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Abstract

Background: Massively parallel sequencing studies have led to the identification of a large number of mutations

present in a minority of cancers of a given site. Hence, methods to identify the likely pathogenic mutations that are

worth exploring experimentally and clinically are required. We sought to compare the performance of 15 mutation

effect prediction algorithms and their agreement. As a hypothesis-generating aim, we sought to define whether

combinations of prediction algorithms would improve the functional effect predictions of specific mutations.

Results: Literature and database mining of single nucleotide variants (SNVs) affecting 15 cancer genes was

performed to identify mutations supported by functional evidence or hereditary disease association to be classified

either as non-neutral (n = 849) or neutral (n = 140) with respect to their impact on protein function. These SNVs

were employed to test the performance of 15 mutation effect prediction algorithms. The accuracy of the prediction

algorithms varies considerably. Although all algorithms perform consistently well in terms of positive predictive

value, their negative predictive value varies substantially. Cancer-specific mutation effect predictors display

no-to-almost perfect agreement in their predictions of these SNVs, whereas the non-cancer-specific predictors

showed no-to-moderate agreement. Combinations of predictors modestly improve accuracy and significantly

improve negative predictive values.

Conclusions: The information provided by mutation effect predictors is not equivalent. No algorithm is able to

predict sufficiently accurately SNVs that should be taken forward for experimental or clinical testing. Combining

algorithms aggregates orthogonal information and may result in improvements in the negative predictive value of

mutation effect predictions.

Background
Massively parallel sequencing studies have demonstrated

that tumors can be regarded as genetically heterogeneous

populations of individual clones that accumulate muta-

tions during the process of tumorigenesis and tumor pro-

gression [1]. These mutations, likely the result of genetic

instability, may confer a selective growth advantage and

be causally implicated in carcinogenesis (that is, driver

mutations), or are either selectively neutral (that is,

passenger mutations) or deleterious for the cancer cells

and eventually purged [2,3].

Recent advances in nucleic acid sequencing technolo-

gies now provide the means to explore whole genomes

at base-pair resolution [4]. The Cancer Genome Atlas

(TCGA), the International Cancer Genome Consortium

(ICGC) and endeavors led by individual investigators

have demonstrated that the repertoire of genes affected

by highly recurrent mutations is limited and that there is

a large collection of genes affected by mutations in 1%

to 2% of cancers from a given anatomical site [2,4,5]. Al-

though defining driver mutations based on the presence

of hotspot mutations and recurrence rates has resulted

in the identification of bona fide oncogenes and tumor

suppressor genes (TSGs) and a partial repertoire of genes
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significantly mutated in cancer [6-8], this strategy cannot

be readily applied to the study of the genes affected by

mutations in a minority of tumors of a given anatomical

site. In fact, recent studies have demonstrated that some

of these mutations are of functional significance and likely

constitute bona fide drivers, therapeutic targets, or mecha-

nisms of therapy resistance (for example, ERBB2 and

ESR1 activating mutations in breast cancer) [9-12].

Defining whether a non-hotspot mutation is biologic-

ally and/or clinically relevant is by no means a trivial

task, in particular for missense mutations, and often la-

borious functional assays need to be performed [9-12].

Given the vast number of mutations being identified by

massively parallel sequencing efforts, finding ways to

prioritize which mutations should be subjected to func-

tional analysis is crucial. Computational methods to dis-

cern which somatic mutations likely result in amino acid

changes that could have biologic implications have been

developed [13]. Most of these algorithms rely on the as-

sumption that protein sequences derived from existing

living organisms have survived natural selection [14],

and many also utilize sequence, structural information,

and/or protein annotation (that is, whether a mutation

affects an active site, ligand binding domain, disulfide

bridges, or protein-protein interactions) to differentiate

mutations that result in no or negligible impact on protein

function from those that are likely pathogenic. Prediction

is feasible because mutations that affect protein function

tend to occur at evolutionarily conserved sites [15]. Ex-

amples of such computational prediction methods

(Additional file 1) are Sorted Intolerant From Tolerant

(SIFT) [16], PolyPhen-2 [17], Mutation Assessor [18],

CONsensus DELeteriousness score of missense muta-

tions (Condel) [19], Cancer-specific High-throughput

Annotation of Somatic Mutations (CHASM) [20], Protein

Variation Effect Analyzer (PROVEAN) [14], Functional

Analysis Through Hidden Markov Models (FATHMM)

[21], Variant Effect Scoring Tool (VEST) [22], Mutation-

Taster [23], Cancer Driver Annotation (CanDrA) [24],

and others [25]. Additionally, CHASM, FATHMM, and

CanDrA were developed explicitly to differentiate muta-

tions that are likely to constitute cancer drivers from pas-

sengers. In particular, FATHMM is a species-independent

method, which incorporates pathogenicity weights and is

capable of recognizing protein domains (species-inde-

pendent/evolutionary units) sensitive to missense muta-

tions [21]. CHASM [20] is a machine-learning system

trained using the information from the Catalogue Of

Somatic Mutations In Cancer (COSMIC) [26] and other

cancer-related databases, and utilizes a set of 49 predictive

features, including the frequency of a given missense

change type in COSMIC. Cancer-Related Analysis of

VAriants Toolkit (CRAVAT) is a web-based application

for CHASM that provides a simple interface to prioritize

genes and variants important for specific cancer tissue

types [22]. CanDrA is a support vector machine method

that renders predictions from a set of 95 features and

scores computed by 10 other prediction algorithms [24].

While most of these predictors are single/independent

predictors, Condel and CanDrA make use of scores gener-

ated by other algorithms and, therefore, can be considered

meta-predictors (Additional file 1).

These predictors provide a fast and inexpensive way to

define functional annotation and to predict the effects of

mutations, and could theoretically be employed to assist

in the selection of mutations that would be worth ex-

ploring experimentally and clinically. Different predic-

tors have been designed based on different algorithms

(Additional file 1) and, most importantly, were trained

using different sets of functional and neutral mutations.

As a consequence of the differences in the underlying

methodology, these predictors often return dissimilar or

even contradictory results [27]. Therefore, we sought to

benchmark the performance of 15 mutation effect pre-

diction algorithms comprehensively using a set of mis-

sense mutations whose functional effects have been

experimentally validated and/or that have been shown to

result in early onset breast and ovarian cancer syndrome,

Li-Fraumeni syndrome or Li-Fraumeni-like syndrome. To

generate a list of neutral and non-neutral mutations, we

rigorously compiled a set of mutations in bona fide onco-

genes, recently described cancer genes and bona fideTSGs

by mining the literature and mutation databases (see

Methods) [28-30]. As a hypothesis-generating aim and

using our ‘gold standard’ list of validated mutations, we

sought to define whether the mutation effect predictions

made by combinations of algorithms would outperform

those made by individual predictors or meta-predictors.

Results
Categorization of mutations based on functional evidence

We included known missense mutations in six bona fide

oncogenes (BRAF, KIT, PIK3CA, KRAS, EGFR, ERRB2), six

recently described cancer genes (ESR1, DICER1, MYOD1,

IDH1, IDH2, SF3B1) and three bona fide TSGs (TP53,

BRCA1, BRCA2) in this study. We next performed an ex-

haustive search in the literature and/or existing databases

to gather functional evidence for each of the 3,706 muta-

tions compiled for the 15 genes (see Methods; Additional

file 2). Given that PolyPhen-2, MutationTaster, CanDrA,

and Condel can only define the potential functional impact

of single nucleotide variants (SNVs), dinucleotide and tri-

nucleotide changes were excluded from this study. The

final dataset employed consists of 3,591 SNVs (Table 1;

Additional file 2).

SNVs with experimentally validated effects on the target

protein function or proven to be causative of Li-Fraumeni

syndrome, Li-Fraumeni-like syndrome, or early onset breast
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and ovarian cancer syndrome were considered non-neutral,

those that have been experimentally validated as non-

functional or proven not to be causative of Li-Fraumeni

syndrome, Li-Fraumeni-like syndrome, and early onset

breast and ovarian cancer syndrome as neutral, and

those without definitive experimental validation or con-

sidered germline variants of unknown significance were

considered uncertain (see Methods).

Using these criteria, 849 SNVs were categorized as non-

neutral, 140 SNVs were assigned to the neutral category,

and the remaining 2,602 were regarded as uncertain

(Table 1; Additional file 2). Of the neutral and non-neutral

mutations (n = 989), we collected a median of 28.5 SNVs

(range, 23 to 38) for the bona fide oncogenes, a median of

five SNVs (range, 1 to 11) for the new cancer genes, and a

median of 81 SNVs (range, 62 to 640) for the bona fide

TSGs (Table 1).

Agreement between mutation effect prediction algorithms

We evaluated 11 single/independent prediction algorithms,

namely CHASM (breast), CHASM (lung), CHASM (melan-

oma) [20], FATHMM (cancer), FATHMM (missense) [21],

Mutation Assessor [18], MutationTaster [23], PolyPhen-2

[17], PROVEAN [14], SIFT [16], and VEST [22], and four

meta-predictors, namely CanDrA (breast), CanDrA (lung),

CanDrA (melanoma) [24], and Condel [19] using the

3,591 SNVs compiled (Additional files 1 and 2). These

15 algorithms returned predictions that were strikingly

distinct from one another (Table 2). For instance, VEST

predicted 2,465 SNVs to be ‘functional’ and 1,126 to be

‘neutral’, whereas PROVEAN predicted that 1,630 SNVs

would be ‘deleterious’ and 1,961 would be ‘neutral’;

these discrepancies were also observed when the other

mutation effect prediction algorithms were employed. It

should be noted that CanDrA appears to be gene- and

tissue-specific, as all but one TP53 SNVs were predicted

to be ‘Drivers’ by all CanDrA algorithms (that is, CanDrA

breast/lung/melanoma), whereas all BRCA1 and BRCA2

SNVs were predicted to be ‘Drivers’ by CanDrA (breast)

but almost exclusively ‘Passengers/No-call’ by CanDrA

(lung/melanoma) (Additional file 2). To allow comparison

between predictors, we converted the calls made by each

predictor into ‘neutral’ or ‘non-neutral’ (see Methods).

To evaluate the inter-rater agreement between predic-

tion methods, we performed unsupervised clustering of

the calls made for all 3,591 SNVs by each predictor and

calculated pairwise unweighted Cohen’s Kappa coefficients

for each pair of predictors. Unsupervised clustering of the

results of the mutation effect prediction algorithms re-

vealed two main groups with an additional outlier CanDrA

(breast) (Figure 1A). One of the clusters (referred to as

‘Cluster 1’) contained all but one of the cancer-specific

predictors, namely CHASM (breast), CHASM (lung),

CHASM (melanoma), FATHMM (cancer), CanDrA (lung)

and CanDrA (melanoma), and the non-cancer-specific

predictor FATHMM (missense) and its related meta-

predictor Condel (Figure 1A; Additional file 1). Their

pairwise unweighted Kappa coefficients showed fair-to-

almost perfect agreement (median unweighted κ = 0.5679,

range κ = 0.3861 to 0.9004; Figure 1B; Additional file 3).

CanDrA (breast) was the sole cancer-specific predictor

that did not belong to this cluster. The best agreement

within this group was between CHASM (breast) and

CHASM (lung) (κ = 0.9004), which is not surprising con-

sidering that they share the underlying prediction engine.

The second cluster (referred to as ‘Cluster 2’) was com-

posed of non-cancer-specific mutation effect prediction

algorithms, namely Mutation Assessor, MutationTaster,

PolyPhen-2, PROVEAN, SIFT, and VEST (Figure 1A).

The pairwise agreement between these predictors ranged

from fair to moderate (median unweighted κ = 0.4347,

range κ = 0.3355 to 0.5662, Figure 1B; Additional file 3).

The modest agreement between these predictors was

surprising, given that conservation is a feature employed

by all algorithms (Additional file 1), and the sole feature

employed by Mutation Assessor and SIFT [27]. Overall,

the agreement between predictors from distinct clusters

Table 1 Single nucleotide variants included in this study

stratified according to the evidence supporting their

impact on protein function

Functional categories

Gene Total SNVs (n) Neutral (n) Non-neutral (n) Uncertain (n)

BRAF 54 0 23 31

BRCA1 505 61 20 424

BRCA2 837 50 12 775

DICER1 81 0 11 70

EGFR 131 0 33 98

ERBB2 75 5 33 37

ESR1 31 0 7 24

IDH1 19 0 1 18

IDH2 15 0 3 12

KIT 89 1 24 64

KRAS 41 0 25 16

MYOD1 11 0 1 10

PIK3CA 139 1 31 107

SF3B1 53 0 7 46

TP53 1,510 22 618 870

Total 3,591 140 849 2,602

A total of 3,591 single nucleotide variants (SNVs) in six bona fide oncogenes,

six new cancer genes and three bona fide tumor suppressor genes were

assessed for the evidence supporting a functional role for each of the

mutations. These SNVs were classified as non-neutral, neutral or uncertain

based on direct experimental/functional data in the literature and/or on the

basis of causation of Li-Fraumeni syndrome and Li-Fraumeni-like syndrome

(for TP53) or early onset breast and ovarian cancer syndrome (for BRCA1 and

BRCA2), as recorded in dedicated mutation databases [28-30]. For a detailed

list, see Additional file 2.
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Table 2 Predictions of 3,591 functionally validated single nucleotide variants by 15 mutation effect prediction

algorithms

Prediction algorithm Prediction class Functional categories Total

Neutral Non-neutral Uncertain

(n = 140) (n = 849) (n = 2,602) (n = 3,591)

CHASM (breast) Driver 27 764 1,085 1,876

Passenger 113 85 1,517 1,715

CHASM (lung) Driver 32 783 1,155 1,970

Passenger 108 66 1,447 1,621

CHASM (melanoma) Driver 48 795 1,440 2,283

Passenger 92 54 1,162 1,308

FATHMM (cancer) CANCER 71 831 1,655 2,557

PASSENGER/OTHER 69 18 947 1,034

FATHMM (missense) Damaging 69 745 1,416 2,230

Tolerated 71 104 1,167 1,342

No weights 0 0 19 19

Mutation Assessor High 2 71 97 170

Medium 50 579 1,053 1,682

Low 51 129 919 1,099

Neutral 37 69 527 633

N/A 0 1 6 7

MutationTaster Disease_causing 34 740 1,313 2,087

Disease_causing_automatic 1 31 4 36

Polymorphism 99 78 1,285 1,462

Polymorphism_automatic 6 0 0 6

PolyPhen-2 Probably damaging 40 600 920 1,560

Possibly damaging 26 115 478 619

Benign 74 134 1,204 1,412

PROVEAN Deleterious 43 632 955 1,630

Neutral 97 217 1,647 1,961

SIFT Damaging 70 731 1,469 2,270

Tolerated 70 118 1,133 1,321

VEST Functional 100 702 1,663 2,465

Neutral 40 147 939 1,126

CanDrA (breast) Driver 140 805 2,423 3,368

Passenger 0 39 140 179

No-call 0 5 39 44

CanDrA (lung) Driver 24 767 1,150 1,941

Passenger 102 59 1,282 1,443

No-call 14 23 170 207

CanDrA (melanoma) Driver 28 734 1,147 1,909

Passenger 97 75 1,260 1,432

No-call 15 40 195 250

Condel Deleterious 77 786 1,741 2,604

Neutral 63 63 861 987

Single nucleotide variants (SNVs) were classified as non-neutral, neutral or uncertain based on functional/experimental data from the literature or mutation

databases [28-30]. Each SNV was classified by each of the mutation effect prediction algorithms independently.
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ranged from no to fair agreement (median unweighted

κ = 0.2062, range κ = -0.0520 to 0.4216, Figure 1B;

Additional file 3). CanDrA (breast) was an outlier and

displayed no-to-slight agreement with each of the other

predictors (Figure 1B; Additional file 3). We repeated

the same comparisons employing only the 989 SNVs

considered to be non-neutral or neutral on the basis of

functional analyses, which revealed similar results, with

the exception of CanDrA (breast), which now belongs

to Cluster 1 (Additional files 4 and 5).

As the cancer-specific CanDrA, CHASM, and FATHMM

(cancer) are all trained using training sets consisting of ca-

nonical somatic SNVs and their frequencies, we evaluated

the inter-rater agreement of all predictors after excluding

from our dataset the SNVs found in the COSMIC database

(v68). Of the 3,591 SNVs, 1,699 (47.3%) were not present in

COSMIC, of which 297 were experimentally validated as ei-

ther non-neutral or neutral (Additional files 6 and 7). Akin

to the analysis including all SNVs, unsupervised clustering

of the predictions made for non-COSMIC SNVs demon-

strated that the two main clusters and their compositions

were largely maintained (Figure 1C). In this analysis, not

only CanDrA (breast) but also VEST emerged as outliers,

clustering separately from the two main clusters (Figure 1C).

Compared to the Kappa values obtained using all SNVs,

when employing only non-COSMIC SNVs, we observed

that median Kappa coefficients in Cluster 2 remained

largely unchanged, whereas the median unweighted Kappa

scores within Cluster 1 decreased from κ = 0.5679 to

0.4558 (Figure 1D; Additional file 3). These data provide

evidence to suggest that the agreement between predictors

in Cluster 1 is reduced when SNVs present in the COSMIC

database were removed given that some mutation effect

predictors from Cluster 1 were trained using SNVs in-

cluded in COSMIC.

It could be hypothesized that the discrepancies in the

predictions made by different mutation effect prediction

algorithms would predominantly affect SNVs whose

classifications are based on predictions of relatively poor

confidence. CanDrA (breast), CanDrA (lung), CanDrA

(melanoma), PolyPhen-2, and Mutation Assessor have

pre-specified categories that identify SNVs whose predic-

tions are based on limited confidence. For the other pre-

dictors, we employed a heuristic approach based on the

original description of each predictor and additional online

sources to define a category of SNVs whose predictions

were of poor confidence (see Methods). We classified the

3,591 SNVs included in this study into non-neutral, neu-

tral, and low confidence categories (Additional file 8), and

observed that a median of 437 (range, 44 to 1,298) SNVs

were classified as of low confidence. CanDrA (breast) clas-

sified only 44 SNVs as of low confidence, whereas

Figure 1 Inter-rater agreement between 15 mutation effect prediction algorithms. Hierarchical clustering of the calls made by 15 mutation

effect prediction algorithms using (A) all 3,591 single nucleotide variants (SNVs) included in this study, and (C) the 1,699 SNVs not present in the

COSMIC database. The unweighted Cohen’s Kappa coefficient was computed for each pair of predictors using (B) all 3,591 SNVs and (D) the

1,699 SNVs not present in the COSMIC database. The ranges of unweighted Kappa values and their corresponding colors are indicated in the

color key.
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PROVEAN classified 1,298 in this category. These marked

differences may be a mere reflection of the different cutoffs

chosen; however, when only the predictors that have a pre-

defined low confidence category (that is, CanDrA (breast),

CanDrA (lung), CanDrA (melanoma), PolyPhen-2, and

Mutation Assessor) were assessed, the number of SNVs

classified as such ranged from 44 (CanDrA (breast)) to

1,099 (Mutation Assessor). In fact, only 27 SNVs had a

majority vote of low confidence (that is, eight or more

predictors classifying a given SNV as of low confidence;

Additional file 9). Hierarchical clustering of the predic-

tions for the 3,591 SNVs including a low confidence

category revealed a cluster structure similar to that

obtained with only non-neutral and neutral categories

(that is, Cluster 1 enriched for cancer-specific predictors

and Cluster 2 exclusively composed of non-cancer-

specific predictors), however PROVEAN clustered in a

separate branch from Cluster 2. Noteworthy, the Cohen’s

Kappa coefficients were lower than those observed when

SNVs were classified into two categories only (that is, as

neutral or non-neutral; Additional files 10 and 11). When

these analyses were repeated including only the non-

COSMIC SNVs, the results of the clustering analysis were

similar, however the agreement between predictors was

reduced even further (Additional files 10 and 11). By fo-

cusing only on the 989 SNVs with functional evidence to

classify them as neutral or non-neutral, the addition of a

low confidence category resulted again in a similar cluster

structure, however PROVEAN was an outlier. This obser-

vation was likely due to the fact that 132 of the 989

(13.3%) SNVs were classified as of low confidence by

PROVEAN only (Additional file 12). As compared to

the Cohen’s Kappa coefficients obtained with two cat-

egories, the analysis of agreement between predictors

for the classification of these 989 SNVs was generally

lower when the low confidence category was included

(Additional file 13). Similar results were obtained when

the subset of 297 non-COSMIC SNVs were analyzed

(Additional files 12 and 13).

Performance of 15 commonly used mutation effect

prediction algorithms

Among the SNVs included in this study, 989 had sufficient

functional evidence to support their classification as either

non-neutral (n = 849) or neutral (n = 140) with respect to

an effect on protein function (Table 1). Hence, the per-

formance of the predictors was assessed using these

validated SNVs. Accuracy, specificity, sensitivity, positive

predictive value (PPV), negative predictive value (NPV),

and composite score were calculated to evaluate the per-

formance of each predictor (see Methods). This analysis

revealed that the proportion of SNVs correctly classified

by the different predictors varied considerably (median,

85.84%; range, 73.71% to 91.28%; Figure 2A, Table 3).

Of the single predictors, FATHMM (cancer) was the

most accurate (91.00%, 95% confidence interval (CI)

89.18-92.62%), while PROVEAN was the least accurate

(73.71%, 95% CI 70.88-76.64%; Figure 2A, Table 3). The

meta-predictors with the highest accuracy (Figure 2A,

Table 3) were CanDrA (lung; 91.28%, 95% CI 89.54-93.04%)

and CanDrA (melanoma; 88.97%, 95% CI 87.02-90.91%),

though their accuracy was not statistically different from

that of the best single predictor FATHMM (cancer) in this

set of SNVs (P >0.05).

The sensitivity and specificity of the algorithms varied

substantially (median, 90.73%; range, 74.44% to 97.88%;

median, 62.86%; range, 0% to 80.95%, respectively;

Figure 2A, Table 3). The most sensitive single predictor

was FATHMM (cancer; 97.88%, 95% CI 96.87-98.82%),

which was statistically more sensitive than the most sensi-

tive meta-predictor CanDrA (breast) in this mutation set

(95.38%, 95% CI 93.85-96.81%, Figure 2A, Table 3; P <0.05).

Of the single predictors, CHASM (breast) was the most

specific (80.71%, 95% CI 73.33-87.12%) and the most spe-

cific meta-predictor was CanDrA (lung; 80.95%, 95% CI

73.64-87.32%), though no statistically significant differences

between these were observed in this mutation set (P >0.05).

Noteworthy, CanDrA (breast) had 0% specificity with the

set of SNVs tested, while the other CanDrA predictors

(lung/melanoma) achieved >75% specificity, which suggests

that the predictions made by CanDrA have a strong de-

pendency on tissue of origin. Although all 15 predictors

performed consistently well in terms of PPV (median,

92.59%; range, 85.19% to 96.97%), a dramatic difference

in NPV was observed (median, 50.00%; range, 0.00% to

79.31%; Figure 2A, Table 3). In particular, FATHMM

(cancer; 79.31%, 95% CI 70.59-87.66%) significantly out-

performed all single predictors (P <0.05) but CHASM

(melanoma; 63.01%, 95% CI 55.40-70.92%) in the set of

SNVs tested, and its NPV did not significantly differ from

that of the best meta-predictor CanDrA (lung; 63.35%,

95% CI 56.10-71.01%; P >0.05; Figure 2A, Table 3).

Intuitively, the best algorithm would have high and bal-

anced values for each of the performance statistics. With

this rationale, we calculated a ‘composite score’, ranging

from 0 to 4, by summing up the sensitivity, specificity,

PPV, and NPV of each predictor as an overall performance

indicator for each predictor. The median composite score

was 2.7866 (range, 1.8056 to 3.3413; Figure 2A, Table 3).

Using this parameter, the best-performing single predictor

was CHASM (lung; 3.2751, 95% CI 3.1418-3.3988) but

it was not significantly different from the best meta-

predictor CanDrA (lung) in this set of SNVs (3.3413,

95% CI 3.2103-3.4747, P >0.05, Figure 2A, Table 3).

We next performed the same analysis using only the

297 SNVs not included in the COSMIC database. In

this analysis, the median accuracy and sensitivity were

76.77% (range, 54.88% to 84.70%) and 79.26% (range,

Martelotto et al. Genome Biology 2014, 15:484 Page 6 of 20

http://genomebiology.com/2014/15/10/484



51.06% to 97.85%), respectively (Figure 2B, Table 4).

The most accurate single and meta-predictors in this con-

text were MutationTaster (84.51%, 95% CI 80.13-88.55%)

and CanDrA (lung; 84.70%, 95% CI 80.50-88.65%), re-

spectively (Figure 2B, Table 4). As compared to the ana-

lysis including all SNVs, when excluding SNVs present in

the COSMIC database, the accuracy of all predictors but

Mutation Assessor and MutationTaster were statistically

significantly reduced (P <0.05). Furthermore, eight of 15

mutation effect prediction algorithms showed statistically

significant reduction in sensitivity and 10 of 15 showed

a statistically significant reduction in PPV (Figure 2B;

Table 4).

To assess whether the mutation effect prediction algo-

rithms would have different performances when SNVs in

bona fide oncogenes, bona fide TSGs or new cancer genes

were considered, we selected from the set of 989 SNVs

those found in bona fide oncogenes, bona fide TSGs or

new cancer genes (n = 176, n = 783 or n = 30 SNVs, re-

spectively; Additional file 14). When only SNVs in onco-

genes were assessed, FATHMM (cancer) remained the

most accurate single predictor (96.59%, 95% CI 93.75-

98.86%; Additional files 15 and 16) and CanDrA (lung)

remained the most accurate meta-predictor (95.00%, 95%

CI 91.36-98.15%; Additional files 15 and 16). When only

SNVs affecting TSGs were tested, CHASM (lung) was the

most accurate single predictor (92.98%, 95% CI 91.19-

94.76%) and CanDrA (melanoma) was the most accurate

meta-predictor (93.46%, 95% CI 91.74-95.15%, Additional

files 15 and 16). Interestingly, six predictors, namely

CHASM (breast), CHASM (melanoma), FATHMM (mis-

sense), Mutation Assessor, CanDrA (melanoma), and

Condel performed significantly better for SNVs in TSGs

as compared to SNVs in oncogenes (P <0.05; Additional
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Figure 2 Performance statistics of mutation effect prediction algorithms. Based on the prediction results of (A) the non-neutral (n = 849)

and neutral (n = 140) single nucleotide variants (SNVs) included in this study and (B) the non-neutral (n = 188) and neutral (n = 109) SNVs

not present in the COSMIC database, the accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and

composite score for each predictor are plotted. Error bars represent the 95% CIs generated by bootstrapping. Single/independent predictors are

shown in blue bars, and meta-predictors are shown in orange bars.
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Table 3 Performance statistics of mutation effect prediction algorithms using all single nucleotide variants tested functionally (n = 989)

Prediction algorithm Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) Composite (95% CI)

CHASM (breast) 88.68% (86.55-90.70%) 89.99% (87.81-91.92%) 80.71% (73.33-87.12%) 96.59% (95.20-97.73%) 57.07% (50.23-64.58%) 3.2436 (3.1127-3.3669)

CHASM (lung) 90.09% (88.27-91.81%) 92.23% (90.40-94.04%) 77.14% (69.93-83.58%) 96.07% (94.74-97.31%) 62.07% (54.72-69.38%) 3.2751 (3.1418-3.3988)

CHASM (melanoma) 89.69% (87.77-91.51%) 93.64% (92.00-95.37%) 65.71% (57.35-73.51%) 94.31% (92.67-95.76%) 63.01% (55.40-70.92%) 3.1667 (3.0181-3.3079)

FATHMM (cancer) 91.00% (89.18-92.62%) 97.88% (96.87-98.82%) 49.29% (41.08-57.24%) 92.13% (90.26-93.72%) 79.31% (70.59-87.66%) 3.1860 (3.0326-3.3292)

FATHMM (missense) 82.51% (79.98-84.73%) 87.75% (85.46-89.94%) 50.71% (42.98-58.27%) 91.52% (89.53-93.23%) 40.57% (33.53-47.72%) 2.7056 (2.5576-2.8521)

Mutation Assessor 74.70% (71.89-77.51%) 76.65% (73.87-79.65%) 62.86% (54.61-71.21%) 92.59% (90.35-94.55%) 30.77% (25.69-36.70%) 2.6287 (2.4835-2.7842)

MutationTaster 88.57% (86.65-90.60%) 90.81% (88.94-92.84%) 75.00% (66.91-82.00%) 95.66% (94.10-97.00%) 57.38% (50.00-65.14%) 3.1885 (3.0502-3.3300)

PolyPhen-2 79.78% (77.05-82.11%) 84.22% (81.83-86.61%) 52.86% (44.51-61.15%) 91.55% (89.45-93.40%) 35.58% (29.44-42.16%) 2.6420 (2.4895-2.7915)

PROVEAN 73.71% (70.88-76.64%) 74.44% (71.51-77.43%) 69.29% (61.72-76.06%) 93.63% (91.82-95.31%) 30.89% (25.93-36.56%) 2.6825 (2.5505-2.8088)

SIFT 80.99% (78.26-83.42%) 86.10% (83.89-88.45%) 50.00% (41.93-58.40%) 91.26% (89.08-93.15%) 37.23% (30.34-44.28%) 2.6460 (2.4895-2.7968)

VEST 75.03% (72.50-77.76%) 82.69% (80.28-85.24%) 28.57% (21.01-35.40%) 87.53% (85.12-89.75%) 21.39% (15.91-27.57%) 2.2018 (2.0568-2.3395)

CanDrA (breast) 81.81% (79.23-84.26%) 95.38% (93.85-96.81%) 0% (0-0%) 85.19% (82.83-87.30%) 0% (0-0%) 1.8056 (1.7765-1.8340)

CanDrA (lung) 91.28% (89.54-93.04%) 92.86% (91.05-94.62%) 80.95% (73.64-87.32%) 96.97% (95.75-98.03%) 63.35% (56.10-71.01%) 3.3413 (3.2103-3.4747)

CanDrA (melanoma) 88.97% (87.02-90.91%) 90.73% (88.69-92.81%) 77.60% (69.57-84.40%) 96.33% (94.89-97.53%) 56.40% (48.77-63.74%) 3.2105 (3.0705-3.3507)

Condel 85.84% (83.42-88.17%) 92.58% (90.81-94.28%) 45.00% (37.06-53.72%) 91.08% (89.16-92.94%) 50.00% (41.43-59.06%) 2.7866 (2.6222-2.9552)

Based on the prediction results of all non-neutral and neutral single nucleotide variants included in this study, the accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and

composite score for each predictor were computed. The 95% confidence intervals (CI) generated by bootstrapping are shown in parentheses.
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Table 4 Performance statistics of mutation effect prediction algorithms using only functionally tested single nucleotide variants not present in the COSMIC

database (n = 297)

Prediction algorithm Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) Composite (95% CI)

CHASM (breast) 80.13% (75.42-84.18%) 72.34% (65.70-78.34%) 93.58% (88.89-97.96%) 95.10% (91.27-98.47%) 66.23% (58.62-73.42%) 3.2726 (3.1090-3.4151)

CHASM (lung) 82.49% (78.11-86.53%) 79.26% (73.26-84.95%) 88.07% (81.98-94.18%) 91.98% (87.58-96.20%) 71.11% (63.57-78.74%) 3.3042 (3.1370-3.4665)

CHASM (melanoma) 81.82% (77.44-86.20%) 86.17% (80.93-90.96%) 74.31% (65.71-82.46%) 85.26% (80.21-90.00%) 75.70% (67.29-83.91%) 3.2145 (3.0259-3.3971)

FATHMM (cancer) 80.13% (75.42-84.51%) 92.02% (87.98-95.83%) 59.63% (50.43-69.00%) 79.72% (74.21-84.82%) 81.25% (72.06-89.22%) 3.1263 (2.9242-3.3078)

FATHMM (missense) 75.42% (70.71-79.80%) 86.70% (81.82-91.37%) 55.96% (46.29-64.82%) 77.25% (71.67-82.33%) 70.93% (60.92-80.23%) 2.9085 (2.7014-3.1033)

Mutation Assessor 68.69% (63.64-73.40%) 71.28% (64.77-77.25%) 64.22% (54.46-72.81%) 77.46% (71.26-82.93%) 56.45% (47.82-64.87%) 2.6941 (2.4757-2.8892)

MutationTaster 84.51% (80.13-88.55%) 84.04% (78.53-89.25%) 85.32% (78.18-91.75%) 90.80% (86.05-95.00%) 75.61% (67.42-82.88%) 3.3578 (3.1879-3.5244)

PolyPhen-2 69.36% (64.31-74.41%) 78.72% (73.16-84.53%) 53.21% (43.59-62.50%) 74.37% (68.08-80.21%) 59.18% (49.47-69.01%) 2.6549 (2.4296-2.8672)

PROVEAN 58.59% (52.86-63.64%) 51.06% (43.78-57.73%) 71.56% (62.83-80.00%) 75.59% (68.61-82.81%) 45.88% (38.61-53.76%) 2.4410 (2.2263-2.6521)

SIFT 69.70% (64.65-74.75%) 81.91% (76.09-87.57%) 48.62% (38.89-58.62%) 73.33% (67.31-78.92%) 60.92% (51.14-71.64%) 2.6479 (2.4175-2.8681)

VEST 54.88% (49.49-60.27%) 71.81% (65.80-77.89%) 25.69% (18.01-34.19%) 62.50% (56.34-68.78%) 34.57% (24.99-45.21%) 1.9456 (1.7302-2.1701)

CanDrA (breast) 61.69% (55.89-66.78%) 97.85% (95.50-99.48%) 0% (0-0%) 62.54% (57.04-67.82%) 0% (0-0%) 1.6039 (1.5437-1.6593)

CanDrA (lung) 84.70% (80.50-88.65%) 79.12% (73.21-84.57%) 94.95% (89.81-98.94%) 96.64% (93.29-99.31%) 71.21% (63.41-78.30%) 3.4193 (3.2675-3.5628)

CanDrA (melanoma) 82.61% (77.94-86.64%) 78.09% (71.43-83.82%) 90.82% (85.06-96.00%) 93.92% (89.86-97.33%) 69.53% (61.10-77.05%) 3.3236 (3.1491-3.4780)

Condel 76.77% (72.05-81.48%) 93.09% (89.36-96.32%) 48.62% (39.62-58.33%) 75.76% (70.38-81.03%) 80.30% (70.58-89.55%) 2.9777 (2.7814-3.1877)

Based on the prediction results of non-neutral and neutral single nucleotide variants not present in the COSMIC database, the accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value

(NPV), and composite score for each predictor were computed. The 95% confidence intervals (CI) generated by bootstrapping are shown in parentheses.
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files 15 and 16). On the other hand, FATHMM (cancer),

MutationTaster, PolyPhen-2, PROVEAN, and VEST per-

formed better for SNVs in oncogenes than in TSGs

(P <0.05). These results suggest that some of the predic-

tors showed preferential performance towards SNVs in

either oncogenes or TSGs; alternatively, these differ-

ences in performance may stem from the fact that there

was a statistically significant difference in the proportion of

neutral SNVs in oncogenes as compared to TSGs (Fisher’s

exact test, two-tailed, P <0.0001). The same comparisons

could not be performed for SNVs affecting new cancer

genes, as no evidence to support a neutral classification for

SNVs affecting these genes was obtained in the literature

search, reflecting the relative novelty of these SNVs.

Taken together, these results demonstrate that muta-

tion effect prediction algorithms are not equivalent for

the classification of individual SNVs, that the predictions

from some algorithms may be tumor tissue dependent,

and that some may have a better performance for the

identification of neutral than non-neutral SNVs.

Combination of mutation effect prediction algorithms

To evaluate whether combinations of single predictors

would result in an improvement of the predictions made

in this dataset, we generated 11,253 combinations by

using n (n =2, 3, … 11) single predictors at a time, with

a given mutation being considered non-neutral if at least

p (p =1, 2, … 11) predictors called it non-neutral for all

combinations of n and p. We computed the performance

statistics and their confidence intervals for each of these

combinations from 1,000 random subsets comprising

two-thirds and one-third of the total dataset (referred to

as ‘subset 1’ and ‘subset 2’, respectively; Additional file

17). We ranked the combinations based on mean accur-

acy or based on mean composite score for subsets 1 and

2 separately, and compared their performance to the best-

performing single and meta-predictors, respectively. Fur-

thermore, as excluding SNVs not present in the COSMIC

database had a significant impact on the performance of

many predictors and their pairwise agreement, we also

performed the same experiment using only non-COSMIC

SNVs (Additional file 18).

Of the 11,253 possible single predictor combinations

we evaluated using all SNVs, 1,854 predictor combina-

tions were found to have a numerically higher mean ac-

curacy in subsets 1 and 2 than the most accurate single

predictor (that is, FATHMM (cancer)). Six of these

combinations were concurrently significantly more ac-

curate than the most accurate single predictor (that is,

FATHMM (cancer)) in both subsets (Additional files 19,

20, and 21). When ranking the predictor combinations ac-

cording to composite score, 1,483 combinations had nu-

merically higher mean composite scores in subsets 1 and

2 than the composite score of the best single predictor

(that is, CHASM (lung)); five of these showed statistically

significantly higher composite scores than those of

CHASM (lung) in both subsets (Figure 3, Additional

files 19 and 21). The mutation effect prediction algo-

rithm combination that resulted in a significant increase

in both accuracy and composite score as compared to

the best single predictor and meta-predictor in both

subsets was CHASM (breast) and MutationTaster. This

predictor combination called a given SNV non-neutral

if at least one of CHASM (breast) and MutationTaster

called it non-neutral, and it was ranked first in terms of

both accuracy and composite score in subsets 1 and 2

independently (in subset 1: 95.46%, 95% CI 94.54-96.51%

and 3.6255, 95% CI 3.5584-3.6982; in subset 2: 95.43%,

95% CI 93.33-97.27%, and 3.6236, 95% CI 3.4841-3.7573,

respectively; Additional file 21). Similar observations were

made when SNVs found in the COSMIC database were

excluded. Only the CHASM (breast) and MutationTaster

predictor combination outperformed the most accurate

single predictor MutationTaster consistently in both sub-

sets (Figure 3; Additional files 19, 20, and 22).

Although mutation effect prediction algorithm combi-

nations had a relatively limited impact on accuracy and

composite score, some predictor combinations signifi-

cantly improved the NPV as compared to the best single

and meta-predictor (Figure 3, Additional files 20, 21, and

22). Again, the CHASM (breast) and MutationTaster pre-

dictor combination resulted in a significant improvement

in NPV as compared to the NPV of the best single pre-

dictor or the best meta-predictor in all subsets. When ana-

lyzing the top 10, top 20, top 50, and top 100 combinations

of mutation effect prediction algorithms, we noted that

MutationTaster, CHASM (breast), and CHASM (lung)

were consistently present in the top performing predictor

combinations in subsets 1 and 2 using the 989 functionally

validated SNVs, irrespective of whether the combination

predictor performance was ranked according to accuracy

or composite score (Figure 4; Additional file 23). When

only the non-COSMIC SNVs were included in the ana-

lysis, the same mutation effect prediction algorithms

were consistently present in the best performing muta-

tion effect prediction algorithm combinations (Figure 4;

Additional file 23).

While the most consistently accurate predictor com-

bination called a given mutation non-neutral in this

dataset if at least one of CHASM (breast) and Mutation-

Taster called it non-neutral, we also evaluated whether

there were optimal combinations of n and p. In both

subsets, for any given n (1 ≤ n ≤4), the highest accuracy

was achieved when p ≈ 2n (Additional files 24 and 25 for

subset 1; data for subset 2 not shown). Similarly, for any

given p (3≤ p ≤11), the optimal n was approximately p/2

(Additional files 24 and 25 for subset 1; data for subset 2

not shown). Similar observations could be made for the
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Figure 3 (See legend on next page.)
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results generated by using only the non-COSMIC SNVs

(Additional files 26 and 27 for subset 1; data for subset 2

not shown).

Taken together, the combination of mutation effect pre-

diction algorithms resulted in a modest but significant im-

provement in accuracy and composite score. It should be

noted, however, that selected combinations of mutation

effect prediction algorithms significantly improved NPV.

This information can be instrumental in ruling out SNVs

that should not be followed up experimentally and/or

clinically, given that SNVs considered neutral by these

combinations have a higher probability of being genuinely

neutral than those called neutral by single predictors or

meta-predictors individually.

Discussion
Here we demonstrated, by using a set of extensively cu-

rated, ‘gold-standard’ list of mutations, that mutation effect

prediction algorithms are not equivalent for the classifica-

tion of individual mutations, and that the agreement be-

tween predictors is modest and dependent on the set of

mutations and mutation effect type. The agreement be-

tween cancer-specific prediction algorithms, which define

driver versus passenger mutations, was more consistent

than that of non-cancer-specific predictors, which differen-

tiate pathogenic versus non-pathogenic mutations. Fur-

thermore, we observed that the predictions made by some

algorithms may be tumor tissue dependent, and that others

may have a better performance for the identification of

neutral than non-neutral mutations.

A comparative analysis of the functional predictions of

15 commonly used mutation effect prediction algorithms

revealed distinct sensitivities, specificities, PPVs and NPVs

when a dataset of functionally/experimentally assessed mu-

tations from six bona fide oncogenes, six new cancer genes,

and three bona fide TSGs was tested. For instance, while

FATHMM (cancer) had the highest sensitivity (97.88%,

95% CI 96.87-98.82%) in the dataset analyzed, its specificity

was limited (49.29%, 95% CI 41.08-57.24%). On the other

hand, CHASM (breast) had good specificity (80.71%,

95% CI 73.33-87.12%) but limited NPV (57.07%, 95% CI

50.23-64.58%).

Most of the single predictors and meta-predictors dis-

played very good PPVs, however their NPVs were found

to be relatively low. Using a combination of single pre-

diction algorithms, the combination of CHASM (breast)

and MutationTaster resulted in a significant improve-

ment in accuracy as compared to the accuracy obtained

with the best single predictor and meta-predictor in the

SNV dataset studied, however this increase was mod-

est. Importantly, however, by using mutation effect pre-

dictor algorithm combinations, we achieved substantial

statistically significant improvements in NPV. Different

combinations of individual predictors including CHASM

(breast) and MutationTaster were repeatedly found to have

a significantly higher NPV than the best single predictor

and the best meta-predictor in this dataset, while at least

maintaining equivalent accuracy and composite score. In

the effort to sift through lists of mutations to identify bio-

logically interesting candidates to take forward for func-

tional experiments, NPV is an often-overlooked measure.

A high NPV allows for the exclusion of passenger or neu-

tral alterations with greater confidence, without the risk of

losing truly pathogenic mutations called neutral/passenger

by a given algorithm.

Our analysis further revealed that some mutation ef-

fect prediction algorithms are dependent on the type of

gene altered. In particular for the case of CanDrA meta-

predictor, as all but one TP53 SNVs were predicted to be

‘drivers’ by all CanDrA algorithms (that is, CanDrA breast/

lung/melanoma), whereas all BRCA1 and BRCA2 muta-

tions were predicted to be ‘drivers’ by CanDrA (breast) but

almost exclusively ‘passengers/no-call’ by CanDrA (lung/

melanoma). This suggests that some predictors are highly

tissue-specific and users ought to employ predictors appro-

priate for the tumor tissue type analyzed.

Our study has several limitations, despite using a set

of curated mutations in bona fide oncogenes, new cancer

genes, and bona fide TSGs. First, the dataset we employed

has a limited size, and neutral mutations were largely de-

rived from TSGs, in particular BRCA1 and BRCA2, which

may have caused biases in the estimation of specificity and

NPV. Importantly, however, unlike previous comparisons

of mutation effect prediction algorithms, this study has

(See figure on previous page.)

Figure 3 Performance statistics of the top five mutation effect prediction algorithm combinations as ranked by composite scores.

Prediction results of the non-neutral (n = 849) and neutral (n = 140) single nucleotide variants (SNVs) in the entire dataset (A, B) and the non-neutral

(n = 188) and neutral (n = 109) SNVs not present in the COSMIC dataset (C, D) are shown. Results are ranked according to the composite scores of

each mutation effect prediction algorithm combination, and the corresponding accuracy, sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV), and composite score of the top five prediction algorithm combinations in subset 1 (A, C) and subset 2 (B, D) are plotted. Error

bars represent the 95% CIs generated by 1,000 random samples of subsets 1 and 2. Red bars represent predictor combinations, blue bars single/

independent predictors, and orange bars meta-predictors. Blue stars: statistically significant improvement in composite score as compared to that of

the best performing single/independent predictor; orange stars: statistically significant improvement in composite score as compared to that

of the best performing meta-predictor; blue triangles: statistically significant improvement in NPV as compared to that of the best performing

single/independent predictor; orange triangles: statistically significant improvement in NPV as compared to that of the best performing meta-predictor.
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employed rather rigorous standards to define the mutation

set to be analyzed, by leveraging functional evidence from

an extensive literature search and database mining. Sec-

ond, mutations may be context-dependent, in that they

would only elicit a phenotype under particular circum-

stances, such as genetic background. Hence, the number

of mutations considered of unknown or indeterminate sig-

nificance was high. Third, a substantial number of neutral

and non-neutral mutations was obtained from datasets re-

lated to the impact of germline mutations. The actual im-

pact of those mutations when they are found as somatic

genetic alterations would require further investigation.
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Figure 4 Recurrence of individual mutation effect prediction algorithms in the top performing mutation effect prediction algorithm

combinations ranked by composite score. The top 10, top 20, top 50, and top 100 combinations of prediction algorithms were defined

using the non-neutral (n = 849) and neutral (n = 140) single nucleotide variants (SNVs) included in the entire dataset and ranked according to

composite score. The frequency of each single mutation effect predictor present in these top combinations was determined in subset 1 and

subset 2 (A). The top 10, top 20, top 50, and top 100 combinations of prediction algorithms were defined using the non-neutral (n = 188) and

neutral (n = 109) SNVs not present in the COSMIC database and ranked according to composite score. The frequency of each single mutation

effect predictor present in these top combinations was determined in subset 1 and subset 2 (B).
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Fourth, given that some predictors display distinct perfor-

mances according to the tumor tissue type and that some

SNVs included in this dataset are preferentially found in

specific tumor types (for example, BRCA1 and BRCA2

mutations are more frequently found in breast and

ovarian cancers), this dataset could theoretically favor

mutation effect prediction algorithms that are breast

cancer-specific. This was not observed, however, given

that the best performing single predictors and meta-

predictors were not breast cancer-specific. Fifth, the

agreement between mutation effect prediction algo-

rithms employing a low confidence category in addition

to the neutral and non-neutral categories of SNVs is

dependent on the cut-points chosen to define predictions

of low confidence. It should be noted, however, that similar

results for prediction algorithms with a pre-defined low

confidence category were observed as compared to those

where a low confidence category was defined employing

a heuristic approach based on the original descriptions

and online sources of the predictors. Sixth, CHASM

(breast/lung/melanoma), FATHMM (cancer/missense),

and PolyPhen-2 are algorithms that employed training

sets in their development and validation. Given the ap-

proach employed to create the ‘gold standard’ dataset

used in this study, overlaps between our ‘gold standard’

dataset and the training sets employed for the develop-

ment of these algorithms were inevitable. To minimize

potential biases, we have performed all analyses after

the removal of all functionally curated SNVs present in

COSMIC; however, even after taking this step, a residual

number of SNVs present in the original training sets

remained (Additional file 28). When we compared the

performance of these mutation effect predictors after

the removal of SNVs present in COSMIC or in the ori-

ginal training sets, we either observed no significant

differences in their accuracy or a lower accuracy when

COSMIC SNVs were removed (Additional file 29). Finally,

although experimental validation is informative, it is not

often definitive. In particular for neutral effects, it is plaus-

ible that the results of such experiments are context

dependent (that is, cell line or organism employed and the

constellation of mutations already present in a given

model). For instance, the true effect of some mutations

may be conditioned by the genetic make-up (that is, quan-

titative trait loci, epistasis) [31,32], be only effective in a

particular developmental stage [33], or be species-specific

[34]. On the other hand, non-neutral mutation effects do

not necessarily imply causality with regards to an organis-

mal level phenotype; many dozens of loss-of-function vari-

ants exist in healthy humans [35].

Conclusions
Our study demonstrates that the challenges researchers

face at the time of analyzing massively parallel sequencing

data to identify variants for further experimental studies

are genuine. The information provided by mutation effect

prediction algorithms is not equivalent. None of the algo-

rithms analyzed here was found to deliver optimal accur-

acy, sensitivity, specificity, PPV, and NPV in the mutation

dataset studied. Mutation effect predictors are not equiva-

lent for the classification of individual mutations. The

performance of some of these predictors may be dependent

on tumor tissue and mutation type (that is, canonical versus

non-canonical mutations, neutral versus non-neutral muta-

tions). Combinations of mutation effect predictors, albeit

providing only modest but significant improvements in the

overall accuracy when compared to individual predictors or

meta-predictors, were found to result in substantially im-

proved NPVs without compromising accuracy.

Materials and methods
Mutation sets

To standardize the procedure of compiling mutations

that can be employed for the benchmarking of mutation

effect predictors, mutations affecting six bona fide onco-

genes (BRAF, KIT, PIK3CA, KRAS, EGFR, and ERRB2),

whose mutations preferentially affect kinase domains, six

recently described cancer genes (DICER1, ESR1, IDH1,

IDH2, MYOD1, and SF3B1), whose mutations do not

affect kinase domains, and three bona fide TSGs (TP53,

BRCA1, and BRCA2) were retrieved from the TCGA

Pan-Cancer dataset by Kandoth et al. [36] and from stud-

ies functionally testing mutations affecting these genes

(Additional file 2). In addition, for TSGs, specific data-

bases were employed; for TP53, the IARC database

[29,37], and for BRCA1 and BRCA2, the Universal Muta-

tion Database (UMD) [28,38,39]. This mining exercise re-

sulted in the identification of 3,706 mutations, of which

3,591 were SNVs (Table 1, Additional file 2). Given that

some mutation effect prediction algorithms (that is,

PolyPhen-2, MutationTaster, CanDrA, and Condel) do

not process dinucleotide or trinucleotide missense mu-

tations, and to have the same number of mutations

successfully analyzed by each predictor, we have only in-

cluded SNVs for the purpose of creating a mutation

dataset to benchmark mutation effect predictors. SNVs

were also annotated based on their presence in the

COSMIC dataset v68 [26].

Literature search

Literature search was performed by four of the authors

(LGM, MRDF, YZ, SP) to identify experimental evidence

of functional effects of each mutation. This strategy

entailed the use of Boolean logic in combination with

search engines such as PubMed, ScienceDirect, Google

Scholar, and MEDLINE. Search terms were combined

using Boolean (that is, AND, OR) and Adjacency (that

is, NEAR) operators to create search statements as well
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as to narrow and refine the search (for example, BRAF

AND V600E AND validation/function, ERBB2 AND

mutation NEAR kinase domain AND validation/func-

tion). In addition, the references listed in the papers

found were also scrutinized to aid the search of add-

itional literature in support of the findings. For TSGs,

in addition to literature search, the IARC TP53 functional

assessment dataset [29], UMD-BRCA1, and UMD-BRCA2

mutation databases [28] were employed to ascertain

whether specific missense mutations in TP53 would

be causative of Li-Fraumeni or Li-Fraumeni-like syn-

drome or have been functionally assessed, and muta-

tions in BRCA1 and BRCA2 would be causative of

early onset breast and ovarian cancer syndrome, respect-

ively (see below).

Oncogenes and new cancer genes

The six bona fide oncogenes, namely BRAF, KIT, PIK3CA,

KRAS, EGFR, and ERRB2 and the six new cancer genes,

namely DICER1, ESR1, IDH1, IDH2, MYOD1, and SF3B1

used for the present analysis were selected on the basis of

the presence and the absence of a kinase domain, re-

spectively, and the availability of studies investigating

functionally the impact of mutations affecting these

genes. In this literature search, direct functional evi-

dence to determine whether a mutation was neutral

(that is, passenger) or non-neutral (that is, pathogenic)

was sought. The functional impact of SNVs affecting

these 12 genes was categorized into six groups, namely:

(1) Change in kinase, GTPase, or other enzymatic activ-

ity (for example, RNase); (2) Effect in response to ligand/

substrate, impact on downstream effectors/pathways, or

cell proliferation/survival, differentiation, apoptosis; (3)

Ability to immortalize or transform human or murine

cells (for example, MCF10A, BaF3, NIH3T3 cell lines)

and/or anchorage-independent growth; (4) Response to

specific chemical/biological compounds, therapeutic

agents, or temperature; (5) Tumor growth/induction

in vivo (for example, xenografts, mouse/fish models), or

changes in the rates of progression-free or overall survival

in pre-clinical models; and (6) Changes in genome (that is,

aneuploidy), epigenome (that is, methylation), transcrip-

tome (that is, splicing), miRNA biogenesis, or DNA/RNA

binding affinity (Additional file 2). SNVs affecting these

genes were considered non-neutral if there was literature

evidence to support their impact on at least one of the

mentioned categories. When the functional testing dem-

onstrated no significant impact on the wild-type function

of the protein in at least one functional category, and/or

no evidence was found for other categories, the SNVs

were classified as neutral mutations. SNVs for which no

reliable functional evidence or conflicting evidence was

found for any of the six categories, were regarded as

uncertain.

Tumor suppressor genes (TSGs)

The IARC datasets ‘TP53 germline mutations and family

history’ and ‘Functional assessment of p53 mutant pro-

teins in various experimental assays’ (R17) [29,37] were

employed to ascertain whether specific mutations

affecting TP53 would be associated with the develop-

ment of Li-Fraumeni syndrome or Li-Fraumeni-like syn-

drome, and/or whether specific TP53 SNVs would result

in conserved wild-type function, loss of function, domin-

ant negative activity, gain of function, and/or temperature

sensitivity in various systems and cell lines [29,37]. TP53

mutations strictly associated with Li-Fraumeni syndrome

or Li-Fraumeni-like syndrome, and present in patients

without additional germline mutations affecting cancer

causing genes (for example, PTEN, BRCA1, or BRCA2),

and/or meeting at least one of the above functional levels

of evidence were considered non-neutral, whereas those

mutations lacking an association with Li-Fraumeni syn-

drome or Li-Fraumeni-like syndrome or a functional im-

pact were considered neutral. The remaining TP53 SNVs

were considered uncertain. For BRCA1 and BRCA2, the

UMD-BRCA1 (4 February 2014 update) and UMD-

BRCA2 (22 January 2014 update) mutation databases

[28,38,39] were used to collect information on specific

BRCA1 and BRCA2 mutations. Mutations with validated

functional evidence classified as ‘5 - Causal’ in the data-

base were classified as non-neutral in this study, ‘1 - Neu-

tral’ in the database were classified as neutral in this study,

and ‘4 - Likely causal’, ‘3 - UV’, and ‘2 - Likely neutral’ in

the database were classified as uncertain in this study.

Assessment of mutation effect predictors

We first tested the set of 3,591 SNVs using 15 prediction

algorithms, including 11 single predictors and four meta-

predictors or consensus classifiers (Additional file 1) using

default settings. The single predictors included PROVEAN

(v1.1.3) [14] and SIFT (Ensemble 66) [16] from [40], which

used the ‘PROVEAN Human Genome Variants’ and pro-

vided both PROVEAN and SIFT results (default prediction

cutoff of -2.5 and 0.05, respectively). For PolyPhen-2

(v2.2.2) [17], we employed the Batch Query Data tool from

[41], using the ‘HumDiv’ classifier model (default predic-

tion categories). We used the downloadable version of

CHASM (v1.0.7) [20] employing a cutoff of 0.3, which was

selected as the approximate point of intersection of the dis-

tributions of scores for the drivers and passengers from the

original study [20]. SNVs with scores ≤0.3 were classified

as ‘drivers’ and those with scores >0.3 were classified as

‘passengers’. For CHASM, we selected classifiers specific to

breast cancer, melanoma and lung adenocarcinoma, re-

ferred to as ‘CHASM (breast)’, ‘CHASM (melanoma)’, and

‘CHASM (lung)’, respectively. We obtained VEST (v3.0)

[22] predictions from [42], employing a cutoff of 0.5. For

VEST, given that no particular threshold was recommend
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by the authors, the cutoff for this study was selected to bal-

ance false-positive and false-negative rates based on simu-

lations from the original study [22]. SNVs with scores ≥0.5

were considered ‘functional’ and those with scores <0.5

were considered ‘neutral’. We ran Mutation Assessor (re-

lease 2) [18] and MutationTaster (24 July 2014 update) [23]

from [43,44], respectively, following the instructions for

data input. For FATHMM ([45], v2.3) [21], we used both

‘Inherited Disease’ tool (prediction algorithm: weighted;

phenotypic associations: disease ontology, default predic-

tion categories; referred to as ‘FATHMM (missense)’) and

‘Cancer’ tool (default prediction threshold -0.75, referred

to as ‘FATHMM (cancer)’), as previously described [21].

The meta-predictors tested in this study included Condel

(db version 05) [19] and CanDrA (v1.0) [24]. For Condel,

we employed the website [46] following instructions for

data input (default prediction categories). For CanDrA

[24], we downloaded and installed the executable pack-

age and associated annotation data files for breast can-

cer (‘CanDrA (breast)’), lung adenocarcinoma (‘CanDrA

(lung)’), and melanoma (‘CanDrA (melanoma)’) from

[47] and performed the classifications as described (de-

fault prediction categories) [24].

For the purposes of assessing performance and compar-

ing predictors, some of the categories returned by the pre-

dictors were merged. For PolyPhen-2, ‘probably damaging’

and ‘possibly damaging’ were considered non-neutral. For

Mutation Assessor, ‘high’ and ‘medium’ were considered

non-neutral and ‘low’ and ‘neutral’ were considered neu-

tral. For FATHMM (cancer), ‘CANCER’ was considered

non-neutral and ‘PASSENGER/OTHER’ was considered

neutral. For MutationTaster, ‘disease_causing’ and ‘disea-

se_causing_automatic’ were considered non-neutral and

‘polymorphism’ and ‘polymorphism_automatic’ were con-

sidered neutral. For the remaining predictors, ‘damaging’,

‘functional’, ‘driver’, and ‘deleterious’ were considered non-

neutral and ‘tolerated’, ‘neutral’, ‘passenger’, and ‘benign’

were considered neutral. For CanDrA, ‘no-call’ was con-

sidered equivocal.

We next tested the set of 3,591 SNVs using 15 predic-

tion algorithms by introducing a prediction category of

low confidence. CanDrA (breast/lung/melanoma) (‘no-

call’), PolyPhen-2 (‘possibly damaging’), and Mutation

Assessor (‘low’) have pre-specified categories that iden-

tify SNVs whose predictions are based on limited confi-

dence. For the other predictors, we employed a heuristic

approach based on the original description of each pre-

dictor and additional online sources to define a category

of SNVs whose predictions were of low confidence. For

CHASM (breast/lung/melanoma), based on the histo-

grams of CHASM scores for driver mutations and pas-

senger mutations described in the original study [20],

we called predictions with scores between 0.25 and 0.35

as low confidence. For FATHMM (cancer), based on the

interactive prediction threshold graph (online documen-

tation, [48]), prediction scores between -1.65 and 0.1

were considered as low confidence. For FATHMM (mis-

sense), based on the distribution of the predicted mag-

nitude of effect for disease-associated and functionally

neutral mutations using the weighted method in the ori-

ginal study [21], the region with the highest overlap of

the disease-associated and functionally neutral scores

(that is, between -2.5 and 0) was classified as low confi-

dence. For MutationTaster, we considered predictions

with probabilities of ≤95% as low confidence. For PRO-

VEAN, based on the stringency score thresholds described

in the online documentation [49], predictions with scores

between -4.1 and -1.3 were considered low confidence.

For SIFT, given the lack of reported stringency score

thresholds in the original study [16] or in the online docu-

mentation, low confidence prediction scores between 0.04

and 0.1 were selected based on the distribution of SIFT

scores in our dataset. In brief, these cutoffs were chosen

on the basis of a density plot of the SIFT scores generated

with the results from our dataset, which displayed a non-

parametric distribution (left skewed) with a mode cen-

tered around 0.005 and a second much smaller mode

centered around 0.999. For VEST, based on the density

plots created from VEST score distributions reported in

the original study [22], predictions with scores between

0.45 and 0.55 were considered low confidence. For Con-

del, based on the density of scores for the known neutral

and deleterious mutations as reported in the online docu-

mentation [50] the region with the highest overlap of the

neutral and deleterious mutation scores (that is, between

0.489 and 0.547) was classified as low confidence.

The mutation effect prediction algorithms were assessed

using either all SNVs included in this study (n = 3,591) or

using only the neutral and non-neutral SNVs (n = 989). In

addition, we performed the analyses of these two sets of

SNVs by removing either all SNVs present in the COSMIC

dataset v68 (n = 1,699 and n = 297, respectively) or by re-

moving all SNVs present in the training sets of CHASM

(breast/lung/melanoma), FATHMM (cancer), FATHMM

(missense) or PolyPhen-2. For CHASM (breast/lung/mel-

anoma), training sets were retrieved from the drivers.tmps,

null.tmps and passengers.tmps of the respective built clas-

sifiers [51] (Additional file 28). For FATHMM (cancer)

and FATHMM (missense), training sets were retrieved

from [52] (Additional file 28). For PolyPhen-2, training

sets were retrieved from [53] (Additional file 28).

Analysis of agreement between mutation effect predictors

We converted the calls made by each predictor into

neutral and non-neutral (as described above) and per-

formed hierarchical clustering using complete linkage

and Hamming distance metric. We assessed the agree-

ment between the predictors using unweighted Cohen’s
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Kappa coefficient with 95% confidence intervals (CIs).

Inter-rater agreement was tested to determine the agree-

ment between different mutation effect prediction algo-

rithms. We considered Kappa coefficients <0 to be no

agreement, between 0.01 and 0.20 to be slight agreement,

between 0.21 and 0.40 to be fair agreement, between 0.41

and 0.60 to be moderate agreement, between 0.61 and

0.80 to be substantial agreement, and between 0.81 and 1

to constitute almost-perfect agreement [54].

Assessment of mutation effect predictor performance

The performance of each predictor was evaluated based

on the concordance with our established, functionally

validated neutral and non-neutral mutation categories.

We evaluated the accuracy, sensitivity, specificity, positive

predictive value (PPV), negative predictive value (NPV)

for each predictor, and a composite score, ranging from 0

to 4, defined as the sum of sensitivity, specificity, PPV, and

NPV. For the analyses performed, sensitivity measures the

proportion of experimentally validated non-neutral muta-

tions that were correctly identified, that is,

sensitivity ¼ the number of non‐neutral mutations correctly classified as non‐neutral

the number of all experimentally validated non‐neutral mutations

whereas specificity measures the proportion of experi-

mentally validated neutral mutations that were correctly

identified, that is,

specificity ¼ the number of neutral mutations correctly classified as neutral

the number of all experimentally validated neutral mutations

PPV is defined as the proportion of mutations pre-

dicted to be non-neutral that were experimentally vali-

dated as non-neutral, that is,

PPV ¼ the number of non‐neutral mutations correctly classified as non‐neutral

the number of mutations predicted to be non‐neutral

and NPV is the proportion of mutations predicted to be

neutral that were experimentally validated as neutral,

that is,

NPV ¼ the number of neutral mutations correctly classified as neutral

the number of mutations predicted to be neutral

95% CIs for each of these measures were generated by

performing resampling with replacement (that is, boot-

strapping) for 1,000 iterations. For the CIs generated

from bootstrapping, if CIs touch or do not overlap, the

difference is considered statistically significant as the sig-

nificance levels satisfies P <0.05 [55]. Briefly, if the two

standard errors are se1 and se2, then the standard error

of the difference is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se12 þ se22
p

and the difference be-

tween the means is 2(se1 + se2), hence the P value can be

calculated from z ¼ 2 se1þse2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se12þse22
p . This approach has been

shown to be valid for a range of values and successfully

employed in a previous study [55].

Combination of mutation effect predictors

To assess the effect of combining single predictors, we

made use of the computed categories of individual pre-

dictors. For each possible combination of the 11 single

predictors using n (n =2, 3, … 11) predictors at a time, a

mutation would be considered non-neutral if at least p

(p =1, 2, … n) predictors considered it non-neutral. To

test the impact of the combinations of predictors, we used

a split-sample approach by dividing the dataset of function-

ally validated mutations randomly into two sub-datasets

(that is, subsets), each consisting of two-thirds (‘subset 1’)

and one-third (‘subset 2’) of the mutations included in the

entire dataset. We computed performance statistics (accur-

acy, sensitivity, specificity, PPV, NPV, and composite score)

for each combination of n and p, resulting in 11,253 unique

combinations. To define the confidence intervals for the

predictions, we repeated the splitting of the dataset 1,000

times to create 1,000 random splits of the dataset and

computed the performance statistics for each iteration.

Separately for subsets 1 and 2, we ranked the predictor

combinations based on their accuracy or their composite

scores. Differences in the performance statistics were con-

sidered statistically significant if their confidence intervals

touched or did not overlap (see above).

Additional files

Additional file 1: Overview of computational mutation effect

prediction algorithms analyzed in this study. Prediction algorithms in

blue boxes represent single/independent predictors, those in black boxes

meta-predictors. Arrows between predictors indicate dependency, such

that predictions made by the predictor at the tail of the arrows are

integrated by the predictor at the head of the arrows. Predictors are

annotated based on the features used in the algorithms. Features are

divided into four categories: C: conservation, such as conservation scores

and homology search; S: protein structure, such as secondary and tertiary

structures and accessible surfaces; A: protein sequence annotation, such

as annotation information from Uniprot and Pfam; and F: mutational

frequency from databases such as COSMIC, HapMap, and Human Gene

Mutation Database. The version of each algorithm included in this study

is described in each box.

Additional file 2: List of all mutations included in this study. This

table lists all 3,706 missense mutations included in the study, their

classification using 15 mutation effect prediction algorithms, their

experimental functional categories, the evidence supporting the

experimental functional classification, and their association with

hereditary diseases (TP53, BRCA1, and BRCA2).

Additional file 3: Inter-rater agreement of mutation effect

prediction algorithms as defined by unweighted Cohen’s Kappa

coefficients for all 3,591 single nucleotide variants and all 1,699

non-COSMIC single nucleotide variants included in the dataset.

Additional file 4: Inter-rater agreement between 15 mutation effect

prediction algorithms for the single nucleotide variants for which

functional data are available. Hierarchical clustering of the calls made

by 15 mutation effect prediction algorithms using (A) all 989 single

nucleotide variants (SNVs) for which functional data are available, and

(C) the subset of 297 SNVs not present in the COSMIC database. The

unweighted Cohen’s Kappa coefficient was computed for each pair of

predictors using (B) all 989 SNVs and (D) the subset of 297 SNVs not

present in the COSMIC database. The ranges of unweighted Kappa values

and their corresponding colors are indicated in the color key.
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Additional file 5: Inter-rater agreement of mutation effect

prediction algorithms as defined by unweighted Cohen’s Kappa

coefficients for the 989 single nucleotide variants for which

functional data are available and for the subset of these single

nucleotide variants (n = 297) that are not in the COSMIC database.

Additional file 6: Summary of the 1,699 single nucleotide variants

included in this study not present in the COSMIC database and

their experimental functional categories.

Additional file 7: Predictions of single nucleotide variants not

present in the COSMIC database (n = 1,699) by 15 mutation effect

prediction algorithms.

Additional file 8: Predictions of functionally validated single

nucleotide variants by 15 mutation effect prediction algorithms

with low confidence prediction categories, for all mutations

(n = 3,591) and for mutations not present in the COSMIC database

(n = 1,699).

Additional file 9: Number of single nucleotide variants classified

as of low confidence by 15 mutation effect prediction

algorithms.

Additional file 10: Inter-rater agreement between 15 mutation

effect prediction algorithms for all 3,591 single nucleotide variants

(SNVs) and all 1,699 non-COSMIC SNVs included in the dataset,

when a low confidence category is included. Hierarchical clustering

of the calls (that is, neutral, non-neutral, low confidence) made by 15

mutation effect prediction algorithms using (A) all 3,591 SNVs included in

this study, and (C) the 1,699 SNVs not present in the COSMIC database.

The unweighted Cohen’s Kappa coefficient was computed for each pair

of predictors using (B) all 3,591 SNVs and (D) the 1,699 SNVs not present

in the COSMIC database. The ranges of unweighted Kappa values and

their corresponding colors are indicated in the color key.

Additional file 11: Inter-rater agreement of mutation effect

prediction algorithms as defined by unweighted Cohen’s Kappa

coefficients for predictions made for all single nucleotide variants

(n = 3,591) and for single nucleotide variants not present in the

COSMIC database (n = 1,699) when a low confidence category is

included.

Additional file 12: Inter-rater agreement between 15 mutation

effect prediction algorithms for single nucleotide variants for which

functional data are available, when a low confidence category is

included. Hierarchical clustering of the calls made (that is, neutral,

non-neutral, low confidence) by 15 mutation effect prediction algorithms

using (A) all 989 single nucleotide variants (SNVs) for which functional data

are available, and (C) the subset of 297 SNVs not present in the COSMIC

database. The unweighted Cohen’s Kappa coefficient was computed for

each pair of predictors using (B) all 989 SNVs and (D) the subset of 297

SNVs not present in the COSMIC database. The ranges of unweighted Kappa

values and their corresponding colors are indicated in the color key.

Additional file 13: Inter-rater agreement of mutation effect

prediction algorithms as defined by unweighted Cohen’s Kappa

coefficients for 989 single nucleotide variants for which functional

data are available and for the subset of these single nucleotide

variants (n = 297) that are not present in the COSMIC database,

when a low confidence category is included.

Additional file 14: Predictions of functionally validated single

nucleotide variants in bona fide oncogenes, bona fide tumor

suppressor genes, and new cancer genes by 15 mutation effect

prediction algorithms (n = 989).

Additional file 15: Performance statistics of mutation effect

prediction algorithms using only single nucleotide variants (SNVs)

in bona fide oncogenes or in bona fide tumor suppressor genes.

Based on the prediction results of the non-neutral and neutral SNVs

(n = 989) in bona fide oncogenes (n = 176) (A) or in bona fide tumor

suppressor genes (n = 783) (B), the accuracy, sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV), and

composite score for each predictor are plotted. Error bars represent the

95% confidence intervals generated by bootstrapping. Blue bars

represent single/independent predictors, orange bars meta-predictors.

Additional file 16: Performance statistics and 95% confidence

intervals of mutation effect prediction algorithms using only

functionally validated single nucleotide variants in bona fide

oncogenes or bona fide tumor suppressor genes.

Additional file 17: Performance statistics for mutation effect

prediction algorithm combinations using all 989 single nucleotide

variants with functional data included in this study.

Additional file 18: Performance statistics for mutation effect

prediction algorithm combinations using 297 single nucleotide

variants not present in the COSMIC database for which functional

data are available.

Additional file 19: Number of mutation effect prediction algorithm

combinations that outperform single predictors and meta-

predictors.

Additional file 20: Performance statistics of the top five mutation

effect prediction algorithm combinations as ranked by accuracy.

Prediction results of the non-neutral (n = 849) and neutral (n = 140)

single nucleotide variants (SNVs) in the entire dataset (A, B) and the

non-neutral (n = 188) and neutral (n = 109) SNVs not present in the

COSMIC dataset (C, D) are shown. Results are ranked according to the

accuracy of each mutation effect prediction algorithm combination,

and the accuracy, sensitivity, specificity, positive predictive value (PPV),

negative predictive value (NPV), and composite score of the top five

prediction algorithm combinations in subset 1 (A, C) and subset 2 (B, D)

are plotted. Error bars represent the 95% confidence intervals generated

by 1,000 random samples of subsets 1 and 2. Red bars represent

predictor combinations, blue bars single/independent predictors, and

orange bars meta-predictors. Blue stars: statistically significant improvement

in accuracy as compared to that of the best performing single/independent

predictor; orange stars: statistically significant improvement in accuracy as

compared to that of the best performing meta-predictor; blue triangles:

statistically significant improvement in NPV as compared to that of the best

performing single/independent predictor; orange triangles: statistically

significant improvement in NPV as compared to that of the best performing

meta-predictor.

Additional file 21: Top five mutation effect prediction algorithm

combinations ranked by either accuracy or composite score

separately for subsets 1 and 2 using all 989 single nucleotide

variants for which functional data are available and the

corresponding best performing single and meta-predictors.

Additional file 22: Top five mutation effect prediction algorithm

combinations ranked by either accuracy or composite score

separately for subsets 1 and 2 using all 297 single nucleotide

variants not included in the COSMIC database for which functional

data are available and the corresponding best performing single

and meta-predictors.

Additional file 23: Recurrence of individual mutation effect

prediction algorithms in top performing mutation effect prediction

algorithm combinations ranked by accuracy. The top 10, top 20, top

50, and top 100 combinations of mutation effect prediction algorithms

were defined using the non-neutral (n = 849) and neutral (n = 140)

single nucleotide variants (SNVs) included the entire dataset and ranked

according to accuracy. The frequency of each single mutation effect

predictor present in these top combinations was determined in subset 1

and subset 2 (A). The top 10, top 20, top 50, and top 100 combinations

of mutation effect prediction algorithms were defined using the

non-neutral (n = 188) and neutral (n = 109) SNVs not present in the

COSMIC database and ranked according to accuracy. The frequency of

each single mutation effect predictor present in these top combinations

was determined in subset 1 and subset 2 (B).

Additional file 24: Accuracy of mutation effect prediction algorithm

combinations according to n and p, using all non-neutral and

neutral single nucleotide variants (n =989) in this dataset. Based on

the prediction results of 11,253 combinations using all non-neutral and

neutral single nucleotide variants included in this study, boxplots

showing the accuracy of the combinations were plotted and grouped by

n with increasing p along the x-axis (A) and by p with increasing n along

the x-axis (B).
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Additional file 25: Optimal p and n using all 989 functionally

defined non-neutral or neutral single nucleotide variants included

in this dataset.

Additional file 26: Accuracy of mutation effect prediction algorithm

combinations according to n and p, using all non-neutral and

neutral single nucleotide variants not included in the COSMIC

database (n =297) in this dataset. Based on the prediction results of

11,253 combinations using all non-neutral and neutral single nucleotide

variants included in this study, boxplots showing the accuracy of the

combinations were plotted and grouped by n with increasing p along

the x-axis (A) and by p with increasing n along the x-axis (B).

Additional file 27: Optimal p and n using all 297 functionally

defined non-neutral or neutral single nucleotide variants not

included in the COSMIC database.

Additional file 28: Residual single nucleotide variants in the set of

989 functionally defined non-neutral and neutral single nucleotide

variants and in the subset of 297 single nucleotide variants not

present in the COSMIC database.

Additional file 29: Performance statistics of mutation effect

prediction algorithms after exclusion of single nucleotide variants

(SNVs) present in COSMIC or in the training sets of each mutation

effect predictor. The accuracy, sensitivity, specificity, positive predictive

value (PPV), negative predictive value (NPV), and composite score of

CHASM (breast), CHASM (lung), CHASM (melanoma), FATHMM (cancer),

FATHMM (missense) and PolyPhen-2 using all 989 functionally defined

non-neutral or neutral SNVs (red bars), 297 non-COSMIC non-neutral or

neutral SNVs (blue bars) and SNVs after exclusion of those found in the

training set of each mutation effect predictor (orange bars). Error bars

indicate 95% confidence intervals generated by bootstrapping. Y-axis

on the left represents the scale of accuracy, sensitivity, specificity, PPV

and NPV, whereas the y-axis on the right represents the scale of

composite score.

Abbreviations

CI: Confidence interval; NPV: Negative predictive value; PPV: Positive

predictive value; TSG: Tumor suppressor gene.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JSR-F and BW conceived and designed the study. LGM, MRDF, YZ, and SP

carried out the literature and database searches. LGM and CKYN curated the

data. LGM, CKYN, MRDF, RSL, and RS analyzed the data. LGM, CKYN, YZ, SP,

RS, LN, JSR-F, and BW discussed and interpreted the results. CKYN and RS

performed the statistical analyses. LGM and CKYN wrote the first draft, which

was initially reviewed and edited by JSR-F and BW. All authors read and

approved the final draft.

Acknowledgements

SP is funded by a Susan G Komen Postdoctoral Fellowship Grant

(PDF14298348). RS is funded by the Biostatistics core grant (P30 CA008748).

Author details
1Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275

York Avenue, New York, NY 10065, USA. 2Department of Epidemiology and

Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue,

New York, NY 10065, USA. 3Department of Medicine, Memorial Sloan

Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.

Received: 13 June 2014 Accepted: 30 September 2014

References

1. Hiley C, de Bruin EC, McGranahan N, Swanton C: Deciphering intratumor

heterogeneity and temporal acquisition of driver events to refine

precision medicine. Genome Biol 2014, 15:453.

2. Stratton MR, Campbell PJ, Futreal PA: The cancer genome. Nature 2009,

458:719–724.

3. Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS: Breast cancer

intra-tumor heterogeneity. Breast Cancer Res 2014, 16:210.

4. Garraway LA, Lander ES: Lessons from the cancer genome. Cell 2013,

153:17–37.

5. Patel LR, Nykter M, Chen K, Zhang W: Cancer genome sequencing:

Understanding malignancy as a disease of the genome, its

conformation, and its evolution. Cancer Lett 2013, 340:152–160.

6. Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC,

Mooney TB, Callaway MB, Dooling D, Mardis ER, Wilson RK, Ding L: MuSiC:

Identifying mutational significance in cancer genomes. Genome Res 2012,

22:1589–1598.

7. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A,

Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS,

McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J,

Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortés ML, Auclair D,

Saksena G, Voet D, Noble M, DiCara D, et al: Mutational heterogeneity in

cancer and the search for new cancer-associated genes. Nature 2013,

499:214–218.

8. Youn A, Simon R: Identifying cancer driver genes in tumor genome

sequencing studies. Bioinformatics 2011, 27:175–181.

9. Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, Monsey J,

Goel N, Aronson AB, Li S, Ma CX, Ding L, Mardis ER, Ellis MJ: Activating

HER2 mutations in HER2 gene amplification negative breast cancer.

Cancer Discov 2013, 3:224–237.

10. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, Li Z, Gala K, Fanning S,

King TA, Hudis C, Chen D, Taran T, Hortobagyi G, Greene G, Berger M,

Baselga J, Chandarlapaty S: ESR1 ligand-binding domain mutations in

hormone-resistant breast cancer. Nat Genet 2013, 45:1439–1445.

11. Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, Kalyana-Sundaram S,

Wang R, Ning Y, Hodges L, Hodges L, Gursky A, Siddiqui J, Tomlins SA,

Roychowdhury S, Pienta KJ, Kim SY, Roberts JS, Rae JM, Van Poznak CH,

Hayes DF, Chugh R, Kunju LP, Talpaz M, Schott AF, Chinnaiyan AM:

Activating ESR1 mutations in hormone-resistant metastatic breast

cancer. Nat Genet 2013, 45:1446–1451.

12. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F,

Gonzalez-Angulo AM, Ferrer-Lozano J, Perez-Fidalgo JA, Cristofanilli M,

Gomez H, Arteaga CL, Giltnane J, Balko JM, Cronin MT, Jarosz M, Sun J,

Hawryluk M, Lipson D, Otto G, Ross JS, Dvir A, Soussan-Gutman L, Wolf I,

Rubinek T, Gilmore L, Schnitt S, Come SE, Pusztai L, Stephens P, Brown M,

et al: Emergence of constitutively active estrogen receptor-alpha

mutations in pretreated advanced estrogen receptor-positive breast

cancer. Clin Cancer Res 2014, 20:1757–1767.

13. Gonzalez-Perez A, Mustonen V, Reva B, Ritchie GRS, Creixell P, Karchin R,

Vazquez M, Fink JL, Kassahn KS, Pearson JV, Bader GD, Boutros PC,

Muthuswamy L, Ouellette BF, Reimand J, Linding R, Shibata T, Valencia A,

Butler A, Dronov S, Flicek P, Shannon NB, Carter H, Ding L, Sander C, Stuart JM,

Stein LD, Lopez-Bigas N, International Cancer Genome Consortium Mutation

Pathways and Consequences Subgroup of the Bioinformatics Analyses

Working Group: Computational approaches to identify functional genetic

variants in cancer genomes. Nat Methods 2013, 10:723–729.

14. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP: Predicting the functional

effect of amino acid substitutions and indels. PLoS One 2012, 7:e46688.

15. Ng PC, Henikoff S: Predicting the effects of amino acid substitutions on

protein function. Annu Rev Genomics Hum Genet 2006, 7:61–80.

16. Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC: SIFT web server:

predicting effects of amino acid substitutions on proteins. Nucleic Acids

Res 2012, 40:W452–W457.

17. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,

Kondrashov AS, Sunyaev SR: A method and server for predicting

damaging missense mutations. Nat Methods 2010, 7:248–249.

18. Reva B, Antipin Y, Sander C: Predicting the functional impact of protein

mutations: application to cancer genomics. Nucleic Acids Res 2011, 39:e118.

19. Gonzalez-Perez A, Lopez-Bigas N: Improving the assessment of the

outcome of nonsynonymous SNVs with a consensus deleteriousness

score, Condel. Am J Hum Genet 2011, 88:440–449.

20. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, Vogelstein B,

Karchin R: Cancer-specific high-throughput annotation of somatic

mutations: computational prediction of driver missense mutations.

Cancer Res 2009, 69:6660–6667.

21. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GLA, Edwards KJ, Day INM,

Gaunt TR: Predicting the functional, molecular, and phenotypic

Martelotto et al. Genome Biology 2014, 15:484 Page 19 of 20

http://genomebiology.com/2014/15/10/484

http://genomebiology.com/content/supplementary/s13059-014-0484-1-s25.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s26.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s27.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s28.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s29.pdf


consequences of amino acid substitutions using hidden Markov models.

Hum Mutat 2013, 34:57–65.

22. Carter H, Douville C, Stenson PD, Cooper DN, Karchin R: Identifying

Mendelian disease genes with the variant effect scoring tool. BMC

Genomics 2013, 14:S3.

23. Schwarz JM, Rödelsperger C, Schuelke M, Seelow D: MutationTaster

evaluates disease-causing potential of sequence alterations. Nat Methods

2010, 7:575–576.

24. Mao Y, Chen H, Liang H, Meric-Bernstam F, Mills GB, Chen K: CanDrA:

cancer-specific driver missense mutation annotation with optimized

features. PLoS One 2013, 8:e77945.

25. Cooper GM, Shendure J: Needles in stacks of needles: finding disease-causal

variants in a wealth of genomic data. Nat Rev Genet 2011, 12:628–640.

26. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R,

Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA:

COSMIC: mining complete cancer genomes in the Catalogue of Somatic

Mutations in Cancer. Nucleic Acids Res 2011, 39:D945–D950.

27. Gnad F, Baucom A, Mukhyala K, Manning G, Zhang Z: Assessment of

computational methods for predicting the effects of missense mutations

in human cancers. BMC Genomics 2013, 14:S7.

28. Béroud C, Collod-Béroud G, Boileau C, Soussi T, Junien C: UMD (Universal

mutation database): a generic software to build and analyze

locus-specific databases. Hum Mutat 2000, 15:86–94.

29. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M:

Impact of mutant p53 functional properties on TP53 mutation patterns

and tumor phenotype: lessons from recent developments in the IARC

TP53 database. Hum Mutat 2007, 28:622–629.

30. International HapMap 3 Consortium, Altshuler DM, Gibbs RA, Peltonen L,

Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F,

Peltonen L, Dermitzakis E, Bonnen PE, Altshuler DM, Gibbs RA, de Bakker PI,

Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, Palotie A, Parkin

M, Whittaker P, Yu F, Chang K, Hawes A, Lewis LR, Ren Y, et al: Integrating

common and rare genetic variation in diverse human populations.

Nature 2010, 467:52–58.

31. Ashworth A, Lord C, Reis-Filho JS: Genetic interactions in cancer progression

and treatment. Cell 2011, 145:30–38.

32. Weigelt B, Reis-Filho JS: Epistatic interactions and drug response. J Pathol

2014, 232:255–263.

33. Klusmann JH, Godinho FJ, Heitmann K, Maroz A, Koch ML, Reinhardt D,

Orkin SH, Li Z: Developmental stage-specific interplay of GATA1 and IGF

signaling in fetal megakaryopoiesis and leukemogenesis. Genes Dev 2010,

24:1659–1672.

34. Esposito N, Wojcik J, Chomilier J, Martini JF, Kelly PA, Finidori J, Postel-Vinay MC:

The D152H mutation found in growth hormone insensitivity syndrome

impairs expression and function of human growth hormone receptor but is

silent in rat receptor. J Mol Endocrinol 1998, 21:61–72.

35. MacArthur DG, Tyler-Smith C: Loss-of-function variants in the genomes of

healthy humans. Hum Mol Genet 2010, 19:R125–R130.

36. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q,

McMichael JF, Wyczalkowski MA, Leiserson MD, Miller CA, Welch JS, Walter

MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L: Mutational landscape

and significance across 12 major cancer types. Nature 2013, 502:333–339.

37. IARC TP53 Database [http://p53.iarc.fr/]

38. The UMD-BRCA1 mutations database [http://www.umd.be/BRCA1/]

39. The UMD-BRCA2 mutations database [http://www.umd.be/BRCA2/]

40. PROVEAN [http://provean.jcvi.org/index.php]

41. PolyPhen-2 [http://genetics.bwh.harvard.edu/pph2/]

42. CRAVAT [http://www.cravat.us]

43. Mutation Assessor [http://mutationassessor.org]

44. MutationTaster [http://www.mutationtaster.org]

45. FATHMM [http://fathmm.biocompute.org.uk]

46. Condel [http://bg.upf.edu/fannsdb/query/condel]

47. CanDrA [http://bioinformatics.mdanderson.org/main/CanDrA]

48. FATHMM (cancer) [http://fathmm.biocompute.org.uk/cancer.html]

49. PROVEAN stringency of detection [http://provean.jcvi.org/about.

php#about_1c]

50. Condel online help documents [http://bg.upf.edu/fannsdb/help]

51. CHASM downloads [http://karchinlab.org/chasmdl/CHASMDL.1.0.7.tar.gz]

52. FATHMM downloads [http://fathmm.biocompute.org.uk/downloads.html]

53. PolyPhen-2 downloads [http://genetics.bwh.harvard.edu/pph2/dokuwiki/

downloads]

54. Landis JR, Koch GG: The measurement of observer agreement for

categorical data. Biometrics 1977, 33:159–174.

55. Ng CK, Weigelt B, A'Hern R, Bidard FC, Lemetre C, Swanton C, Shen R,

Reis-Filho JS: Predictive performance of microarray gene signatures:

impact of tumor heterogeneity and multiple mechanisms of drug

resistance. Cancer Res 2014, 74:2946–2961.

doi:10.1186/s13059-014-0484-1
Cite this article as: Martelotto et al.: Benchmarking mutation effect
prediction algorithms using functionally validated cancer-related
missense mutations. Genome Biology 2014 15:484.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Martelotto et al. Genome Biology 2014, 15:484 Page 20 of 20

http://genomebiology.com/2014/15/10/484

http://p53.iarc.fr/
http://www.umd.be/BRCA1/
http://www.umd.be/BRCA2/
http://provean.jcvi.org/index.php
http://genetics.bwh.harvard.edu/pph2/
http://www.cravat.us
http://mutationassessor.org
http://www.mutationtaster.org
http://fathmm.biocompute.org.uk
http://bg.upf.edu/fannsdb/query/condel
http://bioinformatics.mdanderson.org/main/CanDrA
http://fathmm.biocompute.org.uk/cancer.html
http://provean.jcvi.org/about.php#about_1c
http://provean.jcvi.org/about.php#about_1c
http://bg.upf.edu/fannsdb/help
http://karchinlab.org/chasmdl/CHASMDL.1.0.7.tar.gz
http://fathmm.biocompute.org.uk/downloads.html
http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads
http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Categorization of mutations based on functional evidence
	Agreement between mutation effect prediction algorithms
	Performance of 15 commonly used mutation effect prediction algorithms
	Combination of mutation effect prediction algorithms

	Discussion
	Conclusions
	Materials and methods
	Mutation sets
	Literature search
	Oncogenes and new cancer genes
	Tumor suppressor genes (TSGs)
	Assessment of mutation effect predictors
	Analysis of agreement between mutation effect predictors
	Assessment of mutation effect predictor performance
	Combination of mutation effect predictors

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

