
Benchmarking Magnetizabilities with Recent Density Functionals

Susi Lehtola,* Maria Dimitrova, Heike Fliegl, and Dage Sundholm*

Cite This: J. Chem. Theory Comput. 2021, 17, 1457−1468 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We have assessed the accuracy of the magnetic
properties of a set of 51 density functional approximations,
including both recently published and already established func-
tionals. The accuracy assessment considers a series of 27 small
molecules and is based on comparing the predicted magnet-
izabilities to literature reference values calculated using coupled-
cluster theory with full singles and doubles and perturbative triples
[CCSD(T)] employing large basis sets. The most accurate
magnetizabilities, defined as the smallest mean absolute error, are
obtained with the BHandHLYP functional. Three of the six studied
Berkeley functionals and the three range-separated Florida
functionals also yield accurate magnetizabilities. Also, some older
functionals like CAM-B3LYP, KT1, BHLYP (BHandH), B3LYP, and PBE0 perform rather well. In contrast, unsatisfactory
performance is generally obtained with Minnesota functionals, which are therefore not recommended for calculations of magnetically
induced current density susceptibilities and related magnetic properties such as magnetizabilities and nuclear magnetic shieldings.
We also demonstrate that magnetizabilities can be calculated by numerical integration of magnetizability density; we have
implemented this approach as a new feature in the gauge-including magnetically induced current (GIMIC) method.
Magnetizabilities can be calculated from magnetically induced current density susceptibilities within this approach even when
analytical approaches for magnetizabilities as the second derivative of the energy have not been implemented. The magnetizability
density can also be visualized, providing additional information that is not otherwise easily accessible on the spatial origin of
magnetizabilities.

1. INTRODUCTION

Computational methods based on density functional theory
(DFT) are commonly used in quantum chemistry because DFT
calculations are rather accurate despite their relatively modest
computational costs. Older functionals such as the Becke’88−
Perdew’861,2 (BP86), Becke’88−Lee−Yang−Parr1,3 (BLYP),
and Perdew−Burke−Ernzerhof4,5 (PBE) functionals at the
generalized gradient approximation (GGA) as well as the
B3LYP6 and PBE07,8 hybrid functionals are still often employed,
even though newer functionals with improved accuracy for
energies and electronic properties have been developed.
The accuracy and reliability of various density functional

approximations (DFAs) have been assessed in a huge number of
applications and benchmark studies.9−17 It is important to note
that functionals that are accurate for energetics may be less
suited for calculations of other molecular properties.16 In
specific, the accuracy of magnetic properties calculated within
DFAs has been benchmarked by comparing magnetizabilities
and nuclear magnetic shieldings to those obtained from
coupled-cluster calculations using large basis sets,18,19 although
modern DFAs have been less systematically investigated.16,20−23

The same also holds for nuclear independent chemical
shifts24−28 and magnetically induced current density suscepti-
bilities,29−36 which have been studied for a large number of

molecules, but whose accuracy has never been benchmarked
properly.
Magnetizabilities are usually calculated as the second

derivative of the electronic energy with respect to the external
magnetic perturbation37−41

ξ = −
∂

∂ ∂αβ
α β =

E

B B
B

2

0 (1)

Such analytic implementations for magnetizabilities exist in
several quantum chemistry programs. However, as the magnetic
interaction energy can also be written as an integral over the
magnetic interaction energy density ρB(r) given by the scalar
product of the magnetically induced current density JB(r) with
the vector potential AB(r) of the external magnetic field
B30,31,42−45
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an approach based on quadrature is also possible. As shown in
Section 2, the numerical integration approach for the magnet-
izability provides additional information about its spatial origin
that is not available with the analytic approach based on second
derivatives: the tensor components of the magnetizability
density defined in Section 2 are scalar functions that can be
visualized, and the integration approach can be used to provide
detailed information about the origin of the corresponding
components of the magnetizability tensor. Similar approaches
have been used in the literature for studying spatial
contributions to nuclear magnetic shielding constants.46−53

We will describe our methods for numerical integration of
magnetizabilities using the current density susceptibility in
Sections 2 and 3. Then, in Section 4, we will list the studied set of
density functionals and present the results in Section 5: the
functional benchmark is discussed in Section 5.1 and magnet-
izability densities and spatial contributions to magnetizabilities
are analyzed in Section 5.2. The conclusions of the study are
summarized in Section 6. Atomic units are used throughout the
text unless stated otherwise, and summation over repeated
indices is assumed.

2. THEORY

The current density JB(r) in eq 2 is formally defined as the real
part ( ) of the mechanical momentum density

= − [Ψ* − Ψ ]J r r p A r r( ) ( )( ( )) ( )B B
(3)

where p = −i∇ is the momentum operator. Substituting eq 2
into eq 1 straightforwardly leads to

∫ξ =
∂

∂ ∂
·αβ
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2
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The current density susceptibility tensor29−31 (CDT) is defined
as the first derivative of the magnetically induced current density
with respect to the components of the external magnetic field in
the limit of a vanishing magnetic field32−35

=
∂

∂γ

γ

β
=

β

J

B

B

B
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The vector potential AB(r) of an external static homogeneous
magnetic field is expressed as

= × −A r B r R( )
1

2
( )B

O (6)

where RO is the chosen gauge origin. The αβ component of the
magnetizability tensor can then be obtained from eqs 4−6 as

∫ξ ρ=αβ αβ

ξ rr( ) d3
(7)

where the magnetizability density is defined as

∑ρ = ϵ
αβ

ξ

δγ

αδγ δ γ
βrr r( )

1

2
( )B

(8)

where ϵαδγ is the Levi−Civita symbol, α, β, γ, and δ are one of the
Cartesian directions (x, y, z), and rδ also denotes one of (x, y, z).
The components of themagnetizability density tensor ραβ

ξ (r) are
scalar functions that can be visualized to obtain information

about the spatial contributions to the corresponding element of
the magnetizability tensor ξαβ.
As the isotropic magnetizability (ξ)̅ is obtained as the average

of the diagonal elements of the magnetizability tensor

∫ξ ξ ρ̅ = = ̅
ξ rr

1

3
Tr ( ) d3

(9)

we introduce the isotropic magnetizability density ρξ ̅(r) defined
as

ρρ ̅ =ξ ξr r( )
1

3
Tr ( )

(10)

which yields information about the spatial origin of the isotropic
magnetizability, as we demonstrate in Section 5.2.
Although there is freedom with regard to the choice of the

gauge origin of AB(r), the magnetic flux density B is uniquely
defined via eq 6, because B = ∇ × (A(r) + ∇f(r)) holds for any
differentiable scalar function f(r). The exact solution of the
Schrödinger equation should also be gauge invariant. However,
the use of finite one-particle basis sets introduces gauge
dependence in quantum chemical calculations of magnetic
properties. The CDT can be made gauge origin independent by
using gauge-including atomic orbitals (GIAOs), also known as
(a.k.a.) London atomic orbitals (LAOs)32,54,55

χ χ=
μ μ

− ×[ − ]·μr r( ) e ( )B R R ri( )/2 (0)O

(11)

where i is the imaginary unit and χμ
(0)(r) is a standard atomic-

orbital basis function centered at Rμ. GIAOs eliminate the gauge
origin from the expression used for calculating the CDT; the
expression we use is given in the Supporting Information (SI).
Since the expression for the magnetizability density in eqs 7 and
8 can be computed by quadrature, magnetizabilities can be
obtained from the CDT even if the corresponding analytical
calculation of magnetizabilities as the second derivative of the
energy has not been implemented.

3. IMPLEMENTATION

The present implementation is based on the gauge-including
magnetically induced current (GIMIC) program56 and the
NUMGRID library,57 which are both freely available open-
source software. Gauge-independent CDTs can be calculated
with GIMIC32−35 using the density matrix, magnetically
perturbed density matrices, and information about the basis set.
To evaluate eq 7, a molecular integration grid is first generated

from atom-centered grids with the NUMGRID library, as
described by Becke.58 InNUMGRID, the grid weights are scaled
according to the Becke partitioning scheme using a Becke
hardness of 3;58 the atom-centered grids are determined by a
radial grid generated as suggested by Lindh et al.,59 and angular
grids by Lebedev60 are used.
Given the quadrature grid, the diagonal elements of the

magnetizability tensor are calculated in GIMIC from the
Cartesian coordinates of the n grid points multiplied with the
CDT calculated in the grid points. For example, the ξxx element
of the magnetizability tensor is obtained from eq 7 as

∑ξ ρ= ξ

=

wxx

i

n

i i xx
1

;
(12)

where the xx component of the magnetizability density tensor at
grid point i with quadrature weight wi is
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where y( )z
B

i
x and z( )y

B
i

x are the products of the z and y

components of the CDT calculated in grid point i with the
Cartesian coordinates y and z of the grid point, respectively, and
the external magnetic field perturbation is along the x-axis, Bx.
The ξyy and ξzz elements are obtained analogously.

4. COMPUTATIONAL METHODS

Calculations are performed for the set of 28 molecules studied in
ref 18 that also provides our molecular structures and the
CCSD(T) reference values: AlF, C2H4, C3H4, CH2O, CH3F,
CH4, CO, FCCH, FCN, H2C2O, H2O, H2S, H4C2O, HCN,
HCP, HF, HFCO, HOF, LiF, LiH, N2, N2O, NH3, O3, OCS,
OF2, PN, and SO2. However, as in ref 18, O3 was omitted from
the analysis since it is an outlier and due to the fact that the
reliability of the CCSD(T) level of theory is not guaranteed for
this system: the perturbative triples correction to the magnet-
izability of O3 is −46.2 × 10−30 J/T2, indicating that the
CCSD(T) result might still have large error bars.18 The results
of this work thus only pertain to the 27 other molecules, as in ref
18.
Electronic structure calculations were performed with

Hartree−Fock (HF) and the functionals listed in Tables 1 and
2 using TURBOMOLE 7.5.110 Several rungs of Jacob’s ladder
were considered when choosing the functionals listed in Tables
1 and 2: local density approximations (LDAs), generalized
gradient approximations (GGAs), and meta-GGAs (mGGAs).
Several kinds of functionals are also included: (pure) density
functional approximations, global hybrid (GH) functionals with
a constant amount of HF exchange, and range-separated (RS)
hybrids with a given amount of HF exchange in the short range
(SR) and the long range (LR). As can be seen in Tables 1 and 2,
the evaluated functionals consist of 1 pure LDA, 8 pure GGAs, 8
global hybrid GGAs, 10 range-separated hybrid GGAs, 12
mGGAs, 8 global hybrid mGGAs, and 4 range-separated
mGGAs, in addition to HF.
The Dunning aug-cc-pCVQZ basis set111−115 (with aug-cc-

pVQZ on the hydrogen atoms) and benchmark quality
integration grids were employed in all calculations. Universal
auxiliary basis sets116 were used with the resolution-of-the-
identity approximation for the Coulomb interaction in all
TURBOMOLE calculations. All density functionals were
evaluated in TURBOMOLE with LIBXC,117 except the
calculations with the recently published CAMh-B3LYP func-
tional for which XCFun was used.118 Magnetizabilities were
subsequently evaluated with GIMIC by numerical integration of
eq 7. The data necessary for evaluating the CDT in GIMIC were
obtained from TURBOMOLE calculations of nuclear magnetic
resonance (NMR) shielding constants employing
GIAOs.54,55,110,119,120

Although response calculations are not possible at the
moment in the presence of the non-local correlation kernel
used in ωB97X-V, B97M-V, and ωB97M-V, we have estimated
the importance of the van der Waals (vdW) effects on the
magnetic properties by comparing magnetizabilities obtained
with orbitals optimized with and without the vdW term in the
case of SO2. The magnetizability obtained with the vdW-
optimized orbitals differed by only 0.4 × 10−30 J/T2 (0.14%)
from that obtained from a calculation where the vdW term was
omitted in the orbital optimization. Thus, the vdW term appears
to have very little influence on magnetizabilities, as is already

well-known in the literature for other properties.121 The vdW
term was therefore not included in the calculations using the
ωB97X-V, B97M-V, and ωB97M-V functionals in this study.
The accuracy of the numerical integration in GIMIC was

assessed by comparing the TURBOMOLE/GIMIC magnet-
izability data to analytical values from PySCF,122 in which
LIBXC117 was also used to evaluate the density functionals.
Since PySCF does not currently support magnetizability
calculations with mGGA functionals or range-separated func-
tionals, further calculations were undertaken with Gaussian

Table 1. Functionals at the Local Density Approximation
(LDA) and the Generalized Gradient Approximation (GGA)
Considered in This Workf

functional hybrid type notes LIBXC IDa references

LDA LDA 1 + 7 61−63

BLYP GGA 106 + 131 1, 3, and
64

BP86 GGA 106 + 132 1 and 2

CHACHIYO GGA 298 + 309 65 and 66

KT1 GGA 167 67

KT2 GGA 146 67

KT3 GGA PySCF data
used

587 68

N12 GGA 82 + 80 69

PBE GGA 101 + 130 4 and 5

B3LYP GH GGA 20% HF 402 6

revB3LYPb GH GGA 20% HF 454 70

B97-2 GH GGA 21% HF 410 71

B97-3 GH GGA 26.9% HF 414 72

BHLYPc GH GGA 50% HF 435 61, 62,
and 73

BHandHLYPd GH GGA 50% HF 436 1 and 73

PBE0 GH GGA 25% HF 406 7 and 8

QTP-17 GH GGA 62% HF 416 74

N12-SX RS GGA 25% SR, 0%
LR

81 + 79 75

CAM-B3LYP RS GGA 19% SR,
65% LR

433 76

CAMh-B3LYPe RS GGA 19% SR,
50% LR

77

CAM-QTP-00 RS GGA 54% SR,
91% LR

490 78

CAM-QTP-01 RS GGA 23% SR,
100% LR

482 79

CAM-QTP-02 RS GGA 28% SR,
100% LR

491 80

ωB97 RS GGA 0% SR,
100% LR

463 81

ωB97X RS GGA 15.8% SR,
100% LR

464 81

ωB97X-D RS GGA 22.2% SR,
100% LR

471 82

ωB97X-V RS GGA 16.7% SR,
100% LR

531 83

aTwo numbers indicate the exchange and correlation functionals,
respectively. A single number indicates an exchange−correlation
functional. bRevised version. cFollowing King et al. in refs 84−86,
BHLYP is defined as 50% LDA exchange, 50% HF exchange, and
100% LYP correlation. It is sometimes also known as BHandH, which
is its keyword in Gaussian. dBHandHLYP is 50% Becke’88 exchange,
50% HF exchange, and 100% LYP correlation. eCAMh-B3LYP is
defined using the XCFun library with α = 0.19, β = 0.31, and μ = 0.33.
fGH stands for global hybrid and RS for range-separated hybrid. The
amount of Hartree−Fock (HF) exchange or exact exchange in the
short range (SR) and the long range (LR) is also given.
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16.123 The analytical magnetizabilities from PySCF and
Gaussian were found to be in perfect agreement for the studied
LDA and GGA functionals available in both codes (LDA, BP86,
PBE, PBE0, BLYP, B3LYP, and BHLYP). A comparison of the
data from PySCF to the GIMIC data revealed the numerically
integrated magnetizabilities to be accurate, as the magnet-
izabilities agreed within 0.5 × 10−30 J/T2 for all molecules using
the B3LYP, B97-2, B97-3, BLYP, BP86, KT1, KT2, LDA, PBE,
and PBE0 functionals; the small discrepancy may arise from the
use of the resolution-of-identity approximation124 in TURBO-
MOLE or from the numerical integration of the magnetizability
density. A comparison of the raw data for BP86 and B3LYP is
given in the SI.
The magnetizabilities calculated with Gaussian and TURBO-

MOLE using the meta-GGA functionals were found to differ.
The discrepancies between the magnetizabilities obtained with
the two programs are due to the use of different approaches to
handle the gauge invariance of the kinetic energy density in
meta-GGAs, which are described in refs 125 and 126 for
Gaussian and TURBOMOLE, respectively. We found the
TURBOMOLE data to be significantly closer to the CCSD(T)
reference values.
Finally, since we found the implementation of the KT3

functional in LIBXC version 5.0.0 used by TURBOMOLE to be
flawed, the KT3 results in this study are based on calculations
with PySCF with a corrected version of LIBXC.

5. RESULTS

5.1. Functional Benchmark. The deviations of the DFT
magnetizabilities from the CCSD(T) reference values of ref 18
are visualized as ideal normal distributions (NDs) in Figure 1.
The visualization shows the idealized distribution of the error in
the magnetizability for each functional, based on the computed
mean errors (ME) and standard deviation of the error (STD)
given in Table 3. The raw data on the magnetizabilities and the
differences from the CCSD(T) reference are available in the SI.
Although the error distributions in Figure 1 are instructive, we
will employ mean absolute errors (MAEs) to rank the
functionals studied in this work in a simple, unambiguous
fashion. The MAEs are also given in Table 3.
Examination of the data in Table 3 shows that range-separated

(RS) functionals generally yield accurate magnetizabilities.
Judged by the mean absolute error, the best performance is
obtained with the BHandHLYP GH functional. BHandHLYP is
followed by 10 RS functionals, which have much sharper
distributions than the rest of the studied functionals. The best
performing RS functionals are three of the six Berkeley RS
functionals (ωB97X-V,ωB97, andωB97M-V) and the three RS
functionals from the University of Florida’s Quantum Theory
Project (QTP) CAM-QTP-00, CAM-QTP-01, and CAM-QTP-
02. Five of these functionals have 100% long-range (LR) HF
exchange, while the CAM-QTP-00 functional has 91% LR HF
exchange. The two other RS Berkeley functionals with 100% LR
exchange are ranked 11th (ωB97X) and 21st (ωB97X-D)
among the studied functionals. The NDs of the studied RS GGA
functionals are shown in Figure 1a,b, whereas the NDs of the
studied RS mGGA functionals are shown in Figure 1c.
The CAM-B3LYP (65% LR HF exchange) and CAMh-

B3LYP (50% LR HF exchange) functionals are among the top
10 functionals (ranked 8th and 10th, respectively). CAM-
B3LYP was designed for the accurate description of charge
transfer excitations in a dipeptide model,76 while CAMh-B3LYP
functional is aimed at excitation energies of biochromophores.77

The best Minnesota functional, MN12-SX, is ranked 9th.
MN12-SX is a highly parameterized functional with 58
parameters that is known to require the use of extremely
accurate integration grids.13 Furthermore, since MN12-SX is an
RS functional with HF exchange only in the short range (SR), it
may have problems modeling magnetic properties of anti-
aromatic molecules sustaining strong ring currents in the
paratropic (nonclassical) direction.127−129 We illustrate this
with calculations on the strongly antiaromatic tetraoxa
isophlorin molecule in the Supporting Information: MN12-SX
yields a magnetizability that is 4 times larger than the local
second-order Møller−Plesset perturbation theory (LMP2)
reference value, while the magnetizabilities from BHandHLYP
and CAM-B3LYP are in good agreement with LMP2. The N12-
SX functional ranked 32nd is also an RS functional with 0% LR
exchange. The RS Minnesota functionals with 100% LR HF
exchange (M11 and revM11) have large MAEs of 9.93 × 10−30

J/T2 and 8.87 × 10−30 J/T2 and are ranked 44th and 35th,
respectively.
The best global hybrid (GH) functional is BHandHLYP,

which is ranked first among all functionals of this study, as was
already mentioned above. Among GHs, BHandHLYP is
followed by QTP-17, which is ranked 12th. Old and established
GH functionals like BHLYP a.k.a. BHandH, B3LYP, and PBE0
perform almost as well as QTP-17 and are ranked 13th, 16th,
and 20th, respectively. The performance of revB3LYP is

Table 2. Meta-GGA Functionals (mGGA) Considered in
This Workd

functional hybrid type notes LIBXC IDa references

B97M-V mGGA 254 87

M06-L mGGA 449 + 235 88

revM06-Lb mGGA 293 + 294 89

M11-L mGGA 226 + 75 90

MN12-L mGGA 227 + 74 91

MN15-L mGGA 268 + 269 92

TASK mGGA 707 + 13 93 and 94

MVS mGGA 257 + 83 95 and 96

SCAN mGGA 263 + 267 97

rSCANc mGGA 493 + 494 98

TPSS mGGA 457 99 and 100

revTPSSb mGGA 212 + 241 96 and 101

TPSSh GH mGGA 10% HF 457 102

revTPSShb GH mGGA 10% HF 458 96, 101,
and 102

M06 GH mGGA 27% HF 449 + 235 103

revM06b GH mGGA 40.4% HF 305 + 306 104

M06-2X GH mGGA 54% HF 450 + 236 103

M08-HX GH mGGA 52.2% HF 295 + 78 105

M08-SO GH mGGA 56.8% HF 296 + 77 105

MN15 GH mGGA 44% HF 268 + 269 106

M11 RS mGGA 42.8% SR,
100% LR

297 + 76 107

revM11b RS mGGA 22.5% SR,
100% LR

304 + 172 108

MN12-SX RS mGGA 25% SR, 0%
LR

248 + 73 75

ωB97M-V RS mGGA 15% SR,
100% LR

531 109

aTwo numbers indicate the exchange and correlation functionals,
respectively. A single number indicates an exchange−correlation
functional. bRevised version. cRegularized version. dThe notation is
the same as in Table 1.
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practically the same as that of B3LYP; the same holds for
revTPSSh and TPSSh. The other established GH functionals
like B97-2, B97-3, and TPSSh and newer ones like revTPSSh

andM08-HX are found in the beginning of the second half of the
ranking list, whereas M08-SO, M06, revM06, M06-2X, MN15,

Figure 1. Normal distributions (ND) representing the errors in the magnetizabilities for the 27 benchmark reproduced by the studied functionals,
obtained by plotting the data presented in Table 3. The curves are ordered in each figure by increasing standard deviation. The NDs of RS functionals
are shown in (a)−(c). The NDs of the GH functionals are shown in (d)−(g). The NDs of the mGGA functionals are shown in (h)−(j). The NDs of
the LDA and GGA functionals are shown in (k) and (l).
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andM06 are ranked between 39th and 51st. The NDs of the GH
functionals are compared in Figure 1d−g.
B97M-V, at the 14th place, is the best pure mGGA functional.

The rSCAN and SCAN functionals are ranked 19th and 22th,
respectively, whereas revTPSS and TPSS appear at positions 33
and 34, respectively. The pure mGGA functionals of the
Minnesota series are ranked 17th (MN12-L), 24th (MN15-L),
26th (revM06-L), and 50th (M06-L). The performance of the
Minnesota pure mGGA functionals, excluding M06-L, is about
the same as that of TASK and the other mGGA functionals. The
magnetizabilities calculated with the revisedM06-L (revM06-L)
functional are more accurate than those with M06-L. The MVS
mGGA functional is ranked 46th. The NDs for the mGGA
functionals are shown in Figure 1h−j.

Themagnetizabilities calculated with several of theMinnesota
functionals are inaccurate. Seven of the eight worst performing
functionals (M11, M06-2X, MVS, M08-SO, N12, MN15, M06-
L, and M06) in Table 3 are Minnesota functionals. Five other
Minnesota functionals are also ranked in the lower half, placing
30th (M08-HX), 32th (N12-SX), 35th (revM11), 38th (M11-
L), and 39th (revM06).
The KT1 and KT2 functionals are the best GGA functionals,

ranking 18th and 23rd, respectively; both KT1 and KT2 have
been optimized for NMR shieldings.67 The older commonly
used GGAs i.e., BLYP, BP86, and PBE are ranked 31st, 37th, and
40th, respectively, which is only slightly better than KT3 ranked
41st and LDA ranked 42nd. The CHACHIYO and N12
functionals, which are newer GGAs, are ranked 43rd and 48th,

Table 3. Mean Absolute Errors (MAEs), Mean Errors (MEs), and Standard Deviations (STDs) for the Magnetizabilities of the 27
Studied Molecules in Units of 10−30 J/T2 from the CCSD(T) Reference with the Studied Functionalsa

rank functional MAE ME STD rank functional MAE ME STD

1 BHandHLYP 3.11 2.15 4.65 27 revTPSSh 7.14 7.05 5.94

2 CAM-QTP-00 3.22 0.88 4.67 28 TPSSh 7.20 7.07 6.02

3 ωB97X-V 3.22 2.51 4.36 29 B97-2 7.24 7.07 6.40

4 CAM-QTP-01 3.23 0.59 4.49 30 M08-HX 7.34 5.17 10.27

5 CAM-QTP-02 3.28 −0.23 4.36 31 BLYP 7.91 5.69 8.75

6 ωB97 3.54 2.44 4.75 32 N12-SX 8.04 7.89 7.48

7 ωB97M-V 3.61 0.41 4.75 33 revTPSS 8.20 7.86 6.68

8 CAM-B3LYP 3.73 2.38 4.86 34 TPSS 8.22 7.85 6.85

9 MN12-SX 3.80 0.22 5.34 35 revM11 8.23 6.83 10.03

10 CAMh-B3LYP 4.23 3.22 5.17 36 TASK 8.27 7.31 7.43

11 ωB97X 4.25 3.71 5.22 37 BP86 8.59 7.30 8.75

12 QTP-17 4.58 3.77 5.45 38 M11-L 8.92 5.20 9.26

13 BHLYP 4.73 0.10 6.47 39 revM06 8.94 8.67 10.27

14 B97M-V 5.19 4.13 5.58 40 PBE 9.13 7.07 9.42

15 revB3LYP 5.45 4.34 6.13 41 KT3 9.19 8.38 8.08

16 B3LYP 5.47 4.72 5.97 42 LDA 9.55 5.37 11.36

17 MN12-L 5.79 −2.03 8.02 43 CHACHIYO 9.76 9.17 8.88

18 KT1 5.87 1.15 7.11 44 M11 9.93 7.61 13.77

19 rSCAN 5.91 5.00 6.06 45 M06-2X 10.15 9.01 13.12

20 PBE0 5.96 5.56 6.81 46 MVS 10.35 9.92 9.20

21 ωB97X-D 6.22 5.89 6.35 47 M08-SO 10.40 8.09 14.34

22 SCAN 6.30 5.89 5.96 48 N12 10.89 10.01 9.58

23 KT2 6.42 5.58 7.21 49 MN15 11.45 10.45 12.82

24 MN15-L 6.57 −5.27 6.94 50 M06-L 12.49 12.45 9.42

25 B97-3 6.61 6.61 6.26 51 M06 13.34 13.11 13.16

26 revM06-L 7.00 6.23 5.98 52 HF 18.40 7.48 61.81
aThe functionals are ordered in increasing MAE.

Figure 2. Visualization of the isotropic magnetizability density ρ̅ξ(r) (eq 10) shown in the molecular plane of H2O (a) and SO2 (b) as well as in the
plane formed by the hydrogen atoms of NH3 (c), positioned 0.06 a0 away from the N atom toward the hydrogen atoms. Negative contributions are
shown in pink and positive ones in green. The gauge origin RO is (0, 0, 0) a0.
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respectively. The NDs of the GGA functionals and the LDA are
shown in Figure 1k,l.
The magnetizabilities calculated at the HF level are

significantly less accurate and have a much larger MAE-STD
than those obtained at the DFT levels, and we cannot
recommend the use of HF for magnetic properties.
5.2. Magnetizability Densities. Spatial contributions to

the magnetizability densities, i.e., the integrand in eq 7, are
illustrated for H2O, NH3, and SO2 in Figure 2, with Figure 3
showing the corresponding CDTs. The magnetizability
densities are calculated with the gauge origin of the external
magnetic field (RO) at (x, y, z) = (0, 0, 0). In the calculations on
H2O and SO2, the magnetic field perturbation is perpendicular
to the molecular plane, while for NH3, the perturbation is
parallel to the C3 symmetry axis. In the case of H2O, the current
density flux around the whole molecule (Figure 3) leads to the
ring-shaped contribution shown in Figure 2. The magnetic field

along the symmetry axis of NH3 also results in a current density
flux around the molecule at the hydrogen atoms (Figure 3),
giving rise to a similar ring-shaped contribution shown in Figure
2.
The isotropic magnetizability density of SO2 shown in Figure

2 has positive (green) and negative (pink) values. Calculations
of the CDT show that the oxygen atoms sustain a strong
diatropic atomic CDT that flows around the atom, whereas the
atomic CDT of the sulfur atom is much weaker (Figure 3). The
p-orbital shaped contributions to the magnetizability density of
SO2 around the oxygen atoms in Figure 2 originate from the
atomic CDTs. The patterns of the CDT of H2O and SO2 lead to
the different magnetizability densities shown in Figure 2a,b,
respectively. The positive magnetizability densities in H2O and
NH3 are extremely localized close to the atomic nuclei, also
because of the vortices of the atomic CDT.

Figure 3. Streamline representation of the CDT (eq 5) of H2O(a), SO2 (b), andNH3 (c). The CDT is calculated with themagnetic field perpendicular
to the molecular plane of H2O and SO2 as well as with it along the symmetry axis of NH3. The color scale represents the strength of the CDT in
nAT−1a0

−2.

Figure 4.Mean absolute errors (the blue solid line) as well as the errors’ standard deviations (red crosses) of the magnetizabilities in 10−30 J/T2 of the
27 studied molecules obtained with the 51 functionals compared to the CCSD(T) reference.
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The magnetizability density depends on the gauge origin of
the vector potential of the external magnetic field, even though
the magnetizability is independent of the gauge origin.43 The
magnetizability densities for H2O, NH3, and SO2 calculated with
the gauge origin at RO = (1, 1, 1) a0 are shown in the SI. The
contribution of the choice of the gauge origin to the
magnetizability computed from eq 7 vanishes when the CDT
fulfills the charge conservation condition29

∫ =α
β rr( ) d 0B 3

(14)

Calculating the magnetizability for NH3 with a gauge origin set
to RO = (100, 100, 100) a0 yielded a value that differs by 0.32%
from the one computed forRO= (0, 0, 0).When the gauge origin
is set to RO = (1, 1, 1) a0, the deviation is 2 orders of magnitude
smaller because the change in the magnetizability depends
linearly on the relative position of the gauge origin. The
magnetizabilities of H2O and SO2 also change by only 0.46 and
0.03% when moving the gauge origin from (0, 0, 0) a0 to (100,
100, 100) a0, respectively, showing that charge conservation is
practically fulfilled in our calculations. All other positions than
(0, 0, 0) for the gauge origin lead to a small, spurious CDT
contribution to the magnetizability density.
The GIAO ansatz modifies the atomic orbitals leading to a

magnetic response of an external magnetic field that is correct to
the first order for the one-center problem.30,130 Even though
GIAOs do not guarantee that the integral condition for the
charge conservation of the CDT is fulfilled,131 the basis set
convergence is faster and the leakage of the CDT is much
smaller when GIAOs are used.32

6. CONCLUSIONS

We have calculated magnetizabilities for a series of small
molecules using both recently published density functionals, as
well as older, established density functionals. The accuracy of the
magnetizabilities predicted by the various density functional
approximations has been assessed by comparison to coupled-
cluster calculations with singles and doubles and perturbative
triples [CCSD(T)] reported by Lutnæs et al.18 Our results are
summarized graphically in Figure 4: the top functionals afford
both small mean absolute errors and standard deviations, but the
same is not true for all recently suggested functionals.
Numerical methods for calculating magnetizabilities based on

the quadrature of the magnetizability density have been
implemented. We have shown that this method allows studies
of spatial contributions to the magnetizabilities by visualization
of the magnetizability density. The method has been employed
to calculate magnetizabilities from magnetically induced current
density susceptibilities, which were obtained from TURBO-
MOLE calculations of nuclear magnetic shielding constants.
Thus, magnetizabilities can be calculated in this way with
TURBOMOLE even though analytical methods to calculate
magnetizabilities as the second derivative of the energy are not
yet available in this program. Further information about spatial
contributions to the magnetizability could be obtained in the
present approach by studying atomic contributions and
investigating the positive and negative parts of the integrands
separately in analogy to our recent work on nuclear magnetic
shieldings in ref 53, which may be studied in the future work.
Our calculations show that the most accurate magnet-

izabilities (judged by the smallest MAE) for the studied
database are obtained with BHandHLYP, which is an old global
hybrid with 50% HF exchange and 50% B88 exchange. The

calculations also show that the modern range-separated
functionals with 100% long-range HF exchange developed by
Head-Gordon and co-workers and by Bartlett and co-workers
yield accurate magnetizabilities for the database. Calculations
with other range-separated functionals like CAM-B3LYP and
CAMh-B3LYP as well as with global hybrid functionals like
QTP-17, BHLYP a.k.a. BHandH, B3LYP, and PBE0 yield
relatively accurate magnetizabilities for the studied molecules.
Meta-GGA functionals are found to yield somewhat better
magnetizabilities than GGA and LDA functionals.
However, functionals developed by Truhlar and co-workers

do not appear to be well-aimed for calculations of magnet-
izabilities and other magnetic properties that involve magneti-
cally induced current densities. Magnetizabilities calculated
using the popular M06-2X functional are found to be unreliable,
and we do not recommend the use of the M06-2X functional in
calculations of nuclear magnetic shieldings, magnetizabilities,
ring-current strengths, and other magnetic properties that
depend on magnetically induced current density susceptibilities.
Previous studies have also suggested that theM06-2X functional
sometimes underestimates magnetizabilities and ring-current
strengths.128,129,132 Revised versions of Minnesota functionals
have been studied in this work and found to yield somewhat
more accurate magnetizabilities than the original parameter-
izations. However, the revised versions also still appear on the
second half of the ranking list.
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