
Benchmarking Federated SPARQL Query
Engines: Are Existing Testbeds Enough?

Gabriela Montoya1, Maria-Esther Vidal1, Oscar Corcho2, Edna Ruckhaus1,
and Carlos Buil-Aranda3

1 Universidad Simón Boĺıvar, Venezuela
{gmontoya, mvidal, ruckhaus}@ldc.usb.ve

2 Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
ocorcho@fi.upm.es

3 Department of Computer Science, Pontificia Universidad Católica, Chile
cbuil@ing.puc.cl

Abstract. Testbeds proposed so far to evaluate, compare, and eventu-
ally improve SPARQL query federation systems have still some limita-
tions. Some variables and configurations that may have an impact on the
behavior of these systems (e.g., network latency, data partitioning and
query properties) are not sufficiently defined; this affects the results and
repeatability of independent evaluation studies, and hence the insights
that can be obtained from them. In this paper we evaluate FedBench,
the most comprehensive testbed up to now, and empirically probe the
need of considering additional dimensions and variables. The evaluation
has been conducted on three SPARQL query federation systems, and
the analysis of these results has allowed to uncover properties of these
systems that would normally be hidden with the original testbeds.

1 Introduction

The number of RDF datasets made publicly available through SPARQL end-
points has exploded in recent years. This fact, together with the potential added
value that can be obtained from the combination of such distributed data sources,
has motivated the development of systems that allow executing queries over fed-
erated SPARQL endpoints (e.g., SPARQL-DQP [2], Jena’s ARQ1, RDF::Query2,
ANAPSID [1], FedX [10], ADERIS [3]). Some systems use SPARQL 1.0 or ad-
hoc extensions, while others rely on the query federation extensions that are
being proposed as part of the upcoming SPARQL 1.1 specification [6].

In parallel to the development of federated SPARQL query evaluation sys-
tems, several testbeds have been created (e.g., as described in [2, 7, 8]), which
complement those already used for single-endpoint query evaluation. The role
of these testbeds is to allow evaluating and comparing the main characteristics
of these systems, so as to provide enough information to improve them. Among

1 http://jena.apache.org/
2 http://search.cpan.org/~gwilliams/RDF-Query/

the features evaluated by these testbeds we can cite: i) functional requirements
supported, ii) efficiency of the implementations with different configurations of
datasets and with different types of queries, or iii) resilience to changes in the
configurations of these systems and the underlying datasets. The most recent and
complete testbed is FedBench [8], which proposes a variety of queries in different
domains and with different characteristics, including star-shaped, chain-like and
hybrid queries, and complex query forms using an adaptation of SP2Bench [9].
These testbeds are steps forward towards establishing a continuous benchmark-
ing process of federated SPARQL query engines. However, they are still far from
effectively supporting such benchmarking objectives. In fact, they do not specify
completely or even consider some of the dependent and independent variables
and configuration setups that characterize the types of problems to be tackled
in federated SPARQL query processing, and that clearly affect the performance
and quality of different solutions. This may lead to incorrect characterizations
when these testbeds are used to select the most appropriate systems in a given
scenario, or to decide the next steps in their development.

For example, testbeds like the one in [2] have limitations. First, queries are
executed directly on live SPARQL endpoints; this means that experiments are
not reproducible, as the load of endpoints and network latency varies over time.
Second, queries were constructed for the data available in the selected endpoints
at the time of generating the testbed, but the structure of these underlying
RDF data sources changes, and may result in queries that are returning different
answers or that do not return any answer at all. In cases like FedBench [8], the
level of reproducibility is improved by using datasets that can be handled locally.
However, as shown in Section 2, there are variables that are not yet considered
in this benchmark (e.g., network latency, dataset configurations) and that are
important in order to obtain more accurate and informative results.

The objective of this paper is to describe first the characteristics exhibited by
these testbeds (mainly focusing on FedBench) and reflect on their current lim-
itations. Additional variables and configuration setups (e.g., new queries, new
configurations of network latency details, new dataset distribution parameters)
are proposed in order to provide more accurate and well-informed overviews of
the current status of each of the evaluated systems, so that the experiments to
be executed can offer more accurate information about the behavior of the evalu-
ated systems, and hence they can be used in continuous improvement processes.
Finally, we describe briefly the results of our evaluation of this extended testbed
using three different federated query engines: ARQ, ANAPSID, and FedX.

2 Some limitations of existing testbeds

There is no unique “one-size-fits-all” testbed to measure every characteristic
needed by an application that requires some form of federated query process-
ing [8]. However, regardless, existing testbeds can still be improved so that they
can fulfill their role in continuous benchmarking processes.

We will first illustrate why we need to improve existing testbeds, particularly
FedBench, by describing a scenario where the use of the testbed in its current
form may lead to wrong decisions. We have executed the FedBench testbed with
three systems (ANAPSID, ARQ, and FedX) on the three sets of queries proposed
(Life Science, Cross Domain, and Linked Data) [4]. We have used different simu-
lated configurations for network latencies and different data distributions of the
datasets used in the experiments. As a result, we observe interesting results that
suggest the need for improvements. For instance, for the Cross-Domain query
CD1, all systems behave well in a perfect network (as shown in Table 1). However,
their behavior changes dramatically when network latencies are considered. For
instance, ARQ is not able to handle this query for medium-fast and fast net-
works, given the timeout considered; the time needed to execute the query in the
case of FedX grows from 0.72 secs. (perfect network) to 2.23 secs. (fast network)
and 16.93 secs. (medium-fast network); and for ANAPSID the results are similar
for perfect and fast networks, and grows slower in medium-fast networks.

Number of results Execution time (secs.) Execution time (secs.)
(first tuple) (all tuples)

Query Engine Medium Fast Perfect Medium Fast Perfect Medium Fast Perfect
ANAPSID 61 61 61 0.98 0.17 0.16 0.98 0.17 0.16

FedX 61 61 61 16.93 2.23 0.72 16.93 2.23 0.72
ARQ – – 63 – – 0.98 – – 0.98

Table 1. Evaluation of FedBench query CD1-Number of results and execution time
(secs.) under different network latency conditions. Timeout was set up to 30 minutes.
Perfect Network (No Delays); Fast Network (Delays follow Gamma distribution (α = 1,
β = 0.3); Medium-Fast Network (Delays follow Gamma distribution (α = 3, β = 1.0))

This is also the case for other FedBench queries (e.g., LD10, LD11, LS7,
CD2), where different behaviors can be observed depending not only on network
latency, but also on additional parameters, e.g., data distribution. What these
examples show is that those parameters are also important when considering
federated query processing approaches, and should be configured in a testbed,
so as to provide sufficient information for decision makers to select the right
tool for the type of problem being handled, or for tool developers to understand
better the weaknesses of their systems and improve them accordingly, if possible.

Finally, there is also another aspect that is important when considering the
quality of existing testbeds, and it is the fact that sometimes there are not
sufficient explanations about the purpose of each of the parameters that can
be configured. For example, in the case of FedBench there are several param-
eters that are considered when describing queries, as presented in [8], such as
whether the query uses operators like conjunctions, unions, filters or optionals,
modifiers like DISTINCT, LIMIT, OFFSET or ORDERBY, and structures like
star-shaped queries, chains or hybrid cases. While this is quite a comprehen-
sive set of features to characterize a SPARQL query, there are no clear reasons
about why each of the 36 queries from the testbed are included. Only some ex-

amples are provided in [8], explaining that LS4 “includes a star-shaped group
of triple patterns of drugs which is connected via owl:sameAs link to DBpedia
drug entities”, or that CD5 is a “chain-like query for finding film entities linked
via owl:sameAs and restricted on genre and director”. However, there are no
explanations in the paper or in the corresponding benchmark website about the
reasons for including each of them. Furthermore, there are parameters that are
not adequately represented (e.g., common query operators like optionals and fil-
ters do not appear in cross domain or linked data queries), and characteristics
that are not sufficiently discussed (e.g., the number of triple patterns in each
basic graph pattern appearing in the query, the selectivity of each part of the
query, etc.), which makes the testbed not complete enough.

In summary, while we acknowledge the importance of these testbeds in the
state of the art of federated query processing evaluation, we can identify some
of their shortcomings which we illustrate and describe in different scenarios.

3 Benchmark Design

In this section we describe some of the variables that have an impact on fed-
erated SPARQL query engines. There are two groups of variables: independent
and dependent. Independent variables are those characteristics that need to be
minimally specified in the benchmark in order to ensure that evaluation scenar-
ios are replicable. Independent variables have been grouped into four dimensions:
Query, Data, Platform, and Endpoint.

Dependent (or observed) variables are those characteristics that are normally
influenced by independent variables, as described in Table 2, and that will be
measured during the evaluation:

– Endpoint Selection Time. Elapsed time between query submission and the
generation of the SPARQL 1.1 federated query annotated with the endpoints
where sub-queries will be executed3.

– Execution Time. This variable is in turn comprised of: i) Time for the first
tuple or elapsed time between query submission and first answer, ii) Time
distribution of the reception of query answers, and iii) Total execution time.

– Answer Completeness. Number of answers received in relation to the data
available in the selected endpoints.

In the following sections we describe independent variables in more detail.

3.1 Query Dimension

This dimension groups variables that characterize the queries in terms of their
structure, evaluation, and query language expressivity. Regarding the structure

3 This variable is applicable only in cases where the system handles SPARQL 1.0
queries and no endpoints are specified in the query; hence, these queries have to be
translated into SPARQL 1.1 or into an equivalent internal representation.

Observed Variables

Independent Variables

Endpoint Selection Time Execution Time Answer Completeness

Q
u
e
r
y

query plan shape X X X
basic triple patterns X X X
instantiations and their position X X
join selectivity X
intermediate results X
answer size X
usage of query language expressivity X X
general predicates X X X

D
a
t
a

dataset size X
data frequency distribution X
type of partitioning X X X
data endpoint distribution X X X

P
la

t
fo

r
m cache on/off X X

RAM available X X
processors X X

E
n
d
p
o
in

t

#endpoints X X X
endpoint type X X
relation graph/endpoint/instance X X
network latency X X X
initial delay X X
message size X
transfer distribution X X X
answer size limit X X
timeout X X

Table 2. Variables that impact the behavior of SPARQL federated engines

of the query, we focus on three main aspects: i) the query plan shape, ii) the
number of basic triple patterns in the query, and iii) the instantiations of subject,
object and/or predicates in the query.

Shape. Query plans may be star-shaped, chain-shaped or a combination
of them, as described in [8]. In general, the shape of the input queries and
of the query plans generated by the systems has an important impact on the
three dependent variables identified in our evaluation (endpoint selection time,
if applicable, execution time and answer completeness). The shape of the query
plans will be in turn affected by the number of basic triple patterns in the
query since this number will influence the final query shape. Query evaluation
systems can apply different techniques when generating query plans for a specific
type of input query, and this will normally yield different selection and execution
times, and completeness results. For example, a query plan generator may or may
not group together all graph patterns related to one endpoint.

Instantiations and their position in triple patterns. This is related to
whether any of the elements of the triple patterns in the query (subject, object
or predicate) are already instantiated, i.e., bounded to some URI. Together with
join selectivity, instantiation has an important impact on the potential num-
ber of intermediate results that may be generated throughout query execution.
For instance, the absence of instantiations (e.g., presence of variables) in the
predicate position of a triple pattern may have an important impact in query
execution time, because several endpoints may be able to provide answers for
the pattern.

Answer size and number of intermediate results. If the number of
answers or intermediate results involved in a query execution is large, it may

take a long time to transfer them across the network, and hence this may affect
the query execution time.

Usage of query language expressivity. The use of specific SPARQL
operators may affect the execution time and the completeness of the final result
set. For example, the OPTIONAL operator is one of the most complex operators
in SPARQL [5] and may add a good number of intermediate results, while the
FILTER operator may restrict the intermediate results and answer size.

General predicates (e.g., rdf:type, owl:sameAs) are commonly used in
SPARQL queries. However, as they normally appear in most datasets it is not
always clear to which endpoint the corresponding subquery should be submit-
ted, and this may have an impact in both endpoint selection and query execution
time.

3.2 Data Dimension

We now describe the independent variables related to the characteristics of the
RDF datasets that are being accessed. An RDF dataset can be defined in terms
of its size and its structural characteristics like the number of subjects, pred-
icates and objects, and the in and out degree of properties. These characteristics
impact the number of triples that are transferred, and hence the total execution
time. Additionally, they may affect the performance of the individual endpoints.

Partitioning and data distribution are two of the most important vari-
ables that need to be specified in the context of queries against federations of
endpoints. Partitioning refers to the way that the RDF dataset is fragmented.
Data distribution is the way partitions are allocated to the different endpoints.
Data may be fully centralized, fully distributed, or somewhere in between. A
dataset may be fragmented into disjunct partitions; the partitioning may be
done horizontally, vertically or a combination of both. Horizontal partitioning
fragments triples so that they may contain different properties. Vertical parti-
tioning produces fragments which contain all the triples of at least one of the
properties in the dataset. Horizontal partitioning impacts on the completeness
of the answer whereas vertical partitioning affects the execution time. Parti-
tions may be replicated in several endpoints, even in all of the endpoints, i.e.,
fully replicated, so that the availability of the system increases in case of end-
point failure or endpoint delay. Table 3 compares the behavior of ANAPSID and
FedX with different configurations. The two engines behave similarly when there
is one dataset per endpoint and in horizontal partitioning without replication.
For vertical partitioning without replication, one engine is superior to the other.
When partitioning with replication, one engine outperforms the other in vertical
partitioning, and the inverse behavior occurs with horizontal partitioning.

Table 4 shows another example of the effect of data distribution on the query
execution time, again for ANAPSID and FedX. We can observe that when there
are multiple endpoints, results are similar, while with a network with no delay
(perfect network) and all datasets in a single endpoint, one of the engines clearly
outperforms the other in one order of magnitude.

Query Execution time Execution time Number of
Engine First Tuple (secs.) All Tuples (secs.) Results

One Dataset per Endpoint
FedX 1.06 1.06 3

ANAPSID 1.08 1.28 3
Vertical Partitioning Without Replication

FedX 0.69 0.69 3
ANAPSID 3.88 14.25 3

Horizontal Partitioning Without Replication
FedX 0.72 0.72 3

ANAPSID 0.03 0.03 1
Vertical Partitioning With Replication

FedX 0.85 0.85 14
ANAPSID 4.06 14.48 3

Horizontal Partitioning With Replication
FedX 0.91 0.91 25

ANAPSID 0.06 0.06 1

Table 3. Impact of Data Partitioning and Distribution on FedBench query LD10 (Per-
fect Network). Vertical Partitioning: triples of predicates skos:subject, owl:sameAs,
and nytimes:latest use were stored in fragments. Vertical Partitioning Without
Replication: three endpoints, each fragment in a different endpoint. Vertical Par-
titioning With Replication: corresponds to use four endpoints and store one of the
three fragments in the four endpoints, another fragment in two endpoints, and the last
fragment in one endpoint. Horizontal Partitioning: triples of the three predicates were
partitioned in two fragments; each fragment has data to produce at least one answer.
Horizontal Partitioning Without Replication two endpoints; one fragment in a
different endpoint. Horizontal Partitioning With Replicas: four endpoints; one
fragment is replicated in each endpoint, the other fragment in only one endpoint.

Results in Tables 3 and 4 support the claim that data partitioning, data
distribution and network delays need to be explicitly configurable in testbeds.

3.3 Platform Dimension

The Platform dimension groups variables that are related to the computing
infrastructure used in the evaluation. Here we include a minimum set of pa-
rameters, related to the system’s cache, available RAM memory and number of
processors, since this dimension may contain many more parameters that are
relevant in this context, and that should anyway be explicitly specified in any
evaluation setup when using this testbed.

Query Execution time Execution time Number
Engine First Tuple (secs.) All Time (secs.) of Results

Single Endpoint-All Databasets
FedX 0.51 0.51 61

ANAPSID 0.045 0.046 61
Multiple Endpoints

FedX 0.72 0.72 61
ANAPSID 0.17 0.17 61

Table 4. Impact of Data Distribution on FedBench query CD1 (Perfect Network). All
Datasets in one endpoint versus datasets distributed in different endpoints

Turning the cache management function in the system together with the
available RAM may affect greatly the query execution time. The meaning of
dropping and warming up cache needs to be clearly specified as well as the num-
ber of iterations where an experiment is run in warm cache, and when cache
contents are drooped off. In the context of federations of endpoints, information
on endpoint capabilities may be stored in cache. The number of processors
is also a relevant variable in the context of federated queries. If the infrastruc-
ture offers several processors, operators may parallelize their execution, and the
execution time may be affected positively.

3.4 Endpoint Dimension

This dimension comprises variables that are related to the number and capabil-
ities of the endpoints used in the testbed.

The first variable to be considered is the number of SPARQL endpoints
where the query will be submitted and the type of endpoints that are used for
the evaluation. The first variable affects all three observed variables, specially
the result completeness because different endpoints may produce different an-
swers. The relationship between the number of instances, graphs and
endpoints of the systems used during the evaluation is also an important as-
pect that needs to be specified. Different configurations of these relationships
may impact the three dependent variables.

There are several variables that have an important impact on the execution
time, such as the transfer distribution, which is the time distribution of the
transmission of packets by the endpoints, the network latency, which defines
the delay in sending packets through the network, and the initial endpoint
delay. An example of the impact of different network delays is illustrated in
Table 5. Two queries from the Linked Data collection of FedBench were executed
(LD10 and LD11). Note that ANAPSID and FedX behave similarly in LD10
when there is no delay; however, when delays are considered, FedX outperforms
ANAPSID. On the other hand, in LD11 ANAPSID outperforms FedX when
delays are present. In fact, ANAPSID is able to produce the first tuple after the
same amount of time, independently of the delay.

Finally, SPARQL endpoints normally allow configuring a limit on the an-
swer size of the queries and a timeout, so as to prevent users to query the entire
dataset. This may generate empty result sets or incomplete results, particularly
when endpoint sub-queries are complex.

4 Some Experimental Results

In this section we illustrate how the testbed extension can be used to better
understand the behavior of some of the existing federated query engines. The
extended testbed has been executed on three systems (ANAPSID, ARQ and
FedX) with several configurations for the independent variables identified in

Query Query Execution time Execution time Number of
Engine First Tuple (secs.) All Tuples (secs.) Results

Perfect Network

ANAPSID
LD10 1.08 1.29 3
LD11 0.06 0.09 376

FedX
LD10 1.06 1.06 3
LD11 5.44 5.44 376

Fast Network

ANAPSID
LD10 18.13 22.89 3
LD11 0.06 2.80 376

FedX
LD10 3.45 3.45 3
LD11 14.21 14.22 376

Medium Fast Network

ANAPSID
LD10 191.78 241.58 3
LD11 0.07 27.86 376

FedX
LD10 27.27 27.27 3
LD11 108.93 108.93 376

Medium Slow Network

ANAPSID
LD10 287.88 362.59 3
LD11 0.05 41.74 376

FedX
LD10 41.42 41.42 3
LD11 162.45 162.45 376

Slow Network

ANAPSID
LD10 653.44 819.72 3
LD11 0.09 92.52 376

FedX
LD10 87.19 87.19 3
LD11 347.93 347.93 376

Table 5. Impact of Network latency on FedBench queries LD10 and LD11. Timeout
was set up to 30 minutes and Message Size is 16KB. Perfect Network (No Delays);
Fast Network (Delays follow Gamma distribution (α = 1, β = 0.3); Medium-Fast
(Delays follow Gamma distribution (α = 3, β = 1.0); Medium-Slow (Delays follow
Gamma distribution (α = 3, β = 1.5); Slow (Delays follow Gamma distribution (α = 5,
β = 2.0))

Section 3. The complete result set generated by these executions can be browsed
at the DEFENDER portal4.

Now we will focus on one of the analyses that a system developer may be
interested in, in the context of the continuous benchmarking process that we
have referred to in this paper. That is, we are not analyzing the whole set of
results obtained from the execution, but only a subset of it. Specifically, let’s
assume that we are interested in understanding the performance of the three
evaluated systems under different data distributions in an ideal scenario, with
no or negligible connection latency. Our hypothesis is that existing query engines
are sensible to the way data is distributed along different endpoints, even when
the network is perfect. Therefore, these results may be useful to validate that
hypothesis and to understand whether a set of federated datasets for which we
have the corresponding RDF dumps should be better stored in a single endpoint
or in different endpoints to offer answers more efficiently. Based on the set of
variables identified in our study, the following experimental setup is used:

Datasets and Query Benchmarks. We ran 36 queries against the FedBench
dataset collections [8]: DBPedia, NY Times, Geonames, KEGG, ChEBI,

4 http://159.90.11.58/

Drugbank, Jamendo, LinkedMDB, and SW Dog Food. These queries include
25 FedBench queries and eleven complex queries5. The latter are added to
cover some of the missing elements in the former group of queries. They are
comprised of between 6 and 48 triple patterns, and can be decomposed into
up to 8 sub-queries; and they cover different SPARQL operators. Virtuoso6

was used to implement endpoints, and the timeout was set up to 240 secs.
or 71,000 tuples. Experiments were executed on a Linux Mint machine with
an Intel Pentium Core 2 Duo E7500 2.93GHz 8GB RAM 1333MHz DDR3.

Network Latency. We configured a perfect network with no delays. The size
of the message corresponded to 16KB.

Data Distribution. We considered two different distributions of the data:
i) Complete: the FedBench collections were stored into a single graph and
made accessible through one single SPARQL endpoint, and ii) Federated:
the FedBench collections were stored in nine Virtuoso endpoints.

Therefore, we consider the queries in four groups and six configurations: Con-
figuration 1: ANAPSID Complete Distribution, Configuration 2: ANAPSID
Federated Distribution, Configuration 3: ARQ Complete Distribution, Con-
figuration 4: ARQ Federated Distribution, Configuration 5: FedX Complete

Distribution, Configuration 6: FedX Federated Distribution. In each config-
uration, the corresponding queries were ordered according to the total execu-
tion time consumed by the corresponding engines. For example, ANAPSID in a
Complete Distribution, i.e., Configuration 1, the Cross-Domain queries were
ordered as follows: CD2, CD3, CD4, CD5, CD1, CD7, and CD6. Queries of each
configuration were compared using the Spearman’s Rho correlation. A high pos-
itive value of correlation value between two configurations indicates that the
corresponding engines had a similar behavior, i.e., the trends of execution time
of the two engines are similar. Thus, when Configuration 1 is compared to
itself, the Spearman’s Rho correlation reaches the highest value (1.0). On the
other hand, a negative value indicates an inverse correlation; for example, this
happened with Complex Queries to ARQ in a Complete Distribution (Config-
uration 3) when compared to FedX Federated Distribution (Configuration
6); its value is -0.757. Finally, a value of 0.0 represents that there is no correla-
tion between the two configurations, e.g., for Life Science queries Configuration
4 and Configuration 6. Figure 1 illustrates the results of this specific study
(again, the data used for this study is available through the DEFENDER por-
tal). White circles represent the highest value of correlation; red ones correspond
to inverse correlations, while blue ones indicate a positive correlation. The size
of the circles is proportional to the value of the correlation. Given a group of
queries, a low value of correlation of one engine in two different distributions
suggests that the distribution affects the engine behavior, e.g., FedX and ARQ
in Complex Queries with different data distributions have correlation values of
0.143 and 0.045, respectively. Furthermore, the number of small blue circles be-
tween configurations of different data distributions of the same engine, indicate

5 http://www.ldc.usb.ve/~mvidal/FedBench/queries/ComplexQueries
6 http://virtuoso.openlinksw.com/

(a) Cross Domain (CD) (b) Linked Data (LD)

(c) Life Science (LS) (d) New Complex Queries (C)

Fig. 1. Spearman’s Rho Correlation of Queries in three FedBench sets of queries (a)
Cross-Domain (CD), (b) Life Science (LS), (c) Linked Data (LD) and (d) New Com-
plex Queries. Six configurations: (1) ANAPSID Complete Distribution; (2)ANAPSID
Federated Distribution; (3) ARQ Complete Distribution; (4) ARQ Federated Dis-
tribution; (5) FedX Complete Distribution; (6) FedX Federated Distribution. White
circles correspond to correlation value of 1.0; blue circles indicate a positive correlation
(Fig.1(d) points (3,4) and (5,6) correlation values 0.045 and 0.143, respectively); red
circles indicate a negative correlation (Fig.1(d) points (2,6) and (6,3) correlation values
-0.5 and -0.757, respectively). Circles’ diameters indicate absolute correlation values.

that this parameter affects the behavior of the studied engine. Because there
are several of these points in the Complex Queries plot, we can conclude that
these two parameters (query complexity and data distribution) allow uncovering
engines’ behavior that could not be observed before. This illustrates the need
for the extensions proposed in this paper.

5 Conclusion and Future Work

In this paper we have shown that there is a need to extend current federated
SPARQL query testbeds with additional variables and configuration setups (e.g.,
data partitioning and distribution, network latency, and query complexity), so
as to provide more accurate details of the behavior of existing engines, which
can then be used to provide better comparisons and as input for improvement
proposals. Taking those additional variables into account, we have extensively

evaluated three of the existing engines (ANAPSID, ARQ and FedX), and have
made available those results for public consumption in the DEFENDER portal,
which we plan to maintain up-to-date on a regular basis. We have also shown
how the generated result dataset can be used to validate hypotheses about the
systems’ behavior.

Our future work plans will be focused on continuing with the evaluation of
additional federated SPARQL query engines, and with the inclusion of additional
parameters in the benchmark that may still be needed to provide more accurate
and well-informed results.

6 Acknowledgements

This work has been funded by the project myBigData (TIN2010-17060), and
DID-USB. We thank Maribel Acosta, Cosmin Basca, and Raúl Garćıa-Castro
for fruitful discussions.

References

1. M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. Anapsid: An
adaptive query processing engine for SPARQL endpoints. In Proceedings of the
10th International Semantic Web Conference, volume 7031 of Lecture Notes in
Computer Science, pages 18–34. Springer, 2011.

2. C. Buil-Aranda, M. Arenas, and O. Corcho. Semantics and optimization of the
SPARQL 1.1 federation extension. In ESWC (2), pages 1–15, 2011.

3. S. J. Lynden, I. Kojima, A. Matono, and Y. Tanimura. ADERIS: An adaptive
query processor for joining federated SPARQL endpoints. In OTM Conferences
(2), pages 808–817, 2011.

4. G. Montoya, M.-E. Vidal, and M. Acosta. DEFENDER: a DEcomposer for quEries
against feDERations of endpoints. In Extended Semantic Web Conference, ESWC
Workshop and Demo 2012, LNCS, 2012.

5. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.
TODS, 34(3), 2009.

6. E. Prud’hommeaux and C. Buil-Aranda. SPARQL 1.1 federated query, November
2011.

7. B. Quilitz and U. Leser. Querying distributed RDF data sources with SPARQL.
In ESWC, pages 524–538, 2008.

8. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. Fedbench:
A benchmark suite for federated semantic data query processing. In International
Semantic Web Conference (1), pages 585–600, 2011.

9. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2bench: A SPARQL per-
formance benchmark. In ICDT, pages 4–33, 2010.

10. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization
techniques for federated query processing on linked data. In International Semantic
Web Conference, pages 601–616, 2011.

