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Benchmarking Deep Learning Frameworks and Investigating FPGA

Deployment for Traffic Sign Classification and Detection

Zhongyi Lin∗1, Matthew Yih1, Jeffrey M. Ota2, John D. Owens1, and Pınar Muyan-Özçelik∗3

Abstract— We benchmark several widely-used deep learning
frameworks and investigate the FPGA deployment for perform-
ing traffic sign classification and detection. We evaluate the
training speed and inference accuracy of these frameworks
on the GPU by training FPGA-deployment-suitable models
with various input sizes on GTSRB, a traffic sign classification
dataset. Then, selected trained classification models and various
object detection models that we train on GTSRB’s detection
counterpart (i.e., GTSDB) are evaluated with inference speed,
accuracy, and FPGA power efficiency by varying different
parameters such as floating-point precisions, batch sizes, etc. We
discover that Neon and MXNet deliver the best training speed
and classification accuracy on the GPU in general for all test
cases, while TensorFlow is always among the frameworks with
the highest inference accuracies. We observe that with the cur-
rent OpenVINO release, the performance of lightweight models
(e.g., MobileNet-v1-SSD, etc) usually exceeds the requirement of
real-time detection without losing much accuracy, while other
models (e.g., VGG-SSD, ResNet-50-SSD) generally fail to do
so. We also demonstrate that we can adjust the precision of
bitstreams and the batch sizes to balance inference speed and
accuracy of the applications deployed on the FPGA. Finally, we
show that for all test cases, the FPGA always achieves higher
power efficiency than the GPU.

I. INTRODUCTION

Deep learning is the driving power behind many auto-

motive computing tasks involved in driverless cars that are

on our horizon. This technique involves deep convolutional

neural network (CNN) models that are usually trained of-

fline then transferred to an optimized on-vehicle embedded

system for real-time inference. The high parallelism and

power efficiency of FPGAs make them a preferred embedded

platform for performing autonomous driving tasks. However,

embedded systems, like FPGAs, have limited resources, and

meanwhile automotive tasks require real-time results with

high accuracy to protect the driver’s and passengers’ safety.

Thus, it is important to investigate methodologies for training

the FPGA-suitable models which require less resources and

for deploying these models to the FPGA that achieve fast

inference with high accuracy.
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3Pınar Muyan-Özçelik is with the Department of Computer Science, Cal-
ifornia State University, Sacramento, CA 95819; pmuyan@csus.edu

- The source code of this benchmark can be accessed from https:

//github.com/owensgroup/TrafficSignBench, which is under
construction.

In this research, we use traffic sign classification and

detection as two different applications of autonomous driving

tasks, and study how the best result of training and deploy-

ment can be realized for both. Based on this idea, our paper

is logically divided into two parts, namely, classification

and detection. In the classification part, we investigate the

tradeoffs between the five deep learning frameworks and

benchmark their training speed and inference accuracy on the

GPU for performing a traffic-sign-classification task using

three different models. Then, we verify the effectiveness

of two selected models on the FPGA by evaluating their

speed and accuracy with varied parameters such as floating

point precisions, batch sizes and data types. In the detection

part, we train six models for traffic sign detection using

three different frameworks. We then deploy these models

to the FPGA and investigate their speed, accuracy, and

power efficiency by varying the same parameters used in

the classification part.

CNNs have been used in traffic sign classification since the

start of this decade, when the model designed by Ciresan et

al. [6] (referred to by the name of the institution, IDSIA, in

the rest of the paper) ranked first in the IJCNN competition

in 2011. Impressive results of this study and other similar

studies lead to rapid development of various alternative

tools, frameworks, and models in the area of deep learning.

However, there are only few studies that compare these

alternative proposals. Prior to our research, Chu et al. [23]

comprehensively evaluated five mainstream deep learning

frameworks over a series of metrics on training MNIST

and CIFAR datasets. For our benchmark in classification,

we worked with a similar set of frameworks including

CNTK [17], MXNet [2], Neon [18], PyTorch [21], and

TensorFlow [8]. We use a different dataset, the German

Traffic Sign Recognition Benchmark (GTSRB) [25] dataset

that contains traffic sign images. In addition to IDSIA, we

also utilize two deep residual neural networks designed by

He et al. [10], ResNet-20 and ResNet-32 for our classification

experiments. All three models are proven to be capable of

achieving high classification accuracy results while having a

reasonable size for FPGA deployment. In the detection part,

we use GTSRB’s detection counterpart, the German Traffic

Sign Detection Benchmark (GTSDB) [20] as the training

dataset. We train six SSD models with different base net-

works, namely, VGG [16], MobileNet-v1 [12], MobileNet-

v2 [22] (with SSDLite), ResNet-18, ResNet-50 [10], and

SqueezeNet-v1.1 [13] on GTSDB . We select these detection

models since they are all known to have high efficiency and

accuracy in performing object detection and OpenVINO [14]

https://github.com/owensgroup/TrafficSignBench
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(i.e., the tool we have utilized in our FPGA deployment) has

a strong support for SSD models. We train these detection

models using Caffe [3], MXNet [4], and TensorFlow [1], all

of which are currently supported by OpenVINO.

Deployment of deep learning models on different hardware

has been an interesting but difficult topic in both academia

and industry. FPGAs are one of the most challenging target

hardware, as FPGAs do not have a fixed architecture as GPUs

or CPUs and thus different models are usually deployed

with different hardware configuration to exploit FPGAs’

parallelism. Tools for FPGA deployment are proposed by

studies including Suda et al. [26] and Wang et al. [27].

Although these tools have produced impressive results, very

few of them are open source and most of them lack a

user-friendly interface that can support development of new

applications. OpenVINO, which was released at Intel’s AI

Dev Con 2018, provides support for FPGA development

and effectively addresses the aforementioned shortcomings

of the existing deployment tools. In our research, we use

OpenVINO for FPGA deployment of both classification and

detection models, and use various features it provides to

analyze the tradeoffs in these deployments.

This paper extends our prior study [15]. Our contributions

can be summarized into four main points where we provide:

• a benchmark of five popular frameworks on the training

speed and inference accuracy of performing traffic sign

classification;

• a thorough investigation of how the choice of CNN

models and some critical parameters—e.g., floating

point precision, batch sizes, data types, etc.—will affect

the performance of the FPGA on performing both traffic

sign classification and detection;

• optimization techniques we apply to classification ex-

periments and detection model training which can be

utilized by future studies targeting similar frameworks,

models, and datasets; and

• a power efficiency comparison of the FPGA and GPU

on traffic sign detection.

We believe our discussions and analysis can guide engineers

and researchers in training models on the GPU and deploying

them on the FPGA to perform traffic sign classification,

detection, and other autonomous driving applications.

The rest of the paper starts with a section of background

information, introducing the frameworks, dataset, and models

we use in the experiments. Following that, we explain our

methodology, including image preprocessing, implementa-

tion of ResNets, experiment specifications, and optimizations

in Section III. Then, we present our results and analysis in

Section IV. Finally, we discuss potential future work and

provide conclusions in the last two sections.

II. BACKGROUND

A. Frameworks/Tools

In the classification part, we use the native APIs of CNTK

(v2.5.1), Neon (v2.6.0), MXNet (v1.3.0), PyTorch (v0.4.0),

and TensorFlow (v1.12), which are all currently popular and

actively used in both industry and academia.

We use OpenVINO for the deployment of both the clas-

sification and detection models on the FPGA. With a pre-

trained model, users start with OpenVINO’s model optimizer

to convert them into intermediate representation (IR), and

consequently deploy this model’s IR to FPGA which has

been flashed with a pre-compiled bitstream (.aocx) file as

the hardware configuration.

To train our detection models which were mainly used

for collecting FPGA deployment results, we utilize three

OpenVINO-supported frameworks: Caffe, MXNet, and Ten-

sorFlow. The other three frameworks used in classification

experiments—CNTK, Neon and PyTorch—are not used as

they are not directly supported. We do not add Caffe to

the training benchmark for performance comparison because

it is currently inactive and thus out-of-date in some oper-

ations such as depthwise convolution. However, the Caffe

community has a huge amount of code for legacy projects

(e.g., SSD), which still makes it a good choice for academic

research including ours.

B. Datasets

The GTSRB dataset we use in the classification part

contains more than 50,000 ppm-format images with sizes

varying from 15×15 to 250×250. Each image contains a

traffic sign that belongs to one of the 43 different classes.

GTSRB’s detection counterpart, the GTSDB dataset which

we use in the detection part, contains 900 images of size

800×1360, among which 159 images contain no traffic signs

while rest of the images contain one or multiple of them. All

the traffic signs in GTSDB comprise the same 43 classes

of traffic signs as GTSRB, but are further classified into 4

main classes: danger, mandatory, other, and prohibitory. The

bounding boxes of traffic signs in each image range from

16×16 to 128×128.

C. Models

1) Classification: The models we train on include the

CNN model designed by Ciresan et al. [6] (IDSIA), which is

memory-friendly on FPGAs and achieves greater than 99%

classification accuracy with proper preprocessing. We also

investigate ResNets (ranked first in the ImageNet competition

in 2015) introduced by He et al. [10] to address the vanish-

ing/exploding gradient problem and liberate CNNs from the

limit of depth. In addition to having high accuracy, ResNets

are also considered FPGA-friendly for its easy construction

with repetitive basic/bottleneck building blocks that allow

resizing the model when resources are limited, as well as its

flexible input sizes that are lacking in many other models

that originated from ImageNet competitions.

2) Detection: The models we used for detection are all

Single Shot MultiBox Detectors (SSDs). SSD (shown in

Fig. 1) is introduced by Liu et al. [16] and consists of

a base image classification network, which is usually pre-

trained, and several multi-box layers (connected to either

feature maps in the base network or the previous layer),

which detect objects in different scales. SSD is an end-to-end

model that requires only one pass for object detection on a



Fig. 1: Structure of the SSD model

given image, which brings a higher detection speed compared

to its ascendants. SSD is also very flexible because different

base networks can be used for applications with different

requirements.

In this study, following the study of Liu et al., we use

VGG-reduced (with VGG-16’s [24] fully-connected layers

replaced by convolutional layers and layer fc6 dilated) as

one of the base networks since this model is known to

produce high inference accuracy in object detection. We

also use MobileNet-v1 [12], -v2 [22], and SqueezeNet-

v1.1 [13] as alternative base networks since they are all

suitable for embedded systems including FPGAs. These

models utilize techniques such as using depthwise convo-

lution layers and removing fully connected layers to reduce

computation burden and parameter count while making a

negligible sacrifice in accuracy compared to using normal

convolutional layers. In particular, the additional convolution

layers in the MobileNet-v2-SSDLite model are also replaced

by depthwise separable convolutional layers, which accounts

for the name ”SSDLite”. Finally, we also include two ResNet

models—ResNet-18 and ResNet-50—as additional base net-

works in the detection experiments due to their advantages

highlighted above in the description of classification models

(Section II.C.1).

III. METHODOLOGY

Our experiments are completed on a Ubuntu 16.04 LTS

machine with an Intel i7-7700K 4.2 GHz CPU, an NVIDIA

GTX 1050 Ti GPU with 4 GB memory and an Arria

10 FPGA development board. CUDA (v9.0) is used as

packages to support GPU acceleration. OpenVINO Release

5 for FPGA is used for FPGA deployment experiments. The

experiment code is programmed with Python 3.5 and libraries

including PyCuda (v2017.1.1) and PyGPU (v0.7.5).

A. Image Preprocessing

We crop the images in GTSRB according to the annotated

bounding boxes, then resized to 32 by 32, 64 by 64 (only

for ResNets), and 48 by 48 (for IDSIA and ResNets). These

images are further processed with contrast limited adaptive

histogram equalization (CLAHE) [28], which resulted in a

minimum error rate among four preprocessing techniques

used by Ciresan et al.

For the GTSDB dataset, we simply remove all 159 images

that contain no traffic signs, and split the 741 remaining

images into train-val and test datasets with a ratio of roughly

4:1. In our experiments, this results in 588 images in the

train-val set and 153 in the test set. The reason we do not

Model Name 1st Feature Map 2nd Feature Map

VGG conv4 3 fc7
MobileNet-v1 conv5 5/sep conv6/sep
MobileNet-v2 conv5 3/expand conv6 4

ResNet-18 block2 block4
ResNet-50 block2 block4

SqueezeNet-v1.1 fire5 fire9

TABLE I: 1st and 2nd feature maps of the base networks

which are connected to multi-box layers in SSD detection

models

follow the original 600 + 300 train-val/test split is that the

train-val image ratio (2:1) is too low and tends not to give

good results. Except for this step, we do not perform any

other preprocessing on GTSDB since we follow the default

data augmentation techniques that are introduced by Liu et

al. [16].

B. Construction of ResNets for Experiments

We follow He et al.’s way of constructing ResNets for the

CIFAR-10 and ImageNet datasets to construct our ResNet

classification models and SSD detection models that use

ResNet base networks. In the classification part, the total

number of layers of a ResNet model, l, can be specified

as l = 6n + 2, where n is conventionally an odd number

starting from 3. In our experiments, we pick n = 3 and

n = 5 to build two models, ResNet-20 and ResNet-32. In

the detection part, we construct ResNet-18 and ResNet-50 as

described by He et al. [10]. The implementations of ResNets

are ported from the official model “zoo” of each framework.

We make necessary changes to the code to guarantee images

of different sizes can be fed to each model correctly, and the

global average pooling layer at the end works properly.

C. Experiment Specifications

In our classification experiments, we use a Stochastic

Gradient Descent (SGD) learner with 0.01 learning rate and

0.9 momentum as the optimizer, and set batch size to 64 and

epoch number to 25. We also use BGR channel order and

image size (3, n, n), where n = 32, 48, and 64. Weights of

convolutional layers are initialized with the he normal (also

named the kaiming normal) initializer [11], which claims

to have better convergence. We select two models, namely,

ResNet-20 (with input size 32 by 32, referred to as 32x32

below) and ResNet-32 (64x64) trained by TensorFlow for

the FPGA deployment in the detection part. The reasoning

for these selections is provided in Section IV-B. These

models are converted to IR representations in XML format

using OpenVINO’s model optimizer, and then passed to the

validation application for classification accuracy and speed

evalutation. We do not present the results of classification

models trained by MXNet, as the speed and accuracy are

low and unstable, which may indicate an existing bug of

the model converter of the current release of OpenVINO.

Since CNTK, Neon, and PyTorch are not directly supported

by OpenVINO as mentioned in Section II-A, we do not



test classification models trained by them in our FPGA

deployment experiments.

In the detection experiments, we train the VGG-SSD

and SqueezeNet-v1.1-SSD models using the SGD learner

with 0.9 momentum. We use RMSProp as the optimizer

and follow the parameter settings provided in the related

repository [5] and the study by Sandler et al. [22] to train

MobileNet-v1-SSD and MobileNet-v2-SSDLite. We also use

SGD for ResNet-18 and ResNet-50, but tune our own

parameter settings, which can be viewed in our GitHub

repository [7]. The batch size is set to 2 for all models except

for SqueezeNet-v1.1-SSD (batch size 16). The input images

are all resized to 300 by 510 which both retains the aspect

ratio of the original images and has a height that matches

the size of images in the original SSD implementations

for convenient source code reuse. Table I shows which

feature maps of the base networks are connected to first

two multi-box layers in SSD detection models. We follow

the layer naming convention in the studies these models are

created [10,12,13,23,25]. We test models trained by Caffe,

MXNet, and TensorFlow, with batch size 1 or 4 for detection

inference. We do not measure the speed, accuracy, and power

measurement on the GPU with batch size 4 for TensorFlow

due to the lack of this option running on the GPU. We

also skip running ResNet-50-SSD with batch size 4 on the

GPU since it exceeds the memory limit of the GPU used in

this study. Similar to the classification experiments, we use

OpenVINO’s model optimizer and validation application to

obtain the mean average precision (mAP) and speed. We use

the FP11 and FP16 pre-compiled FPGA bitstreams for the

tests. Runtime power of the FPGA and GPU is measured

by Arria 10’s power monitor and NVIDIA’s nvidia-smi tool,

respectively.

D. Optimizations

In the classification part of our study, we apply both

system and code optimizations to improve performance of

the frameworks. In these optimizations, we demonstrate

potential speed change by running a simple single-epoch

test on frameworks with the IDSIA model on the GTSRB

dataset with training set size 31,367. The input size we use

in these tests is 48 by 48 and the batch size is 64. In addition

to optimizations used in the classification part, to obtain

better object detection results, we also conduct parameter

tuning during detection model training. All the optimization

techniques will be introduced in the following subsections:

1) System optimizations for classification model training

on the GPU: Since currently almost all the mainstream

frameworks rely on the cuDNN library for CUDA-based

GPU computation, as long as cuDNN and CUDA are cor-

rectly installed and configured, building frameworks from

source will not affect their performance on the GPU. One

exception is PyTorch. We boost its GPU performance from

22.4 s/epoch to 21.1 s/epoch after adding LAPACK support

by installing the magma-cuda90 library.

2) Code optimizations for classification model training:

Code optimization can also be done to improve speed and

Parameter Name Original Value(s) New Value(s)

Anchor box aspect ratio [1,1/2,1/3,2,3] [1]
Prior box scale range [0.2, 0.9] [0.05, 0.6]

NMS bounding box number 400 100
Post-detection bounding box number 100 40
RGB mean values across the dataset [123,117,104] [125,127,130]

TABLE II: Parameters tuned for SSD models trained with

GTSDB

Size Scale 0.02 0.04 0.06 0.08 0.10 0.20 0.50

Percentage(%) 0.0 33.3 68.1 83.5 92.7 100.0 100.0

TABLE III: Cumulative percentage of bounding boxes based

on their size scales.

accuracy. For CNTK, before being passed to the minibatch

source constructor, numpy arrays of data are converted to

contiguous arrays if they were not in order to improve com-

putation efficiency. Since delicate time measurements cannot

be done merely with the callbacks passed to the common

training session function, we create a training loop for more

flexible time measurement. This might sacrifice some of

CNTK’s speed advantage (especially on the GPU). In fact,

it is suggested that rather than creating a customer training

loop for each epoch, the training session function should

be used for a higher training speed. Another difference of

CNTK is that it sums the gradient of each minibatch for

parameter updates instead of averaging the minibatches like

other frameworks such as TensorFlow. CNTK also differs

from other frameworks in the sense that it normalizes the

gain for SGD learner with momentum. These two features

of CNTK usually decrease the inference accuracy of CNTK

compared to other frameworks. To resolve this problem we

set unit gain to False and use mean gradient to True for the

SGD learner, and bring CNTK back to the same evaluation

standard with other frameworks. We show the related results

in Section IV.

We also explore code optimization opportunities on Py-

Torch. One optional parameter of the Dataloader function,

num workers, can be set to use multiple threads for data

loading. We try 0 (default), 4, and 16, but find that the

training speed per batch is decreased from 21.1 s/epoch to

22.3 s/epoch and 23.4 s/epoch, which contradicts our expec-

tation. One possible reason is that compared to huge datasets

like ImageNet, the datasets we use have a much smaller size,

for which the overhead of multithreading dominates the code

running time. As a result, we use the default value 0 for our

experiments.

Notice that the optimization techniques mentioned above

might affect the training convergence rate. However, since

the number of epochs we use (e.g., 25) guarantees the models

to be overfitted in our tests, it is unnecessary to consider

the effect of different convergence rates on classification

accuracy.

3) Parameter tuning for detection model training: SSD

requires a good match between the aspect ratios of the



bounding boxes in the dataset, and the aspect ratios that are

set for anchor boxes of different multi-box layers. It also

requires a good match between the sizes of the bounding

boxes in the dataset, and the sizes of objects that each multi-

box layer can detect depending on which feature map layer

these layers are connected to. In Table II we summarize the

parameters we tuned for the GTSDB dataset. In the following

paragraphs, we explain the reason for these modifications.

Compared to the VOC PASCAL and COCO datasets

that were used in the original development of SSD, in the

GTSDB dataset, the bounding box sizes are relatively small

(at most 16% of the image), and the aspect ratios of the

bounding boxes are relatively fixed, which are close to 1.

This is because traffic signs usually appear to be small in the

image, and those marked in GTSDB usually have a square

bounding box. After calculating the aspect ratios of all region

of interests in GTSDB, we see that 287 and 912 out of

1024 boxes have aspect ratios between (5/6, 1) and (1, 6/5),

respectively, which represent 98.8% of the total bounding

boxes and coincide with our initial guess of nearly-square

bounding boxes. Thus, there is no need to keep anchor boxes

with aspect ratios of 1/2, 2, 1/3, 3, etc. in the SSD model.

Table III shows the cumulative percentage of bounding

boxes based on their size scales, where size scale indicates

the ratio of bounding box size to overall image size. We see

that 92.7% of the bounding boxes have a size scale smaller

than 0.1, and all the bounding boxes have a size scale smaller

than 0.2. Therefore, we tend to focus on small sizes, and

we reset the prior boxes scale range to [0.05, 0.6]. Since

the majority of default bounding boxes are generated from

the first two multi-box layers which are responsible for the

detection of objects with size scale between 0.05 and 0.2,

this design will satisfy our need of detecting traffic signs

which are all smaller than 20% of the size of the overall

image.

The tuning of the last three parameters shown in Table II

is for better inference speed and accuracy performance.

IV. RESULTS AND ANALYSIS

Fig. 2 provides plots that indicate the batch training time

on the GPU versus the following variables: two ResNets with

different input sizes and all models with a fixed input size 48

by 48. We also present the total training time and inference

accuracy of all classification models, frameworks, and input

sizes on the GPU in Table IV, where the best results are

shown in bold. Table V shows the inference and accuracy

of ResNet-20 (32x32) and ResNet-32 (64x64) on the FPGA

versus different batch sizes, data types, and bitstreams with

different precisions, as well as the same type of results on the

GPU for reference. We present inference speed and accuracy

of six detection models on the FPGA and the GPU (for

reference), which were trained with Caffe (Table VI), MXNet

(Table VII), and TensorFlow (Table VIII). At the end of this

section, we present the power efficiency of running detection

models with batch size 1 on the FPGA and the GPU as shown

in Fig. 4. The power efficiency is represented by the number

of processed images per Joule (img/J), which is calculated

by dividing FPS by the average runtime power.

A. Classification Training Speed on the GPU

As shown in Table IV, the classification experiments, train-

ing speed results on the GPU show that Neon is the fastest in

most cases, which could be explained by the utilization of

the Winograd-based algorithm for convolution [19]. There

is only one exception: MXNet ranks first on IDSIA when

the input size is 48 by 48. In general, the runtime of all

frameworks are fairly close to each other. In most of the

test cases, the training speed of the frameworks has the

following descending order: Neon, CNTK, PyTorch, MXNet,

and TensorFlow.

B. Classification Inference Accuracy on the GPU

Results from classification experiments also show that

in terms of classification accuracy, Neon and TensorFlow

provide the best performance, which could possibly be

accredited to their optimized low-level implementation. Over

the seven cases we test, Neon and TensorFlow rank first in

three cases each, while CNTK ranks first in the remaining

case. However, the gap between their classification accura-

cies and that of other frameworks is not very big. For all

frameworks, the two ResNet models have a clear advantage

against the IDSIA model as expected. However, one ResNet

model does not dominate over the other. Among all the three

input sizes we tested, although we do not observe any of

these sizes resulting in a dominant classification accuracy,

the best performance on average was reported with the 64

by 64 input size on ResNet-32. Hence, we conclude that

ResNet-20 (32x32) constitutes the most computationally eco-

nomical option that does not compromise inference accuracy

and ResNet-32 (64x64) is the option that delivers the best

accuracy. Thus, for the FPGA deployment, we choose to

work with these two particular classification models.

C. Classification Inference Speed and Accuracy on the

FPGA

For the reasons explained in Section III.C, we do not in-

clude classification models trained by CNTK, Neon, MXNet,

and PyTorch in the FPGA deployment experiments. Hence,

Table V shows FPGA deployment results of selected clas-

sification models that are trained by TensorFlow. As can be

seen from this table, ResNet-20 (32x32) has inference speed

higher than ResNet-32 with only a slightly lower accuracy

than ResNet-32 (64x64). This result is in accordance with

the GPU results, and indicates that ResNet-20 (32x32) is also

computationally economical on the FPGA. In both models, if

we use an FP11 pre-compiled bitstream instead of an FP16

one, we always get a better inference speed with slightly

lower accuracy. If the pre-compiled bitstream being used is

fixed, changing the data type between half or full precision

does not significantly affect the inference speed or accuracy.

We also observe that using batch size 32 always results in

faster inference on the FPGA than using batch size 1.



Fig. 2: GPU average batch training time versus (a) input sizes, on ResNet-20, (b) input sizes, on ResNet-32 and (c) all

models, with the same input size 48x48.

Framework
32x32 48x48 64x64

ResNet-20 ResNet-32 IDSIA ResNet-20 ResNet-32 ResNet-20 ResNet-32

ttrain acc ttrain acc ttrain acc ttrain acc ttrain acc ttrain acc ttrain acc

CNTK 313.80 96.93% 502.60 97.24% 393.4 96.78% 655.72 96.37% 1047.60 96.64% 1109.80 96.49% 1771.54 96.79%
Neon 288.65 97.68% 461.50 97.72% 432.2 95.87% 618.46 97.35% 1001.42 98.27% 1081.47 97.35% 1760.56 97.76%

MXNet 344.82 96.61% 531.36 96.26% 392.7 96.55% 712.59 96.80% 1116.57 97.32% 1179.94 96.73% 1849.95 97.34%
PyTorch 319.53 94.00% 509.17 97.00% 455.5 96.00% 697.94 97.00% 1114.56 96.00% 1177.42 95.00% 1877.46 96.00%

TensorFlow 357.01 97.32% 558.48 97.60% 491.92 96.37% 778.71 97.36% 1220.48 97.26% 1267.75 98.00% 2001.53 98.34%

TABLE IV: Total trainning time (in seconds) and accuracy of all classification models on the GPU for all sizes.

Models
FP11 FP16

GPU

Half-precision Full-precision Half-precision Full-precision

FPS acc FPS acc FPS acc FPS acc FPS acctrain acctest

ResNet-20 (32x32) (batch=1) 1787.41 97.23% 1728.87 97.23% 1820.37 97.30% 1827.78 97.27% 533.82 100% 97.32%
ResNet-20 (32x32) (batch=32) 4726.92 97.23% 4680.44 97.23% 4637.72 97.30% 4627.19 97.27% 7782.22 100% 97.32%
ResNet-32 (64x64) (batch=1) 838.80 98.13% 844.69 98.21% 1062.65 98.26% 1055.13 98.29% 393.74 100% 98.34%
ResNet-32 (64x64) (batch=32) 1223.33 98.13% 1216.87 98.21% 1673.56 98.26% 1671.77 98.29% 1555.34 100% 98.34%

TABLE V: Inference speed (in FPS) and accuracy of TensorFlow classification models on the FPGA and GPU

We also compare the results on the FPGA and GPU,

on which we overfit the models and reach 100% training

accuracy. We see that in the case of ResNet-20 (32x32) with

batch size 32, the speed of the GPU is faster than the speed

of the FPGA. On the other hand, in the case of ResNet-32

(64x64) with batch size 32, the speed of the GPU is slower

than the speed of the FPGA when the FP16 bitstream stream

is used, but it is faster if the FP11 bitstream is used. In all

other cases, the FPGA reaches an inference speed higher

than the GPU, possibly because of higher utilization of

compute units. In addition, in each test case, the classification

accuracy on the FPGA is slightly lower than accuracy on

the GPU which has a higher FP32 floating point precision,

but the discrepancy is negligible. Therefore, we conclude

that for classification tasks on small-size images (e.g., 32x32

or 64x64), with most of the models we investigated, the

FPGA reaches higher inference speed than the GPU, with

a negligible sacrifice in accuracy.

D. Detection Inference Speed and Accuracy

From Table VI, VII and VIII, we clearly observe

that lightweight models including MobileNet-v1-SSD,

MobileNet-v2-SSDLite, ResNet-18-SSD, and SqueezeNet-

v1.1-SSD achieve an inference speed much higher than

the speed required for real-time performance (24 FPS),

regardless of the framework that trains them. In particu-

lar, SqueezeNet-v1.1-SSD achieves extremely high infer-

ence speed on the FPGA when the model is trained by

Caffe and MXNet, but a much lower speed when trained

by TensorFlow. We conjecture that this might be because

OpenVINO’s model optimizer is not fully optimizing the

TensorFlow model. On the contrary, VGG-SSD fails to have

real-time performance due to the computation burden of

its last fully-connected layers. Also due to its computation

latency, ResNet-50-SSD fails all of the real-time tests on

the FPGA but one, where it is trained by TensorFlow and

run with FP11 precision. We see that models trained by

MXNet suffer an accuracy degradation on the FPGA, which

might again indicate an existing bug in OpenVINO’s model



Models
FP11 FP16

GPU

Half-precision Full-precision Half-precision Full-precision

FPS mAP FPS mAP FPS mAP FPS mAP FPS mAPtrain mAPtest

VGG-SSD (batch=1) 16.16 0.806 16.19 0.800 12.16 0.802 12.13 0.801 18.87 0.810 0.801
VGG-SSD (batch=4) 16.73 0.803 16.65 0.795 12.05 0.796 12.33 0.796 20.41 0.810 0.799

MobileNet-v1-SSD (batch=1) 98.74 0.720 99.67 0.763 81.30 0.796 83.17 0.795 48.26 0.837 0.808
MobileNet-v1-SSD (batch=4) 103.07 0.719 102.92 0.752 86.92 0.793 86.58 0.793 48.42 0.837 0.808

MobileNet-v2-SSDLite (batch=1) 67.33 0.743 68.49 0.742 62.57 0.753 62.52 0.753 29.37 0.782 0.756
MobileNet-v2-SSDLite (batch=4) 70.06 0.743 70.06 0.743 64.02 0.753 63.83 0.753 37.05 0.782 0.757

ResNet-18-SSD (batch=1) 37.49 0.787 37.33 0.788 28.69 0.786 28.77 0.789 17.61 0.837 0.833
ResNet-18-SSD (batch=4) 39.28 0.789 39.27 0.790 30.12 0.789 30.02 0.791 20.70 0.837 0.832
ResNet-50-SSD (batch=1) 13.59 0.724 13.62 0.718 9.95 0.736 9.95 0.736 15.77 0.808 0.801
ResNet-50-SSD (batch=4) 13.83 0.727 13.81 0.723 10.12 0.741 10.14 0.742 N/A N/A N/A

SqueezeNet-v1.1-SSD (batch=1) 218.28 0.699 220.93 0.704 160.35 0.701 158.37 0.701 17.51 0.738 0.738
SqueezeNet-v1.1-SSD (batch=4) 238.34 0.695 236.23 0.702 167.86 0.697 168.45 0.697 19.15 0.738 0.734

TABLE VI: Inference speed (in FPS) and accuracy (in mAP) of Caffe detection models on the FPGA and GPU.

Models
FP11 FP16

GPU

Half-precision Full-precision Half-precision Full-precision

FPS mAP FPS mAP FPS mAP FPS mAP FPS mAPtrain mAPtest

VGG-SSD (batch=1) 16.23 0.561 16.18 0.543 12.07 0.556 12.08 0.556 18.55 0.753 0.730
VGG-SSD (batch=4) 16.57 0.567 16.68 0.549 12.28 0.565 12.82 0.565 19.80 0.753 0.729

MobileNet-v1-SSD (batch=1) 92.76 0.529 90.93 0.525 81.31 0.523 81.08 0.519 106.76 0.712 0.701
MobileNet-v1-SSD (batch=4) 101.48 0.531 100.46 0.524 85.64 0.527 85.40 0.522 135.53 0.712 0.701

MobileNet-v2-SSDLite (batch=1) 65.80 0.514 65.88 0.489 59.69 0.516 60.14 0.517 78.85 0.688 0.665
MobileNet-v2-SSDLite (batch=4) 68.19 0.515 68.24 0.490 62.23 0.525 62.32 0.526 95.93 0.688 0.665

ResNet-18-SSD (batch=1) 55.82 0.574 55.35 0.574 31.14 0.570 31.20 0.571 88.94 0.708 0.702
ResNet-18-SSD (batch=4) 57.85 0.575 58.05 0.574 31.81 0.570 31.94 0.571 120.49 0.708 0.700
ResNet-50-SSD (batch=1) 20.68 0.589 20.59 0.562 12.64 0.575 12.64 0.580 37.22 0.737 0.729
ResNet-50-SSD (batch=4) 21.07 0.589 21.04 0.563 12.77 0.576 12.75 0.580 45.14 0.737 0.732

SqueezeNet-v1.1-SSD (batch=1) 184.76 0.199 183.41 0.202 147.68 0.279 151.14 0.281 37.89 0.468 0.445
SqueezeNet-v1.1-SSD (batch=4) 189.75 0.199 197.97 0.202 157.18 0.280 161.49 0.281 71.05 0.468 0.445

TABLE VII: Inference speed (in FPS) and accuracy (in mAP) of MXNet detection models on the FPGA and GPU.

Models
FP11 FP16

GPU

Half-precision Full-precision Half-precision Full-precision

FPS mAP FPS mAP FPS mAP FPS mAP FPS mAPtrain mAPtest

VGG-SSD (batch=1) 20.61 0.754 20.59 0.748 11.32 0.761 11.33 0.761 26.24 0.788 0.786
VGG-SSD (batch=4) 20.50 0.754 20.57 0.748 11.37 0.761 11.33 0.761 N/A N/A N/A

MobileNet-v1-SSD (batch=1) 105.46 0.626 105.14 0.603 88.02 0.709 88.38 0.709 66.81 0.723 0.719
MobileNet-v1-SSD (batch=4) 108.48 0.627 108.49 0.626 90.37 0.709 90.39 0.709 N/A N/A N/A

MobileNet-v2-SSDLite (batch=1) 68.78 0.559 66.16 0.552 56.44 0.731 56.84 0.732 63.88 0.775 0.769
MobileNet-v2-SSDLite (batch=4) 77.00 0.557 76.73 0.558 63.13 0.730 61.99 0.731 N/A N/A N/A

ResNet-18-SSD (batch=1) 50.36 0.669 48.28 0.667 42.81 0.682 42.62 0.680 45.00 0.751 0.748
ResNet-18-SSD (batch=4) 48.20 0.669 49.97 0.667 42.59 0.682 42.46 0.680 N/A N/A N/A
ResNet-50-SSD (batch=1) 26.15 0.692 25.80 0.686 19.35 0.684 19.30 0.672 35.83 0.751 0.745
ResNet-50-SSD (batch=4) 25.84 0.692 26.28 0.685 19.32 0.684 19.17 0.672 N/A N/A N/A

SqueezeNet-v1.1-SSD (batch=1) 66.54 0.618 66.14 0.617 62.74 0.609 61.74 0.609 48.26 0.663 0.661
SqueezeNet-v1.1-SSD (batch=4) 67.20 0.618 64.27 0.617 62.63 0.609 63.07 0.609 N/A N/A N/A

TABLE VIII: Inference speed (in FPS) and accuracy (in mAP) of TensorFlow detection models on the FPGA and GPU.

converter. With Caffe and TensorFlow, we reach the same

conclusions as in the classification part that in most of the

cases the FP16 bitstream provides higher accuracy yet lower

speed than the FP11 one, and that the datatype does not

make a big difference with the fixed bitstream. Exceptions

include VGG-SSD and some ResNet-18/50 cases, where

FP11 produces almost the same or even higher accuracy as

FP16. We also observe that except for the case of VGG-SSD

with FP16, using batch size 4 always results in slightly faster

detection on the FPGA than using batch size 1.

Notice that although MXNet models suffer an accuracy

degradation on the FPGA, in terms of inference speed, mod-

els trained by the three frameworks achieve results essentially

very close to each other. This indicates that the use of

different frameworks during model training does not make

a big difference on the inference speed of the deployment

on the FPGA. However, we should remember that different

frameworks have different model representations and Open-



(a) VGG-SSD (b) MobileNet-v1-SSD (c) MobileNet-v2-SSDLite

(d) ResNet-18-SSD (e) ResNet-50-SSD (f) SqueezeNet-v1.1-SSD

Fig. 3: Qualitative inference results across detection models. Detected traffic signs marked by bounding boxes and notated

by category and confidence.

VINO’s optimization techniques on these representations

are different. Hence, it is impractical to expect identical

performance across copies of the same model trained by

different frameworks.

Compared to the reference results on the GPU, we see that

in most of the cases inference speed on the GPU is higher

than the FPGA. One exception is running MobileNet-v1-SSD

and MobileNet-v2-SSDLite with Caffe, because Caffe does

not have a good support for depthwise separable convolution.

We can also observe that with both Caffe and TensorFlow,

VGG-SSD and ResNet-50-SSD has a lower inference speed

on the FPGA than on the GPU, while the opposite happens

for other models. This is because VGG-SSD and ResNet-50-

SSD might be computation-bound on the FPGA, whereas

other models are relatively lightweight and the FPGA’s

flexible configuration and optimization enable them to have

a shorter runtime compared to the GPU. However, with

MXNet, all models run faster on the GPU than on the

FPGA except for SqueezeNet-v1.1-SSD, which could be

credited to MXNet’s efficient implementation on the GPU.

This is also in line with our conclusion in the classification

part. Our results also show that the accuracy on the GPU

using the same model and different batch size is slightly

different which is caused by the test set size (i.e., 153)

not being a multiple of the batch size 4. We also observe

that with Caffe and TensorFlow trained models, the FPGA

reaches the accuracy of the GPU using the FP16 bitstream.

In addition, the FPGA reaches the inference speed close to

that of the GPU by using an FP11 datatype, which leads to

some sacrifice in accuracy.

When we train the classification models we keep all

specifications we use for training as well as their implementa-

tions across different frameworks exactly the same to obtain

fair benchmarking results. However, although we keep the

specifications the same while training the detection models,

we do not guarantee that the implementations are the same.

Therefore, the detection models’ accuracy on the FPGA and

the training/testing accuracy on the GPU should only be

used for comparison within a framework, not for comparison

across frameworks. This means the above results does not

suggest Caffe as a better framework in training SSD models

than MXNet or any conclusions alike.

We present a brief qualitative comparison of inference

results using different models in Fig. 3. We can see that with

ResNet-18/50 as base networks, SSD models can accurately

capture all traffic signs appear in the image. The other models

either miss or misdetect one or more traffic signs. This

matches the theoretical fact that among all models we tested,

ResNets provide the best feature extraction performance.

Overfitting and suboptimal training strategy might explain

the reason why ResNets-based models do not achieve the

highest inference accuracy in our experiments.

E. Power Efficiency Comparison of the FPGA and GPU

One of the expected advantages of FPGAs against GPUs

is power efficiency. In Fig. 4 we show the comparison of

power efficiency of the detection models in img/J running

on the FPGA and the GPU respectively, with batch size set

to 1. The names of all models are following the order in

the above tables and abbreviated. We can see that in all

the cases we test, the FPGA has better power efficiency

compared to the GPU. Among the six models we tested,



Fig. 4: Power efficiency (in image/J) of different models running on the FPGA and GPU with batch size 1.

SqueezeNet-v1.1-SSD has the highest power efficiency in

the Caffe and MXNet test cases, while MobileNet-v1-SSD

has the highest values in the TensorFlow test cases because

of the TensorFlow with SqueezeNet-v1.1-SSD case, where

we observe unexpected low inference speeds as explained in

Section IV-D. Among the FPGA test cases, FP11 is always

more power-efficient than FP16, while the data type does not

have a clear impact on the power efficiency. The comparison

across frameworks shows that there is no clear difference on

power efficiency running on the FPGA except for the Tensor-

Flow with SqueezeNet-v1.1-SSD case mentioned above. We

also observe that Caffe models always have a lower power

efficiency when running on the GPU. This could again be

explained by Caffe’s weak support for high performance of

depthwise separable convolution.

F. Summary of Findings

Based on these results, we see that among the five frame-

works we have utilized in classification experiments, Neon

has the fastest average training speed, and one of the best

inference accuracies on the GPU, along with TensorFlow,

whose speed is slower. MXNet also provides outstanding

performance on the two metrics, which is comparable with

that of Neon. CNTK, PyTorch, and MXNet all have training

speeds very close to that of Neon and inference accuracy

close to TensorFlow on the GPU. Overall, in terms of

both training speed and inference accuracy, we consider

Neon and MXNet to be the most suitable framework for

training classification models. We also conclude that ResNet-

20 (32x32) constitutes the most computationally economical

option that does not compromise inference accuracy for

the specific task, i.e., traffic sign classification on GTSRB,

on both the GPU and FPGA. This means that ResNet-20

(32x32) would probably be one of the most economical

choices for other similar classification tasks on small size

images as well.

In the classification part, the FPGA obtains a higher speed

than the GPU in most of the cases, which can possibly be

explained by better utilization of compute units. In all test

cases the FPGA reaches almost the same inference accuracy

as the GPU with a negligible gap. In the detection part,

although in most of the cases the FPGA cannot reach the

GPU’s speed, the FPGA is still able to provide detection

speeds that exceed real-time performance requirements with

lightweight models like MobileNet-v1, etc. The FPGA does

not get an accuracy as high as the GPU with models trained

by TensorFlow (only in FP11 cases) and MXNet. We believe

this may be caused by the model optimizer of OpenVINO

instead of the FPGA itself, since with Caffe-trained models

we see that the inference accuracies of the FPGA and GPU

are very close to each other. In addition, we observe that

with the same model, the FPGA always has a higher power

efficiency compared to the GPU.

In both the classification and detection experiments, we

discover that using FP11 bitstreams and bigger batch sizes

always results in higher speed on the FPGA compared

to using FP16 ones and smaller batch sizes, respectively.

However, using FP11 bitstreams results in some decrease

in accuracy. Finally, if the bitstream being used is fixed, the

data type makes only a very tiny difference on both inference

speed and accuracy.

V. FUTURE WORK

From the results we can see that the power efficiency of

the FPGA is higher than the GPU. However, we can still

try to further raise it on the FPGA. This could be critical

to autonomous driving applications in real life as image

processing consumes a significant portion of the vehicle’s

energy and directly contributes to cooling requirements.

We plan to explore additional detection models given that

OpenVINO will provide official support for them in the

future. In addition, we plan to explore additional techniques

like deep compression, to seek the opportunity of enhancing

the power efficiency of the FPGA. Using deep compression,

Han et al. [9] claims to achieve 3x to 7x better energy

efficiency with models like AlexNet and VGG on the CPU,

GPU, and mobile GPU.



Finally, in the future we plan to investigate whether it

would be possible to deploy models trained by frameworks

that support the ONNX format but are not currently included

in our FPGA deployment experiments. To accomplish this

deployment, we plan to first convert these models to ONNX

format and then explore whether OpenVINO can be used

to deploy them since OpenVINO is supporting the ONNX

format.

VI. CONCLUSIONS

In this research, we benchmark deep learning frameworks

and investigate FPGA deployment using traffic sign classifi-

cation and detection as two application contexts.

In the classification part of this study, we conclude that

generally Neon and MXNet have the best training speed and

inference accuracy on the GPU for the cases we test. In

addition, we observe that TensorFlow has one of the highest

accuracies among the five frameworks. Finally, we conclude

that ResNet-20 with input size 32x32 is an economical choice

for performing small-image classification, e.g., GTSRB on

both the GPU and FPGA.

In the detection part of this study, we observe that with

the current OpenVINO release, lightweight models includ-

ing MobileNet-v1-SSD, MobileNet-v2-SSDLite, ResNet-18-

SSD, and SqueezeNet-v1.1-SSD achieve detection speeds on

the FPGA that exceed the real-time performance require-

ments. All the six models we test are observed to be more

power-efficient running on the FPGA than on the GPU,

without compromising much accuracy.

As the common conclusion from the FPGA deployment of

both the classification and detection models, we discover that

with FP11 bitstreams, models achieve higher inference speed

than with FP16 bitstreams with some sacrifice in accuracy.

In addition, we observe that when using the same bitstream,

a bigger batch size usually brings higher speed but the data

type of the model does not make a difference for these two

metrics.

Our future plan includes exploring the effects of using

non-SSD models and/or techniques like deep compression on

the performance of the FPGA and GPU, as well as deploying

models trained by frameworks which are ONNX-friendly but

not directly supported by OpenVINO.
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