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I. INTRODUCTION

MOTION planning is a key problem in robotics concerned

with finding a path that satisfies a goal specification

subject to constraints. In its simplest form, the solution to

this problem consists of finding a path connecting two states

and the only constraint is to avoid collisions. Even for this

version of the motion planning problem there is no efficient

solution for the general case [1]. The addition of differential

constraints on robot motion or more general goal specifications

make motion planning even harder. Given its complexity, most

planning algorithms forego completeness and optimality for

slightly weaker notions such as resolution completeness or

probabilistic completeness [2] and asymptotic optimality.

Sampling-based planning algorithms are the most common

probabilistically complete algorithms and are widely used on

many robot platforms. Within this class of algorithms, many

variants have been proposed over the last 20 years, yet there

is still no characterization of which algorithms are well-suited

for which classes of problems. Below, we will present a

benchmarking infrastructure for motion planning algorithms

that can be a useful component of such a characterization.

The infrastructure is aimed both at end users who want to

select a motion planning algorithm that performs best on some

problems of interest as well as motion planning researchers

who want compare the performance of a new algorithm relative

to many other state-of-the-art algorithms.

The benchmarking infrastructure consists of three main

components (see Figure 1). First, we have created an extensive

benchmarking software framework that is included with the

Open Motion Planning Library (OMPL, http://ompl.kavrakilab.

org), a C++ library that contains implementations of many

sampling-based algorithms [3]. One can immediately compare

any new planning algorithm to the 29 other planning algorithms

that currently exist within OMPL. There is also much flexibility

in the types of motion planning problems that can be bench-

marked, as discussed in Section II-A. Second, we have defined

extensible formats for storing benchmark results. The formats

are fairly straightforward so that other planning libraries could

easily produce compatible output. Finally, we have created an

interactive, versatile visualization tool for compact presentation

of collected benchmark data (see http://plannerarena.org).

The tool and underlying database facilitate the analysis of

performance across benchmark problems and planners. While

the three components described above emphasize generality,

we have also created—as an example—a simple command line
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Fig. 1: Overview of the benchmarking infrastructure.

tool specifically for rigid body motion planning that takes as

input a plain text description of a motion planning problem.

Benchmarking sampling-based planners is non-trivial for

several reasons. Since these planners rely on sampling, perfor-

mance cannot be judged from a single run. Instead, benchmarks

need to be run repeatedly to obtain a distribution of some

performance metric of interest. Simply comparing the means

of such distributions may not always be the correct way to

assess performance. Second, it is well-known that different

sampling strategies employed by sampling-based algorithms

typically perform well only for certain classes of problems, but

it is difficult to exactly define such classes. Finally, different

applications require optimization for different metrics (e.g., path

quality versus time of computation) and there is no universal

metric to assess performance of planning algorithms across all

benchmarks.

There have been some attempts in the past to come up

with a general infrastructure for comparing different planning

algorithms (see, e.g., [4], [5]). Our work is in the same spirit,

but includes an extended and extensible set of metrics, offers

higher levels of abstraction and at the same time concrete entry

level points for end users. Furthermore, we also introduce an

extensible logging format that other software can use and a

visualization tool. To the best of the authors’ knowledge, none

of the prior work offered the ability to interactively explore

and visualize benchmark results. The MPK software system

described in [4] has similar design goals as OMPL in that both

aim to provide a generic, extensible motion planning library, but

MPK appears to be no longer maintained or developed. There

has been much work on metrics used for comparing different

planning algorithms (see, e.g., [6], [7]). Our benchmarking

infrastructure includes many of these metrics.
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The contribution of this paper lies not so much in any

particular benchmark problem, metric, or planner, but in

providing a generic, extensible benchmarking infrastructure

that facilitates easy analysis and visualization of replicable

benchmark results. Since it is integrated with the widely used

and actively developed Open Motion Planning Library, it

becomes straightforward to compare any new motion planning

algorithm to many other state-of-the-art motion planning

algorithms. All relevant information pertaining to how a

benchmark was run is stored in a database to enable replicability

of results.

II. BENCHMARKING INFRASTRUCTURE

OMPL provides a high-level of abstraction for defining

motion planning problems. The planning algorithms in OMPL

are to a large extent agnostic with respect to the space they are

planning in. Similarly, the benchmarking infrastructure within

OMPL allows the user to collect various statistics for different

types of motion planning problems. The basic workflow is as

follows:

1) The user defines a motion planning problem. This

involves defining the state space of the robot, a function

which determines which states are valid (e.g., collision-

free), the start state of the robot and the goal. The

complete definition of a motion planning problem is

contained within a C++ object, which is used to construct

a benchmark object.

2) The user specifies which planning algorithms should be

used to solve the problem, time and memory limits for

each run, and the number of runs for each planner.

3) The benchmark is run. Upon completion, the collected

results are saved to a log file. A script is used to add the

results in the log file to an SQL database. The results

can be queried directly in the database, or explored and

visualized interactively through a web site set up for this

purpose (http://plannerarena.org).

Below we will discuss these steps in more detail.

A. Defining motion planning problems

The most common benchmark motion planning problems

are those where the robot is modeled as a rigid body, due

to their simplicity (it is easy for users to intuitively assess

performance). We have developed a simple plain-text file format

that describes such problems with a number of key-value pairs.

Robots and environments are specified by mesh files. The state

validity function is in this case hard-coded to be a collision

checker. Besides the start and goal positions of the robot, the

user can also specify an optimization objective: path length,

minimum clearance along the path, or mechanical work. There

are several planning algorithms in OMPL that optimize a path

with respect to a specified objective. (Others that do not support

optimization simply ignore this objective.) It is also possible

to specify simple kinodynamic motion planning problems.

OMPL.app, the application layer on top of the core OMPL

library, predefines the following systems that can be used: a

first-order car, a second-order car, a blimp, and a quadrotor.

We have not developed controllers or steering functions for

these systems and kinodynamic planners in OMPL fall back in

such cases on sampling random controls. This makes planning

for these systems extremely challenging. (If controllers are

available, then OMPL can use them.) With a few lines of code,

the command line tool can be modified to allow new planning

algorithms or new types of planning problems to be specified

in the configuration files.

The benchmark configuration files can be created with the

GUI included with OMPL.app. A user can load meshes in

a large variety of formats, define start and goal states, try

to solve the problem with different planners and save the

configuration file. The user can also visualize the tree/graph

produced by a planning algorithm to get a sense of how hard

a particular problem is. In the configuration file, the user can

specify whether solution paths (all or just the best one) should

be saved during benchmarking. Saved paths can be “played

back” with the GUI.

When defining motion planning problems in code, many of

the limitations of the command line tool go away. Arbitrary

state spaces and kinodynamic systems can be used, differ-

ent notions of state validity can be defined, and different

optimization objectives can be defined. Additionally, any

user-defined planning algorithm can be used. The OMPL

application programmer interface (API) imposes only minimal

requirements on new planning algorithms. In particular, the API

is not limited to sampling-based algorithms (in [8], for example,

several non-sampling-based planners are integrated into OMPL).

The low barrier to entry has lead to numerous contributions of

planning algorithms from other groups: OMPL 1.0 includes

29 planning algorithms. Since all these algorithms use the

same low-level functionality for, e.g., collision checking,

benchmarking highlights the differences in the motion planning

algorithms themselves.

The benchmarking facilities in MoveIt! [9] are based on

and compatible with those in OMPL. The problem setup is

somewhat similar to the OMPL command line tool. In MoveIt!,

robots are specified by URDF files, which specify a robot’s

geometry and kinematics. Motion planning problems to be

benchmarked are stored in a database.

B. Specifying planning algorithms

Once a motion planning problem has been specified, the

next step is to select one or more planners that are appropriate

for the given problem. Within OMPL, planners are divided into

two categories: geometric/kinematic planners and kinodynamic

planners. The first category can be further divided into two

subcategories: planners that terminate when any solution is

found and planners that attempt to compute an optimized

solution (with respect to a user-specified optimization objective).

For optimizing planners a threshold on optimality can be set

to control how close to optimal the solution needs to be. At

one extreme, when this threshold is set to 0, planners will run

until time runs out. At the other extreme, when the threshold

is set to infinity, planners act like the non-optimizing planners

and will terminate as soon as any solution is found.

Typically, a user specifies multiple planners. By default,

OMPL will try to make reasonable parameter choices for each

http://plannerarena.org
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runs

id INTEGER

experimentid INTEGER

plannerid INTEGER

graph_states INTEGER

time REAL

solution_length REAL

solution_clearance REAL

status ENUM

approximate_solution BOOL

simplified_solution_length REAL


iterations INTEGER


⋮ (many more attributes)

experiments

id INTEGER

name VARCHAR(512)

totaltime REAL

timelimit REAL

totaltime REAL

memorylimit REAL

runcount INTEGER

version VARCHAR(128)

hostname VARCHAR(128)

cpuinfo TEXT


date DATETIME


seed INTEGER

setup TEXT

P

plannerConfigs

id INTEGER

name VARCHAR(512)

settings TEXT

P

progress

runid INTEGER

time REAL

best_cost REAL

iterations INTEGER

P

P

F

P

F

F

Fig. 2: Schema for a database of benchmark results. The P©

and F© denote the primary and foreign keys of each table,

respectively.

planner. However, a user can also fine-tune any parameter

setting for a planner. With the command line tool’s config-

uration files, this is easily accomplished by adding lines of

the form “planner.parameter=value.” The parameter

code infrastructure is generic: when a programmer specifies

a parameter for a planner, it can be specified through the

configuration file without having to change the parsing of

configuration files. It is also possible to add many instances

of the same type of planner. This is useful for, e.g., parameter

sweeps. Each instance can be given a slightly different name

to help distinguish the results for each instance. Each run of a

planner is run in a separate thread, so that if a planner hangs,

the benchmark program can detect that and forcibly terminate

the planner thread (the run is recorded as a crash and the

benchmarking will continue with the next run).

C. A database of benchmark runs

After a benchmark run is completed, a log file is written out.

With the help of a script, the benchmark results stored in the log

file can be added to a SQLite3 database. Multiple benchmark

log files can be added to the same database. The SQLite3

database facilitates distribution of all relevant benchmark data:

users can simply transfer one single file. Furthermore, the

database can be easily programmatically queried with almost

any programming language. In contrast, extracting information

directly from the log files or some other custom storage format

would require significantly more effort to perform the types

of analysis and visualization that is enabled by our database

schema described below.

Figure 2 illustrates the database schema that is used.

Each benchmark log file corresponds to one experiment. The

experiments table contains an entry for each experiment that

contains the basic benchmark parameters, but also detailed

information about the hardware on which the experiment was

performed (in the cpuinfo column). Information about each

of the planner instances that were specified is stored in the

plannerConfigs table. For each planner instance, all parameter

values are stored as a string representation of a list of key-

value pairs (in the settings column). While we could have

created a separate column in the plannerConfigs table for

each parameter, the parameters are very planner specific with

very few shared parameters among planners.

The main results are stored in the runs table. Each entry

in this table corresponds to one run of a particular planner

trying to solve a particular motion planning problem. After a

run is completed, several attributes are collected such as the

number of generated states (graph states), duration of the run

(time), length of the solution path (solution length), clearance

along the solution path (solution clearance), etc. By default

solutions are simplified (through a combination of shortcutting

and smoothing [10]), which usually significantly improves the

solution quality at minimal time cost. Runs can terminate for a

variety of reasons: a solution was found, the planner timed out

(without any solution or with an approximate solution), or the

planner crashed. We use an enumerate type for this attribute

(stored in status), and the labels for each value are stored in

the enums table (not shown in Figure 2).

The progress table stores information periodically collected

during a run. This is done in a separate thread so as to minimize

the effect on the run itself. Progress information is currently

only available for optimizing planners. It is used to store the

cost of the solution found at a particular time. By aggregating

progress information from many runs for each planner, we can

compare rates of convergence to optimality (see next section).

The database schema has been designed with extensibility in

mind. Large parts of the schema are optional and other columns

can be easily added. This does not require new parsers or

additional code. Instead, the log files contain enough structure

to allow planners to define their own run and progress properties.

Thus, when new log files are added to a database, new columns

are automatically added to runs and progress. Planners that do

not report on certain properties will just store “N/A” values

in the corresponding columns. Additional run properties for a

new type of planner are easily defined by storing key-value

pairs in a dictionary of planner data which is obtained after

each run. Additional progress properties are defined by adding

a function to a list of callback functions.

Log files have a fairly straightforward plain text format

that is easy to generate and parse1. This makes it easy for

other motion planning libraries to generate compatible log

files, which can then be added to the same type of benchmark

database. For example, MoveIt!’s benchmarking capabilities

do not directly build on OMPL’s benchmark capabilities, yet

it can produce compatible benchmark log files. This makes

it possible to see how a planning algorithm’s performance

changes when moving from abstract benchmark problems in

OMPL to elaborate real-world settings created with MoveIt!

(possibly from experimental data).

1The complete syntax is specified at http://ompl.kavrakilab.org/benchmark.
html.

http://ompl.kavrakilab.org/benchmark.html
http://ompl.kavrakilab.org/benchmark.html
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(a) Performance plot: empirical cumulative distribution function of solution
times for a rigid body benchmark
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and goal for a kinodynamic problem
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(d) Regression plot: test results for a trivial benchmark

Fig. 3: Sample output produced from a benchmark database by the Planner Arena server for various motion planning problems

(but not the ones shown in Fig. 4).

III. INTERACTIVE ANALYSIS OF RESULTS

There are many different ways to visualize benchmark

performance. It is nearly impossible to create a tool that can

automatically select the “right” visualizations for a given bench-

mark database. We have therefore created a web site called

Planner Arena (http://plannerarena.org), where benchmark data

can be uploaded and selected results can be visualized. The web

site interface is dynamically constructed based on the contents

of the benchmark database: selection widgets are created

automatically for the benchmark problems, the performance

attributes, the planning algorithms, etc. The code that powers

Planner Arena is included in the OMPL distribution and can

be run locally to evaluate one’s own results privately or be

modified to create custom visualizations. There are currently

three types of plots included on the Planner Arena site: overall

performance plots, progress plots, and regression plots. We

will describe these plots in more detail below.

Plots of overall performance: The overall performance

plots can show how different planners compare on various

measures. The most common performance measure is the time

it took a planner to find a feasible solution. By default, integer-

and real-valued performance metrics (such as solution time) are

plotted as box plots which provide useful summary statistics

for each planner: median, confidence intervals, and outliers.

However, in some cases visualizing the cumulative distribution

function can reveal additional useful information. For instance,

from Figure 3(a) one can easily read off the probability that

a given planner can solve a particular benchmark within a

specified amount of time. For very hard problems where most

planners time out without finding a solution, it might be

informative to look at solution difference: the gap between the

best found solution and the goal (Figure 3(b)). For optimizing

planners, it is often more interesting to look at the best solution

found within some time limit. The overall performance page

allows you to select a motion planning problem that was

benchmarked, a particular benchmark attribute to plot, the

OMPL version (in case the database contains data for multiple

versions), and the planners to compare.

Most of the measures are plotted as box plots. Missing data

is ignored. This is very important to keep in mind: if a planner

failed to solve a problem 99 times out of a 100 runs, then the

average solution length is determined by one run! To make

missing data more apparent, a table below the plot shows how

many data points there were for each planner and how many

http://plannerarena.org
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of those were missing values.

Performance is often hard to judge by one metric alone.

Depending on the application, a combination of metrics is

often necessary to be able to choose an appropriate planner.

For example, in our experience LBKPIECE [11] (one of the

planning algorithms in OMPL) tends to be among the fastest

planners, but it also tends to produce longer paths. For time-

critical applications this may be acceptable, but for applications

that place greater importance on short paths another planner

might be more appropriate. There will also be exceptions

to general trends. As another example, bidirectional planners

(such as RRT-Connect [12]) tend to be faster than unidirectional

planners (such as RRT), but Figure 3(a) shows that this not

always the case. This underscores the need for a good set

of benchmark problems that are representative of different

applications.

Progress plots: Some planners in OMPL are not limited

to reporting information after a run is completed, but can also

periodically report information during a run. In particular, for

asymptotically optimal planners it is interesting to look at

the convergence rate of the best path cost (e.g., path length).

By default, Planner Arena will plot the smoothed mean as

well as a 95% confidence interval for the mean (Figure 3(c)).

Optionally, individual measurements can be shown as semi-

transparent dots, which can be useful to get a better idea of

the overall distribution. Analogous to the performance plots,

missing data is ignored. During the first couple seconds of a run,

a planner may never find a solution path. Below the progress

plot, we therefore plot the number of data points available for

a particular planner at each 1 second time interval.

Regression plots: Regression plots show how the perfor-

mance of the same planners change over different versions

of OMPL (Figure 3(d)). This is mostly a tool for developers

using OMPL that can help in the identification of changes

with unintended side-effects on performance. However, it also

allows a user to easily compare the performance of a user’s

modifications to the planners in OMPL with the latest official

release. In regression plots, the results are shown as a bar plot

with error bars.

Any of the plots can be downloaded in two formats: PDF

and RData. The PDF format is useful if the plot is more or less

“camera-ready” and might just need some touch ups. The RData

file contains both the plot as well as all the data shown in the

plot and can be loaded into R. The plot can be completely

customized, further analysis can be applied to the data, or the

data can be plotted in an entirely different way.

The default benchmark database stored on the server cur-

rently contains results for nine different benchmark problems.

They include simple rigid body type problems, but also

hard problems specifically designed for optimizing planners

(problems that contain several suboptimal decoy homotopy

classes), kinodynamic problems, and a multi-robot problem

(see Figure 4).

IV. DISCUSSION

We expect that with input from leaders in the motion planning

community as well as extensive simulations and experiments

start

goal

intermediate con-

figuration along 

shortest path

decoy 

homotopy 

class

tree produced by planner

goal

start

Fig. 4: Two of the sample benchmark problems included on

Planner Arena: one with a long twisty narrow passage (top)

and one with several suboptimal decoy homotopy classes of

paths (bottom).

we can create a suite of motion planning benchmarks. We

plan to develop benchmarks along two different directions.

First, there are “toy problems” that isolate one of a number

of common difficulties that could trip up a motion planning

algorithm (such as a very narrow passage or the existence

of many false leads). Such benchmarks may provide some

insights that lead to algorithmic improvements. Second, we

would like to develop a benchmark suite where performance (by

some measure) is predictive of performance of more complex

real-world scenarios.

Other planning libraries can use the same set of benchmark

problems. While OMPL could be extended with other planning

algorithms, we recognize that for community-wide adoption

of benchmarks it is important to adopt standard input and

output file formats. The log file format and database schema

for storing benchmark results described in this paper are general

enough that they can be adapted by other motion planning

software. This would allow for a direct comparison of different

implementations of planning algorithms.

The Planner Arena web site makes it easy to interactively

explore benchmark results. At this point, we do not claim that

the benchmarks included in the default database on Planner

Arena form some sort of “standard” benchmark set, although

they are representative of the types of problems that have been

used in prior work [13]. Furthermore, the set of problems we

present results for will increase over time.
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