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Abstract

Recently, researchers have made significant

progress combining the advances in deep learn-

ing for learning feature representations with rein-

forcement learning. Some notable examples in-

clude training agents to play Atari games based

on raw pixel data and to acquire advanced ma-

nipulation skills using raw sensory inputs. How-

ever, it has been difficult to quantify progress

in the domain of continuous control due to the

lack of a commonly adopted benchmark. In this

work, we present a benchmark suite of contin-

uous control tasks, including classic tasks like

cart-pole swing-up, tasks with very high state

and action dimensionality such as 3D humanoid

locomotion, tasks with partial observations, and

tasks with hierarchical structure. We report novel

findings based on the systematic evaluation of a

range of implemented reinforcement learning al-

gorithms. Both the benchmark and reference im-

plementations are released at https://github.com/

rllab/rllab in order to facilitate experimental re-

producibility and to encourage adoption by other

researchers.

1. Introduction

Reinforcement learning addresses the problem of how

agents should learn to take actions to maximize cumula-

tive reward through interactions with the environment. The

traditional approach for reinforcement learning algorithms

requires carefully chosen feature representations, which are
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usually hand-engineered. Recently, significant progress

has been made by combining advances in deep learning for

learning feature representations (Krizhevsky et al., 2012;

Hinton et al., 2012) with reinforcement learning, tracing

back to much earlier work of Tesauro (1995) and Bert-

sekas & Tsitsiklis (1995). Notable examples are training

agents to play Atari games based on raw pixels (Guo et al.,

2014; Mnih et al., 2015; Schulman et al., 2015a) and to

acquire advanced manipulation skills using raw sensory in-

puts (Levine et al., 2015; Lillicrap et al., 2015; Watter et al.,

2015). Impressive results have also been obtained in train-

ing deep neural network policies for 3D locomotion and

manipulation tasks (Schulman et al., 2015a;b; Heess et al.,

2015b).

Along with this recent progress, the Arcade Learning En-

vironment (ALE) (Bellemare et al., 2013) has become a

popular benchmark for evaluating algorithms designed for

tasks with high-dimensional state inputs and discrete ac-

tions. However, these algorithms do not always generalize

straightforwardly to tasks with continuous actions, leading

to a gap in our understanding. For instance, algorithms

based on Q-learning quickly become infeasible when naive

discretization of the action space is performed, due to the

curse of dimensionality (Bellman, 1957; Lillicrap et al.,

2015). In the continuous control domain, where actions

are continuous and often high-dimensional, we argue that

the existing control benchmarks fail to provide a compre-

hensive set of challenging problems (see Section 7 for a

review of existing benchmarks). Benchmarks have played

a significant role in other areas such as computer vision

and speech recognition. Examples include MNIST (Le-

Cun et al., 1998), Caltech101 (Fei-Fei et al., 2006), CI-

FAR (Krizhevsky & Hinton, 2009), ImageNet (Deng et al.,

2009), PASCAL VOC (Everingham et al., 2010), BSDS500

(Martin et al., 2001), SWITCHBOARD (Godfrey et al.,

1992), TIMIT (Garofolo et al., 1993), Aurora (Hirsch &

Pearce, 2000), and VoiceSearch (Yu et al., 2007). The lack

https://github.com/rllab/rllab
https://github.com/rllab/rllab
https://arxiv.org/abs/1604.06778
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of a standardized and challenging testbed for reinforcement

learning and continuous control makes it difficult to quan-

tify scientific progress. Systematic evaluation and compar-

ison will not only further our understanding of the strengths

of existing algorithms, but also reveal their limitations and

suggest directions for future research.

We attempt to address this problem and present a bench-

mark consisting of 31 continuous control tasks. These

tasks range from simple tasks, such as cart-pole balanc-

ing, to challenging tasks such as high-DOF locomotion,

tasks with partial observations, and hierarchically struc-

tured tasks. Furthermore, a range of reinforcement learn-

ing algorithms are implemented on which we report novel

findings based on a systematic evaluation of their effective-

ness in training deep neural network policies. The bench-

mark and reference implementations are available at https:

//github.com/rllab/rllab, allowing for the development, im-

plementation, and evaluation of new algorithms and tasks.

2. Preliminaries

In this section, we define the notation used in subsequent

sections.

The implemented tasks conform to the standard interface

of a finite-horizon discounted Markov decision process

(MDP), defined by the tuple (S,A, P, r, ρ0, γ, T ), where

S is a (possibly infinite) set of states, A is a set of actions,

P : S×A×S → R≥0 is the transition probability distribu-

tion, r : S ×A → R is the reward function, ρ0 : S → R≥0

is the initial state distribution, γ ∈ (0, 1] is the discount

factor, and T is the horizon.

For partially observable tasks, which conform to the in-

terface of a partially observable Markov decision process

(POMDP), two more components are required, namely Ω,

a set of observations, and O : S × Ω → R≥0, the observa-

tion probability distribution.

Most of our implemented algorithms optimize a stochastic

policy πθ : S × A → R≥0. Let η(π) denote its expected

discounted reward: η(π) = Eτ

[

∑T
t=0 γ

tr(st, at)
]

, where

τ = (s0, a0, . . .) denotes the whole trajectory, s0 ∼ ρ0(s0),
at ∼ π(at|st), and st+1 ∼ P (st+1|st, at).

For deterministic policies, we use the notation µθ : S → A
to denote the policy instead. The objective for it has the

same form as above, except that now we have at = µ(st).

3. Tasks

The tasks in the presented benchmark can be divided into

four categories: basic tasks, locomotion tasks, partially ob-

servable tasks, and hierarchical tasks. We briefly describe

them in this section. More detailed specifications are given

in the supplementary materials and in the source code.

We choose to implement all tasks using physics simulators

rather than symbolic equations, since the former approach

is less error-prone and permits easy modification of each

task. Tasks with simple dynamics are implemented using

Box2D (Catto, 2011), an open-source, freely available 2D

physics simulator. Tasks with more complicated dynam-

ics, such as locomotion, are implemented using MuJoCo

(Todorov et al., 2012), a 3D physics simulator with better

modeling of contacts.

3.1. Basic Tasks

We implement five basic tasks that have been widely an-

alyzed in reinforcement learning and control literature:

Cart-Pole Balancing (Stephenson, 1908; Donaldson, 1960;

Widrow, 1964; Michie & Chambers, 1968), Cart-Pole

Swing Up (Kimura & Kobayashi, 1999; Doya, 2000),

Mountain Car (Moore, 1990), Acrobot Swing Up (DeJong

& Spong, 1994; Murray & Hauser, 1991; Doya, 2000), and

Double Inverted Pendulum Balancing (Furuta et al., 1978).

These relatively low-dimensional tasks provide quick eval-

uations and comparisons of RL algorithms.

3.2. Locomotion Tasks

In this category, we implement six locomotion tasks of

varying dynamics and difficulty: Swimmer (Purcell, 1977;

Coulom, 2002; Levine & Koltun, 2013; Schulman et al.,

2015a), Hopper (Murthy & Raibert, 1984; Erez et al.,

2011; Levine & Koltun, 2013; Schulman et al., 2015a),

Walker (Raibert & Hodgins, 1991; Erez et al., 2011; Levine

& Koltun, 2013; Schulman et al., 2015a), Half-Cheetah

(Wawrzyński, 2007; Heess et al., 2015b), Ant (Schulman

et al., 2015b), Simple Humanoid (Tassa et al., 2012; Schul-

man et al., 2015b), and Full Humanoid (Tassa et al., 2012).

The goal for all the tasks is to move forward as quickly as

possible. These tasks are more challenging than the basic

tasks due to high degrees of freedom. In addition, a great

amount of exploration is needed to learn to move forward

without getting stuck at local optima. Since we penalize for

excessive controls as well as falling over, during the initial

stage of learning, when the robot is not yet able to move

forward for a sufficient distance without falling, apparent

local optima exist including staying at the origin or diving

forward slowly.

3.3. Partially Observable Tasks

In real-life situations, agents are often not endowed with

perfect state information. This can be due to sensor noise,

sensor occlusions, or even sensor limitations that result in

partial observations. To evaluate algorithms in more realis-

tic settings, we implement three variations of partially ob-

https://github.com/rllab/rllab
https://github.com/rllab/rllab
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(a) (b) (c) (d)

(e) (f) (g)

Figure 1. Illustration of locomotion tasks: (a) Swimmer; (b) Hop-

per; (c) Walker; (d) Half-Cheetah; (e) Ant; (f) Simple Humanoid;

and (g) Full Humanoid.

servable tasks for each of the five basic tasks described in

Section 3.1, leading to a total of 15 additional tasks. These

variations are described below.

Limited Sensors: For this variation, we restrict the obser-

vations to only provide positional information (including

joint angles), excluding velocities. An agent now has to

learn to infer velocity information in order to recover the

full state. Similar tasks have been explored in Gomez &

Miikkulainen (1998); Schäfer & Udluft (2005); Heess et al.

(2015a); Wierstra et al. (2007).

Noisy Observations and Delayed Actions: In this case,

sensor noise is simulated through the addition of Gaussian

noise to the observations. We also introduce a time de-

lay between taking an action and the action being in effect,

accounting for physical latencies (Hester & Stone, 2013).

Agents now need to learn to integrate both past observa-

tions and past actions to infer the current state. Similar

tasks have been proposed in Bakker (2001).

System Identification: For this category, the underly-

ing physical model parameters are varied across different

episodes (Szita et al., 2003). The agents must learn to gen-

eralize across different models, as well as to infer the model

parameters from its observation and action history.

3.4. Hierarchical Tasks

Many real-world tasks exhibit hierarchical structure, where

higher level decisions can reuse lower level skills (Parr &

Russell, 1998; Sutton et al., 1999; Dietterich, 2000). For in-

stance, robots can reuse locomotion skills when exploring

the environment. We propose several tasks where both low-

level motor controls and high-level decisions are needed.

These two components each operates on a different time

scale and calls for a natural hierarchy in order to efficiently

learn the task.

(a) (b)

Figure 2. Illustration of hierarchical tasks: (a) Locomotion +

Food Collection; and (b) Locomotion + Maze.

Locomotion + Food Collection: For this task, the agent

needs to learn to control either the swimmer or the ant robot

to collect food and avoid bombs in a finite region. The

agent receives range sensor readings about nearby food and

bomb units. It is given a positive reward when it reaches a

food unit, or a negative reward when it reaches a bomb.

Locomotion + Maze: For this task, the agent needs to learn

to control either the swimmer or the ant robot to reach a

goal position in a fixed maze. The agent receives range

sensor readings about nearby obstacles as well as its goal

(when visible). A positive reward is given only when the

robot reaches the goal region.

4. Algorithms

In this section, we briefly summarize the algorithms im-

plemented in our benchmark, and note any modifications

made to apply them to general parametrized policies. We

implement a range of gradient-based policy search meth-

ods, as well as two gradient-free methods for comparison

with the gradient-based approaches.

4.1. Batch Algorithms

Most of the implemented algorithms are batch algorithms.

At each iteration, N trajectories {τi}
N
i=1 are generated,

where τi = {(sit, a
i
t, r

i
t)}

T
t=0 contains data collected along

the ith trajectory. For on-policy gradient-based methods,

all the trajectories are sampled under the current policy. For

gradient-free methods, they are sampled under perturbed

versions of the current policy.

REINFORCE (Williams, 1992): This algorithm estimates

the gradient of expected return ∇θη(πθ) using the likeli-

hood ratio trick:

∇̂θη(πθ) =
1

NT

N
∑

i=1

T
∑

t=0

∇θ log π(a
i
t|s

i
t; θ)(R

i
t − bit),

where Ri
t =

∑T
t′=t γ

t′−trit′ and bit is a baseline that only

depends on the state sit to reduce variance. Hereafter, an as-
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cent step is taken in the direction of the estimated gradient.

This process continues until θk converges.

Truncated Natural Policy Gradient (TNPG) (Kakade,

2002; Peters et al., 2003; Bagnell & Schneider, 2003;

Schulman et al., 2015a): Natural Policy Gradient improves

upon REINFORCE by computing an ascent direction that

approximately ensures a small change in the policy distri-

bution. This direction is derived to be I(θ)−1∇θη(πθ),
where I(θ) is the Fisher information matrix (FIM). We

use the step size suggested by Peters & Schaal (2008):

α =

√

δKL (∇θη(πθ)T I(θ)−1∇θη(πθ))
−1

. Finally, we re-

place ∇θη(πθ) and I(θ) by their empirical estimates.

For neural network policies with tens of thousands of pa-

rameters or more, generic Natural Policy Gradient incurs

prohibitive computation cost by forming and inverting the

empirical FIM. Instead, we study Truncated Natural Policy

Gradient (TNPG) in this paper, which computes the nat-

ural gradient direction without explicitly forming the ma-

trix inverse, using a conjugate gradient algorithm that only

requires computing I(θ)v for arbitrary vector v. TNPG

makes it practical to apply natural gradient in policy search

setting with high-dimensional parameters, and we refer the

reader to Schulman et al. (2015a) for more details.

Reward-Weighted Regression (RWR) (Peters & Schaal,

2007; Kober & Peters, 2009): This algorithm formulates

the policy optimization as an Expectation-Maximization

problem to avoid the need to manually choose learning

rate, and the method is guaranteed to converge to a lo-

cally optimal solution. At each iteration, this algorithm

optimizes a lower bound of the log-expected return: θ =
argmaxθ′ L(θ′), where

L(θ) =
1

NT

N
∑

i=1

T
∑

t=0

log π(ait|s
i
t; θ)ρ(R

i
t − bit)

Here, ρ : R → R≥0 is a function that transforms raw re-

turns to nonnegative values. Following Deisenroth et al.

(2013), we choose ρ to be ρ(R) = R−Rmin, where Rmin is

the minimum return among all trajectories collected in the

current iteration.

Relative Entropy Policy Search (REPS) (Peters et al.,

2010): This algorithm limits the loss of information per

iteration and aims to ensure a smooth learning progress

(Deisenroth et al., 2013). At each iteration, we collect all

trajectories into a dataset D = {(si, ai, ri, s
′
i)}

M
i=1, where

M is the total number of samples. Then, we first solve for

the dual parameters [η∗, ν∗] = argminη′,ν′ g(η′, ν′) s.t.

η > 0, where

g(η, ν) = ηδKL + η log

(

1

M

M
∑

i=1

eδi(ν)/η

)

.

Here δKL > 0 controls the step size of the policy, and

δi(ν) = ri + νT (φ(s′i) − φ(si)) is the sample Bellman

error. We then solve for the new policy parameters:

θk+1 = argmax
θ

1

M

M
∑

i=1

eδi(ν
∗)/η∗

log π(ai|si; θ).

Trust Region Policy Optimization (TRPO) (Schulman

et al., 2015a): This algorithm allows more precise control

on the expected policy improvement than TNPG through

the introduction of a surrogate loss. At each iteration, we

solve the following constrained optimization problem (re-

placing expectations with samples):

maximizeθ Es∼ρθk
,a∼πθk

[

πθ(a|s)

πθk(a|s)
Aθk(s, a)

]

s.t. Es∼ρθk
[DKL(πθk(·|s)‖πθ(·|s))] ≤ δKL

where ρθ = ρπθ
is the discounted state-visitation frequen-

cies induced by πθ, Aθk(s, a), known as the advantage

function, is estimated by the empirical return minus the

baseline, and δKL is a step size parameter which controls

how much the policy is allowed to change per iteration.

We follow the procedure described in the original paper for

solving the optimization, which results in the same descent

direction as TNPG with an extra line search in the objective

and KL constraint.

Cross Entropy Method (CEM) (Rubinstein, 1999; Szita

& Lőrincz, 2006): Unlike previously mentioned meth-

ods, which perform exploration through stochastic actions,

CEM performs exploration directly in the policy parame-

ter space. At each iteration, we produce N perturbations

of the policy parameter: θi ∼ N (µk,Σk), and perform a

rollout for each sampled parameter. Then, we compute the

new mean and diagonal covariance using the parameters

that correspond to the top q-quantile returns.

Covariance Matrix Adaption Evolution Strategy

(CMA-ES) (Hansen & Ostermeier, 2001): Similar to

CEM, CMA-ES is a gradient-free evolutionary approach

for optimizing nonconvex objective functions. In our case,

this objective function equals the average sampled return.

In contrast to CEM, CMA-ES estimates the covariance

matrix of a multivariate normal distribution through

incremental adaption along evolution paths, which contain

information about the correlation between consecutive

updates.

4.2. Online Algorithms

Deep Deterministic Policy Gradient (DDPG) (Lillicrap

et al., 2015): Compared to batch algorithms, the DDPG

algorithm continuously improves the policy as it explores

the environment. It applies gradient descent to the policy
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with minibatch data sampled from a replay pool, where the

gradient is computed via

∇̂θη(µθ) =
B
∑

i=1

∇aQφ(si, a)|a=µθ(si)
∇θµθ(si)

where B is the batch size. The critic Q is trained

via gradient descent on the ℓ2 loss of the Bellman er-

ror L = 1
B

∑B
i=1(yi − Qφ(si, ai))

2, where yi = ri +
γQ′

φ′(s′i, µ
′
θ′(s′i)). To improve stability of the algorithm,

we use target networks for both the critic and the policy

when forming the regression target yi. We refer the reader

to Lillicrap et al. (2015) for a more detailed description of

the algorithm.

4.3. Recurrent Variants

We implement direct applications of the aforemen-

tioned batch-based algorithms to recurrent policies. The

only modification required is to replace π(ait|s
i
t) by

π(ait|o
i
1:t, a

i
1:t−1), where oi1:t and a1:t−1 are the histories of

past and current observations and past actions. Recurrent

versions of reinforcement learning algorithms have been

studied in many existing works, such as Bakker (2001),

Schäfer & Udluft (2005), Wierstra et al. (2007), and Heess

et al. (2015a).

5. Experiment Setup

In this section, we elaborate on the experimental setup used

to generate the results.

Performance Metrics: For each report unit (a particular al-

gorithm running on a particular task), we define its perfor-

mance as 1∑
I

i=1
Ni

∑I
i=1

∑Ni

n=1 Rin, where I is the num-

ber of training iterations, Ni is the number of trajectories

collected in the ith iteration, and Rin is the undiscounted

return for the nth trajectory of the ith iteration,

Hyperparameter Tuning: For the DDPG algorithm, we

used the hyperparametes reported in Lillicrap et al. (2015).

For the other algorithms, we follow the approach in (Mnih

et al., 2015), and we select two tasks in each category, on

which a grid search of hyperparameters is performed. Each

choice of hyperparameters is executed under five random

seeds. The criterion for the best hyperparameters is de-

fined as mean(returns) − std(returns). This metric se-

lects against large fluctuations of performance due to overly

large step sizes.

For the other tasks, we try both of the best hyperparame-

ters found in the same category, and report the better per-

formance of the two. This gives us insights into both the

maximum possible performance when extensive hyperpa-

rameter tuning is performed, and the robustness of the best

hyperparameters across different tasks.

Policy Representation: For basic, locomotion, and hier-

archical tasks and for batch algorithms, we use a feed-

forward neural network policy with 3 hidden layers, con-

sisting of 100, 50, and 25 hidden units with tanh nonlin-

earity at the first two hidden layers, which map each state

to the mean of a Gaussian distribution. The log-standard

deviation is parameterized by a global vector independent

of the state, as done in Schulman et al. (2015a). For all par-

tially observable tasks, we use a recurrent neural network

with a single hidden layer consisting of 32 LSTM hidden

units (Hochreiter & Schmidhuber, 1997).

For the DDPG algorithm which trains a deterministic pol-

icy, we follow Lillicrap et al. (2015). For both the policy

and the Q function, we use the same architecture of a feed-

forward neural network with 2 hidden layers, consisting of

400 and 300 hidden units with relu activations.

Baseline: For all gradient-based algorithms except REPS,

we can subtract a baseline from the empirical return to re-

duce variance of the optimization. We use a linear function

as the baseline with a time-varying feature vector.

6. Results and Discussion

The main evaluation results are presented in Table 1. The

tasks on which the grid search is performed are marked

with (*). In each entry, the pair of numbers shows the mean

and standard deviation of the normalized cumulative return

using the best possible hyperparameters.

REINFORCE: Despite its simplicity, REINFORCE is an

effective algorithm in optimizing deep neural network poli-

cies in most basic and locomotion tasks. Even for high-

DOF tasks like Ant, REINFORCE can achieve competi-

tive results. However we observe that REINFORCE some-

times suffers from premature convergence to local optima

as noted by Peters & Schaal (2008), which explains the per-

formance gaps between REINFORCE and TNPG on tasks

such as Walker (Figure 3(a)). By visualizing the final poli-

cies, we can see that REINFORCE results in policies that

tend to jump forward and fall over to maximize short-term

return instead of acquiring a stable walking gait to max-

imize long-term return. In Figure 3(b), we can observe

that even with a small learning rate, steps taken by RE-

INFORCE can sometimes result in large changes to policy

distribution, which may explain the fast convergence to lo-

cal optima.

TNPG and TRPO: Both TNPG and TRPO outperform

other batch algorithms by a large margin on most tasks,

confirming that constraining the change in the policy dis-

tribution results in more stable learning (Peters & Schaal,

2008).

Compared to TNPG, TRPO offers better control over each
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Figure 3. Performance as a function of the number of iterations; the shaded area depicts the mean ± the standard deviation over five

different random seeds: (a) Performance comparison of all algorithms in terms of the average reward on the Walker task; (b) Comparison

between REINFORCE, TNPG, and TRPO in terms of the mean KL-divergence on the Walker task; (c) Performance comparison on

TNPG and TRPO on the Swimmer task; (d) Performance comparison of all algorithms in terms of the average reward on the Half-

Cheetah task.

policy update by performing a line search in the natural gra-

dient direction to ensure an improvement in the surrogate

loss function. We observe that hyperparameter grid search

tends to select conservative step sizes (δKL) for TNPG,

which alleviates the issue of performance collapse caused

by a large update to the policy. By contrast, TRPO can

robustly enforce constraints with larger a δKL value and

hence speeds up learning in some cases. For instance, grid

search on the Swimmer task reveals that the best step size

for TNPG is δKL = 0.05, whereas TRPO’s best step-size is

larger: δKL = 0.1. As shown in Figure 3(c), this larger step

size enables slightly faster learning.

RWR: RWR is the only gradient-based algorithm we im-

plemented that does not require any hyperparameter tun-

ing. It can solve some basic tasks to a satisfactory degree,

but fails to solve more challenging tasks such as locomo-

tion. We observe empirically that RWR shows fast initial

improvement followed by significant slow-down, as shown

in Figure 3(d).

REPS: Our main observation is that REPS is especially

prone to early convergence to local optima in case of con-

tinuous states and actions. Its final outcome is greatly af-

fected by the performance of the initial policy, an obser-

vation that is consistent with the original work of Peters

et al. (2010). This leads to a bad performance on average,

although under particular initial settings the algorithm can

perform on par with others. Moreover, the tasks presented

here do not assume the existence of a stationary distribu-

tion, which is assumed in Peters et al. (2010). In particular,

for many of our tasks, transient behavior is of much greater

interest than steady-state behavior, which agrees with pre-

vious observation by van Hoof et al. (2015),

Gradient-free methods: Surprisingly, even when train-

ing deep neural network policies with thousands of pa-

rameters, CEM achieves very good performance on cer-

tain basic tasks such as Cart-Pole Balancing and Moun-

tain Car, suggesting that the dimension of the searching

parameter is not always the limiting factor of the method.

However, the performance degrades quickly as the system

dynamics becomes more complicated. We also observe

that CEM outperforms CMA-ES, which is remarkable as

CMA-ES estimates the full covariance matrix. For higher-

dimensional policy parameterizations, the computational

complexity and memory requirement for CMA-ES become

noticeable. On tasks with high-dimensional observations,

such as the Full Humanoid, the CMA-ES algorithm runs

out of memory and fails to yield any results, denoted as

N/A in Table 1.

DDPG: Compared to batch algorithms, we found that

DDPG was able to converge significantly faster on certain

tasks like Half-Cheetah due to its greater sample efficiency.

However, it was less stable than batch algorithms, and the

performance of the policy can degrade significantly during

training. We also found it to be more susceptible to scaling

of the reward. In our experiment for DDPG, we rescaled

the reward of all tasks by a factor of 0.1, which seems to

improve the stability.

Partially Observable Tasks: We experimentally verify

that recurrent policies can find better solutions than feed-

forward policies in Partially Observable Tasks but recur-

rent policies are also more difficult to train. As shown in

Table 1, derivative-free algorithms like CEM and CMA-ES

work considerably worse with recurrent policies. Also we

note that the performance gap between REINFORCE and

TNPG widens when they are applied to optimize recurrent

policies, which can be explained by the fact that a small

change in parameter space can result in a bigger change in

policy distribution with recurrent policies than with feed-

forward policies.

Hierarchical Tasks: We observe that all of our imple-
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mented algorithms achieve poor performance on the hier-

archical tasks, even with extensive hyperparameter search

and 500 iterations of training. It is an interesting direction

to develop algorithms that can automatically discover and

exploit the hierarchical structure in these tasks.

7. Related Work

In this section, we review existing benchmarks of con-

tinuous control tasks. The earliest efforts of evaluating

reinforcement learning algorithms started in the form of

individual control problems described in symbolic form.

Some widely adopted tasks include the inverted pendu-

lum (Stephenson, 1908; Donaldson, 1960; Widrow, 1964),

mountain car (Moore, 1990), and Acrobot (DeJong &

Spong, 1994). These problems are frequently incorporated

into more comprehensive benchmarks.

Some reinforcement learning benchmarks contain low-

dimensional continuous control tasks, such as the ones

introduced above, including RLLib (Abeyruwan, 2013),

MMLF (Metzen & Edgington, 2011), RL-Toolbox (Neu-

mann, 2006), JRLF (Kochenderfer, 2006), Beliefbox (Dim-

itrakakis et al., 2007), Policy Gradient Toolbox (Peters,

2002), and ApproxRL (Busoniu, 2010). A series of RL

competitions has also been held in recent years (Dutech

et al., 2005; Dimitrakakis et al., 2014), again with relatively

low-dimensional actions. In contrast, our benchmark con-

tains a wider range of tasks with high-dimensional contin-

uous state and action spaces.

Previously, other benchmarks have been proposed for high-

dimensional control tasks. Tdlearn (Dann et al., 2014)

includes a 20-link pole balancing task, DotRL (Papis &

Wawrzyński, 2013) includes a variable-DOF octopus arm

and a 6-DOF planar cheetah model, PyBrain (Schaul et al.,

2010) includes a 16-DOF humanoid robot with standing

and jumping tasks, RoboCup Keepaway (Stone et al., 2005)

is a multi-agent game which can have a flexible dimension

of actions by varying the number of agents, and SkyAI

(Yamaguchi & Ogasawara, 2010) includes a 17-DOF hu-

manoid robot with crawling and turning tasks. Other li-

braries such as CL-Square (Riedmiller et al., 2012) and

RLPark (Degris et al., 2013) provide interfaces to actual

hardware, e.g., Bioloid and iRobot Create. In contrast to

these aforementioned testbeds, our benchmark makes use

of simulated environments to reduce computation time and

to encourage experimental reproducibility. Furthermore, it

provides a much larger collection of tasks of varying diffi-

culty.

8. Conclusion

In this work, a benchmark of continuous control problems

for reinforcement learning is presented, covering a wide

variety of challenging tasks. We implemented several rein-

forcement learning algorithms, and presented them in the

context of general policy parameterizations. Results show

that among the implemented algorithms, TNPG, TRPO,

and DDPG are effective methods for training deep neural

network policies. Still, the poor performance on the pro-

posed hierarchical tasks calls for new algorithms to be de-

veloped. Implementing and evaluating existing and newly

proposed algorithms will be our continued effort. By pro-

viding an open-source release of the benchmark, we en-

courage other researchers to evaluate their algorithms on

the proposed tasks.
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