the dimension

of model quality as well. We propose experiments and a method to explore the trade-off

space between runtime and model quality. Furthermore, we argue, that benchmarks

for distributed data processing systems should consider state of the art, single machine

algorithms as baselines when evaluating scalable machine learning workloads. Solely

evaluating scalability and comparing with other distributed systems is not sufficient

and leads to inconclusive results. Distributed data processing systems for large scale

machine learning should be benchmarked against sophisticated single machine libraries that

practitioners would choose to solve an actual machine learning problem and evaluated

with respect to both: runtime as well as prediction quality metrics. We introduce

such experiments and present an experimental evaluation of state of the art machine

learning libraries XGBoost, LightGBM and Vowpal Wabbit for supervised learning and

compare them to Apache Spark MLlib, one of the most widely used distributed data

processing system for machine learning workloads. Results (Section 4.7) indicate that

while distributed data flow systems such as Apache Spark do provide robust scalability,

it takes a substantial amount of extra compute resources to reach the performance of a

single threaded or single machine implementation.

In summary, the contributions presented in this chapter are the following:

Chapter 4. Benchmarking Performance and Model Quality 69

• We argue that benchmarking of large scale machine learning systems should consider

state of the art, single machine algorithms as baselines, should be evaluated with

respect to both: runtime and prediction quality and present a methodology and

experiments for this task.

• We present an experimental evaluation of a representative problem with state of

the art machine learning libraries XGBoost, LightGBM and Vowpal Wabbit for

supervised learning and compare them to Apache Spark MLlib.

• In order to foster the reproducibility of benchmarks and experiments and in hope

of benefiting future systems research we make the code (including config files and

hyperparameters used) available as open source software.

4.3 Overview

The rest of this chapter is structured as follows: in Section 4.4, we present the rationale

for single machine baseline experiments. Next, in Section 4.5 we present a detailed

discussion of the chosen machine learning algorithms and implementations. In Section

4.6, we introduce the methodology for the experiments and Section 4.7 provides concrete

results and a discussion of the experiments. Finally, in Section 4.8, we discuss related

work before we conclude and summarize our findings in Section 4.9.

4.4 The Case for Single Machine Baselines

Analysis of industrial MapReduce workload traces over long duration [42] has revealed,

that most jobs in big data analytics Systems have input, shuffle, and output sizes in the

MB to GB range. Annual polls of data scientists regarding the largest data set analyzed

conducted by KDnuggets1 (Figure 4.1), a popular site for analytics and data science,

while non-representative, do seem to suggest that this pattern holds for data analysis in

general. While some respondents reported the raw size of their largest data sets analyzed

to be in the PB range, the vast majority are actually in the GB range, in fact about

70% are smaller than 100 GB. This trend has been surprisingly stable for years. Since

1https://www.kdnuggets.com/2016/11/poll-results-largest-dataset-analyzed.html

 https://www.kdnuggets.com/2016/11/poll-results-largest-dataset-analyzed.html

Chapter 4. Benchmarking Performance and Model Quality 70

Figure 4.1: Poll of data scientists regarding the largest (raw) data set
analyzed, 2013-2016: While some data sets that are analyzed are indeed in
the PB range, the wast majority are in the GB range - a trend that shows
surprising stability over the years. (Data provided by Gregory Piatetsky,

KDnuggets, http://www.kdnuggets.com)

all major Infrastructure as a Service (IaaS) providers offer on-demand compute nodes

with hundreds of GBs of main memory 2, the question arises whether distributed data

flow systems really are the optimal design choice for large scale machine learning systems,

in particular since the actual training data is often significantly smaller after feature

extraction has been performed on the raw data. The yardstick to compare against should

be the performance of state of the art single machine ML libraries, as large portions of the

training data sets used, are within the order of magnitude of the available main memory

systems and out-of core libraries can scale even beyond main memory on a single machine.

In the next section, we will present the machine learning algorithms we deem suitable for

such an evaluation.

4.5 Machine Learning Methods and Libraries

Logistic regression is one of the most popular algorithms for supervised learning on big

data sets due to its simplicity and the straightforward parallelizability of its training

2 At the time of writing of this thesis, the three major providers of cloud computing resources:
Amazon AWS EC2, Google Compute Engine and Microsoft Azure all offer compute nodes with very
large main memory configurations: Amazon AWS instances actually go up to 4191 GB of main memory
(x1e.32xlarge) [3], Google Compute Engine to 3844 GB (n1-ultramem-160(Beta)) [5] and Microsoft Azure
to 4080 GB (M128ms) [4].

Chapter 4. Benchmarking Performance and Model Quality 71

algorithms [14, 71]. It has been implemented on nearly all big data analytics systems.

However, from a implementation-agnostic point of view, it is not at all clear that logistic

regression should be the method of choice. In fact, comprehensive empirical evaluations of

several different supervised learning methods including Support Vector Machines, Neural

Networks, Logistic Regression, Naive Bayes, Memory-Based Learning, Random Forests,

Decision Trees, Bagged Trees, Boosted Trees, and Boosted Stumps concluded that Boosted

Trees deliver superior performance with respect to prediction quality [38] and predict

better probabilities than all other methods evaluated.

Among the machine learning methods used in practice, gradient tree boosting [57, 97]

is one technique that shines in many applications, for example if data is not abundant

or of limited dimensionality. In particular XGboost [40] is a very popular tree boosting

algorithm that is also available as an open source library. It is a popular choice by data

scientists and has been used quite successfully in machine learning competitions such as

Kaggle3.

4.5.1 Gradient Boosted Trees

In this section we will introduce the basics of tree boosting and the algorithm used by

XGBoost in particular as outlined in [90], which should be consulted for an in-depth

discussion and derivation of the topic. In general, the method of boosting fits so-called

adaptive basis-functions:

f(x) = θ0 +

M
∑

m=1

θmφm(x)

of weak or base learners φm(x) to the training data data in a greedy manner. The weak

learner can be of any suitable model class, however it is common to use Classification

and Regression Tree (CART) models [87].

3Among the 29 challenge winning solutions published at Kaggle’s blog during 2015, 17 solutions used
XGBoost. Among these solutions, eight solely used XGBoost to train the model, while most others
combined XGBoost with neural nets in ensembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions [40].

Chapter 4. Benchmarking Performance and Model Quality 72

The canonical optimization problem to be solved when learning a model in boosting

is given by the following objective:

min
f

N
∑

i=1

l(yi, f(xi)),

where l : Y × Y → R is a differentiable and convex loss function, N is the total number

of data points and f(x) is an adaptive basis-function consisting of M individual models

as defined above. It expands to finding the set of M optimal parameters θ and basis

functions φ:

{θ̂m, φ̂m}Mm=1 = argmin
{θm,φm}Mm=1

N
∑

i=1

l(yi, θ0 +
M
∑

m=1

θmφm(xi)).

To solve this, one generally applies forward stage wise additive modeling which iteratively

fits:

{θ̂m, φ̂m} = argmin
θm,φm

N
∑

i=1

l(yi, f
(m−1) + θmφm(xi))

at each iteration m with

fm = f (m−1) + θmφm(xi)

approximately by so-called gradient boosting or second-order boosting leveraging newton

methods. The boosting algorithm thus applies the weak learners sequentially to weighted

versions of the data, where more weight is given to examples that were misclassified by

earlier rounds.

Trees as weak learners

Gradient boosted trees are based on simple tree models, which partition the feature space

X into a set of T rectangular and non-overlapping regions or quadrants Ri..T and fit a

(very) simple model to each region, namely a simple constant or response value. This can

be expressed as an adaptive basis-functions model where the basis functions φj indicate

whether a particular data point x is a member of the leaf node Rj using an indicator

Chapter 4. Benchmarking Performance and Model Quality 73

function I and the weights θj encode the constant response value wj for each region. A

tree model is then formalized by:

f(x) =
T
∑

j=1

wjI (x ∈ Rj) .

Because learning the optimal partitions R1, . . . , RT that represent the structure of the tree

is NP-complete [69] the problem has to be simplified, instead computing an approximate

solution. A popular algorithm for this is Classification And Regression Trees (CART)

which greedily grows the decision tree top-down with binary splits starting from the root

node [29].

When plugging in the tree formulation into the original boosting formulation, the

optimization problem to be solved when learning a model for tree boosting becomes:

{{ŵjm, R̂jm}Tm

j=1}
M
m=1 = argmin

{{wjm,Rjm}Tmj=1}Mm=1

N
∑

i=1

l(yi,
M
∑

m=1

Tm
∑

j=1

wjI (x ∈ Rj)).

Which once again is transformed by applying forward stage wise additive modeling, which

adds one tree at a time rather than jointly optimizing M trees and thus learns a new tree

at each iteration m using:

{ŵjm, R̂jm}Tm

j=1 = argmin
{wjm,Rjm}Tmj=1

N
∑

i=1

l(yi, f̂
(m−1)(xi) +

Tm
∑

j=1

wjI (x ∈ Rj)).

XGBoost adds a regularization term Ω to control the complexity of the learned model

and to adjust the final learned weights via smoothing in order to avoid overfitting in the

following manner:

Ω(T,w) = γT +
1

2
λ‖w‖2.

Where T is the number of leaves in each tree and w are the leaf weights. XGBoost uses

second-order approximation to solve the regularized objective, which translates to the

Chapter 4. Benchmarking Performance and Model Quality 74

following approximation of the objective to find the minimizers {ŵjm, R̂jm}:

min
{wjm,Rjm}

N
∑

i=1

ĝm(xi)
T
∑

j=1

wjmI (x ∈ Rj)) +
1

2
ĥm

T
∑

j=1

wjmI (x ∈ Rj)

2

+Ω(T,w)

to be solved for each tree to be added at each iteration m. Here

ĝm(xi) =

[

∂l(yi, f(xi))

∂f(xi)

]

f(x)=f̂ (m−1)(xi)

is the gradient and

ĥm(xi) =

[

∂2l(yi, f(xi))

∂2f(xi)

]

f(x)=f̂ (m−1)(xi)

is the hessian. Let Ijm denote the set of indices of the data points xi falling into the

quadrant Rjm. The objective then simplifies to:

{ŵjm, R̂jm} = argmin
{wjm,Rjm}

T
∑

j=1

∑

i∈Ijm

[

ĝm(xi)wjm +
1

2
ĥm(xi)w

2
jm

]

+Ω(T,w)

And can be further compacted by letting Gjm =
∑

i∈Ijm ĝm(xi) and Hjm =
∑

i∈Ijm ĥm(xi)

to:

{ŵjm, R̂jm} = argmin
{wjm,Rjm}

T
∑

j=1

[

Ĝjm(xi)wjm +
1

2
Ĥjm(xi)w

2
jm

]

+Ω(T,w)

Where GL, GR and HL, HR are defined over the instance set IL of the left and IR of the

tight nodes after the split with IL ∪ IR = I. With this, the algorithm to train a boosted

Chapter 4. Benchmarking Performance and Model Quality 75

tree model used by XGBoost can be formulated as outlined in Algorithm 2 [40].

Algorithm 2: XGBoost second order boosting algorithm
Input: Data Set {xi, yi} ∈ (X,Y), number of iterations M , learning rate η,

number of leaf nodes T

Initialize f̂ (0)(x) = θ0 = argminθ
∑N

i=1 l(yi, θ)

for m = 1, . . . ,M do

ĝm(xi) =
[

∂l(yi,f(xi))
∂f(xi)

]

f(x)=f̂ (m−1)(xi)

ĥm(xi) =
[

∂2l(yi,f(xi))
∂2f(xi)

]

f(x)=f̂ (m−1)(xi)

Determine the structure {R̂jm}Tj=1 by selecting splits that maximize the gain:

Gain = 1
2

[

G2
L

HL+λ
+

G2
R

HR+λ
−

G2
jm

Hjm+λ

]

− γ

Determine the leaf weights {ŵj}
T
j=1 for the learned tree structure with

ŵjm = −
Gjm

Hjm+λ

f̂m(x) = η
∑T

j=1 ŵjmI(x ∈ R̂jm)

f̂ (m)(x) = f̂ (m−1)(x) + f̂m(x)

Output: f̂ (M)(x) =
∑M

m=0 f̂m(x)

One of the key parts of this algorithm as well as the computationally most expensive

one is finding the optimal splits according to:

Gain =
1

2

[

G2
L

HL + λ
+

G2
R

HR + λ
−

G2
jm

Hjm + λ

]

− γ

A popular choice to solve this is to pre-sort the training data according to feature

values and then enumerate all potential split points in sorted order to compute the gain

outlined above. While this approach is simple and will indeed find the optimal split

points, it is also inefficient in both training speed and memory consumption [72]. Instead,

state of the art libraries such as XGBoost use approximate algorithms for this step. We

use two state of the art libraries that implement different versions of approximate split

finding methods, which we will outline below. We rely on the following three boosting

libraries for our experiments:

Chapter 4. Benchmarking Performance and Model Quality 76

XGBoost

XGBoost4 is a scalable end-to-end tree boosting system which implements the algorithm

outlined above in Algorithm 2. Next to the exact greedy method outlined above, it

also provides a histogram-based algorithm, which proposes candidate points for splits

based on percentiles of feature distributions based on a Distributed Weighted Quantile

Sketch [40]. XGBoost then maps continuous feature values into discrete buckets based on

the proposed candidate points and uses these bins to construct feature histograms during

training which turns out to be more efficient with respect to both memory consumption

and training speed.

LightGBM

LightGBM5 is another fast, distributed, high performance gradient boosting framework

based on decision tree algorithms. It addresses the problem of finding optimal splits

by using Gradient-based One-Side Sampling and Exclusive Feature Bundling [72]. It

has been shown to outperform XGBoost in terms of computational speed and memory

consumption, we thus include it in our experiments.

Apache Spark MLLib

For the distributed experiments we use Apache Spark as introduced in Section 2.3. It is

one of the most popular open source systems for big data analytics and ships with the

scalable machine learning library MLlib [86]. The primary Machine Learning API for

Spark since Version 2.0 is the DataFrame-based API, which leverages Tungsten’s fast

in-memory encoding and code generation. We use Spark and MLlib version 2.2.0 and the

aforementioned API (spark.ml) for all of our Spark experiments in our experiments. The

gradient boosted trees implementation in Apache Spark MLLib relies on the tree-training

algorithm of its random forest implementation but calls it with only one tree. This

implementation also uses quantiles for each feature as split candidates and discretizes

the feature values into bins for the computation of sufficient statistics for the best split

computation.

4https://github.com/dmlc/xgboost
5https://github.com/Microsoft/LightGBM

https://github.com/dmlc/xgboost
https://github.com/Microsoft/LightGBM

Chapter 4. Benchmarking Performance and Model Quality 77

4.5.2 Logistic Regression

As a solid baseline we also use logistic regression in our experiments. As we established

in Section 3.4.1, logistic regression is a popular choice by data scientists [14] for general

supervised learning settings with very large data sets [71] and amenable to distributed

execution. We use the following libraries for our experiments:

Vowpal Wabbit (VW)

As a popular and highly efficient single machine library, we use Vowpal Wabbit, which is

a fast out-of-core library that trains (among other things) a logistic regression classifier

with stochastic gradient descent as introduced in 2.4.2. By default, Vowpal Wabbit runs

the parsing and learning in two separate threads and can thus essentially be seen as a

single threaded implementation compared to the other libraries and systems that exploit

all available cores.

Apache Spark MLLib

We once again rely on the MLLib machine learning library of Spark for logistic regression,

which provides a L-BFGS [79] based implementation.

4.6 Methodology

In this section we outline the Methodology used to carry out the experiments, addressing

the relevant steps of feature extraction, parameter tuning and how to actually measure

model quality for the different libraries and systems evaluated.

4.6.1 Feature Extraction

For the gradient-boosted tree libraries we only transformed the categorical features from

hex to integer values, for Vowpal Wabbit we left them unchanged. Since Vowpal Wabbit

uses feature hashing as we described in Section 3.5.5 internally, we implemented the same

feature hashing as a pre-processing step for the Spark version of Logistic regression with

the 218 = 262144 features, which is the default value for Vowpal Wabbit and small enough

Chapter 4. Benchmarking Performance and Model Quality 78

to avoid problems that high dimensional vectors have been shown to cause within Apache

Spark in the previous chapter.

4.6.2 Parameter Tuning

The search for the optimal (hyper-) parameters is a crucial part of applying machine

learning methods and can have a significant impact on an algorithms performance. In

order to strive for a fair comparison in our experiments we allotted a fixed and identical

time frame for tuning the parameters to all systems and libraries, honouring the fact

that practitioners also face tight deadlines when performing hyperparameter tuning and

may not have the time for exhaustive search of a global optimum [26]. We built all

three libraries based on their latest available release on GitHub. For the benchmark

experiments we relied on the command line versions of XGBoost and LightGBM, however

for hyperparamter tuning we relied on the python interface and used the hyperopt6

package to find the optimal parameters. For Vowpal Wabbit we used vw-hypersearch

to tune the hyperparamters for learning-rate and regularization. Apache Spark MLlib

provides a CrossValidator to find the best parameter for a model. Unfortunately we

ran into continuous OutOfMemory issues even for data sets several orders of magnitude

smaller than the available main memory and thus had to rely on rather coarse grained

grid search for the Spark algorithms. The resulting hyperparameters that were used for

all the experiments are listed in Table 4.1.

4.6.3 Measurements

In order to be able to explore the trade-off space between runtime and model quality

and to illustrate prediction quality over time we propose the following methodology: for

VW’s Stochastic Gradient Descent we measured training time for different fractions of

the data set, for Apache Spark MLLib Logistic regression and gradient boosted trees

as well as XGBoost and LightGBM for different numbers of iterations. We ran all

experiments with and without evaluation of model quality on held-out test data and

only plotted the time elapsed in the no-evaluation runs. As Apache Spark does not allow

intermediate evaluation of trained models across iterations, we re-run the training with

6https://github.com/hyperopt/hyperopt

https://github.com/hyperopt/hyperopt

Chapter 4. Benchmarking Performance and Model Quality 79

System (Hyper-)parameter Value

XGBoost eta 0.1
num_round 500
nthread 24
min_child_weight 100
tree_method hist
grow_policy lossguide
max_depth 0
max_leaves 255

LightGBT learning_rate 0.1
num_leaves 255
num_iterations 500
num_thread 24
tree_learner serial
objective binary

Spark GBT MinInstancesPerNode 3
MaxDepth 10
MaxBins 64

Spark LR RegParam 0.01
Vowpal Wabbit loss_function logistic

b 18
l 0.3
initial_t 1
decay_learning_rate 0.5
power_t 0.5
l1 1e-15
l2 0

Table 4.1: Hyperparamters used for the experiments

different numbers of iterations from scratch, measured the training time and subsequently

evaluated model quality on a held out set of test data.

Chapter 4. Benchmarking Performance and Model Quality 80

4.6.4 Data Set

In order to evaluate a relevant and representative standard problem, we choose to use the

Criteo Click Logs 7 data set introduced in Section 3.5.5. This click-through rate (CTR)

prediction data set contains feature values and click feedback for millions of display ads

drawn from a portion of Criteo’s traffic over a period of 24 days. It consists of 13 numeric

and 26 categorical features. In its entirety, the data set spawns about 4 billion data

points, has a size of 1.5 TB. For our experiments in this chapter we sub-sampled the data

such that both classes have equal probability, resulting in roughly 270 million data

points and 200 GB of data in tsv/text format. Given the insights from figure 4.1, this

seems to be a reasonable size. We use the first 23 days (except day 4 due to a corrupted

archive) as training data and day 24 as test data, ensuring a proper time split.

4.6.5 Cluster Hardware

We run our experiments on two different cluster setups available in the local university

data center: a small one with very limited amounts of cores and memory but more

powerful CPUs and a big setup with large amounts of main memory, cpu cores and

storage.

Small node: Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz CPU with 8 hyperthreads

(4 cores), 16 GB RAM, 3x1TB hard disks (linux software RAID0) which are connected

via 1 GBit Ethernet NIC via a HP 5412-92G-PoE+-4G v2 zl switch.

Big node: 2 x AMD Opteron 6238 CPU with 12 Cores @ 2,6 GHz (24 cores), 256 GB

RAM, 8x 2 TB Disk, 6 × GE Ethernet via a Cisco C2969-48TD-L Rack Switch.

4.7 Experiments

In this section we introduce the experiments and measurements to explore the trade-off

between runtime and model quality in the context of evaluating distributed data flow

systems for the task of scaling out the training of machine learning methods.

7http://labs.criteo.com/downloads/download-terabyte-click-logs/

http://labs.criteo.com/downloads/download-terabyte-click-logs/

Chapter 4. Benchmarking Performance and Model Quality 81

data flow systems for scalable machine learning workloads. We measure training

time (including loading the data and writing out the model) and (in a separate run) the

AuC the trained models achieve on a held-out test set (day 24 of Criteo). The relevant

hyperparameters have been tuned beforehand as described in Section 4.6. Please keep in

mind that our motivation is to evaluate systems with relevant machine learning workloads

and not machine learning algorithms themselves.

4.7.1 Experiment 1: Logistic Regression

In the first experiment we look at regularized logistic regression, a popular baseline

method that can be solved using embarrassingly parallel algorithms such as batch gradient

descent. Apache Spark MLlib implements Logistic Regression training using the Breeze8

library’s LBFGS solver where it locally computes partial gradient updates in parallel

using all available cores and and aggregates them in the driver. As a single machine

baseline we use Vowpal Wabbit which implements an online stochastic gradient descent

using only two cores: one for parsing the input data and one to compute gradient updates.

Figure 4.2 shows the results for experiments on the small nodes (left) with only 4

cores and 16 GB RAM and the big nodes (right) with 24 cores and 256 GB RAM. For

both hardware configurations, the Spark MLlib implementation needs significantly more

time to achieve comparable AuC, even though it runs on substantially more resources.

While Vowpal Wabbit can immediately start to update the model as data is read, Spark

spends considerable time reading and caching the data, before it can run the first L-BFGS

iteration. Once this is accomplished, additional iterations run very fast on the cached

data. For the runs on big nodes (right), where the data set is actually smaller than the

available main memory, it takes 6 nodes (144 cores) to get within reach of the Vowpal

Wabbit performance using only one node and two threads/cores. For the runs on small

nodes we observe that for 6 nodes, Spark MLlib is slower than Vowpal Wabbit on a single

node. We increased the number of nodes to 15 small nodes (60 cores) and here (grey line

on in the left plot) Spark MLlibgets within reach of Vowpal Wabbit ’s performance on a

single small node (4 cores).

8https://github.com/scalanlp/breeze

https://github.com/scalanlp/breeze

Chapter 4. Benchmarking Performance and Model Quality 82

Figure 4.2: Logistic regression experiments using Spark MLlib and
Vowpal Wabbit on small (4 cores, 16 GB RAM) and big (24 cores, 256 GB
RAM) cluster nodes. The plots show AuC on a test set achieved after a
certain amount of training time. Apache Spark MLlib needs substantially
more hardware resources (15 small or 6 big nodes) to come within reach
of Vowpal Wabbit ’s performance, even though Vowpal Wabbit only utilizes
two cores and Spark implements L-BFGS which is embarrassingly parallel.

These experiments show that even for an embarrassingly parallel learning algorithm,

the latest generation distributed data flows systems such as Spark 2.2.0, which leverages

explicit memory management and code-generation to exploit modern compilers and

CPUs to obtain optimal performance on the JVM, need substantial hardware resources

(factor 6-15) to obtain comparable prediction quality with a competent single machine

implementation within the same time frame. (Note that since Vowpal Wabbit is an

out-of-core library both Spark MLLib and Vowpal Wabbit could be scaled to even larger

data set sizes.)

4.7.2 Experiment 2: Gradient Boosted Trees

In the second experiment we evaluate Gradient Boosted Tree classifiers, a very popular

ensemble method on the Big Node cluster setup. We use LightGBM, XGBoost with its

histogram-based algorithm as tree method and Spark MLLib’s Gradient Boosted Tree

classifier. Figure 4.3 shows the results of our experiments. For this experiment all three

evaluated libraries and systems are multi-core implementations that leverage all available

Chapter 4. Benchmarking Performance and Model Quality 83

cores. Both XGBoost and LightGBM achieve about the same AuC which is better

than the one achieved in the logistic regression experiments as expected. While training

runs somewhat faster withLightGBM in our setup, there is no substantial difference

to XGBoost. The Spark GBT training is substantially slower on 6 big nodes however.

It takes almost an order of magnitude more time per iteration. It does not manage

to achieve AuC comparable to XGBoost and LightGBM within the same time frame

even though it uses six times the hardware resources. The overheads introduced by the

distributed data processing system are substantial and the amount of extra resources

needed to reach performance comparable to single machine libraries appears to lie beyond

six times the single machine configuration (which is the maximum we had available for

our experiments.)

Figure 4.3: Gradient Boosted Trees classifier trained using Apache Spark

MLlib, XGBoost and LightGBM on big (24 cores, 256 GB RAM) cluster
nodes. The plots show AuC on a test set achieved after a certain amount of
training time. The single machine (24 cores) implementations of XGBoost

and LightGBM outperform Spark ’s implementation on 6 nodes (144 cores).

In the absence of other reasons to execute the training of machine learning models on

distributed data flow systems (e.g., raw data being already hosted in HDFS, integration

Chapter 4. Benchmarking Performance and Model Quality 84

of pre-processing and feature extraction pipelines) single machine libraries would thus be

the preferred method in the evaluated setting. It is thus crucial to assess if the original

data pre-processing and feature extraction step necessitates a distributed data processing

system in itself (e.g., because of massive raw input data set sizes) and how often this step

will have to be executed and adjusted in the context of developing a machine learning

model. It may very well result in the insight, that a distributed data processing system

is the system of choice in a concrete application setting, in spite of the comparatively

inefficient training performance.

4.8 Related Work

Benchmarking and performance analysis of data analytics frameworks have received

some attention in the research community [82, 94,104,110]. However most of the papers

focus on evaluating runtime and execution speed of non-representative workloads such as

WordCount, Grep or Sort. The ones that do focus on machine learning workloads [24, 34]

neglect quality metrics such as accuracy completely. Unfortunately, the systems papers

introducing the second generation distributed data flow systems Apache Spark, Apache

Flink and Graphlab [18, 80,113] themselves do not provide meaningful experiments with

respect to machine learning model quality. The paper presenting the MLlib Machine

Learning of Apache Spark [86] actually only reports speed-up of the runtime relative to

an older version of MLlib itself.

On the other hand there have been several endeavours in evaluating different machine

learning algorithms empirically with respect to their prediction quality, e.g., [37, 38],

however none of them in the light of distributed data processing systems. They actually

do not taking into account the runtime of the different machine learning methods at all.

McSherry et. al [85] introduced COST (the Configuration that Outperforms a Single

Thread) as a new metric distributed data processing systems should be evaluated against.

This metric weighs a system’s scalability against the overheads it introduces and reflects

actual performance gains without rewarding systems that simply introduce substantial

but parallelizable overheads. The authors showed, that for popular graph processing

algorithms, none of the published systems managed to outperform a competent single-

threaded implementation using a high-end 2014 laptop even though the distributed

Chapter 4. Benchmarking Performance and Model Quality 85

systems leveraged substantial compute resources. It is thus imperative to compare these

distributed data processing systems to competent single machine baselines. Contrary to

this work, the authors only cover graph algorithms with a fixed result set and thus do

not address the quality - runtime trade-off encountered with supervised machine learning

workloads. Furthermore, they only collect published results from the system papers and

do not report on any own experiments with the distributed data processing systems.

4.9 Discussion

In this Section we dealt with the important aspect of machine learning model prediction

quality in the context of benchmarking distributed data processing systems. We present

the position that when it comes to machine learning workloads these systems should be

evaluated against sophisticated single machine libraries that practitioners would choose

to solve an actual machine learning problem with respect to both: runtime as well as

prediction quality metrics.

We introduced experiments, measurements and a tuning process for such a benchmark

and performed such an evaluation comparing single machine libraries Vowpal Wabbit,

XGBoost and LightGBM to Spark MLlib’s Logistic Regression and Gradient Boosted

Trees implementation in order to explore the trade-off between runtime and model quality.

Our results indicate, that the distributed data flow system Spark needs substantially

more resources to reach comparable performance to the single machine libraries (or even

fails to do so with all nodes available to us). Given that in many cases, the size of data

sets used to train machine learning models in practice appears to be in the range of

available main memory of current compute nodes, it is not clear whether executing the

training of machine learning models on distributed data flow systems is always the most

efficient choice. However, there can be other valid reasons to rely on a distributed solution

(e.g., raw data being already hosted in HDFS, integration of pre-processing and feature

extraction pipelines) as we discussed in Section 4.7.

Of course this result is also not entirely surprising. The Spark implementation runs

inside a JVM and introduces and enables a scale out the computations by merely adding

more computed nodes. Due to this, Spark cannot exploit data locality and caches to the

same degree as an optimized single machine library written in C++.

Chapter 4. Benchmarking Performance and Model Quality 86

We also observed that the process of tuning hyperparamters for the libraries is still

surprisingly challenging, as it is often not directly integrated into the libraries and quite

time consuming to execute. However, it would appear that this problem is a perfect

candidate for parallelization and distribution. Focusing on distributed grid search, cross

validation and hyperparameter search thus may be a fruitful path to pursue in future

work rather than focusing on distributed training of machine learning models.

Limitations.There are limitations to our proposed approach: First, every machine

learning algorithm and its associated implementation comes with a significant set of

hyperparameters that have to be tuned for each new data set. Exhaustively searching for

the optimal parameter combinations is infeasible - not just for benchmarking comparisons

but also when applying these algorithms in practice. The right choice of hyperparameters

can have a significant impact on the prediction quality performance of a machine learning

model. Our proposed approach to allot equal time frames for hyperparameter tuning is

thus a limitation, but a necessary and reasonable one, since it is faced by practitioners

applying these algorithms as well.

Second, the choice of algorithms and data set is strongly limited. While we are

convinced that they provide valuable insights into system performance and also argued

why we deem them relevant and representative, if another, special "breed" of machine

learning algorithms becomes popular and thus the "method of choice", the results obtained

in this thesis may not be as representative.

Third, we rely on library implementations for the prediction quality experiments, which

is not a strict comparison of algorithmically and mathematically equivalent approaches.

Superior performance may thus be due to a superior implementation or approach and

not necessarily just due to systems constraints. However, these are the libraries that are

available to scientists and practitioners that wish to apply these algorithms.

Furthermore, the level of sophistication and optimization that these libraries have

achieved by significant development efforts by the scientific and open source communities

is one that is hard if not impossible to obtain by re-implementing algorithms from scratch

for benchmarking purposes.

Future systems research should include an evaluation like the one we presented in

this chapter for representative use cases. These experiments which explore the trade-off

between runtime and model quality and provide solid single machine baselines have to be

Chapter 4. Benchmarking Performance and Model Quality 87

a core part of experimental evaluations of distributed data processing systems and an

integral part of any benchmark to evaluate these systems for scalable machine learning

workloads.

88

5 Reproducibility of Benchmarks

5.1 Problem Statement

In this chapter, we discuss the complexity of the process of carrying out benchmark

experiments for distributed data processing systems and present a framework to reduce

the operational complexity of executing such benchmarks and thus to foster repeatability

and reproducibility of benchmark experiments. As we introduced in Section 2.5, a

benchmark consists of data sets (or data generators), workload implementations and

experiment definitions assembled with the purpose to evaluate one particular system,

referred to as the system under test (SUT). These experiment definitions outline specific

values for system configuration and workload parameters that have to be varied in order to

evaluate a particular characteristic of the system under test. In the context of evaluating

distributed data processing systems for machine learning workloads, as we discussed in the

previous two chapters, this requires: (1) the implementation of the application workload

(e.g., learning algorithm) to be evaluated which takes specific input parameters (e.g.,

input and output path, loss function or regularizer to be used) specified in the experiment

definitions. This workload implementation then (2) needs to be executed on top of the

particular distributed data processing system under test with the exact configuration

specified in the experiment definitions. (e.g., memory allocation settings, serializer to be

used or degree of parallelism) while its key performance characteristics (e.g., runtime,

throughput, accuracy) are measured and recorded.

Executing all these steps for benchmark experiments on modern data management

systems such as distributed data processing systems is significantly more complex than

evaluating relational database management system (RDBMS). Figure 5.1 illustrates

that rather than having a single system under test running in isolation, novel data

processing systems in fact require several components such as a distributed file system

Chapter 5. Reproducibility of Benchmarks 89

System Under Test Config

Workload Application Param

Host Environment

System C (Under Test) Config

System A Config System B Config

Workload Application Param

Host (Cluster / Cloud / Single Node)

Figure 5.1: The general setup: contrary to the setup when benchmarking
traditional relational database management systems (RDBMS) (left) where
we evaluate only one system under test (SUT), the landscape is more
complicated when evaluating novel distributed data processing frameworks
(right), as they usually require the interplay between multiple independent
systems. Each of these systems has its own configurations with sets of

parameters that have to be set, and potentially tuned.

and a distributed data processing system to be executed jointly. Current trends actually

advocate an architecture based on interconnected systems (e.g., HDFS, Yarn, Spark,

Flink, Storm). Each of these systems has to be set up and launched with their own set of,

potentially hardware-dependent, configurations that tend to span multiple configuration

files.

Typically, one is not just interested in the insights obtained by a single experiment,

but in trends highlighted by a suite of experiments where a certain system under test

configuration or workload parameter value is varied while all other parameters remain

fixed. When running a scale-out experiment with a varying number of nodes for example,

the configuration of both the distributed file system as well as the distributed data

processing system under test have to be changed, and the systems have to be appropriately

orchestrated. This further complicates the benchmarking process. Additionally, hardware-

dependent configurations hinder portability and thus reproducibility of benchmarks.

When adjusting the systems is done manually, huge amounts of temporary files and

generated data tend to clog up the disk space, as experiments may be run without proper

tear-down of systems and cleaning of temporary directories. When such experiments

are run on a shared cluster, as is often the case in an academic environment, this issue

becomes even more severe.

Chapter 5. Reproducibility of Benchmarks 90

However, these challenges are not only encountered in the context of benchmarking,

they are also faced when running systems experiments that form an integral part of

database and distributed systems research papers. As we discussed in Section 2.1,

distributed data processing systems went through a rapid development in the light of

Big Data Analytics. While nearly all these systems have been presented in scientific

publications containing an experimental evaluation, it remains a challenge to objectively

compare the performance of each system. Different workloads and implementations, usage

of libraries, data sets and hardware configurations make it hard if not impossible to

leverage the published experiments for such a comparison. Furthermore, it is a challenge

to assess how much of the performance gain is due to a superior paradigm or design

and how much is due to a more efficient implementation, which ultimately impairs the

scientific process due to a lack of verifiability. For this reason, it is imperative to enable

and establish benchmarks for big data analytics systems. However, even if workloads and

data sets or data generators are fixed, orchestrating and executing benchmarks can be a

major challenge.

Reproducible and repeatable systems experiments are a crucial building block to

successful and fruitful systems research. This fact is also honored by the introduction of

a so-called Reproducibility Track in ACM SIGMOD and Experiments & Analysis Papers

in VLDB, two of the top tier academic conferences in database systems research. Next

to systems researchers, scientists and practitioners who wish to assess the suitability of

distributed data processing systems to their problem domain also face the significant

operational complexity of executing benchmark experiments for distributed data processing

systems.

5.2 Contribution

To address these problems and to enable and foster reproducible experiments and bench-

marks of distributed data processing systems by lowering the operational complexity,

we present PEEL, a framework to define, execute, analyze, and share experiments. On

the one hand, PEEL automatically orchestrates experiments and handles the systems’

setup, configuration, deployment, tear-down and cleanup as well as automatic log collec-

tion. On the other hand, PEEL introduces a unified and transparent way of specifying

Chapter 5. Reproducibility of Benchmarks 91

experiments, including the actual application code, system configuration, and experiment

setup description. With this transparent specification, PEEL enables the sharing of

end-to-end experiment artifacts, thus fostering reproducibility and portability of bench-

mark experiments. PEEL also allows for the hardware independent specification of these

parameters, therefore enabling portability of experiments across different hardware setups.

Figure 5.2 illustrates the process enabled by our framework. Finally, PEEL is available as

open-source software on GitHub.

Figure 5.2: The PEEL process: PEEL enables the transparent specifica-
tion of workloads, systems configurations, and parameters to be varied. It
also automatically handles the distributed orchestration and execution as
well as sharing of these experiment bundles. After successfully running
all experiments in a bundle, PEEL automatically extracts, transforms
and loads relevant measurements from collected log files and makes them

available in an RDBMS.

Chapter 5. Reproducibility of Benchmarks 92

5.3 Overview

The rest of this Chapter is structured as follows: In Section 5.4 we briefly introduce the

running example of a supervised machine learning workload, which we will use to explain

the details of defining an experiment. Section 5.5 introduces experiment definitions. Next,

Section 5.6 describes the basics of a bundle. Section 5.7 discusses the approach of a

unified, global experiment environment configuration and Section 5.8 illustrates how

PEEL bundles can be deployed and executed on cluster environments, before Section 5.9

provides an overview, how results can be gathered and analyzed within the framework.

Finally, we describe how PEEL can be extended with additional systems in Section 5.10.

5.4 Running Example: Benchmarking a Supervised Machine

Learning Workload

As a running example, we consider a supervised machine learning workload as described in

Section 3.5. The workload task is to train a logistic regression model for click-through rate

prediction using a batch gradient descent solver. We are interested in evaluating the scaling

behavior of the systems not just with respect to growing data set sizes and increasing

numbers of compute nodes but also with respect to increasing model dimensionality as

we motivated in 3.5. Since increasing the model dimensionality invariably increases the

main memory required for the broadcast variable, we also wish to evaluate the workload

on two different cluster hardware configurations with varying memory size.

Figure 5.3 illustrates the running example. We want to evaluate batch gradient descent

training of a supervised learning model as a workload on Apache Spark and Apache Flink

as a system under test. Only for this part do we want to time the execution and record

the system performance characteristics of the individual compute nodes involved. In order

to evaluate the scalability of the systems with respect to a varying number of compute

nodes as well as a varying dimensionality of the training data (and thus also the model to

be trained) the two parameters: nodes and dimensions have to be varied accordingly.

For each particular configuration of physical compute nodes, a new distributed file

system (HDFS) instance has to be set up. Next the raw Criteo data, which is ingested

from some external storage, has to be transformed to feature vectors of the desired

Chapter 5. Reproducibility of Benchmarks 93

Model Training (BGD)Feature Hashing

(0,0,1 …)

Data Generation Benchmark Workload (to be measured)

physical (on-premise) compute cluster specified in host files

Distributed File System (HDFS)

Spark Spark Flink confconf

conf

dim
ensions

nodes

𝑤𝑤′ = 𝑤𝑤 − 𝜆𝜆 𝜕𝜕𝜕𝜕𝑤𝑤Ω 𝑤𝑤 + �𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋,𝑌𝑌 𝜕𝜕𝜕𝜕𝑤𝑤 𝑙𝑙 𝑓𝑓𝑤𝑤 𝑥𝑥 , 𝑦𝑦

Figure 5.3: An illustration of the running example: we evaluate batch

gradient descent training of a supervised learning model as a workload on
Apache Spark and Apache Flink as systems under test. The individual
experiments depend on two parameters: the number of physical com-
pute nodes and the dimensionality of the training data set (dimensions),
which specify how the benchmark workload shall be executed. The data
generation job is executed on a system independent of the system under

test.

dimensionality via feature hashing. Any system may be used for this step - independent

of the actual system under test. In the example, we choose to run a Spark Job, which

writes out the experimentation data into the temporary HDFS instantiated for the current

(cluster) configuration. Next, the actual system under test (Spark or Flink in our example)

will have to be set up and instantiated with its proper configuration. Once it is up and

running, the benchmark workload can be submitted as a job to the system under test

Chapter 5. Reproducibility of Benchmarks 94

tExperimentSuite Experiment

name: String

runs: Int

command: String

config: Config

run(): Run

ExperimentOutput
outputsexperiments

path: String

fs: FileSystem

inputs

System

name: String

version: String

configKey: String

lifespan: Lifespan

setUp(): Unit

tearDown(): Unit

dependencies

ru
n

n
e

r

sy
ste

m
s

name: String

DataSet

path: String

fs: FileSystem

Figure 5.4: A domain model of the PEEL experiment definition elements.

and its execution is timed. In order to record the performance characteristics on the

individual compute nodes, an additional monitoring system such as dstat will have to be

started on all compute nodes.

After successful execution, the system under test will have to be shut down. In order

to archive all aspects of the benchmark experiments, various logs of the different systems

involved (e.g., dstat for performance statistics, system under test, HDFS) will have to

be gathered from all the compute nodes. Next, all temporary directories have to be

cleaned, and the next system has to be set up and instantiated. Once all systems have

been evaluated for a concrete dimensionality, the data set has to be deleted from the

distributed file system and the next one, with a new dimensionality, has to be created.

When all parameter settings for a particular node configuration (i.e., all dimensionalities)

have been evaluated, the distributed file system will have to be torn down and a new one,

with a different node configuration, will have to be set up.

Chapter 5. Reproducibility of Benchmarks 95

Manually administering all these steps is a tedious and error-prone process as jobs can

run for long periods of time, and may fail. PEEL automatically takes care of all the steps

outlined above and thus reduces the operational complexity of benchmarking distributed

data processing systems significantly. In the following sections, we will explore how such

a workload like the supervised learning example has to be specified in PEEL in order to

benefit from this automation.

5.5 Experiments and ExperimentSuites

Figure 5.4 illustrates the main components of PEEL in a domain model. A central element

of this model are Experiment definitions, which specify all the parameters necessary for

experiment runs. These experiments are grouped together in ExperimentSuites that

embody entire parameter sweeps that constitute a benchmark experiment. The PEEL

Experiments are defined using a Spring dependency injection container as a set of inter-

connected beans. Definition of beans can be carried out in either XML or via annotated

Scala classes. (Scala is used for all examples in this chapter.)

We introduce and discuss the individual bean types in light of our example of running

batch gradient descent training of a logistic regression model for click-through rate

prediction. We discuss the components of the definition in Listings 5.1 - 5.3 in the next

subsections. Listing 5.1 registers an application context and introduces the datasets

and the feature hashing pre-processing job used to generate data with the required

dimensionality. Listing 5.2 shows the actual Experiment definition of the Spark and Flink

jobs that are the subject of the benchmark experiments. Listing 5.3 shows the defintion

of the ExperimentSuite including parameter ranges and experiments.

5.5.1 Data Sets

Experiments typically depend on some kind of input data, represented as abstract DataSet

elements associated with a particular FileSystem in our model. The following types are

currently supported:

• CopiedDataSet - used for static data copied into the target FileSystem;

Chapter 5. Reproducibility of Benchmarks 96

• GeneratedDataSet - used for data generated by a Job into the target FileSystem.

In the example we rely on a GeneratedDataSet to trigger the Spark job for feature

hashing (Lines 21-25 in Listing 5.1). In addition, each experiment bean is associated with

an ExperimentOutput which describes the paths the data is written to by the experiment

workload application (Lines 27-30 Listing 5.1). This meta-information is used to clean

those paths upon execution.

Listing 5.1: First part of the defintion of the running example.

1 class ExperimentsDimensionScaling extends ApplicationContextAware {

2 var ctx: ApplicationContext = null

3 def setApplicationContext(ctx: ApplicationContext): Unit = {

4 this.ctx = ctx

5 }

6

7 def sparkFeatureHashing(i: String, numF: Int, perc: Double): SparkJob = new SparkJob(

8 timeout = 10000L,

9 runner = ctx.getBean("spark-1.6.2", classOf[Spark]),

10 command =

11 s"""

12 |--class dima.tu.berlin.generators.spark.SparkCriteoExtract \\

13 |$${app.path.datagens}/peel-bundle-datagens-1.0-SNAPSHOT.jar \\

14 |--inputPath=$i \\

15 |--outputPath=$${system.hadoop-2.path.input}/train/$numF/$perc \\

16 |--numFeatures=$numFeatures \\

17 |--percDataPoints=$perc \\

18 """.stripMargin.trim

19)

20

21 def ‘bgd.input‘(D: Int): DataSet = new GeneratedDataSet(

22 src = sparkFeatureHashing("/criteo/", numFeatures, perc),

23 dst = s"$${system.hadoop-2.path.input}/train/" + numFeatures + "/" + perc,

24 fs = ctx.getBean("hdfs-2.7.1", classOf[HDFS2])

25)

26

27 def ‘bgd.output‘: ExperimentOutput = new ExperimentOutput(

28 path = "{system.hadoop-2.path.input}/benchmark/",

29 fs = ctx.getBean("hdfs-2.7.1", classOf[HDFS2])

30)

Chapter 5. Reproducibility of Benchmarks 97

Listing 5.2: The main experiment definition of the running example

batch gradient descent training of a supervised learning model

1 def ‘bgd.flink‘(D: Int, N: String) = new FlinkExperiment(

2 name = s"flink.train.$D",

3 command =

4 s"""

5 |--class dima.tu.berlin.benchmark.flink.mlbench.NewLogReg \\

6 |$${app.path.apps}/peel-bundle-flink-jobs-1.0-SNAPSHOT.jar \\

7 |--trainDir=$${system.hadoop-2.path.input}/train/$D \\

8 |--outputDir=$${system.hadoop-2.path.input}/benchmark/$N/$D/flink/ \\

9 |--degOfParall=$${system.default.config.parallelism.total} \\

10 |--dimensions=$D \\

11 """.stripMargin.trim,

12 config = ConfigFactory.parseString(

13 s"""

14 |system.default.config.slaves = $${env.slaves.$N.hosts}

15 |system.default.config.parallelism.total = $${env.slaves.$N.total.parallelism}

16 """.stripMargin.trim),

17 runs = 3,

18 runner = ctx.getBean("flink-1.0.3", classOf[Flink]),

19 systems = Set(ctx.getBean("dstat-0.7.2", classOf[Dstat])),

20 inputs = Set(‘bgd.input‘(D), classOf[DataSet])),

21 outputs = Set(‘bgd.output‘)

22)

23

24 def ‘bgd.spark‘(D: Int, N: String) = new SparkExperiment(

25 name = s"spark.train.$D",

26 command =

27 s"""

28 |--class dima.tu.berlin.benchmark.spark.mlbench.RUN \\

29 |$${app.path.apps}/peel-bundle-spark-jobs-1.0-SNAPSHOT.jar \\

30 |--trainDir=$${system.hadoop-2.path.input}/train /$D \\

31 |--outputDir=$${system.hadoop-2.path.input}/benchmark/$N/$D/spark \\

32 |--numSplits=$${system.default.config.parallelism.total} \\

33 """.stripMargin.trim,

34 config = ConfigFactory.parseString(

35 s"""

36 |system.default.config.slaves = $${env.slaves.$N.hosts}

37 |system.default.config.parallelism.total = $${env.slaves.$N.total.parallelism}

38 """.stripMargin.trim),

39 runs = 3,

40 runner = ctx.getBean("spark-1.6.2", classOf[Spark]),

41 systems = Set(ctx.getBean("dstat-0.7.2", classOf[Dstat])),

42 inputs = Set(‘bgd.input‘(D), classOf[DataSet])),

43 outputs = Set(‘bgd.output‘)

44)

Chapter 5. Reproducibility of Benchmarks 98

5.5.2 Experiment

The central class in the domain model shown in Figure 5.4 is Experiment. In our example

definition in Listing 5.2 we specify two experiments: one for Flink (Lines 1-22 in Listing

5.2) and one for Spark (Lines 24-44 in Listing 5.2). Each experiment specifies the following

properties: the experiment name, the command that executes the experiment’s job, the

number of runs (repetitions) the experiment is executed, the inputs required and outputs

produced by each run, the runner system that carries the execution, other systems, upon

which the execution of the experiment depends (e.g., dstat in Lines 19 and 41 in Listing 5.2

for monitoring the resource usage on the compute nodes) as well as the experiment-specific

environment config, which is discussed in Section 5.7.

5.5.3 System

The second important class in the model is System. It specifies the following properties:

the system name, usually fixed per System implementation, e.g., flink for the Flink

system or spark for the Spark system, the system version (e.g., 1.0.3 for Flink or 1.6.2

for Spark), a configKey under which config parameters will be located in the environment

configuration, usually the same as the system name, a Lifespan value (one of Provided,

Suite, Experiment, or Run) which indicates when to start and stop the system and a list

of systems upon which the current system depends.

5.5.4 ExperimentSuite

A series of related experiment beans are organized in an ExperimentSuite. In our example

listing, we define an ExperimentSuite in Listing 5.3. Recall that our original motivation

was to compare the scale-out characteristics of Spark and Flink with respect to both:

scaling the nodes and scaling the model size. To accomplish this, we vary two parameters:

Dims which specifies the dimensionality of the training data and Nodes, which refers to a

list of hosts the experiment should run on. The for-comprehension creates a cartesian

product of all parameter values and the two experiments. With this, we ensure that

we only generate a new data set whenever either the node configuration or the desired

dimensionality changes, but not for each experiment separately.

Chapter 5. Reproducibility of Benchmarks 99

Listing 5.3: Definition of the ExperimentSuite

1 def ‘bgd.dimensions.scaling‘: ExperimentSuite = new ExperimentSuite(

2 for {

3 Dims <- Seq(10, 100, 1000, 10000, 100000, 1000000)

4 Nodes <- Seq("top020", "top010", "top005")

5 Exps <- Seq(‘bgd.spark‘(Dims, Nodes), ‘bgd.flink‘(Dims, Nodes))

6 } yield Exps

7)

8 }

9 @Bean(name = Array("bgd.dimensions.scaling"))

5.6 PEEL Bundles

As a central structure, PEEL bundle packages together the configuration data, datasets,

and workload jobs as well as experiment definitions required for the execution of a

particular set of experiments. Table 5.1 provides an overview of the top-level elements of

such a bundle. It is self-contained and can be pushed to a remote cluster for execution as

well as shared for reproducibility purposes. The main components of a bundle can be

grouped as follows:

Default Path Config Parameter Fixed Description

./apps app.path.apps Yes Workload applications.

./config app.path.config Yes Configurations and experiment definitions.

./datagens app.path.datagens No Data generators.

./datasets app.path.datasets No Static datasets.

./downloads app.path.downloads No Archived system binaries.

./lib app.path.log Yes PEEL libraries and dependencies.

./log app.path.log Yes PEEL execution logs.

./results app.path.results No State and log data from experiment runs.

./systems app.path.systems No Contains all running systems.

./utils app.path.utils No Utility scripts and files.

./peel.sh app.path.cli Yes The PEEL command line interface.

Table 5.1: The top-level elements of a bundle.
(Non-fixed paths can be customized.)

Chapter 5. Reproducibility of Benchmarks 100

At the center of a bundle is the PEEL command line interface (PEEL CLI), which

provides the basic functionality of PEEL. While running, the PEEL CLI spawns and

executes operating system processes. It can be used to start and stop experiments, and

to push and pull bundles to and from remote locations. The log folder contains the

stdout and stderr output of these processes, as well as a copy of the actual console

output produced by PEEL itself. The config folder contains the experiment definitions

in scala as well as *.conf files written in HOCON1 syntax which define the environment

configuration parameters we discuss in Section 5.7. The apps folder contains the binaries

of the workloads to be executed in the experiments. The datasets folder can be used

to store static datasets to be used for the experiments. (Larger Data sets can also be

generated using Data Generators or read directly from static HDFS instances.) The

datagens folder may contain applications for the dynamic generation of datasets for

experiments. The downloads folder contains system binary archives for all the systems

in the experiment environment which are extracted into the systems folder by default.

The results folder unites the data of all experiments - attempted and successful - that has

been collected. It is stored in folders following the hierarchy $suite/$expName.run$NN as

naming convention. Finally, the utils folder contains utility scripts (e.g., SQL queries and

gnuplot scripts) that can be used next to or in conjunction with PEEL CLI commands. A

PEEL bundle is the unit to be shared when making available experiment suites or entire

benchmarks, which utilize the framework.

5.7 Environment Configurations

In order to foster transparency and to enable automatic execution of the specified

experiments, PEEL introduces a unified, global approach to the configuration of the

environment and all systems involved in the experiments. Configurations are instantiated

as Environments with a concrete set of configuration values for all systems involved

and parameter values for the actual experiment workloads. Consider our example of

running batch gradient descent with a varying number of nodes and data dimensionality

depicted in Figure 5.3. A concrete Environment instantiation for this example contains

1https://github.com/typesafehub/config/blob/master/HOCON.md

https://github.com/typesafehub/config/blob/master/HOCON.md

Chapter 5. Reproducibility of Benchmarks 101

specific configuration values for HDFS, Spark and Flink as well as a particular dimension

parameter. PEEL’s global approach allows proper management of the following issues:

Syntax Heterogeneity. Each system involved (e.g., HDFS, Spark and Flink) would

have to be configured separately, relying on its own own special syntax when using

a naïve approach of manual configuration for each system and experiment. This re-

quires knowledge of the various configuration parameters of all systems in the stack.

(e.g., the number of processing slots is called spark.executor.cores in Spark and

taskmanager.numberOfTaskSlots in Flink) and thus should be avoided.

Variable Interdependence. The sets of configuration variables associated with each

system are not mutually exclusive. Thus, care has to be taken such that the corresponding

values are consistent for the overlapping fragment (e.g., the slaves list containing the

compute nodes should be consistent across systems).

Value Tuning. For a series of related experiments, all but a very small set of

configuration values remain fixed. These configuration values (e.g., memory allocation,

degree of parallelism, temp paths for spilling) have to be set and tuned beforehand and

chosen such that they maximize the performance of the corresponding systems on the

host hardware used for the experiments.

With its global environment approach and by associating one global environment

configuration to each experiment, PEEL can automate these steps and promotes configu-

ration reuse through layering as well as configuration uniformity through a hierarchical

syntax.

In our example of running batch gradient descent with a varying number of nodes and

data dimensionality we vary the number of nodes between three different configurations

(20, 10, and 5 nodes) as specified in the configuration Listing 5.2 in line 75. For each of

the different dimensionalities to be evaluated (specified in line 74) this will result in six

experiments (3 × SparkBGD + 3 × FlinkBGD). Each of these will have an associated

config property containing the configuration settings for the system under test (Spark or

Flink), HDFS as well as the parameters of the workload (BGD) - as depicted in Figure

5.5. This config property is a hierarchical map of key-value pairs which constitute the

configuration of all systems and jobs required for that particular experiment. They are

constructed according to a layering scheme and conventions which we discuss next.

Chapter 5. Reproducibility of Benchmarks 102

Peel
Flink (SUT) Config

HDFS Config

FlinkBGD Param

Cluster

bgd.flink.top020

(Experiment Bean)

Config

bgd.flink.top010

(Experiment Bean)

Config

bgd.flink.top005

(Experiment Bean)

Config

Peel
Spark (SUT) Config

HDFS Config

SparkBGD Param

Cluster

bgd.spark.top020

(Experiment Bean)

Config

bgd.spark.top010

(Experiment Bean)

Config

bgd.spark.top005

(Experiment Bean)

Config

Figure 5.5: Mapping the environment configurations for the six Batch
Gradient Descent experiments: for each different experiment host con-
figuration (on the left) PEEL instantiates the relevant systems with the

appropriate system configurations and job paramters (on the right).

5.7.1 Configuration Layers.

PEEL’s configuration system is built upon the concept of layered construction and

resolution based on the following three layers of configuration:

• Default. Default configuration values for PEEL itself and the supported systems.

Packaged as resources in related jars located in the bundle’s app.path.lib folder.

• Bundle. Bundle-specific configuration values. Located in app.path.config (the

config sub-folder of the current bundle by default).

• Host. Host-specific configuration values. Located in the $HOSTNAME sub-folder of

the app.path.config folder.

Chapter 5. Reproducibility of Benchmarks 103

Path Description

reference.peel.conf Default PEEL config
reference.$systemID.conf Default system config
config/$systemID.conf Bundle-specific system config (opt)
config/hosts/$hostname/$systemID.conf Host-specific system config (opt)
config/application.conf Bundle-specific PEEL config (opt)
config/hosts/$hostname/application.conf Host-specific PEEL config (opt)
Experiment bean config value Experiment specific config (opt)
System JVM system properties (constant)

Table 5.2: Hierarchy of configurations which are associated with an
experiment bean (higher in the list represents lower priority).

PEEL constructs an associated configuration for each Experiment bean defined in an

ExperimentSuite in accordance with the priority outlined in Table 5.2, where higher in

the list represents lower priority.

At lowest priority comes the default configuration, located in the peel-core.jar

package. Next, for each system upon which the experiment depends (with corresponding

system bean identified by systemID), PEEL tries to load the default configuration for

that system as well as bundle- or host-specific configurations.

Third, a bundle- and host-specific application.conf, which is a counterpart of and

respectively overrides bundle-wide values defined in reference.peel.conf is considered

Next, the values defined in the config property of the current experiment bean are

considered. These are typically used to vary one particular parameter in a sequence of

experiments in a suite (e.g., varying the number of nodes in our example). Finally, a set

of hardware configuration parameters derived from the host description (e.g., the number

of CPUs or the total amount of available memory) are appended to the configuration.

This allows for the sharing of configurations for a particular host environment (hardware

setup). The required evaluation on two different hardware setups that we indicated in the

example introduced in Section 5.4 can be achieved by adding another host configuration

that lays out the hardware specification of the cluster nodes.

Chapter 5. Reproducibility of Benchmarks 104

5.8 Execution Workflow

In the previous sections, we explained how to define experiments and the internals required

to configure the environment in a PEEL bundle. In this section, we explain how to leverage

the PEEL command line interface and to use the commands provided by the PEEL CLI

to deploy and run the experiments in a bundle.

As a first step, the bundle has to be assembled from the sources with mvn deploy.

For large-scale applications, the environment where the experiments need to be executed

typically differs from the environment of the machine where the bundle binaries are

assembled. In order to start the execution process, the user therefore needs to first

deploy the bundle binaries from the local machine to the desired host environment. The

PEEL CLI offers a special command for this. In order to push the PEEL-bundle to

the remote cluster, one has to run: ./peel.sh rsync:push remote-cluster-name. The

command uses rsync to copy the contents of the enclosing PEEL bundle to the target

environment. The connection options for the rsync calls are thereby taken from the

environment configuration of the local environment. The remote environment has to be

specified in the application.conf.

As explained above, PEEL organizes experiments in sequences called experiment

suites. The easiest option is to start an entire suite via ./peel.sh suite:run which

automatically steps through the entire execution life cycle for each experiment. The

following steps are considered by PEEL:

• Setup Experiment. Ensure that the required inputs are materialized (either

generated or copied) in the respective file system. Check the configuration of

associated descendant systems with provided or suite lifespan against the values

defined in the current experiment config. If the values do not match, it reconfigures

and restarts the system. Set up systems with experiment lifespan.

• Execute Experiment For each experiment run which has not been completed by

a previous invocation of the same suite: Check and set up systems with run lifespan,

execute experiment run, collect log data from the associated systems and clear the

produced outputs.

• Tear Down Experiment. Tear down all systems with experiment lifespan.

Chapter 5. Reproducibility of Benchmarks 105

Next to simply running a full ExperimentSuite which automatically executes all

experiments specified, each of the above steps can be executed individually. This is

particularly useful when developing and debugging a benchmark, as it allows to validate

that each step is executed correctly.

Since PEEL also keeps track of failed experiments, one can simply re-run an entire suite

in order to re-attempt the execution of the failed experiments. PEEL will automatically

skip all experiments, which have already been successfully run.

5.9 Results Analysis

As we described in Section 5.6, the results of all experiments are stored in a folder

structure which contains log file data collected from all the systems involved in the

experiments. In order to enable the analysis and inspection of this data, PEEL provides

an extensible ETL pipeline that extracts relevant data from the log files, transforms it into

a relational schema, and loads it into a database where it can be analyzed and queried.

The experiment suite defined by the running example in Section 5.4 will produce results

similar to Table 5.3.

experiment nodes dimensions runtime in ms

flink.train top023 10 165612
flink.train top023 100 265034
flink.train top023 1000 289115
flink.train top023 10000 291966
flink.train top023 100000 300280
flink.train top023 1000000 315500
spark.train top023 10 128286
spark.train top023 100 205061
spark.train top023 1000 208647
spark.train top023 10000 219103
spark.train top023 100000 222236
spark.train top023 1000000 298778
.

Table 5.3: Exemplary table listing the results of experiment runs.

Chapter 5. Reproducibility of Benchmarks 106

5.10 Extending PEEL

In order to add support for a new system, one simply has to define the start-up and

shutdown behavior of the system, the configuration files and their management, and the

way log files are to be collected inside the system class. As was presented in the example

definition in Listing 5.2, the experiment bean then defines how jobs for the system are

started and which arguments are passed. For cluster configurations without a network

file system, PEEL also provides utility functions to distribute the required system files

among the cluster nodes, as well as the collection of log files.

5.11 Related Work

While not directly targeted at benchmarking systems, certainly related in light of the

evaluation of machine learning workloads is OpenML [109], an online machine learning

platform that enables machine learning practitioners to log and upload data sets, machine

learning tasks, machine learning workflows (pipelines) and results of concrete runs of

such workflows. Contrary to the work presented in this chapter, it is not a framework

to run experiments, but rather an archive and reservoir of data sets, tasks, workflows

and run results that can be leveraged by researchers and practitioners which also fosters

reproducibility and transparency. As such, it also offeres so-called benchmarking suites [6],

which are collections of data sets that can be used for benchmarking activities.

Another somewhat related initiative is ALOJA [96], a Big Data Benchmark Repository

and platform for performance analysis. ALOJA features a database of thousands of

benchmark experiment runs of Apache Hadoop. Contrary to the work presented in this

chapter, it is not an extendable framework that can be used to automatically evaluate

various big data processing systems, but rather a repository of experiment runs that was

partially filled by automatically carrying out over 30,000 executions [1].

5.12 Discussion

Properly carrying out benchmark experiments of distributed data processing systems in a

transparent and reproducible manner is a complex challenge but also a crucial building

Chapter 5. Reproducibility of Benchmarks 107

block to successful and fruitful systems research. In this chapter, we introduced PEEL as

a framework for benchmarking distributed systems and algorithms. PEEL significantly

reduces the operational complexity of performing benchmarks of novel distributed data

processing systems. It automatically orchestrates all systems involved, executes the

experiments and collects all relevant log data. Through the central structure of a PEEL-

bundle, a unified approach to system configurations and its experiment definitions, PEEL

fosters the transparency, portability, and reproducibility of benchmarking experiments.

Based on the running example of a supervised machine learning workload, we introduced

all the major concepts of PEEL, including experiment definitions and its experimentation

process. We have successfully used PEEL in practice to orchestrate all of the distributed

experiments in this thesis and hope that it will be a useful tool for researchers and

practitioners in the benchmarking and systems research community alike, as PEEL is

freely available as open-source software.

Limitations. Current limitations of PEEL are its support of a limited amount of

systems. PEEL supports various versions of the following systems out of the box: Hadoop

MapReduce, Spark, Flink, HDFS, dstat and Zookeeper. However, the framework can easily

be extended. Adding support for a new system is uncomplicated and only requires the

definition of system specific sub-classes for the System and textttExperiment base-classes

that were discussed in Section 5.5. The communication between the framework and the

systems is typically done by calling scripts via external processes with the abstractions

provided in PEEL. Thus, the range of systems that can be supported is not strictly

limited to JVM-based ones. However, the current set up is geared towards distributed

data processing systems that run on top of the HDFS distributed file system.

Next to the important components of addressing all aspects of scalability discussed

in Chapter 3 and properly exploring the trade-off space between algorithm runtime and

model quality discussed in Chapter 4, this framework constitutes an essential building

block for building benchmarks for distributed data flow systems in the context of scalable

machine learning algorithms.

108

6 Conclusion

In this Section we summarize our findings and distill the key insights with regard to both

how to design a benchmark for distributed data processing systems for scalable machine

learning workloads as well as with regard to the results obtained by our experiments

with state of the art distributed data flow systems and machine learning algorithms. We

conclude by putting the results into context and sketching interesting research questions

that could be the subject of future work.

6.1 Summary

Big Data Analytics frameworks that can robustly scale out computations on massive data

sets to many compute nodes such as distributed data flow systems have been a fruitful

research topic in academic systems research and have been widely adopted in industrial

practice. Their importance as a stimulus for the database systems and distributed systems

research community is for instance emphasized by the fact that Matei Zaharia received

the ACM Doctoral Dissertation Award for his work on Resilient Distributed Datasets

and Spark [2]. Both Apache Spark and Apache Flink have built a rich community of

developers and committers, and the associated developer conferences Flink Forward and

Spark Summit attract hundreds and thousands of attendees respectively. While most of

these systems like Apache Spark or Apache Flink are general purpose data processing

systems that target a broad variety of workloads, they also explicitly claim to be suitable

for scaling out machine learning algorithms. Apache Spark and its associated machine

learning library MLLib are popular choices for this particular use case.

Benchmarks for traditional database management systems that evaluate the perfor-

mance of database systems for transactional workloads (TPC-C) and for decision support

scenarios (TPC-H) have evolved and are widely accepted. However, in the context of

Chapter 6. Conclusion 109

distributed data flow systems, in particular for scalable machine learning workloads, it

remained an open question how to properly evaluate these systems for this use case.

An objective set of workloads, experiments and metrics that adequately assess how well

data processing systems achieve the objective to scale out machine learning algorithms is

essential to steer future systems research in the distributed systems and database systems

communities. It is also a useful tool for scientists and practitioners who want to apply

scalable machine learning algorithms to their problem domains and to asses which system

is suitable for their problem setting.

In this thesis, we presented work that establishes such a benchmark of distributed

dataflow system for scalable machine learning workloads and provides valuable insights

for systems researchers by highlighting shortcomings in current system architectures.

In Chapter 3 we discussed the need to address all dimensions of scalability, including

the one of model dimensionality when performing such an evaluation. Experiments with

the state of the art distributed data flow systems Apache Flink and Apache Spark revealed,

that while both are able to robustly scale with increasing data set sizes, the systems are

surprisingly inefficient at coping with high dimensional data due to the chosen approach

to memory management and support of broadcast variables.

In Chapter 4 we discussed the relevance of exploring the trade-off between runtime

and model quality when evaluating distributed data flow systems for scalable machine

learning workloads. Since the main memory sizes of compute nodes generally available

today are in the same range as the majority of data set sizes analyzed in practice, as

we discussed in Section 4.4, it is also imperative to compare against sophisticated single

machine implementations of machine learning algorithms as an absolute baseline. Taking

into account scalability experiments is not sufficient. Our evaluation indicates that

even latest generation distributed data flows systems such as Spark require substantial

hardware resources to obtain prediction quality comparable to a competent single machine

implementation within the same time-frame.

Finally in Chapter 5 we discussed the operational complexity of implementing and

executing such benchmark experiments with distributed data processing systems. With

PEEL, we presented a framework to define, execute, analyze, and share experiments. PEEL

provides a unified and transparent way of specifying experiments, including the actual

application code, systems configuration, and experiment setup description. It reduces the

Chapter 6. Conclusion 110

operational complexity by automatically scheduling and executing the experiments.

With these three aspects we provided all crucial building blocks of a benchmark for

assessing how well the systems resting on the paradigm of distributed dataflow perform

for the task of scaling out the training of machine learning methods. Our experimental

evaluations provided novel insights into the performance of current dataflow systems.

The inability to scale up model training to high dimensions as discussed in Section 3.7.1

revealed opportunities for improvement in the memory management of broadcast variables.

The comparison to sophisticated single machine libraries in Chapter 4 indicates that

providing optimized single machine execution next to the ability to scale out computations

on multiple compute nodes is also an important requirement for distributed data processing

systems. Future systems research papers should include such evaluations to provide an

adequate assessment of the system performance.

In particular they should include scale-out experiments that vary the dimensionality

of the input data and thus model vector fur supervised learning workloads such as logistic

regression as introduced in Section 2.2. This can be achieved by applying the feature

hashing approach we presented in Section 3.5.5 based on the Criteo data set and is a

crucial addition to "traditional" scalability experiments such as strong or weak scaling.

They should also include experiments that explore the prediction quality vs. training

time trade-off and compare the distributed data processing systems against sophisticated

single machine libraries for supervised learning methods as we described in Section

4.6. Evaluations of the absolute wall-clock training time needed to achieve comparable

prediction quality for the distributed as well as the single machine solutions provide

valuable insights into the overhead incurred and thus additional hardware resources

necessary to run the training of machine learning models on distributed data processing

systems. Scalability experiments alone are not sufficient for this.

The PEEL Framework we introduced in Chapter 5 provides clear abstractions for

specifying both proposed experiment types and significantly reduces the operational

complexity of carrying out such evaluations. Since this framework as well as all of our

benchmark experiments are available as open source software, we hope it will have a

positive impact on the distributed systems, database systems and machine learning

research communities and beyond. Our work also benefits practitioners and scientists who

wish to assess the suitability of distributed dataflow systems to their problem setting.

Chapter 6. Conclusion 111

6.2 Outlook

More recently specialized machine learning systems that can potentially also distribute

computations, have been proposed and developed. While the distributed data flow sys-

tems that were subject to the experiments we discussed in this thesis are essentially

general purpose data processing systems catering to a broad range of workloads, these

novel specialized machine learning systems have been purposefully designed for machine

learning workloads, in particular the training of "deep" artificial neural networks (DNNs).

While SystemML [61] targets data-intensive linear algebra operations on matrices, Ten-

sorFlow [16] and MXNet [41] provide a tensor abstractions as central data type and

can automatically carry out mathematical operations (e.g., automatic differentiation).

Next to efficiently executing computations on a single node, all of these systems can

also distribute the execution of computations. While SystemML relies on Spark for the

distributed execution, TensorFlow and MXNet handle this task by themselves.

The training of artificial neural networks is almost exclusively carried out via back-

propagation and gradient descend algorithms, e.g., mini-batch stochastic gradient descend.

The requirements for this are different compared to those of the more general distributed

machine learning algorithms popular with distributed data processing systems we dis-

cussed in this thesis. Contrary to the latter, where I/O and network communication are

the primary bottlenecks, training deep artificial neural networks is generally constrained

by computing power. With having both the algorithm (back propagation) and data

model (tensors) fixed, systems like TensorFlow, CNTK [112] or MXNet could be built

and optimized for this particular use case to a degree that was not possible for general

purpose distributed data flow systems. One important reason for the recent popularity

and successes of deep neural networks can be seen in the application of GPUs, which

provide at least an order magnitude more floating point operations per second while being

more power and cost-efficient than a CPU. With that the rather computation-intensive

training of artificial neural networks with "deep" architectures, which often translates to

solving a non-convex optimization problem, became feasible and given the results achieved

in tasks such as object recognition also quite popular.

Due to the importance of deep neural networks and their computation-intensive

training, purpose built acceleration hardware, for example Tensor Processing Units (TPUs)

Chapter 6. Conclusion 112

by Google, have been introduced. In order to guide the development of such hardware,

representative benchmark experiments are evermore important. Given the variety of

modern hardware available to train machine learning models, adequate assessment of

end-to-end performance as we introduced in this thesis is crucial.

This need has also been realized by researchers in the DAWN lab at Stanford, who have

introduced DAWNBench [45] an End-to-End Deep Learning Benchmark Competition that

invites submissions of runtimes for specified tasks. The MLPerf [11] initiative by researchers

from Harvard, Stanford, University of California, Berkeley and others aims to do the

same for a more broad set of machine learning tasks. Namely to evaluate the performance

of ML software frameworks, purpose-built machine learning hardware accelerators and

machine learning cloud platforms for the following tasks: Image Classification, Object

Identification, Translation, Speech-to-Text, Recommendation, Sentiment Analysis and

Reinforcement Learning. These initiatives underline the relevance of our work. However

in contrast to the experiments presented in this thesis the authors of both DAWNBench

and MLPerf did not run any benchmark experiments themselves, but rather propose data

sets and papers of algorithms, for which the community is invited to submit runtime

statistics. While this is certainly an important endeavor, relying on runtimes submitted by

third parties does not allow the in-depth profiling of resource consumption we presented

for example in Chapter 3. The broad support of MLPerf by AMD, Baidu, Google, Intel

and others suggests that this topic is not just of academic relevance, but also addresses

important questions faced in industry.

There still exist a lot of interesting open questions that need to be addressed in this

space. While global competition based approaches like the one proposed as MLPerf [11]

can be useful yardsticks to identify "best practices" for certain machine learning tasks, it

would also be interesting to explore - on the algorithmic level - which machine learning

methods and associated solvers perform particularly well for certain systems. For example,

asynchronous stochastic gradient descend (e.g., HOGWILD!) may be a good fit for

parameter server architectures, but tends to create significant communication overhead.

One of the major benefits of distributed data flow systems is the ability to robustly scale

data intensive transformations such as pre-processing and aggregation of unstructured or

semi-structured data sets. While machine learning systems like TensorFlow or MXNet

have been heavily optimized for the training of deep neural networks, they are sub-optimal

Chapter 6. Conclusion 113

choices for data pre-processing, a step that is still important even in light of deep learning

and likely to be carried out on potentially very large (raw) data sets. In order to gain

a decent understanding of the true end-to-end performance of systems for the scalable

execution of machine learning pipelines, it would thus be interesting to explore benchmarks

that unite pre-processing and training of end-to-end pipelines.

The insights obtained from such benchmarks and the ones presented in this thesis are

not just of use to the database and distributed systems researchers but also to practitioners

and scientists. Scalable data processing ("Big Data") systems and more recently machine

learning systems for training deep artificial neural networks enable researchers from diverse

disciplines, e.g., computational social science, digital humanities, bio-medicine or material

science to apply machine learning and data analysis methods to their problem domains

to gain new insights that otherwise would not have been obtainable. However, given the

level of hype and pace of development of new systems and approaches, it is important to

assess whether the problem at hand truly necessitates a distributed data flow system like

Apache Spark or may be better served with single machine solutions like we proposed

in Chapter 4. The benchmark methodologies and experiments developed and presented

in this thesis can serve as useful tools for exactly this problem and thus contribute to

scientific progress in domains beyond computer science alone.

114

List of Figures

2.1 Narrow and wide dependencies in Spark 23

2.2 Batch Gradient Descent computation in MapReduce 30

3.1 Batch Gradient Descent using MapReduce 40

3.2 Batch Gradient Descent using MapPartition 41

3.3 Overview of the different scalability experiments and associated parameters

to be varied. 46

3.4 Apache Spark StorageLevel experiments 50

3.5 Production scaling experiments . 54

3.6 Strong scaling experiments . 55

3.7 Performance details for training a l2 regularized logistic regression model

with Flink on 25 nodes (logistic regression) 56

3.8 Performance details for training a l2 regularized logistic regression model

with Spark on 25 nodes (logistic regression) 57

3.9 Performance details for training a l2 regularized logistic regression model

with Flink on 3 nodes (logistic regression) 58

3.10 Performance details for training a l2 regularized logistic regression model

with Spark on 3 nodes (logistic regression) 59

3.11 Model scaling experiments . 60

3.12 Comparison to single-threaded implementations 61

3.13 k-means strong scaling experiments . 62

3.14 k-means production scaling experiments 63

4.1 Poll of data scientists regarding the largest (raw) data set analyzed 70

4.2 Logistic regression experiments using Spark MLlib and Vowpal Wabbit . . 82

List of Figures 115

4.3 Gradient Boosted Trees classifier trained using Apache Spark MLlib, XG-

Boost and LightGBM . 83

5.1 Setup for benchmarking novel data processing systems in comparison to

traditional RDBMS . 89

5.2 The PEEL process . 91

5.3 An illustration of the running example batch gradient descent training of a

supervised learning model . 93

5.4 A domain model of the PEEL experiment definition elements. 94

5.5 Mapping the environment configurations for the six Batch Gradient Descent

experiments . 102

116

List of Tables

3.1 Subset of the Criteo data set used in the experiments. 48

4.1 Hyperparamters used for the experiments 79

5.1 The top-level elements of a bundle. 99

5.2 Hierarchy of configurations which are associated with an experiment bean 103

5.3 Exemplary table listing the results of experiment runs. 105

117

Listings

3.1 Flink implementation of the k-means algorithm 42

3.2 Spark implementation of the k-means algorithm 44

5.1 First part of the defintion of the running example. 96

5.2 The main experiment definition of the running example batch gradient

descent training of a supervised learning model 97

5.3 Definition of the ExperimentSuite . 99

118

Bibliography

[1] https://aloja.bsc.es/ accessed 24/10/2018.

[2] https://awards.acm.org/award_winners/zaharia_7692208

accessed 24/10/2018.

[3] https://aws.amazon.com/ec2/instance-types/ accessed 24/10/2018.

[4] https://azure.microsoft.com/de-de/pricing/details/virtual-machines/

linux/ accessed 24/10/2018.

[5] https://cloud.google.com/compute/pricing#processors accessed 24/10/2018.

[6] https://docs.openml.org/benchmark/ accessed 24/10/2018.

[7] https://flink.apache.org/ accessed 24/10/2018.

[8] https://hadoop.apache.org/ accessed 24/10/2018.

[9] https://hive.apache.org/ accessed 24/10/2018.

[10] https://mahout.apache.org/ accessed 24/10/2018.

[11] https://mlperf.org/ accessed 24/10/2018.

[12] https://pig.apache.org/ accessed 24/10/2018.

[13] https://spark.apache.org/ accessed 24/10/2018.

[14] https://www.kaggle.com/surveys/2017 accessed 24/10/2018.

[15] Combining Pattern Classifiers: Methods and Algorithms. Wiley Publishing, 2nd

edition, 2014.

https://aloja.bsc.es/
https://awards.acm.org/award_winners/zaharia_7692208
https://aws.amazon.com/ec2/instance-types/
https://azure.microsoft.com/de-de/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/de-de/pricing/details/virtual-machines/linux/
https://cloud.google.com/compute/pricing#processors
https://docs.openml.org/benchmark/
https://flink.apache.org/
https://hadoop.apache.org/
https://hive.apache.org/
https://mahout.apache.org/
https://mlperf.org/
https://pig.apache.org/
https://spark.apache.org/
https://www.kaggle.com/surveys/2017

BIBLIOGRAPHY 119

[16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath

Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit

Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning. In

OSDI, pages 265–283. USENIX Association, 2016.

[17] Alekh Agarwal, Olivier Chapelle, Miroslav Dudík, and John Langford. A reliable

effective terascale linear learning system. J. Mach. Learn. Res., 15(1):1111–1133,

January 2014.

[18] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag,

Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl,

Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian

Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. The stratosphere

platform for big data analytics. The VLDB Journal, 23(6), December 2014.

[19] Gene M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint

Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA,

1967. ACM.

[20] C. K. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran, S. Padmanabhan, G. P.

Copeland, and W. G. Wilson. Db2 parallel edition. IBM Systems Journal, 34(2):292–

322, 1995.

[21] Chaitanya Baru, Milind Bhandarkar, Carlo Curino, Manuel Danisch, Michael Frank,

Bhaskar Gowda, Hans-Arno Jacobsen, Huang Jie, Dileep Kumar, Raghunath Nam-

biar, Meikel Poess, Francois Raab, Tilmann Rabl, Nishkam Ravi, Kai Sachs, Saptak

Sen, Lan Yi, and Choonhan Youn. Discussion of BigBench: A Proposed Industry

Standard Performance Benchmark for Big Data. In Raghunath Nambiar and Meikel

Poess, editors, Performance Characterization and Benchmarking. Traditional to Big

Data, page 44–63, Cham, 2015. Springer International Publishing.

BIBLIOGRAPHY 120

[22] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and Daniel

Warneke. Nephele/PACTs: A Programming Model and Execution Framework for

Web-Scale Analytical Processing. In Symposium on Cloud Computing, 2010.

[23] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling Up Machine Learning:

Parallel and Distributed Approaches. Cambridge University Press, New York, NY,

USA, 2011.

[24] Christoph Boden, Andrea Spina, Tilmann Rabl, and Volker Markl. Benchmarking

data flow systems for scalable machine learning. In Proceedings of the 4th Algorithms

and Systems on MapReduce and Beyond, BeyondMR’17, pages 5:1–5:10, New York,

NY, USA, 2017. ACM.

[25] Vinayak Borkar, Michael J. Carey, and Chen Li. Inside "big data management":

Ogres, onions, or parfaits? In Proceedings of the 15th International Conference on

Extending Database Technology, EDBT ’12, pages 3–14, New York, NY, USA, 2012.

ACM.

[26] Joos-Hendrik Böse, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Dustin

Lange, David Salinas, Sebastian Schelter, Matthias Seeger, and Yuyang Wang.

Probabilistic demand forecasting at scale. Proc. VLDB Endow., 10(12):1694–1705,

August 2017.

[27] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. Large

language models in machine translation. In Proceedings of the 2007 Joint Conference

on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning (EMNLP-CoNLL), 2007.

[28] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, Jeffrey Dean, and Google

Inc. Large language models in machine translation. In EMNLP, pages 858–867,

2007.

[29] Leo Breiman, Jerome Friedman, Charles J. Stone, and R. A. Olshen. Classification

and Regression Trees (Wadsworth Statistics/Probability). Chapman and Hall/CRC,

1 edition, January 1984.

BIBLIOGRAPHY 121

[30] Eric A Brewer. Combining systems and databases: A search engine retrospective.

Readings in Database Systems, 4, 2005.

[31] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web

search engine. Computer Networks and ISDN Systems, 30(1):107–117, 1998. Pro-

ceedings of the Seventh International World Wide Web Conference.

[32] Yingyi Bu, Vinayak R. Borkar, Michael J. Carey, Joshua Rosen, Neoklis Polyzotis,

Tyson Condie, Markus Weimer, and Raghu Ramakrishnan. Scaling datalog for

machine learning on big data. CoRR, abs/1203.0160, 2012.

[33] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop:

Efficient iterative data processing on large clusters. Proc. VLDB Endow., 3(1-2):285–

296, September 2010.

[34] Zhuhua Cai, Zekai J. Gao, Shangyu Luo, Luis L. Perez, Zografoula Vagena, and

Christopher Jermaine. A comparison of platforms for implementing and running

very large scale machine learning algorithms. In Proceedings of the 2014 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’14, pages

1371–1382, 2014.

[35] kevin Caninil. Sibyl: A system for large scale supervised machine learning.

[36] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. Apache Flink™: Stream and Batch Processing in a Single

Engine. IEEE Data Eng. Bull., 38(4):28–38, 2015.

[37] Rich Caruana, Nikos Karampatziakis, and Ainur Yessenalina. An empirical eval-

uation of supervised learning in high dimensions. In Proceedings of the 25th

International Conference on Machine Learning, ICML ’08, pages 96–103, New York,

NY, USA, 2008. ACM.

[38] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised

learning algorithms. In Proceedings of the 23rd International Conference on Machine

Learning, ICML ’06, pages 161–168, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 122

[39] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. Simple and scalable response

prediction for display advertising. ACM Trans. Intell. Syst. Technol., 5(4):61:1–61:34,

December 2014.

[40] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In

Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA, 2016.

ACM.

[41] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,

Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine

learning library for heterogeneous distributed systems. CoRR, abs/1512.01274, 2015.

[42] Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive analytical processing in

big data systems: A cross-industry study of mapreduce workloads. Proc. VLDB

Endow., 5(12):1802–1813, August 2012.

[43] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, An-

drew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning on multicore. In

Proceedings of the 19th International Conference on Neural Information Processing

Systems, NIPS’06, pages 281–288, Cambridge, MA, USA, 2006. MIT Press.

[44] E. F. Codd. A relational model of data for large shared data banks. Commun.

ACM, 13(6):377–387, June 1970.

[45] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi

Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. Dawnbench:

An end-to-end deep learning benchmark and competition. ML Systems Workshop

@ NIPS 2017, 100(101):102, 2017.

[46] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google

news personalization: Scalable online collaborative filtering. In Proceedings of the

16th International Conference on World Wide Web, WWW ’07, pages 271–280, New

York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 123

[47] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. In OSDI, pages 137–150, 2004.

[48] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, January 2008.

[49] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: A flexible data processing tool.

Commun. ACM, 53(1):72–77, January 2010.

[50] David DeWitt and Jim Gray. Parallel database systems: The future of high

performance database systems. Commun. ACM, 35(6):85–98, June 1992.

[51] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens, Krishna B.

Kumar, and M. Muralikrishna. Gamma - a high performance dataflow database

machine. In Proceedings of the 12th International Conference on Very Large Data

Bases, VLDB ’86, pages 228–237, San Francisco, CA, USA, 1986. Morgan Kaufmann

Publishers Inc.

[52] Pedro Domingos. A few useful things to know about machine learning. Commun.

ACM, 55(10):78–87, October 2012.

[53] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae,

Judy Qiu, and Geoffrey Fox. Twister: A runtime for iterative mapreduce. In Proceed-

ings of the 19th ACM International Symposium on High Performance Distributed

Computing, HPDC ’10, pages 810–818, New York, NY, USA, 2010. ACM.

[54] Anon et al, Dina Bitton, Mark Brown, Rick Catell, Stefano Ceri, Tim Chou, Dave

DeWitt, Dieter Gawlick, Hector Garcia-Molina, Bob Good, Jim Gray, Pete Homan,

Bob Jolls, Tony Lukes, Ed Lazowska, John Nauman, Mike Pong, Alfred Spector,

Kent Trieber, Harald Sammer, Omri Serlin, Mike Stonebraker, Andreas Reuter,

and Peter Weinberger. A measure of transaction processing power. Datamation,

31(7):112–118, April 1985.

[55] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. Spinning

fast iterative data flows. Proc. VLDB Endow., 2012.

BIBLIOGRAPHY 124

[56] Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker Markl,

and Cafer Tosun. Benchmarking in the Cloud: What It Should, Can, and Cannot Be.

In Raghunath Nambiar and Meikel Poess, editors, Selected Topics in Performance

Evaluation and Benchmarking, page 173–188, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg.

[57] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine.

Annals of Statistics, 29:1189–1232, 2000.

[58] Shinya Fushimi, Masaru Kitsuregawa, and Hidehiko Tanaka. An overview of the

system software of a parallel relational database machine grace. In Proceedings

of the 12th International Conference on Very Large Data Bases, VLDB ’86, pages

209–219, San Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

[59] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain

Crolotte, and Hans-Arno Jacobsen. Bigbench: Towards an industry standard

benchmark for big data analytics. In Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’13, pages 1197–1208,

New York, NY, USA, 2013. ACM.

[60] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.

In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,

SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[61] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold Rein-

wald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivakumar

Vaithyanathan. Systemml: Declarative machine learning on mapreduce. In Data

Engineering (ICDE), 2011 IEEE 27th International Conference on, pages 231–242.

IEEE, 2011.

[62] Sharad Goel, Duncan J. Watts, and Daniel G. Goldstein. The structure of online

diffusion networks. In Proceedings of the 13th ACM Conference on Electronic

Commerce, EC ’12, pages 623–638, New York, NY, USA, 2012. ACM.

[63] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533,

May 1988.

BIBLIOGRAPHY 125

[64] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effectiveness

of data. IEEE Intelligent Systems, 24(2), March.

[65] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine

Atallah, Ralf Herbrich, Stuart Bowers, and Joaquin Quiñonero Candela. Practical

lessons from predicting clicks on ads at facebook. In Proceedings of the Eighth

International Workshop on Data Mining for Online Advertising, ADKDD’14, pages

5:1–5:9, New York, NY, USA, 2014. ACM.

[66] Mark D. Hill. What is scalability? SIGARCH Comput. Archit. News, 18(4):18–21,

December 1990.

[67] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The HiBench

Benchmark Suite: Characterization of the MapReduce-Based Data Analysis, pages

209–228. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[68] Karl Huppler and Douglas Johnson. TPC Express – A New Path for TPC Bench-

marks. In Raghunath Nambiar and Meikel Poess, editors, Performance Char-

acterization and Benchmarking, page 48–60, Cham, 2014. Springer International

Publishing.

[69] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is

NP-complete. Information Processing Letters, 5(1):15–17, 1976.

[70] H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou,

Jignesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its

technical challenges. Commun. ACM, 57(7):86–94, July 2014.

[71] Lin Jimmy and Alek Kolcz. Large-scale machine learning at twitter. SIGMOD

2012, 2012.

[72] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei

Ye, and Tie-Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree.

In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, editors, Advances in Neural Information Processing Systems 30,

page 3146–3154. Curran Associates, Inc., 2017.

BIBLIOGRAPHY 126

[73] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques

for recommender systems. Computer, 42(8):30–37, August 2009.

[74] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja

Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed

machine learning with the parameter server. In OSDI, volume 14, pages 583–598,

2014.

[75] Chih-Jen Lin and Jorge J. Moré. Newton’s method for large bound-constrained

optimization problems. SIAM J. on Optimization, 9(4), April 1999.

[76] Jimmy Lin and Chris Dyer. Data-Intensive Text Processing with MapReduce. Morgan

and Claypool Publishers, 2010.

[77] Jimmy J. Lin. Mapreduce is good enough? if all you have is a hammer, throw away

everything that’s not a nail! CoRR, abs/1209.2191, 2012.

[78] Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou, Cui Li, and Feng Sun.

Model ensemble for click prediction in bing search ads. In Proceedings of the 26th

International Conference on World Wide Web Companion, WWW ’17 Companion,

pages 689–698, Republic and Canton of Geneva, Switzerland, 2017. International

World Wide Web Conferences Steering Committee.

[79] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale

optimization. Math. Program., 1989.

[80] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,

and Joseph M Hellerstein. Distributed graphlab: a framework for machine learning

and data mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727,

2012.

[81] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,

and Joseph Hellerstein. Graphlab: A new framework for parallel machine learning.

arXiv preprint arXiv:1408.2041, 2014.

BIBLIOGRAPHY 127

[82] O. C. Marcu, A. Costan, G. Antoniu, and M. S. Pérez-Hernéndez. Spark versus flink:

Understanding performance in big data analytics frameworks. In IEEE CLUSTER

2016, pages 433–442, Sept 2016.

[83] Ryan Mcdonald, Mehryar Mohri, Nathan Silberman, Dan Walker, and Gideon S.

Mann. Efficient Large-Scale Distributed Training of Conditional Maximum Entropy

Models. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and

A. Culotta, editors, Advances in Neural Information Processing Systems 22, page

1231–1239. Curran Associates, Inc., 2009.

[84] H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner,

Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat

Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos,

and Jeremy Kubica. Ad click prediction: A view from the trenches. In KDD ’13.

ACM, 2013.

[85] Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! but at what

cost? In USENIX HOTOS’15. USENIX Association, 2015.

[86] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-

man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin,

Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar.

Mllib: Machine learning in apache spark. J. Mach. Learn. Res., 17(1):1235–1241,

January 2016.

[87] Kevin P Murphy. Machine learning: a probabilistic perspective. Cambridge, MA,

2012.

[88] Raghunath Nambiar, Meikel Poess, Akon Dey, Paul Cao, Tariq Magdon-Ismail,

Da Qi Ren, and Andrew Bond. Introducing TPCx-HS: The First Industry Standard

for Benchmarking Big Data Systems. In Raghunath Nambiar and Meikel Poess,

editors, Performance Characterization and Benchmarking. Traditional to Big Data,

page 1–12, Cham, 2015. Springer International Publishing.

BIBLIOGRAPHY 128

[89] Raghunath Othayoth Nambiar and Meikel Poess. The making of tpc-ds. In

Proceedings of the 32Nd International Conference on Very Large Data Bases, VLDB

’06, pages 1049–1058. VLDB Endowment, 2006.

[90] Didrik Nielsen. Tree Boosting With XGBoost - Why Does XGBoost Win "Every"

Machine Learning Competition? NTNU (Masters Thesis), 2016.

[91] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. Hogwild!: A

lock-free approach to parallelizing stochastic gradient descent. In NIPS 2011, USA.

[92] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New

York, NY, USA, second edition, 2006.

[93] NOMAD. https://repository.nomad-coe.eu/ accessed 24/10/2018.

[94] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon

Chun. Making sense of performance in data analytics frameworks. In Proceedings

of the 12th USENIX Conference on Networked Systems Design and Implementation,

NSDI’15, pages 293–307, Berkeley, CA, USA, 2015. USENIX Association.

[95] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,

Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-scale

data analysis. In Proceedings of the 2009 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’09, pages 165–178, New York, NY, USA, 2009.

ACM.

[96] Nicolas Poggi, David Carrera, Aaron Call, Sergio Mendoza, Yolanda Becerra, Jordi

Torres, Eduard Ayguadé, Fabrizio Gagliardi, Jesús Labarta, Rob Reinauer, et al.

Aloja: A systematic study of hadoop deployment variables to enable automated char-

acterization of cost-effectiveness. In Big Data (Big Data), 2014 IEEE International

Conference on, pages 905–913. IEEE, 2014.

[97] G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for adaboost. Mach. Learn.,

42(3):287–320, March 2001.

[98] Matthew Richardson, Ewa Dominowska, and Robert Ragno. Predicting clicks:

Estimating the click-through rate for new ads. In WWW ’07. ACM, 2007.

https://repository.nomad-coe.eu/

BIBLIOGRAPHY 129

[99] Sebastian Schelter, Christoph Boden, and Volker Markl. Scalable similarity-based

neighborhood methods with mapreduce. In Proceedings of the Sixth ACM Conference

on Recommender Systems, RecSys ’12, pages 163–170, New York, NY, USA, 2012.

ACM.

[100] Sebastian Schelter, Christoph Boden, Martin Schenck, Alexander Alexandrov, and

Volker Markl. Distributed matrix factorization with mapreduce using a series of

broadcast-joins. ACM RecSys 2013, 2013.

[101] Sebastian Schelter, Venu Satuluri, and Reza Zadeh. Factorbird - a Parameter Server

Approach to Distributed Matrix Factorization. Distributed Machine Learning and

Matrix Computations workshop at NIPS 2014, 2014.

[102] Bertil Schmidt and Andreas Hildebrandt. Next-generation sequencing: big data

meets high performance computing. Drug Discovery Today, 22(4):712–717, 2017.

[103] J. Shemer and P. Neches. The genesis of a database computer. Computer, 17(11):42–

56, November 1984.

[104] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold

Reinwald, and Fatma Özcan. Clash of the titans: Mapreduce vs. spark for large

scale data analytics. Proc. VLDB Endow., 8(13), September 2015.

[105] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed file system. In Proceedings of the 2010 IEEE 26th Symposium on

Mass Storage Systems and Technologies (MSST), MSST ’10, pages 1–10, Washington,

DC, USA, 2010. IEEE Computer Society.

[106] Michael Stonebraker, Daniel Abadi, David J. DeWitt, Sam Madden, Erik Paulson,

Andrew Pavlo, and Alexander Rasin. Mapreduce and parallel dbmss: Friends or

foes? Commun. ACM, 53(1):64–71, January 2010.

[107] Sloan Digital Sky Survey. http://www.sdss.org/ accessed 24/10/2018.

[108] Jóakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange, John L.

Henning, and Paul Cao. How to build a benchmark. In Proceedings of the 6th

http://www.sdss.org/

BIBLIOGRAPHY 130

ACM/SPEC International Conference on Performance Engineering, ICPE ’15, pages

333–336, New York, NY, USA, 2015. ACM.

[109] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml:

Networked science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

[110] J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, and J. Tourifio. Performance

evaluation of big data frameworks for large-scale data analytics. In IEEE BigData

2016, pages 424–431, Dec 2016.

[111] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh

Attenberg. Feature hashing for large scale multitask learning. In Proceedings of

the 26th Annual International Conference on Machine Learning, ICML ’09, pages

1113–1120, New York, NY, USA, 2009. ACM.

[112] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Zhiheng Huang, Brian

Guenter, Oleksii Kuchaiev, Yu Zhang, Frank Seide, Huaming Wang, et al. An

introduction to computational networks and the computational network toolkit.

Microsoft Technical Report MSR-TR-2014–112, 2014.

[113] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

NSDI’12, 2012.

	Title Page
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Thesis Statement
	Main Contributions
	Thesis Outline

	Background
	A Brief History of Big Data Analytics Systems
	Key Concepts in Scalability and Parallelism
	Amdahl's Law.
	Gustafson's Law.
	Scalable Algorithms and Scalable Systems
	Parallelism

	Massively Parallel Data Processing Models and Systems
	Distributed File Systems and HDFS
	MapReduce and Hadoop
	PACTs, Stratosphere and Apache Flink
	Resilient Distributed Data Sets and Apache Spark

	Machine Learning
	Unsupervised Learning
	Supervised Learning
	Logistic Regression
	Gradient Descent Methods in MapReduce

	Benchmarking

	Benchmarking Scalability
	Problem Statement
	Contributions
	Overview
	Benchmark Workloads
	Supervised Learning
	Solvers
	Implementation

	Unsupervised learning

	Benchmark Dimensions and Settings
	Scalability
	Absolute and Single Machine Runtimes
	Model Quality
	Cluster Hardware
	Data Sets

	System Parameter Configuration
	Parallelism
	Caching
	Buffers
	Serialization
	Broadcast

	Benchmark Results: Experiments and Evaluation
	Supervised Learning
	Production Scaling
	Strong Scaling
	Scaling Model Dimensionality.
	Comparison to single-threaded implementation

	Unsupervised Learning

	Related Work
	Discussion

	Benchmarking Performance and Model Quality
	Problem Statement
	Contributions
	Overview
	The Case for Single Machine Baselines
	Machine Learning Methods and Libraries
	Gradient Boosted Trees
	Trees as weak learners
	XGBoost
	LightGBM
	Apache Spark MLLib

	Logistic Regression
	Vowpal Wabbit (VW)
	Apache Spark MLLib

	Methodology
	Feature Extraction
	Parameter Tuning
	Measurements
	Data Set
	Cluster Hardware

	Experiments
	Experiment 1: Logistic Regression
	Experiment 2: Gradient Boosted Trees

	Related Work
	Discussion

	Reproducibility of Benchmarks
	Problem Statement
	Contribution
	Overview
	Running Example: Benchmarking a Supervised Machine Learning Workload
	Experiments and ExperimentSuites
	Data Sets
	Experiment
	System
	ExperimentSuite

	PEEL Bundles
	Environment Configurations
	Configuration Layers.

	Execution Workflow
	Results Analysis
	Extending PEEL
	Related Work
	Discussion

	Conclusion
	Summary
	Outlook

	List of Figures
	List of Tables

