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Abstract We present a thorough quantitative evaluation of

four image segmentation algorithms on images from the

Berkeley Segmentation Database. The algorithms are eval-

uated using an efficient algorithm for computing precision

and recall with regard to human ground-truth boundaries.

We test each segmentation method over a representative set

of input parameters, and present tuning curves that fully

characterize algorithm performance over the complete im-

age database. We complement the evaluation on the BSD

with segmentation results on synthetic images. The results

reported here provide a useful benchmark for current and

future research efforts in image segmentation.
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1 Introduction

Bottom-up image segmentation continues to be a challeng-

ing problem despite a sustained research effort that spans

several decades. In recent years, several algorithms have

been proposed and demonstrated on a handful of images, but

the question of how these algorithms compare to one another

has not been properly addressed. This is mostly due to the

unavailability until recent years of a suitable, standard set of

images and associated ground-truth, as well as the lack of

publicly available implementations of major segmentation

algorithms.
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In 2001 Martin et al. (2001) introduced the Berkeley Seg-

mentation Database (BSD) as a repository of natural images

with corresponding human segmentations. Since then, the

BSD has been used to develop and evaluate boundary ex-

traction algorithms based on image statistics (see Martin et

al. 2004, and Kaufhold and Hoogs 2004). Concurrently with

the development of the BSD several image segmentation al-

gorithms have been made available by their authors. This

has allowed different research groups to extend and improve

known segmentation methods, and to visually compare the

resulting segmentations.

However, a thorough quantitative evaluation of current

image segmentation algorithms has yet to be reported. The

lack of a suitable benchmark means that new image segmen-

tation algorithms are still evaluated by providing qualitative

comparisons with regard to other methods. While qualita-

tive comparisons appeal to our intuitive perception of im-

ages and object boundaries, it may be quite difficult to de-

termine visually whether a particular algorithm provides a

significant advantage over alternate methods.

The goal of this paper is to present a quantitative evalu-

ation of four current segmentation algorithms. To obtain a

meaningful comparison, each algorithm must be tested over

many possible combinations of input parameters. This, in

turn, leads to the need for an efficient method for compar-

ing potentially thousands of segmentations. We propose a

simple procedure for quickly computing precision and recall

measures of segmentation quality. This method is analogous

to that of Martin (2002) but eliminates the need to solve an

expensive bi-partite matching problem. The results of our

study are presented in the form of tuning curves that fully

characterize the performance of each algorithm over a wide

range of input parameters. The segmentation algorithms we

will compare in this paper are: Spectral-Embedding MinCut

(SE-MinCut) (Estrada and Jepson 2004), Normalized Cuts
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(Shi and Malik 2000), Mean-Shift (Comaniciu and Meer

2002), and Local Variation (Felzenszwalb and Huttenlocher

1998). In addition to this, the code that implements the

matching algorithm described here has been made available

online at http://www.cs.utoronto.ca/~strider/Benchmark so

that other research groups can test and compare their own

segmentation methods.

The paper is organized as follows. Section 2 gives a

brief overview of the segmentation algorithms selected for

comparison. Section 3 explains the quantitative evaluation

framework and describes the fast matching algorithm used

to compute precision and recall. Section 4 describes the

experimental setup we used to perform the evaluation and

comparison of the segmentation methods. Section 5 presents

our experimental results and discussion including segmenta-

tion quality benchmarks for BSD images as well as for a set

of synthetic scenes. Finally, Sect. 6 provides a conclusion

to this paper. A preliminary version of this work appears in

Estrada and Jepson (2005).

2 Segmentation Algorithms

Before we proceed to the evaluation part of this paper, it

is convenient to briefly review the segmentation algorithms

we have selected for comparison. Since three of the selected

algorithms (SE-MinCut, Normalized Cuts, and Local Vari-

ation) are based on graph-theoretic principles, we will first

describe the general graph representation for images. An in-

put image I is transformed into a graph G(V,E) in which

V is a set of nodes corresponding to image elements (which

may be pixels, feature descriptors, image patches, etc.), and

E is a set of edges linking these nodes together. The weight

of an edge wi,j is proportional to the similarity between im-

age elements i and j (according to some appropriate mea-

sure of similarity), and is usually referred to as the affinity

between i and j .

The similarity measure can use any of a number of image

cues including image brightness, colour, and texture. It is

also common to add a distance term (or to enforce a particu-

lar neighborhood structure) to ensure that the graph is sparse

by linking together only image elements that are in close

spatial proximity. Once the graph is built, segmentation con-

sists of determining which subsets of nodes in V correspond

to homogeneous regions in the image. Graph-theoretic seg-

mentation algorithms exploit the notion that nodes that be-

long to the same region or cluster should be joined together

by edges with large weights, while nodes that are joined by

weak edges are likely to belong to different regions.

2.1 Spectral Embedding MinCut

Spectral-Embedding MinCut (Estrada and Jepson 2004)

builds an affinity matrix W using a simple affinity measure

based on the gray-level difference between neighboring pix-

els. From the affinity matrix, a Markov matrix M is formed

by normalizing each column of W to add up to 1:

M = WD−1 (1)

where D is the diagonal matrix with Di,i = ∑

k Wk,i . This

Markov matrix M can be used to determine patterns of dif-

fusion that correspond to random walks started at different

image pixels. In particular, if p0,j represents the probability

distribution that corresponds to a particle starting a random

walk at pixel �xj (i.e. with all of its probability mass located

at pixel �xj ), the state of the random walk after t steps is

given by

�pt,j = M t �p0,j ,

where the term M t can be computed efficiently from the

eigenvectors and eigenvalues of M . The vectors �pt,k that re-

sult from starting the random walk at different pixels k in the

image are called blur kernels. These blur kernels capture im-

portant properties of the neighborhood of the corresponding

image pixels.

It is shown in Estrada and Jepson (2004) that the blur

kernels for neighboring pixels in homogeneous-looking im-

age regions will be very similar (more formally, their inner

product will be close to 1), while for neighboring pixels sep-

arated by an image discontinuity the dot product will tend

to vanish. This suggests that clusters of similar blur kernels

should correspond to clusters of homogeneous-looking im-

age pixels.

SE-MinCut uses spectral embedding to generate a low-

dimensional representation of these blur kernels. Tight clus-

ters of embedded blur-kernels correspond to seed regions of

similar-looking pixels in the image. These seeds generally

don’t cover the complete image, so the minimum cut algo-

rithm (Wu and Leahy 1993) is used to accurately locate the

boundaries that separate different seed regions.

A cut through a graph is defined as the sum of the weights

of the links that have to be removed to split the graph into

two disconnected components R1 and R2. The minimum cut

through a graph is the cut whose overall value (or capacity)

is minimum

cut(R1,R2) =
∑

vi∈R1,vj ∈R2

wi,j ,

MinCut = min
R1,R2

cut (R1,R2).

However, instead of looking for the minimum cut through

the entire graph, SE-MinCut computes the minimum cut

that separates especially designated source and sink nodes.

S-T MinCut, as this particular version of min-cut is known,

has been previously studied by Boykov and Kolmogorov

(2001), and has been demonstrated as an efficient tool for

http://www.cs.utoronto.ca/~strider/Benchmark
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high-quality, interactive image segmentation by Boykov and

Jolly (2001).

In SE-MinCut, source and sink nodes are defined au-

tomatically from the seed regions generated from the em-

bedding. A final step of region merging to remove trivial

cuts produces a segmentation of the image. Current algo-

rithms related to SE-MinCut minimum-cut include Veksler

(2000), Blake et al. (2004), Boykov et al. (2001), Ishikawa

and Geiger (1998), Wang and Siskind (2001), Gdalyahu et

al. (2001), Wang and Siskind (2003), Shental et al. (2003),

and of course, the normalized cuts algorithm described next.

2.2 Normalized Cuts

Shi and Malik (2000) propose that the optimal segmentation

of the image corresponds to the partition of the graph that

minimizes the normalized cut measure

Ncut(R1,R2) = cut(R1,R2)

assoc(R2,V )
+ cut(R1,R2)

assoc(R2,V )
,

where assoc(R,V ) is the sum of the weights between nodes

in R and the full graph V , and measures the strength of the

association between the image elements in R and the whole

image. It is shown in Shi and Malik (2000) that the cut that

minimizes this normalized cut measure also maximizes the

association between elements that belong to the same re-

gion.

Computing the exact solution to the normalized cut is an

NP-complete problem. However, an approximate solution is

provided by the eigenvector with the second smallest eigen-

value of the system

(D − W)y = λDy, (2)

where W and D are as in (1). Furthermore, eigenvectors

with successively larger eigenvalues can be used to split

previously generated partitions. The segmentation algorithm

consists of building the affinity matrix W , computing the

eigenvectors and eigenvalues of the system shown in (2),

and thresholding a number of these eigenvectors to obtain

partitions of the image. The intersection of these partitions

yields the final segmentation. The implementation of nor-

malized cuts used in this paper employs an affinity measure

that includes gray-level similarity, spatial proximity, and a

measure of edge energy (see Malik et al. 2001 for details).

Extensions to the normalized cuts algorithm have been

proposed by Belongie and Malik (1998), Malik et al. (1999,

2001), Fowlkes et al. (2001, 2004), Belongie et al. (2002),

Yu and Shi (2003). Other segmentation methods related

to normalized cuts include Sharon et al. (2000, 2001), Yu

(2004, 2005).

Normalized cuts and SE-MinCut are closely related. In

particular, Meila and Shi (2000) show that the normalized

cuts eigenvectors are equivalent to those of the Markov ma-

trix M in (1). However, despite the two algorithms solv-

ing an equivalent eigenvector problem, there are fundamen-

tal differences in the way the solution to this eigenvector

problem is used to determine the segmentation. Normalized

cuts discretizes and thresholds individual eigenvectors. Each

eigenvector provides a two-way cut that depends on the dis-

cretization and thresholding method used. Individual eigen-

vectors provide good partitions when there are strongly sep-

arated clusters in the data, however in real world images

this is not always the case. Weak region boundaries result

in eigenvectors that are not piece-wise constant. Such eigen-

vectors are hard to threshold appropriately (leading to in-

accurate boundary localization), and often lead to incorrect

partitions.

Instead of discretizing individual eigenvectors, SE-

MinCut uses a subset of the eigenvectors with largest eigen-

values to form a linear-subspace that represents a random-

walk over the image pixels as described above. The result

of simulating a certain number of steps of this random walk

starting at each pixel yields information about image dis-

continuities and regions of homogeneous appearance in the

neighborhood of each pixel, this provides considerably more

information for segmentation purposes than the pairwise

affinities used by normalized cuts, it also reduces the effects

of noise. Clustering of the resulting blur-kernels yields sets

of pixels that are highly likely to belong in homogeneous

regions, and min-cut is used to determine the optimal par-

titions thereby achieving good boundary localization even

along weak region boundaries.

2.3 Local Variation Algorithm

Felzenszwalb and Huttenlocher (1998) describe an efficient

graph theoretic algorithm for image segmentation. Its prin-

ciple of operation is that the image should be partitioned

in such a way that for any pair of regions, the variation

across neighboring regions should be larger than the vari-

ation within each individual region. They define two mea-

sures of variation:

Int(A) = max
e∈MST(A,E),e=(vi ,vj )

wi,j

and

Ext(A,B) = min
vi∈A,vj ∈B,(vi ,vj )∈E

wi,j ,

where A is a region, Int(A) is the internal variation within

the region, MST(A,E) is a minimum spanning tree of A,

and Ext(A,B) is the external variation between regions A

and B .
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The proposed algorithm works by merging together re-

gions when the external variation between them is small

with regard to their respective internal variations

Ext(A,B) ≤ MInt(A,B),

where

MInt(A,B) = min(Int(A) + τ(A), Int(B) + τ(B)),

and the threshold value τ(A) = κ/|A| determines how large

the external variation can be with regards to the internal

variation for two regions to still be considered similar. The

analysis presented in Felzenszwalb and Huttenlocher (1998)

concludes that the algorithm is nearly linear in complexity

with regard to the number of pixels in the image.

2.4 Mean Shift Segmentation

Comaniciu and Meer (2002), describe a segmentation

method based on the mean-shift algorithm. The mean-shift

algorithm (Cheng 1995) is designed to locate points of

locally-maximal density in feature space. Feature vectors

containing gray-scale or colour information as well as pixel

coordinates are computed for each pixel. Then the algorithm

looks at a local neighborhood in feature space centered at

each pixel’s feature vector, and repeats the following steps

iteratively:

• Compute a weighted mean of the feature vectors within

this local neighborhood. The weight for each point is

based on the distance between the point and the center

of the local neighborhood (using an appropriate distance

measure).

• Shift the center of the local neighborhood to this newly es-

timated weighted mean (hence the Mean-Shift algorithm)

These steps are repeated until a convergence condition is

satisfied, and the location of convergence for each point is

recorded.

In the original formulation, the local neighborhood is de-

fined as a unit sphere in Rd , and the density estimate takes

the form

f̂ (x) = 1

n · hd

n
∑

i=1

K

(

x − xi

h

)

where h is the sphere’s radius, and K is the weighting ker-

nel. The kernel they use is given by

K(x) =
{

1
2·cd

· (d + 2) · (1 − xtx) if xtx < 1

0 otherwise

where cd is the volume of the d-dimensional hypersphere.

This results in the following expression for the sample’s

mean shift

Mh(x) ≡ 1

nx

∑

xi∈Sh(x)

(xi − x)

where Sh(x) is a hypersphere of radius h centered on x, and

nx is the number of feature vectors within the hypersphere.

It is noted in Comaniciu and Meer (2002) that the use of a

different kernel leads to a weighted mean computation.

The above algorithm can be easily generalized to include

additional image cues within the feature vectors. The reader

is referred to Comaniciu and Meer (2002) for more details

about the structure of the feature space, the definition of the

local neighborhood around a feature vector, and the mean-

shift update rule. The mean-shift procedure will converge

from an initial location in feature space to a region of lo-

cally maximal density. Pixels that have the same point of

convergence are given the same segmentation label. Peaks

in local density that are too close to each other are merged,

and regions smaller than a user defined threshold are elimi-

nated.

The algorithms described above are representative of cur-

rent research in image segmentation, however; there are

many other recent algorithms not discussed here. The reader

is referred to Estrada (2005) for a thorough survey of current

research in image segmentation. Finally, we should point

out the important distinction between the segmentation al-

gorithm itself and the similarity measure used to determine

pixel similarity. The above algorithms support the use of dif-

ferent image features such as colour or texture. Here we ex-

amine their performance based purely on gray-level similar-

ity, the objective is to evaluate the segmentation component

of the algorithms on an equal footing independently of the

different possible choices of similarity measure.

3 Quantitative Evaluation

There are two schools of thought with regards to the evalua-

tion of computational vision algorithms in general. The first

maintains that vision algorithms should be evaluated in the

context of particular task (see for example Borra and Sarkar

1997). In the context of image segmentation and other low-

and mid-level vision tasks this translates to measuring how

much a particular algorithm contributes to the success of

higher-level procedures that carry out, for example, object

recognition.

The second school of thought holds that vision algo-

rithms can be evaluated in terms of their performance with

regard to some suitably defined ground truth (see for exam-

ple Martin et al. 2001). In this paper we adopt this latter
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philosophy, and present the results of evaluating the perfor-

mance of the segmentation algorithms described above on a

large database of natural images for which the ground truth

is known. This has been made possible by the introduction

of the Berkeley Segmentation Database (BSD) (Martin and

Fowlkes 2001) by Martin et al. (2001).

The current public distribution of the BSD contains 300

colour images of size 481 × 321 pixels. For each of these

images, the database provides between 4 and 9 human seg-

mentations in the form of label maps. The segmentations are

provided separately for the grayscale and colour versions of

each image, and the complete database is split in two sets:

A training image set consisting of 200 images and their cor-

responding segmentations, and a testing data set consisting

of the remaining 100 images and their human segmenta-

tions.

The BSD was originally introduced as a tool for gath-

ering statistics of natural images and for evaluating image

segmentation algorithms. In particular, Martin et al. (2001)

and Martin (2002) studied the problem of defining suitable

measures of segmentation quality. In general terms, there

are two possible types of measures: those that compare the

overlap between regions in two segmentations of the same

image; and those that evaluate the agreement between cor-

responding segmentation boundaries. Here we use the lat-

ter approach. Specifically, we compute precision and recall

of segment boundaries with regard to human segmentations

(see Martin 2002, Chap. 3). A similar approach has also

been used to design and evaluate boundary detection al-

gorithms (see Martin et al. 2002, 2004, and Kaufhold and

Hoogs 2004).

Precision and recall are particularly attractive as mea-

sures of segmentation quality because they are not biased in

favour of over- or under-segmented images. Precision mea-

sures the percentage of boundary pixels in the automatic seg-

mentation that correspond to a boundary pixel in the ground

truth and is sensitive to over-segmentation. Recall measures

the percentage of boundary pixels in the ground-truth that

were detected in the automatic segmentation and is sensitive

to under-segmentation. More importantly, the use of preci-

sion and recall will allow us characterize the performance

of segmentation algorithms in a way that is independent of

particular choices of input parameters.

3.1 Precision and Recall

Given a source segmentation Ssource, and a target segmenta-

tion Starget, precision is defined as the proportion of bound-

ary pixels in Ssource for which we can find a matching bound-

ary pixel in Starget

Precision = Matched(Ssource, Starget)

|Ssource|
,

where |Ssource| is the total number of boundary pixels in the

source segmentation. In a similar way, recall is defined as

the proportion of pixels in Starget for which we can find a

suitable match in Ssource

Recall = Matched(Starget, Ssource)

|Starget|
.

To compute precision and recall, we need a method for

determining correspondence between boundary pixels in the

two segmentations. Martin (2002) proposed to solve this

problem using bi-partite matching. In his formulation, a

matching cost between pairs of boundary pixels is calcu-

lated and an optimization process determines the minimum-

cost matching between boundary elements from the two

segmentations. The matching cost has terms for proximity

and boundary orientation similarity. Outlier elements with a

large matching cost are introduced to equalize the number

of boundary elements in the segmentations. Precision and

recall are then computed using the percentage of boundary

pixels in Ssource and Starget respectively that were matched

to outliers. The bi-partite matching between segmentation

boundaries can be expensive to compute. It is also unclear

whether forcing a one-to-one matching between boundary

pixels is necessarily appropriate.

Here we improve upon the original formulation by Mar-

tin by proposing a significantly faster method for computing

precision and recall. We use a matching algorithm based on

boundary pixel proximity that has linear complexity in the

number of source boundary pixels. We have observed em-

pirically that it produces good quality matchings between

corresponding boundaries at a fraction of the computational

cost of the original bi-partite matching algorithm proposed

by Martin. This speed-up is especially important since we

will need to evaluate several thousand pairs of segmenta-

tions in order to benchmark any particular segmentation al-

gorithm. The matching algorithm is described in detail in

Sect. 3.3.

3.2 About the Segmentation Boundaries

The segmentations output by each algorithm are stored as

labeled images where pixels within the same region have

identical labels. To extract the region boundaries from the

labeled images we could, as a first approach, simply mark

as a boundary any pixels that have a neighbor with a differ-

ent label. This, however, yields boundaries that are two pix-

els thick. Thick boundaries create two problems. First, very

thin or very small regions will disappear altogether, having

been replaced by solid clusters of boundary pixels within

which the region-structure of the image is lost. Secondly,

thick boundaries complicate the matching procedure and are

likely to introduce unwanted artifacts in the resulting preci-

sion/recall scores (incidentally, the implementations we are
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using of both Normalized Cuts and Mean Shift can be made

to output region boundaries, but these boundaries are also

two pixels thick). We could also attempt to mark pixels uni-

formly on one side (e.g. to the left and above) of region

boundaries but this also introduces artifacts.

To eliminate these problems, we generate boundary im-

ages that have twice the resolution of the segmentations.

In these higher-resolution images, boundaries can be accu-

rately localized to lie between the pixels corresponding to

the original regions in the low resolution segmentation. The

procedure for generating the super-sampled boundaries is

simple: We super-sample each individual region in the origi-

nal segmentation in turn and find its boundary in the higher-

resolution image. The final boundary map is formed by the

union of the super-sampled boundaries of the individual re-

gions. Figure 1 shows a segmentation, the boundaries ex-

tracted by marking as boundary any pixels that have neigh-

bors with a different label, and the super-sampled boundary

map.

We compute super-sampled boundary maps for all the

segmentations generated by the four image segmentation al-

gorithms. The same procedure is applied to the human seg-

mentations from the BSD. Given two super-sampled bound-

ary maps, we can compute correspondence maps for preci-

sion and recall (in general, the correspondence maps will not

be identical since the matching procedure is not symmetric).

3.3 Matching Algorithm

The matching algorithm is quite simple. For each boundary

pixel p = (xp, yp) in the source segmentation, we look at a

Fig. 1 (a) Original image (121 × 81). (b) Segmentation labels

(SE-MinCut). (c) Boundaries generated by marking every pixel that

has at least one neighbour with a different label (121 × 81, bound-

aries are 2 pixels thick). Notice that very small or very thin regions be-

come indistinguishable clumps of boundary pixels. (d) Super-sampled

boundary map (242 × 162) boundaries are now more accurately local-

ized, and the structure of small and thin regions is preserved

circular window of radius ǫ centered at (xp, yp) in the target

segmentation. Any boundary pixels within this window are

potential matches for p. We say that boundary pixel q within

the search window is a suitable match for p the following

conditions are satisfied:

(1) There are no other boundary pixels in Ssource between p

and q (no intervening contours constraint).

(2) The source pixel r that is closest to q and the source

pixel p being matched to q must be on the same side of

the target boundary q is apart of (same side constraint).

Figure 2 illustrates the two matching constraints. The

first condition mentioned above is meant to avoid match-

ing across multiple boundaries, we can only match two

boundary pixels if there are no other boundary pixels be-

tween them. The second condition deserves further com-

ment, without it, the matching algorithm will indiscrimi-

nately match boundary pixels on both sides of individual tar-

get boundaries. The result is that instead of obtaining a tight

match between one boundary in Ssource and one boundary in

Starget, we will get a band of matched pixels in Ssource all of

which are within distance ǫ of a single target boundary. For

a match between source pixel p and target pixel q to occur,

Fig. 2 (Color online) The top row shows an image from the BSD and

an overlay of one human segmentation (blue), and a segmentation pro-

duced with SE-MinCut (red, green pixels indicate overlap). Detail 1

shows the application of the first of our matching constraints. Pixel A

from the source segmentation can’t be matched to pixel B in the tar-

get segmentation because there are other source (red) boundary pixels

between the two. An implication of this constraint is that any source

boundary pixel that overlaps a target boundary pixel (for example, con-

sider the pixel marked C) prevents any other source boundary pixels

from matching to the same target pixel. Detail 2 shows the applica-

tion of the second matching constraint. In this case, the pixel labeled

A cannot be matched to target pixel B because A is not on the same

side of the boundary as pixel C, which is the source pixel closest to B.

Conversely, pixel D can be successfully matched to pixel E since it is

on the same side as F
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Fig. 3 (a) One human segmentation from the BSD. (b) Automatic

segmentation (Mean-Shift, parameters set for over-segmentation).

(c) Matched boundary pixels (ǫ = 7) using both of the constraints men-

tioned in the text. (d) Matched boundary pixels (ǫ = 7) without the

second (same side) constraint. Notice that without the ‘same side’ con-

straint the matching procedure finds matches for any pixels that lie

within a band of radius ǫ around the human segmentation boundaries.

This would increase the precision score for the algorithm artificially

both p and the source boundary pixel r that is closest to q

must be on the same side of the boundary q is part of.

Figure 3 provides examples of matching with and without

this constraint. It is still possible that boundary pixels from

Ssource that lie on opposite sides but at the same distance of

a boundary in Starget will be matched to the same boundary,

but we have found that in general the matching algorithm

described above generates good correspondence maps.

We should point out that ǫ here refers to pixel distance in

the boundary maps input to the matching algorithm. Since

our boundary maps are half the resolution of the original

BSD images, the reader can determine the actual distance

in terms of the full size BSD images by taking the ǫ values

stated in the experimental results and multiplying them by

two. This should allow the reader to get an idea of how big

the allowed error in boundary localization is with regard to

the actual images that the human observers segmented.

For a fixed value of ǫ, the matching algorithm described

above has linear complexity in the number of source bound-

ary pixels. This is true because the matching procedure will

examine at most a constant number of pixels in the target

segmentation for every boundary pixel in the source seg-

mentation.

4 Experimental Setup

Due to the computationally intensive nature as well as prac-

tical limitations of SE-MinCut and Normalized Cuts, we

have carried out the evaluation on images that have been

down-sampled by a factor of 4 from their original size in the

BSD. The input images have a size of 121 × 81 pixels, and

we use only the grayscale version of each image.

Since the human segmentations contained in the BSD

have the same size as the original images, we are faced

with the problem of comparing segmentations produced at

a lower level of detail against the full resolution segmenta-

tions produced by humans. This could be achieved in either

of two ways: The resulting segmentations could be interpo-

lated and up-sampled to the appropriate size, or the human

segmentations could be down-sampled. For simplicity, and

to reduce the computational cost of evaluating the error mea-

sures, we chose this latter option. Thus, for error computa-

tion purposes the human segmentations from the BSD are

also down-sampled by a factor of 4.

To obtain a meaningful benchmark, we must test each al-

gorithm for different combinations of its input parameters in

a systematic way. The overall testing procedure for a par-

ticular algorithm is as follows: for each combination of pa-

rameters, the algorithm is run over the complete set of 300

images from the BSD. Note that there is no training phase

since the algorithm will be tested using different combina-

tions of input parameters, hence, we do not need to separate

training and testing image sets, and we can use all the avail-

able images for the evaluation. For each image, we compute

the average precision and recall with respect to the available

human segmentations. The score of the algorithm for that

particular combination of input parameters is the median of

the precision and recall scores obtained for the individual

images. We chose to use the median because the distribution

of precision/recall values is typically non-Gaussian. How-

ever, using the average instead of the median was observed

to yield similar results.

The median precision and recall values computed for dif-

ferent combinations of input parameters yield tuning curves

that fully characterize the performance of the algorithm. For

algorithms that have only one input parameter, we get a sin-

gle tuning curve, whereas algorithms with more parameters

will have multiple curves each of which corresponds to pre-

cision/recall scores obtained by changing one input parame-

ter while holding all other parameters fixed.

4.1 Segmentation Algorithms and Algorithm Parameters

We used our own implementation of SE-MinCut, as well as

the following publicly available segmentation programs: for

Normalized Cuts see Cour et al. (2006), for Local Variation

see Felzenszwalb and Huttenlocher (2004), and for Mean-

Shift see Georgescu and Christoudias (2003). The ranges for

the input parameters of each algorithm were determined ex-

perimentally so as to produce segmentations that go from

severely under-segmented to severely over-segmented, with

increments chosen so as to yield visually perceptible differ-

ences within the selected range. We evaluated the algorithms
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exclusively on the parameters that are user-tunable in the re-

spective implementation. Any internal parameters were kept

fixed.

The input parameters and ranges are as follows: For Nor-

malized Cuts the only input parameter is the desired num-

ber of regions, we tested the algorithm for a number of

output regions within [2,128]. The Local Variation algo-

rithm also takes a single input parameter k that roughly con-

trols the size of the regions in the resulting segmentation

(for details please refer to Felzenszwalb and Huttenlocher

1998), smaller values of k yield smaller regions and favour

over-segmentation. For this algorithm we tested values of k

within [10,1800].
For Mean-Shift we have two parameters: The spatial

bandwidth, and the range bandwidth. These parameters are

related to the spatial and gray-level intensity resolution of

the analysis (see Comaniciu and Meer 2002 for details). In

practice, the segmentation software for Mean-Shift accepts

an additional parameter: the size in pixels of the smallest

region allowed. We didn’t test the effect of this parame-

ter and instead kept it fixed to 25 pixels (corresponding to

an area roughly equal to the size of the window used for

computing precision and recall). Experimentation showed

that the largest differences between segmentations were ob-

tained while varying the range bandwidth parameter. Thus,

we evaluate the algorithm using three values for the spatial

bandwidth within [2,8], and for each of these values, we

compute a tuning curve that corresponds to variations of the

range bandwidth within [1,20] (see Fig. 4).

For SE-MinCut we have two parameters: d which deter-

mines the number of eigenvectors to use in the embedding,

and τm which is the threshold used during the merging step.

The largest variation between segmentations is obtained by

changing the value of d , so following the same methodol-

ogy used with Mean-Shift we use 5 values for the merg-

ing threshold between [.0625, .75], and for each of these we

compute a tuning curve that corresponds to variations of d

within [5,40] (see Fig. 4).

5 Comparison Results

Since SE-MinCut and Mean-Shift have several tuning

curves (shown in Fig. 4 for two values of ǫ), we have cho-

sen for comparison the curves that are most favorable for

each method. For SE-MinCut we will use the curve that cor-

responds to τm = .25, and for Mean-Shift we will use the

curve that corresponds to a spatial bandwidth SB = 8.

Figure 5 shows the tuning curves for all algorithms for

different values of ǫ, also shown are error bars in the di-

rections of precision and recall corresponding to the median

standard error mse = 1.25 ∗ σ/
√

N where N is the number

of samples (in the case of the BSD images N = 300), and

σ is the corresponding standard deviation along the preci-

sion or recall axis. The tuning curves describe the behav-

ior of the algorithms as input parameters change, and can

be used to determine the input parameters that will yield a

desired combination of precision and recall within the algo-

rithm’s operating range. Since the curves fully characterize

algorithm performance, they provide a direct comparison of

the quality of the segmentations produced by different algo-

rithms independently of the choice of input parameters. The

curves show when an algorithm performs consistently better

than the others, and allow us to rank algorithms by perfor-

mance for particular values of precision or recall.

The tuning curves shown in Fig. 5 show that the SE-

MinCut algorithm generates the segmentations that agree

most closely with the ground truth. Figure 6 shows the seg-

mentations produced by each of the algorithms for several

images from the BSD using the parameters at the middle of

the tuning curve for each method. These segmentations pro-

vide a visual comparison of the segmentations generated by

each algorithm, and complement the results from Fig. 5. It

is encouraging that the precision/recall results for each al-

gorithm agree well with the visually perceived quality of the

corresponding segmentations.

Not surprisingly, the scores for all algorithms fall sharply

as ǫ is decreased. Figure 7 shows the distribution of dis-

tances between matching boundary pixels in correspond-

ing human segmentations. The distribution was generated

by pairing human segmentations of the same image, com-

puting a correspondence map between them using the al-

gorithm described above, and generating a histogram of the

distances between matching boundary pixels for all pairs of

corresponding human segmentations. The distribution con-

firms the consistency of human segmentations previously

observed by Martin et al. (2001), and supports the use of a

small matching radius during evaluation. Additionally, the

observed distribution indicates that the matching distance

ǫ should be at least 2 to obtain meaningful precision/recall

scores.

The reader may wonder about the practical usefulness of

segmentations with different precision/recall scores along

the tuning curves. While the answer to this is likely to be

task-dependent, we can provide a visual impression of what

the segmentations on different points along the tuning curve

look like. Figure 8 shows segmentations of the same image

produced with different parameter choices for each of the

algorithms. The parameters used correspond to the points

of highest recall, middle of the tuning curve, and highest

precision. The images also show (in red) which boundary

pixels agree with one of the human segmentations for the

image. These results provide an intuitive understanding of

what different points along the tuning curve represent. It can

be seen in Fig. 8 that over-segmentation is characterized by

high recall but low precision, and that under-segmented im-

ages correspond to high precision, but low recall.
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Fig. 4 Tuning curves SE-MinCut (left column) and Mean-Shift (right column) for ǫ = 7 and (b) ǫ = 5. From these curves, we chose the one that

is most favorable for each method. For SE-MinCut we selected the curve for τm = .25, and for Mean-Shift we selected the curve for SB = 8

With regard to the segmentation algorithms we can ob-

serve that at the point of highest recall, Mean-Shift, Nor-

malized Cuts, and Local Variation produce notoriously over-

segmented results, while at the point of highest precision

Mean-Shift and Local Variation produce segmentations that

capture small, high-contrast regions that do not necessarily

correspond to actual object boundaries. Over-segmentation

is limited for SE-MinCut by the fact that the leading eigen-
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Fig. 5 Tuning curves for all algorithms. The curves are shown for val-

ues of ǫ = 1,3,5, and 7. The scores obtained by each algorithm de-

crease sharply as we reduce the matching radius ǫ (it’s worth pointing

out that for ǫ = 1 the curves may be influenced by discretization arti-

facts in our super-sampled boundary maps). Even so, the curves pro-

vide a stable performance ranking of the segmentation methods. Also

shown are the mean precision/recall scores for human observers on

each image as well as the median human performance

vectors of the Markov matrix usually capture coarse proper-

ties of the random walk, as well as by the algorithm’s merg-

ing stage. Under-segmentation occurs for all algorithms, but

SE-MinCut and Normalized Cuts benefit from the global na-

ture of the information provided by the eigenvectors of a

Markov matrix or an affinity matrix respectively. Overall,
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Fig. 6 From left to right: Original image, SE-MinCut segmentation, Mean-Shift segmentation, Local Variation output, and Normalized Cuts

regions. The segmentations correspond to the parameter settings at the middle of the tunning curve for each algorithm

visual inspection suggests that SE-MinCut produces better

segmentations.

In terms of run-time, the best performance is achieved

by the Local Variation algorithm which takes less than

1 sec. to segment images of the size used here. Mean-Shift

takes between 1 and 7 sec. depending on the spatial band-

width parameter, Normalized Cuts takes between 10 sec.

and 1.5 min. depending on the number of regions requested,

and SE-MinCut takes between 1 and 7 min. depending on

the number of eigenvectors used for the embedding (these

times were measured on a 1.9 GHz Pentium IV machine).

Both Normalized Cuts and SE-MinCut are partly imple-

mented in Matlab, while Local Variation and Mean Shift are

stand-alone binary modules. These differences in speed per-

formance are significant and important. Depending on the

task, it may be more appropriate to use a faster algorithm

that yields somewhat less accurate boundaries but computes

them in a fraction of the time. Given the run-times noted

above, the tuning curves provided in the paper can be used

to select the fastest algorithm that will work above specified

lower bounds on precision and recall.

In addition to the tuning curves, we have included preci-

sion/recall scores for the human observers. These were com-

puted by taking pairs of human segmentations of the same

image and computing the mean precision and recall just as

we have done for the automatic segmentation methods. This

yields one data point per image describing the mean pre-

cision/recall achieved by human observers on that particular

image. The median precision and recall for human observers

is also shown. We can see a significant gap in performance

between all the segmentation algorithms and the human re-

sults which clearly shows that bottom-up segmentation al-

gorithm still fall short of human performance on natural im-

ages.
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Fig. 7 Distribution of distances between matching boundary pixels in

human segmentations. The observed distribution supports the use of a

matching distance of at least ǫ = 2 for images of the resolution used in

this study

Fig. 8 (Color online) Top row: Original image and one human seg-

mentation. From second row to bottom: SE-MinCut segmentations,

Mean-Shift results, Local Variation, and Normalized Cuts. On each

image, boundary pixels that were matched to the composite human

segmentation are shown in red. The leftmost column corresponds to

the parameters that yield highest precision, the middle column is for

parameters at the middle of the tuning curve, and the rightmost column

corresponds to the parameters that yield highest recall

However, we should point out that human segmenta-

tions were produced on the full-size images, and that hu-

man observers are most likely using high-level knowledge

and reasoning as well as bottom-up perceptually guided vi-

sual processing to determine the segmentation for a given

image. The observers were instructed to “Divide each im-

age into pieces, where each piece represents a distinguished

thing in the image. . . ” (Martin et al. 2001). This is not nec-

essarily equivalent to segmenting an image into regions of

distinct visual appearance (which is what bottom-up image

segmentation algorithms are meant to do). In addition to the

above we should remember that the segmentation algorithms

rely on simple gray-level similarity between pixels to com-

pute the segmentations. Most objects on the BSD are either

heterogeneous-looking, textured, or both, putting the seg-

mentation algorithms at an even greater disadvantage with

regard to humans.

A fair comparison between human observers and auto-

matic segmentation algorithms would require the use of im-

ages that lack semantic interpretation, thus making the per-

ceptual component of the segmentation task the dominant

source of information. This is a task beyond the scope of our

paper; however, we have studied the behaviour of the seg-

mentation algorithms on images that have been specifically

designed so that regions are indeed characterized by gray-

level brightness. The goal is to measure the performance of

each of the algorithms when their expectations about what

defines a region are actually valid.

To accomplish this, we generated a set of 110 images

each of which consists of a small number of uniformly

bright regions with smooth boundaries. To make the seg-

mentation problem interesting, each image was corrupted

by adding fractal noise. We then ran each of the segmenta-

tion algorithms using the same combinations of parameters

described above. Figure 9 shows 5 randomly selected im-

ages from our test set; the ground truth boundaries obtained

from the original, noiseless images; and the segmentations

produced by each of the segmentation methods (using the

parameters that yield the median precision/recall closest to

(precision = 1, recall = 1)). We computed tuning curves for

each of the algorithms using the procedure described above,

these curves are shown in Fig. 10 along with the corre-

sponding error bars showing the median standard error as

described above.

Perhaps not surprisingly, all algorithms do significantly

better on these images than on the more complex BSD

scenes. In particular, recall is quite high with most of the

variation occurring along the precision axis. Since on these

images the defining characteristic of region boundaries is a

large change in image brightness, this is a reasonable out-

come. The tuning curves in this case indicate how sensitive

each of the algorithms is to local changes in brightness that

may be the result of noise. It is clear that normalized cuts and

SE-MinCut obtain the best results, and we conjecture that

this is due to the global nature of their formulation, which
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Fig. 9 Five images from our test set, notice that each is composed of a few uniformly bright regions corrupted by fractal noise. The noise can

make region boundaries appear smooth. Also shown are the ground-truth boundaries, and the segmentations produced by each of the segmentation

algorithms

gives these two methods higher robustness to local bright-

ness variations caused by the fractal noise.

The results on the set of artificial images is intended to

give the reader an idea of how well the algorithms perform

when faced with images for which they have the right simi-

larity measure (i.e. images in which the relevant cues are in-

deed image brightness and spatial proximity). Further stud-

ies are required to determine the behaviour of these methods

for different image cues. We believe that the use of artifi-

cial images in addition to natural scenes such as those in the

BSD will be helpful in separating the bottom-up component

of the segmentation task from the high-level component that

depends on context and high-level knowledge. Ultimately,

we would like to determine what is the fundamental perfor-

mance ceiling for bottom-up segmentation algorithms. Even

an approximate answer to this question would be very use-

ful in focusing future research efforts toward aspects of the

segmentation task that are more likely to yield significant

improvements in the current state-of-the-art.

As a final point, and to provide closure with regard to

the prior work by Martin (2002), Fig. 11 shows the tuning

curves produced using Martin’s original bi-partite match-

ing formulation (using the publicly available implementa-

tion from Martin and Fowlkes 2001). Notice that the result-

ing tuning curves are very similar to those obtained using

our matching method and a matching distance of ǫ = 3. It

is difficult to argue that either of the matching algorithms is

superior, but we believe that the simplicity and low compu-

tational cost of our matching method are advantageous if a

large number of tests have to be performed. In support of

this, consider the following: the results presented above re-

quired us to generate a total of 35,400 segmentations with

their corresponding boundary map, each of these had to be

compared to at least 5 human segmentations. This yields at

least 177,000 boundary image pairs for which the matching

algorithm had to be invoked (this had to be repeated for each

value of ǫ). Clearly, having a cheap and effective match-

ing algorithm is desirable. Our code can compute precision
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Fig. 10 Tuning curves for the segmentation algorithms on the set of

110 artificial images with ǫ = 5. Only the best curves for SE-MinCut

and Mean Shift are shown

Fig. 11 Tuning curves produced using the bi-partite matching algo-

rithm of Martin (2002). Notice that the results are qualitatively similar

to those obtained using our matching algorithm and a matching dis-

tance of ǫ = 3. The ranking of the segmentation algorithms is consis-

tent, though the distance between the curves varies

and recall for 100 segmentations in an average of 1 minute

for ǫ = 7 (it becomes faster with smaller ǫ). In comparison,

computing precision and recall for the same 100 images us-

ing the bi-partite matching method takes 40 minutes. The

implementation provided with the BSD includes a faster,

approximate matching algorithm. The fast matching algo-

rithm takes on average 2.5 minutes to process 100 segmen-

tations. All these times were measured in a P4, 3.6 GHz.

machine. Results shown in Fig. 11 were generated using the

slow (more accurate) matching computation.

6 Conclusion

The results presented above agree very well with visual in-

spection of the segmentations generated by each algorithm.

They are also qualitatively similar to the precision/recall

scores previously reported for boundary extraction methods

(with the observation that, boundary extraction methods re-

quire an additional and usually difficult perceptual grouping

step to yield closed boundaries). This leads us to conclude

that the tuning curves presented above provide a robust and

meaningful evaluation of the selected algorithms.

It would be worthwhile to study the trade-off between

speed and segmentation quality further. There are several

segmentation methods that depend on the agreement be-

tween multiple segmentations of the image that differ from

one another in some way (see for example Shental et al.

2003, and Cho and Meer 1997). The multiplicity of segmen-

tations could be produced by one of the fast segmentation al-

gorithms studied here by giving it the same amount of time

taken by one of the slow segmentation algorithm, and al-

lowing it to run with different parameter settings. Such an

enhanced algorithm would be interesting by itself, but it re-

quires a research effort that is beyond the scope of this pa-

per and must remain a matter for future work. The matter

of evaluating different similarity measures also remains for

future work. One can imagine evaluating the performance

of the same algorithm using different similarity measures,

perhaps with different image cues or with varying spatial

support. This would provide useful information for choos-

ing the optimal similarity measure for segmenting natural

images.

Future work aside, segmentations produced by other al-

gorithms (whether they already exist, are extensions from

existing methods, or are completely new) can be quickly and

easily evaluated using the framework described here. The re-

sulting tuning curves can be compared directly to the results

presented in this paper. It is our hope that this benchmark

will prove useful for researchers working on image segmen-

tation, and that it will become richer and more complete as

results for other segmentation algorithms become available.
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