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Benchmarking microbiome transformations favors
experimental quantitative approaches to address
compositionality and sampling depth biases
Verónica Lloréns-Rico 1,2, Sara Vieira-Silva 1,2, Pedro J. Gonçalves 3, Gwen Falony 1,2,4 &

Jeroen Raes 1,2,4✉

While metagenomic sequencing has become the tool of preference to study host-associated

microbial communities, downstream analyses and clinical interpretation of microbiome data

remains challenging due to the sparsity and compositionality of sequence matrices. Here, we

evaluate both computational and experimental approaches proposed to mitigate the impact

of these outstanding issues. Generating fecal metagenomes drawn from simulated microbial

communities, we benchmark the performance of thirteen commonly used analytical

approaches in terms of diversity estimation, identification of taxon-taxon associations, and

assessment of taxon-metadata correlations under the challenge of varying microbial eco-

system loads. We find quantitative approaches including experimental procedures to incor-

porate microbial load variation in downstream analyses to perform significantly better than

computational strategies designed to mitigate data compositionality and sparsity, not only

improving the identification of true positive associations, but also reducing false positive

detection. When analyzing simulated scenarios of low microbial load dysbiosis as observed in

inflammatory pathologies, quantitative methods correcting for sampling depth show higher

precision compared to uncorrected scaling. Overall, our findings advocate for a wider

adoption of experimental quantitative approaches in microbiome research, yet also suggest

preferred transformations for specific cases where determination of microbial load of samples

is not feasible.
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M
etagenomic sequencing allows profiling of microbial
communities at an unprecedented scale and through-
put. Circumventing cultivation biases, sequencing

approaches hold the promise of enabling true random sampling
of complex microbial ecosystems. Continuous standardization
efforts are being made to minimize systematic biases such as
those created by the impact of extraction and amplification
procedures on metagenomic readouts1. However, even when
minimizing technical biases, the analysis and interpretation
of current state-of-the-art metagenomes is not exempt of
challenges2–4.

A first challenge of current practices in metagenomics arises
from the proportional nature of the sequencing data generated.
Protocols for sequencing library preparation have been optimized
to assure maximal sequencing success rates5. Extraction proce-
dures are geared towards maximum yields, even when starting
from low cell density material, while equimolar pooling of DNA
extracted from a broad range of samples assures equal sequencing
library sizes across experimental setups. However, while facil-
itating automation and standardizing data quality, these proce-
dures do not conserve any link between the cell density of the
sampled community and the amount of sequencing data gener-
ated. Hence, the resulting sequence matrices can only be analyzed
in terms of relative proportions of microbial features (taxa or
functions) present in a sample of an unquantified community3.
Within such proportional data structures, relative abundances are
not independent (data compositionality). Relative changes in
abundance of a single taxon or metabolic pathway are inherently
compensated by an equivalent increase/decrease of the remaining
feature space, inducing a negative correlation bias3,6,7. This lim-
itation affects all downstream microbiome analyses. Proportional
analyses cannot characterize the magnitude and directionality of
between-sample differences in microbiome composition or
metabolic potential. Moreover, when applied to communities
displaying substantial variation in ecosystem density (microbial
load; Table 1), data compositionality hampers the identification of
correlation patterns between microbiome features and with
environmental or clinical covariates8.

A second, related challenge is linked to the low and variable
sampling depth that is inherent to current metagenomics
sequencing approaches. In microbiome research, sampling depth
should be defined as the ratio between the number of cells
(partially) sequenced (observed population size) and the total
microbial load present in the sample analyzed (true population
size) – as opposed to sequencing depth, which corresponds to the
amount of sequencing data generated for a single sample4

(Table 1). While technical innovations and decreasing sequencing

costs have resulted in a gradual increase of sequencing depths
over the years, metagenomic analyses remain characterized by
shallow sampling depths (Table 1). A recent shotgun metage-
nomic analysis of 876 fecal samples revealed that sequencing
depths ranging between 5.5 and 18.2 Gbp resulted in a 0.0045%
average sampling depth (here defined based on the number of
cells present in a gram of fecal material)9. When assessing dense,
diverse, and unevenly distributed microbial ecosystems such as
those encountered in stool samples, shallow sampling depths
contribute to the sparsity of the resulting microbiome feature
matrices and do not allow to distinguish species or function
absence from non-detection. Between-sample variation in sam-
pling depth complicates matters even more. Ideally, even when
analyzing proportional composition, the surveyed fraction of a
microbial community should be kept constant across samples4.
When assessing communities with varying microbial loads across
different samples, maintaining or creating an even sequencing
depth independently of sample density generates sequence
matrices at uneven sampling depths. Within the N= 876 survey
of fecal metagenomes discussed above, actual sampling depths
were shown to vary more than 40-fold, between 0.0009% and
0.0407% across individuals. Such variation implies that detection
of specific microbiome features in a subset of samples could
potentially result from uncontrolled variation in sampling depth.
Hence, while it is common knowledge that metagenomic analyses
never allow determining feature absence, it is less recognized that
they might as well identify a mere technical artifact as presence.

The growing appreciation of the severe impact of composi-
tionality and undersampling on metagenomic analyses has led to
the active development of a wide range of potential mitigation
strategies, both computational and experimental in nature.
Microbiome researchers first set out to deal with the issues related
to varying sequencing depths – often erroneously considered to
be equivalent to sampling depths (i.e. assuming equal microbial
densities across the communities sampled)10,11. Confronted with
technical variation as well as the overall increase in raw sequen-
cing data generated per sample over the years, rarefaction (or
downsampling) was suggested to standardize within and across
dataset comparisons. In contrast with straightforward normal-
ization to proportional (relative) abundances, random subsetting
of the data to even sequencing depth allowed comparing samples
in terms of observed richness across samples, independently of
the original amount of sequences generated. However, sequencing
depth-based downsizing procedures were soon criticized, not only
for being wasteful and discarding information on low-abundant
taxa2, but also for being unsuited when applied to communities
characterized by substantial variation in cell density4. In response

Table 1 Glossary of terms.

Microbial load Also referred to as cell counts or cell density. The number of microbial cells per gram of sample.

Sequencing depth In this context, sequencing depth or library size is the number of reads obtained for each sample by sequencing (and after

filtering-out low quality reads).

Sampling depth Represents the fraction of cells present in a sample that was actually surveyed and corresponds to the ratio of sequencing

depth over total microbial load, assuming equal probability of sequencing any microbial cell.

Discordant associations Associations detected in both a synthetic community and derived (transformed) sequence matrix, but with inversed

directionality. Discordant associations are counted both as false positives in precision and false positive rate calculations and

false negatives in sensitivity calculations.

Sensitivity Proportion of associations present in a synthetic community that are recovered in the derived (transformed) sequence matrix.

Calculated as (true positives)/(true positives+ false negatives).

Precision Proportion of associations recovered in a (transformed) sequence matrix that correspond with associations present in the

original synthetic community. Calculated as: (true positives)/(true positives+ false positives).

False positive rate Proportion of non-associated features present in a synthetic community that are detected as associated in the derived

(transformed) sequence matrix. Calculated as (false positives)/(false positives+ true negatives).

Definitions of the technical terms used throughout this study.
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to this, alternative computational approaches have been put for-
ward, consisting in the implementation of robust data transfor-
mation strategies that would not only allow dealing with varying
sequencing depths, but also with the limitations of compositional
data analyses. These approaches find their origins not only in
compositional Aitchison statistics12, but also in methods devel-
oped for normalization and/or differential feature abundance
determination in the context of RNA-sequencing based tran-
scriptome analyses13,14, among others15. Although such trans-
formations have been suggested to be capable of dealing with
uneven sequencing depths without a need for data downsizing, it
is unclear to what extent they rely on the assumption that all
samples analyzed originate from equally dense communities.

While the application of compositionality-aware computational
methods would limit the identification of artefacts (such as nega-
tive correlations induced by the relative feature space) as true
associations, they do not allow retrieving the information that was
lost when cutting the link between the microbial loads of the
samples analyzed and the amount of sequencing data generated. To
resolve this issue, experimental approaches have been developed
recently to keep or recover the link with microbial densities,
through DNA or cell spike-ins or parallelization of sequencing with
quantitative PCR or flow cytometry enumeration of microbial
cells4,8,16–19. By transforming proportions into counts, such
methods eliminate the limitations of compositional data handling
from downstream analyses. On top of experimental differences,
quantitative approaches vary in the way they incorporate the
microbial loads obtained into downstream analyses. Two approa-
ches can be distinguished. On one hand, absolute count scaling
procedures multiply relative sequence matrices with experimentally
determined microbial loads16, retaining all sequencing information
generated. On the other hand, quantitative profiling strategies use a
stringent downsizing step, evening sampling depths across datasets
by randomly subsampling sequencing data to an optimally low
sequence/load ratio – at the cost of discarding sequence informa-
tion and/or samples with insufficient sampling depth4,8. Such
sampling depth-based downsizing is thought to avoid over-
detection of low-abundant taxa in low density samples,
which would affect downstream results of diversity and association
analyses. Optionally, the resulting non-compositional (uneven)
sequence matrices can be scaled to the absolute counts to obtain
quantities expressed in interpretable units (e.g. cells per gram of
sample material).

Some recent studies have compared the effects of relative
normalizations and transformations dealing with composition-
ality on the correlation structure of microbiome datasets using
both real and simulated data20. Quantitative approaches have
been proposed to be superior to relative analyses in determining
taxon–taxon correlations4, but have thus far not been system-
atically benchmarked against compositional transformations. In
addition, as current quantitative transformations require experi-
mental determination of microbial loads, they are not compatible
with all types of sample collection methods (e.g. the use of sta-
bilization buffers without weight recording) and have been sug-
gested to be overly labor intensive21.

In this work, to establish whether the game is worth the candle,
we perform a systematic evaluation of the advantages and lim-
itations of an extensive set of available computational and
experimental transformation approaches that have been proposed
to handle compositionality and sampling depth variation in
sequence data analyses (Fig. 1a). Our benchmark demonstrates an
improved performance of quantitative approaches over other
computational methods in reporting sample richness, as well as in
accurately recovering true taxon–taxon and taxon–metadata
associations, while minimizing the detection of false positive
associations.

Results
Strategies to handle microbiome sequencing data can be broadly
classified into four approaches based on their use of untrans-
formed raw sequencing data or the application of relative (simple
normalizations), compositional (designed to offset composition-
ality drawbacks), or quantitative transformations (designed to
recover counts); the latter integrating additional experimental
data of microbial density (Table 2). To benchmark these data
transformation approaches in metagenomic data analysis, we
assessed their performance in terms of richness evaluation (alpha
diversity), identification of taxon–metadata correlations, and
detection of taxon–taxon associations in three distinct ecological
scenarios (Fig. 1b and Supplementary Data 1). While framed
within human fecal microbiome research, similar scenarios can be
expected to occur in a broad range of microbial habitats. A first
scenario corresponds to the ecological succession associated with
transit time in healthy individuals22. Here, richness is observed to
increase with fecal microbial loads as transit times are prolonged.
In this scenario, most taxon abundances correlate (mildly) posi-
tively with microbial cell density. A second scenario represents
the blooming of a specific taxon across a population. The bloomer
taxon is highly positively correlated with total microbial load,
stimulated by selective environmental conditions. Non-bloomer
community dynamics remain unaffected, translated in diversifi-
cation through succession. A third scenario consists of a cohort
comprising 50% of patients suffering from a dysbiosis-associated
condition as well as 50% of healthy individuals. While succession
dynamics drive community variation within the non-patient
subgroup, dysbiosis is simulated by reducing overall microbial
loads to 20% of eubiotic cell densities through random
downsampling8, combined with the introduction of both an
opportunistic pathogen (negatively correlated with microbial
loads/thriving in dysbiosis) as well as several unresponsive taxa
(unaffected by dysbiosis/having a non-significant correlation with
microbial load).

For all three scenarios, taxa abundances for 10 simulations of
synthetic microbial community matrices, each comprising
200 samples and 300 taxa, were generated from multivariate
negative binomial distributions with taxa-taxa correlations similar
to observed in real fecal microbiome datasets. In accordance with
observations in fecal samples4, microbial loads were set to range
between 1.9 × 109 and 1 × 1013 cells per gram of stool. Consistent
with the biological scenarios considered, cell density spreads (the
ratio between the maximum and the minimum microbial load
across all samples of each scenario) varied according to the cross-
community dynamics imposed (Supplementary Data 1). Experi-
mental quantification of microbial cell counts was mimicked
through the addition of noise to the synthetic community den-
sities, with correlation coefficients between the original and
estimated counts ranging between 0.85 and 0.95 (Supplementary
Data 1). Metagenomic sequencing was simulated by subsampling
with replacement an average of 30,000 reads per sample,
regardless of the original cell density. This resulted in a relatively
lower sampling depth for samples with higher microbial loads
(Supplementary Data 1). The resulting sequence matrices were
subsequently processed following 13 distinct computational and
experimental transformations, classified into four categories
based on the nature of the output generated (untransformed raw
sequencing, relative transformations, compositional transforma-
tions, and quantitative transformations; Table 2). Next, we
assessed the relative performance of the methods on the different
ecological scenarios presented above.

Variation in sampling depth affects observed microbiome
richness. First, we evaluated the impact of the transformation
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methods on the estimated alpha diversities of the communities
sequenced. For each scenario, we compared richness and diversity
indices of the raw and transformed simulated sequencing data
with the readouts of the original synthetic communities (Fig. 2;
Supplementary Fig. 1; and Supplementary Data 2). When opting
for diversity metrics (Simpson (1-D) or Shannon) reflecting both
community richness and evenness, all transformations of the
sequencing data matched the original values used for simulation
across all scenarios. Minor (∆R < 0.01) but significant deviations
were observed for methods comprising a downsizing step (i.e.
relative microbiome profiling [RMP] and quantitative micro-
biome profiling [QMP]; Supplementary Fig. 1 and Supplementary
Data 2). In contrast, for metrics capturing only microbial richness
(observed and estimated [Chao1]), performance varied sub-
stantially across methods (Fig. 2; Supplementary Fig. 1; and
Supplementary Data 2). In particular, the blooming scenario
appeared to be challenging for most approaches: except for QMP,
all transformations resulted in a substantial proportion of non-
significant or negative associations between richness in the ori-
ginal synthetic communities and in the derived sequence matrices
(Fig. 2a). The reason for these aberrant correlations is that in
some blooming communities, the increased cell densities (and
the inherent decrease in sampling depth) associated with the
overgrowth of a single taxon were incorrectly identified by all

non-QMP analyses as a reduction of richness (as exemplified in
Supplementary Fig. 2a). In fact, whilst in the original blooming
communities there is a positive correlation between absolute cell
densities and observed richness in spite of the bloomer over-
growth, in both raw and (non-QMP) transformed sequencing
data, these correlations become non-significant or negative
(Supplementary Fig. 2b). Additionally, in healthy succession and
dysbiosis scenarios, all methods except for QMP tended to
(moderately) underestimate richness in high cell-count samples
(Supplementary Fig. 2a and Supplementary Data 3) – again
aligning with the expected decrease in sampling depth. Overall,
being the only method correcting for sampling depth variation,
QMP performed significantly better in maintaining a moderate to
high correlation (R > 0.75 in all cases) with actual synthetic
community richness when compared to relative and composi-
tional methods, as well as absolute count scaling (ACS; Fig. 2b).
Whenever quantitative profiling is technically not possible,
diversity indexes (Simpson, Shannon) are robust to composi-
tionality and thus recommended.

Proportional data blur taxon-load associations. Based on pre-
vious findings4, within the synthetic communities studied, most
taxa were coerced to maintain a positive association with total
microbial loads. For all scenarios analyzed, this information was
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Fig. 1 Visualization of study workflow. a Study design and approach. First, synthetic microbial communities were designed mimicking three distinct

ecological scenarios. Second, metagenomic sequencing of these communities and determination of their microbial loads were simulated. Third, sequencing

data were transformed according to a selection of methods being benchmarked. Finally, these methods were evaluated based on their performance in

relevant microbiome analyses. b Examples of the three types of ecological scenarios simulated: succession (left panel), blooming (mid panel), and

dysbiosis (right panel). Samples are ordered in function of microbial density. The top 10 most abundant taxa as well as the bloomer and opportunist taxon

are colored for each population.
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largely lost following simulated sequencing and could only be
recovered using experimental, quantitative transformations
(Fig. 3a). Non-quantitative approaches not only failed to identify
a substantial part of taxon-load correlations present in the ori-
ginal synthetic communities, they also led to the detection of a
number of false positive and even discordant associations
(Table 1), leading to an overall reduction in sensitivity as well as
precision (Fig. 3a, b; Supplementary Fig. 3a, b; and Supplemen-
tary Data 4). Again, the blooming scenario proved to be most
challenging for all methods evaluated. In dysbiosis, the perfor-
mance of relative log expression [RLE]13 and variance-stabilizing
transformation [VST] from DESeq214 – normalizations com-
monly used in the RNA-seq field – was similar to QMP and ACS.
While load associations with the bloomer and opportunist taxa
were identified correctly by all approaches, the application of
non-quantitative methods resulted in an inflation of false positive
correlations with the unresponsive taxa present in dysbiosis
(Fig. 3c). In a context of decreasing microbial loads, relative and
compositional methods misidentify unresponsive taxa as posi-
tively associated with dysbiosis, a matter of key importance for
biological interpretation in disease-association studies that aim to
identify taxa with a potentially causal role in pathogenesis. It
should be noted, however, that in this specific case, the burden of
false positive detections remained high even in ACS and QMP.
Since unresponsive taxa do not display any association with the
total microbial loads, these false positives mainly resulted from
the noise introduced when simulating experimental quantifica-
tion of the synthetic community densities (Supplementary
Fig. 3c). When analyzing communities with demonstrated stable
microbial densities, experimental errors in load quantification
could be a significant drawback to be taken in consideration when
deciding on a suited strategy for microbiome profiling.

The observed loss of detection of taxon-load associations also
impacted the strength of the correlations between taxon absolute
abundances as observed in the original synthetic communities
and their metagenomic readouts (proportions or counts obtained
after sequencing and/or transformation; Supplementary Fig. 4
and Supplementary Data 5). Also here, quantitative methods
managed to recover a stronger correlation between the original
data and the derived sequence matrices. Again, blooming proved
most challenging for all methods evaluated, but particularly for
the relative approaches (relative abundances [Rel], relative
microbiome profiling [RMP], and arcsine square-root transfor-
mation [AST]23) that additionally yielded non-significant asso-
ciations (Supplementary Fig. 4).

Low cell-count dysbiosis challenges relative and compositional
association analyses. The exploration of potential associations
between taxa and environmental or clinical parameters is a key
aspect of current microbiome research. To assess the impact of
computational and experimental transformation procedures on
such covariate analyses, we simulated metadata matrices for each
of the synthetic microbial communities. Each metadata matrix
covered 100 potential microbiome covariates, comprising their
corresponding values for the 200 samples in each synthetic
microbial community matrix. Out of the 100 metadata variables,
50 were implemented as numeric (following different probability
distributions as detailed in Methods) and 50 as categorical. A
subset of 20 metadata variables (10 numeric/10 categorical) was
created as correlating with one of the 300 taxa, while 10 metadata
variables (5 numeric/5 categorical) correlated with sample cell
densities.

Taxon–metadata correlations were evaluated for all transforma-
tion methods across the three scenarios studied using the
associations in the original synthetic communities as a standardT
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(Fig. 4a). Quantitative methods were shown to outperform relative
and compositional approaches, displaying significantly higher
levels of precision and sensitivity across scenarios (Fig. 4b,
Supplementary Fig. 5, and Supplementary Data 6). As was seen for
richness and load associations, blooming proved to be the most
challenging setting. In this scenario, among non-quantitative
methods, compositional transformations yielded significantly
higher precision values than relative transformations and raw
sequencing (Fig. 4b). These differences could be attributed to the
inflation of false positives detected using relative methods (Fig. 4a).
Noticeably, when assessing dysbiosis, relative log expression (RLE)
and the related variance-stabilizing transformation (VST) per-
formed similar to quantitative methods and superior to other
compositional transformations, suggesting that these methods
should be chosen in case–control microbiome studies whenever
experimental determination of microbial load is not feasible.

Given their potential relevance in clinical studies, we zoomed in
on the performance of the different transformation methods with
respect to detection of covariation of metadata with the bloomer, the
opportunist, and the unresponsive taxa (Fig. 4c and Supplementary
Data 7). Since associations between those specific microorganisms
and for example disease status could be considered indicative of
their potential value as biomarker or therapeutic target, it is of key
importance that they are identified accurately. Detection of false

positive associations might entice resource- and time-consuming
translational follow up of non-relevant targets, with high costs
to society. Our results showed that all methods (except the
untransformed raw sequencing) identified metadata associated with
the bloomer taxon with high sensitivity and precision. In contrast,
associations with the (potentially pathogenic) opportunist taxon,
thriving in dysbiosis and displaying a negative correlation with
microbial load, could only be detected precisely by using quantitative
transformations. For the unresponsive taxa in dysbiosis, all methods
yielded a large proportion of false positives, although quantitative
approaches performed markedly better (Fig. 4c). Overall, these
results highlight the need for quantitative methods, especially in
case–control studies of disorders associated with microbial dysbiosis,
to correctly capture which taxa associate with external metadata
relating to disease status, activity, or severity.

Quantitative methods show highest sensitivity in capturing
taxon–taxon associations. In line with metadata-microbiome
covariation analyses, we assessed whether the raw sequencing and
transformed matrices allowed recovering taxon–taxon associa-
tions present in the original synthetic communities. In micro-
biome research, such associations are often considered indicative
of ecological interactions such as cross-feeding, niche sharing, or
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competition24. For the purpose of this evaluation, we mapped all
intertaxon associations both in synthetic communities as well as
in raw and transformed sequencing data based on Spearman
correlation analyses. Again, the quantitative transformations
yielded the highest precision values across the ecological scenarios

tested (Fig. 4d, e; Supplementary Data 8, and Supplementary
Data 9), while centered log-ratio transformation (CLR) appeared
least suited for taxon–taxon association analyses. In healthy
succession and dysbiosis, ACS and QMP additionally performed
best in terms of sensitivity (Supplementary Fig. 6). In contrast, in
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the blooming scenario, highest sensitivity levels were observed in
raw sequence matrices and relative transformations – although at
the expense of a high false positive rate (Supplementary Fig. 6). It
should be noted, however, that more than half of the true posi-
tives generated by these techniques were artefactual, reflecting
associations between taxa with discordant load correlations
(Fig. 4d). While displaying a positive load correlation in the
original synthetic communities, taxa constituting such true
positive, discordant associations both exhibited a negative cor-
relation with cell density in raw sequence matrices and following
relative transformations. Detection of a positive relationship
between such taxa should be considered a true artefact of the
methods applied – in this case an artefact that, by pure coin-
cidence, reflected reality.

Increasing cohort size can affect precision of non-quantitative
approaches. Microbiome studies come in a variety of shapes, with
an important variation in terms of targeted sequencing depth and
cohort size. As these parameters are thought to impact analysis
results, we evaluated their effects on performance of the different
transformation methods included in the present benchmarking
effort. Precision and sensitivity in detection of taxon–metadata
and taxon–taxon associations were estimated for all approaches as
a function of sequencing depth and cohort size. We observed the
sensitivity of quantitative methods regarding both taxon–metadata

and taxon–taxon associations to increase with sequencing depth
(Supplementary Fig. 7 and Supplementary Data 10), whilst results
of relative and compositional approaches were only moderately
affected. Variation in cohort size (Supplementary Fig. 8 and
Supplementary Data 11) had a both larger and more complex
impact on the performance of transformation methods. Regarding
taxon–metadata associations, increasing cohort sizes improved
sensitivity across all transformations, especially in succession and
dysbiosis. In the succession and blooming scenarios, precision
remained stable for quantitative approaches, while it decreased
with sample size for relative and compositional transformations
due to false positive inflation. This means that relative and com-
positional methods are sensitive to noise introduced by larger
cohorts, and results obtained by these methods should be inter-
preted with care. Similar trends were observed with respect to
taxon–taxon associations. The exception here was the increase in
precision with cohort size for relative transformations in bloom-
ing. However, as discussed above, a large proportion of the true
positives in relative transformations is purely artefactual (see
Fig. 4d). When using quantitative methods, precision again
remained stable independently of cohort size. These results
demand careful attention when performing power analyses to
determine cohort sizes, as for most methods, an increase of sen-
sitivity is accompanied by an excess of false positives and a
decrease in method precision.
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Fig. 4 Performance of transformation methods in recovering taxon–metadata and taxon–taxon associations. a Stacked barplots represent the

percentage of true positive, false positive, and discordant taxon–metadata associations recovered in (transformed) sequence matrices scaled to the

number of taxon–metadata associations present in the synthetic communities for each scenario and method (for n= 10 simulated matrices per scenario).

Method performance comparison (precision median test): single asterisk, two-sided Kruskal–Wallis p-value < 0.05 (Supplementary Data 6). b Pairwise
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Sampling-depth-based downsizing increases precision when
exploring disease-associated low cell-count dysbiosis. The
comparison between quantitative methods revealed that the
highest sensitivity was reached when keeping the maximum
information available (ACS approach) and not rarefying to cor-
rect for uneven sampling depths (unlike QMP), both when
assessing taxon–taxon and taxon–metadata associations (Fig. 4a,
d). These observations question the need for downsizing in
quantitative microbiome analyses. The rationale behind the
implementation of QMP downsampling procedures is to prevent
overrepresentation of rare, possibly unresponsive taxa in low cell
density samples, in which sampling depth is higher if similar
sequencing depths are achieved across all samples in a popula-
tion. If these taxa are overly detected in low microbial load
samples, it may appear that they are increased and could mis-
takenly be correlated with metadata features that associate with
cell counts (for instance, stool moisture or inflammation in gut
microbiome scenarios8).

To further explore these considerations, we focused on the
dysbiosis scenario, mimicking a dataset in which a disorder is
associated to lower cell densities and creating a disease status
metadata variable negatively associated with cell counts (exem-
plified in Fig. 5a). In this scenario, the majority of taxa correlated
to cell counts and therefore positively associated to the healthy
group. Additionally, synthetic communities comprised an
opportunist taxon associated specifically with disease and 10–11
unresponsive (stable) taxa, uncorrelated with microbial load or
health status (Supplementary Fig. 9a). From these dysbiotic
synthetic communities, we simulated sequencing data at different
depths, ranging from ~10,000 to ~100,000 reads per sample. For
each sequence matrix, we computed both quantitative transfor-
mations (ACS and QMP) and determined their performance in
detecting taxon-disease associations for all taxa (Fig. 5b–d) and
focusing only on the opportunist and unresponsive taxa
(Supplementary Fig. 9b, c). To evaluate the results, we ranked
the original dysbiosis matrices according to their spread in
microbial loads. Higher spreads can be expected to lead to larger
differences in sampling depths, making the accurate detection of
the opportunist and unresponsive taxa more challenging. Our
results showed that, in agreement with our previous analyses,
ACS displayed higher sensitivity to detect true associations of taxa
with the disease covariate, the majority of them comprising
species correlating positively with microbial loads and thus more
abundant in the healthy group. However, this difference in
sensitivity between ACS and QMP decreased with increasing load
differences between patients and controls (Fig. 5c), with the
effects of sampling depth variation (ACS) and loss of information
due to downsizing (QMP) evening out. Both transformation
methods allowed to capture correctly the association between the
opportunist taxon and the disease (Supplementary Fig. 9b and
Supplementary Data 12). Overall precision was higher in QMP,
with the performance gap widening with increasing spreads
(Fig. 5d). This difference can be attributed to the lower false
positive rates observed after sampling depth-based downsizing.
When focusing on the unresponsive taxa (without association to
the healthy or diseased subpopulation), we found that even at low
spreads, QMP resulted in a reduced detection of false positives
(Supplementary Fig. 9c). Indeed, lower cell counts, as often
observed among patient groups8, result in higher sampling
depths, leading to a proportional increase in detection of
unvarying taxa. Since ACS does not correct for sampling depth,
these taxa risk to be erroneously associated with the pathology
studied.

Although QMP clearly has an advantage over ACS when
analyzing datasets with substantial variation in microbial load, it
should be noted that sampling depth downsizing protocols rely on

incomplete databases4 or, alternatively, on the suboptimal
assumption9 of equal sequencing probability for any microbial cell.
For 16S rDNA amplicon sequencing, sampling depth is estimated
based on current knowledge of copy number variation25, which is
based on a biased collection of fully sequenced reference genomes.
For shotgun metagenomics, the number of cells sequenced can be
derived more correctly from the abundance of single-copy marker
genes26. Subsequent downsizing of reads mapping to non-marker
gene can be done directly, based on the assumption of similar
genome sizes across the species present. Alternatively, genomes
sizes can be derived from reference genome databases, provided
that they encompass the phylogenetic breadth required for accurate
extrapolations across the microbial communities studied. After
downsizing and/or quantitative scaling of the sequence matrices,
both QMP and ACS facilitate the full range of metagenomic
analyses that have become the standard in the field, including
quantitative characterization of metagenome-assembled genomes27.

Discussion
Starting from a set of three realistic ecological scenarios, we here
benchmarked 13 different analytical approaches for microbiome
research to characterize their potential to deal with data com-
positionality and varying sampling depths, challenges encoun-
tered both in amplicon sequencing and shotgun metagenomics.
Our results demonstrated that quantitative approaches performed
better than their relative and compositional counterparts when it
comes to identifying taxon–metadata associations or studying
taxon–taxon interactions. The observed performance gap among
the methods profiled widened with increasing unevenness of taxa
distributions, as exemplified by our analyses of the blooming
scenario. Correction for sampling depth, requiring downsizing of
metagenomic readouts taking into account microbial loads,
proved essential to conserve key community features such as
community richness. Although this downsizing resulted in a loss
of information and lower sensitivity of quantitative microbiome
profiling compared to absolute count scaling, it was accompanied
by a lower detection of false positive associations, leading to
increased precision. Overall, our findings emphasize the impor-
tance of obtaining experimental quantitative data (based on
qPCR, DNA or cell spike-ins, cell counts via flow cytometry, or
approximated by total microbial DNA quantification) to com-
plement relative sequencing analysis, as current computational
alternatives are not sufficiently powered to overcome the com-
positionality effects. Among quantitative approaches, including a
step of downsizing to achieve even sampling depth demonstrated
superior performance in the identification of true taxa-disease
associations. Whenever microbial load quantification is not pos-
sible, computational methods addressing compositionality out-
performed relative methods, with only minor differences among
them (e.g. superior performance RLE and VST in the dysbiosis
scenario). Overall, we recommend that the use of experimental
approaches should become standard in current microbiome
workflows.

Methods
Synthetic microbial communities. Ten synthetic microbial communities were
created as matrices of 1000 samples each composed of 300 microbial taxa using
Matlab R2015b. Each repeat of 1000 microbiomes was sampled from a model of
300 taxa distributed according to a multivariate negative binomial, generated using
Gaussian copulas, with specified correlations among these taxa. In more detail, the
procedure followed for each repeat was:

1. Generation of a random matrix of correlations across the 300 taxa, such that
the majority of the correlations were positive and a small fraction negative,
as is typically observed in empirical data4;

2. Generation of 1000 samples from a 300-dimensional multivariate Gaussian
distribution centered at zero, with unity variances, and the correlations
matrix generated in step 1;
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3. Transformation of the matrices obtained in order for the resulting
synthetic microbiomes to be distributed according to a multivariate negative
binomial, by:

i Computing the gaussian cumulative distribution for each marginal
distribution obtained in step 2;

ii Computing the negative binomial inverse cumulative distribution for each
gaussian cumulative distribution in step 3, with the respective negative
binomial parameters (r, q) generated from uniform distributions r ~U
{1,2} and q ~U]0; 0.1[.

Synthetic microbial communities – ecological scenarios. Three ecological sce-
narios were derived from each synthetic microbial community: taxon blooming,
ecological succession, and taxon opportunism. The above procedure was used to
generate the matrices in the taxon blooming scenario. The two other scenarios were
derived from the blooming matrices as follows: for each matrix, the bloomer was
replaced by a taxon with a specified correlation to the synthetic microbial com-
munity loads, while maintaining the rest of the across-taxa correlations matrix. The
bloomer taxon was identified as the taxon whose abundance correlated (Spearman
ρ > 0.9) with synthetic microbial community loads (total community abundance).
For the ecological succession scenario, the bloomer was replaced by a taxon with a
mild correlation to the synthetic microbial load (succession taxon, specified cor-
relation r= 0.5).

For the dysbiosis scenario, half of the synthetic communities, selected by
uniform stratification along the microbial loads, were randomly downsampled to
20% of the load, the bloomer was replaced by an opportunistic taxon negatively
correlated (specified correlation r=−0.5) with microbial loads (thus thriving in
dysbiosis), and 10–11 taxa were replaced to be unresponsive towards dysbiosis
(specified correlation with synthetic microbial loads r= 0.01). Concretely, the
succession, opportunist, and unresponsive taxa were created following these steps:

1. Synthetic microbial community loads, assumed to be approximately
Gaussian distributed, were z-scored to obtained approximately standard
Gaussian distributed samples;

2. Standard Gaussian distributed samples were generated with the specified
correlations (0.5, −0.5, or 0.01, for the succession, opportunist, and
unresponsive taxa, respectively) to the z-scored loads obtained in step 1;

3. These Gaussian samples were transformed to be distributed according to a
negative binomial, by:

i Computing the Gaussian cumulative distribution for the samples generated
in step 2;

ii and computing the negative binomial inverse cumulative distribution for
the gaussian cumulative distribution in step 3, with the negative binomial
parameters r= 1 and q= 0.5.

For most of the analyses in this work, the matrices were randomly subsampled
without replacement to include only 200 samples per matrix. The exception was to
analyze the effect of cohort size in the performance of the different
transformations, for which other sample sizes, ranging from 20 to 1000 samples per
matrix, were used.

Simulated metadata. For each synthetic microbial community, an associated
metadata matrix was generated to obtain absolute Spearman correlation coeffi-
cients ranging from 0.3 to 0.6 between the metadata and taxa (or microbial loads).
Metadata matrices consisted of 100 metadata features, of which 50 are numeric and
50 are categorical. Numeric variables were (i) generated randomly without speci-
fying correlation with any taxon (n= 35/50), from three different distributions:
uniform, gaussian or negative binomial, (ii) correlated with any of the absolute
taxon abundances in the taxonomic matrix (n= 10/50); or (iii) correlated with the
absolute microbial loads in the simulated taxonomic matrix (n= 5/50). Categorical
features were defined as 2, 4, 6, or 8-class random categorical variables. Similarly to
numerical variables, these features were defined as: (i) not correlated with any
taxon (n= 35/50); (ii) correlated with one of the taxa from the taxonomic matrix
(n= 10/50); or (iii) correlated with microbial loads (n= 5/50). Noise was added to
avoid perfect associations with categorical features, by first creating a surrogate
variable with a mild correlation with the taxon of interest (ρ between 0.3 and 0.6)
and then the categorical metadata variable was associated to the surrogate variable.
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Fig. 5 Detection of disease-associated taxa by quantitative methods. a Visualization of microbial loads distribution for samples assigned to the simulated

patient and control groups in one of the dysbiosis matrices randomly selected (in which n= 200 samples, distributed as 93 healthy and 107 diseased;

Wilcoxon rank-sum test, two-sided; p-adjusted for n= 10 matrices). The disease status variable is associated with total cell counts, but noise is present in

the dataset. b Stacked barplots represent the percentage of true positive, false positive, and discordant taxon-disease associations recovered in ACS- and

QMP-transformed sequence matrices at different sequencing depths, scaled to the number of taxon-disease associations present in the synthetic

communities. c Sensitivity of both methods in detecting taxa-disease associations at different sequencing depths (Wilcoxon signed-rank test, two-sided).

d Precision of both methods in detecting taxa-disease associations at different sequencing depths (Wilcoxon signed-rank test, two-sided). In b–d,

simulated synthetic community matrices and their derived sequencing data were classified in three groups corresponding to the different spreads in

microbial loads in the population (low spread, left panel: n= 40 sequencing matrices simulated from 4 synthetic communities; medium spread, mid panel:

n= 40 sequencing matrices simulated from 4 synthetic communities; high spread, right panel: n= 20 sequencing matrices simulated from 2 synthetic

communities). In a, c, d, the boxplots extend from the first to the third quartile of the distribution, with the line indicating the median. The whiskers cover

from the quartiles to the last data point within 1.5x the interquartile range, with outliers depicted as individual points. ACS: absolute count scaling, QMP:

quantitative microbiome profiling.
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Metagenomic sequence matrices. Sequence matrices from the original simulated
profiles were generated via random sampling with replacement. The number of
total reads sequenced per sample was drawn from a log-normal distribution. In the
simulations with fixed sequencing depths, the parameters used were log-
transformed mean (meanlog= 10.3) and standard deviation (sdlog= 0.3), to
reproduce the sequencing depths in a range currently standard in clinical micro-
biome sequencing experiments (with an average of 30.000 sequenced reads per
sample). In the simulations with increasing sequencing depths, the parameter
meanlog was taken in the range [9.9, 13.12] to obtain averages of total sequencing
depth in the range [20,000, 500,000].

Estimated microbial loads determination. Estimated microbial loads were cal-
culated by adding noise to the actual microbial loads of synthetic microbial
communities, simulating flow cytometry measurements of total cell counts. Flow
cytometric quantification of microbial loads has been demonstrated to have a high
accuracy when compared to microscopy-based quantification in fresh sedimental
samples28. Additionally, in stool samples, it has been shown that freeze-thaw cycles
have a minor impact in the microbial load quantification, with a correlation of r=
0.91 between fresh and frozen fecal aliquots in flow cytometry assays4. Therefore,
noise was added to the original microbial loads by simulating a correlated vector of
estimated microbial loads, such that the Pearson correlation between the original
and the estimated microbial loads (in log scale) was in the range [0.85-0.95].

Normalization and data processing. Different tools and statistical packages were
used to preprocess the sequence matrices generated to determine taxon–taxon,
taxon–metadata and total counts-metadata correlations. As reference, these cor-
relations were calculated from the original simulated taxonomy matrix.

1. Relative transformations (not addressing metagenomic data compositionality)

i. Relative microbiota profiling (RMP). RMP matrices were obtained by
rarefying all samples in each sequence matrix to an even sequencing
depth (the minimum sample total read count of the matrix). This
method is used as implemented in the R package phyloseq (v1.34.0)29.

ii. Relative proportions (Rel). Absolute counts from metagenomic sequen-
cing were converted to relative proportions by dividing each taxon
abundance by the total taxa abundance in a sample.

iii. Total sum scaling and arcsine squared transformation (AST). In this
method, each taxon count is first scaled dividing by the corresponding
sample total counts (total sum scaling, TSS), and the arcsine transform
of the scaled values is computed23. The method, used in several
microbiome research publications15,30, was used with a custom
implementation. Since it is a direct transformation of the relative
proportions (Rel), this method was classified as a relative transformation.

2. Compositional transformations (computational approaches to bypass data
compositionality)

i. Centered log-ratio transformation (CLR). The log ratio of each taxon
counts to the geometric mean of all taxa in a sample is computed in this
approach. Prior to the transformation, zero’s in the sequence matrix
were imputed by Bayesian multiplicative replacement (implemented in
the R package zCompositions (v1.3.4)31). This method was used as
implemented in the CoDaSeq R package (v0.99.6)6.

ii. Cumulative sum scaling (CSS). In this method, taxon counts are divided
by the cumulative sum of counts of each sample, up to a percentile
determined ad-hoc for each dataset, based on the data distribution. The
method was used as implemented in the R package metagenomeSeq
(v1.32.0)32

iii. Geometric mean of pairwise ratios (GMPR). This method is used to
calculate a scaling factor to normalize the samples. It first computes the
median of all pairwise ratios between any two samples, using only non-
zero values. The scaling factor of a sample is then calculated as the
geometric mean of the median values calculated for that sample and all
of the other samples in the dataset. The method was used as
implemented in the GMPR R package (v0.1.3)33.

iv. Trimmed mean of M-values (TMM). In this method, the authors
defined the M values as the log-ratio between the relative abundance of
each gene (or taxon) g in a given sample and in a reference sample. To
choose a reference sample, the sample whose upper quartile is closest to
the mean upper quartile of all the samples tested is used. For each non-
reference sample, the M values for all genes/taxa are calculated and the
extremes are trimmed. The mean of the remaining M values is used as
scaling factor for the normalization34. The method was used as
implemented in the edgeR package (v3.32.1)13.

v. Upper quantile normalization (UQ). For this normalization, scaling
factors are calculated from the 75% quantile of the counts for each
sample, after removing taxa abundances that are zero, and scaled by
sequencing depth. The method was used as implemented in the edgeR
package (v3.32.1)13.

vi. Relative log expression (RLE). In this method, the geometric mean of
each taxon across all samples is calculated. The median ratio of each
sample to the vector of geometric means (excluding zeros) is used as
scaling factor for normalization. The method was used as implemented
in the edgeR package (v3.32.1)13.

vii. Variance-stabilizing transformation (VST). In this method, taxa counts
are scaled by their corresponding library size factors (calculated similarly
as in RLE) and a variance-stabilizing transformation is applied that
considers the relationship between the dispersion and the mean. The
method was used as implemented in the DESeq2 R package (v1.30.1)14.

3. Quantitative transformations (experimental approaches to bypass data
compositionality)

i. Quantitative microbiota profiling (QMP). In this method, samples are
first rarefied to even sampling depth. Sampling depth, not to be confused
with sequencing depth, represents the fraction of the actual observed
microbiota in a sample. It can be defined as the ratio between sequencing
depth (here taken as the total number of sequencing reads that are
assigned to any taxa in a sample) and the total microbial load per gram
of the original sample. QMP matrices were generated by rarefying
(randomly subsetting) the sequence matrices to even sampling depth
considering their synthetic microbial loads, then scaling them by
multiplying each sample by its estimated microbial load, as implemented
in the original publication4.

ii. Absolute counts scaling (ACS). The ACS matrices were derived as
previously reported7,16, i.e., by directly multiplying the relative
sequencing counts of each sample by their estimated microbial loads.

Alpha diversity indices. Four different alpha diversity indices were included in
this study: observed richness, Chao1 richness estimator, Simpson’s diversity (1-D)
and Shannon diversity indices. These were calculated using the implementation
provided in the phyloseq R package (v1.34.0)29. All the indices were calculated for
the simulated microbial communities, the sequenced metagenomes, and all of the
transformations calculated, except for the following: the CLR and the VST trans-
formation, which contain negative values that are not accepted by these algorithms;
and the Rel and AST transformations, which results only in values between 0 and 1.
The remaining transformed matrices were rounded to the closest integer to cal-
culate the different alpha diversity matrices.

Method evaluation and comparison. Method performance across different
microbial loads was evaluated by determining the overall precision (true positives/
(true positives+ false positives)), sensitivity (true positives/(true positives+ false
negatives)) and false positive rate (false positives/(false positives+ true negatives))
of each transformation tested, taking the associations in the original synthetic
microbial communities as a reference. Detected associations are considered sig-
nificant for p-values of the Spearman correlation test <0.05, after correcting for
multiple testing with the Benjamini–Hochberg method (BH-corrected p-values).
Comparison across methods was performed using Kruskal–Wallis tests and post-
hoc Dunn tests where applicable, unless otherwise specified. All statistical tests
were two-sided. Besides evaluating the overall performance of the transformations
in detecting associations, we also detailed their performance on detecting asso-
ciations corresponding to the special taxa: the bloomer, opportunist and unre-
sponsive taxa. The R tidyverse environment (v1.3.0) and additional packages gdata
(v2.18.0), rstatix (v0.7.0), ggpubr (v0.4.0), ggsignif (v0.6.1), inlmisc (v0.5.2), and
RColorBrewer (v1.1.2) were used for data wrangling and visualization.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The simulated data used to evaluate the different data transformations in this

manuscript, is available at https://raeslab.org/software/BMT/index.html; and has also

been deposited at the Zenodo repository, with the following https://doi.org/10.5281/

zenodo.471950835.

Code availability
The code to generate the taxonomic matrices and their associated metadata, the

processed sequencing, RMP, QMP, and ACS matrices, together with the evaluation of the

13 transformation methods, is available at https://raeslab.org/software/BMT/index.html

and has also been deposited at the Zenodo repository, with the following https://doi.org/

10.5281/zenodo.471950835.
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