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Abstract 
The application of single-cell RNA sequencing (scRNAseq) for the evaluation of chemicals, drugs, and food 

contaminants presents the opportunity to consider cellular heterogeneity in pharmacological and toxicological 

responses. Current differential gene expression analysis (DGEA) methods focus primarily on two group 

comparisons, not multi-group dose-response study designs used in safety assessments. To benchmark DGEA 

methods for dose-response scRNAseq experiments, we proposed a multiplicity corrected Bayesian testing 

approach and compare it against 8 other methods including two frequentist fit-for-purpose tests using simulated 

and experimental data. Our Bayesian test method outperformed all other tests for a broad range of accuracy 

metrics including control of false positive error rates. Most notable, the fit-for-purpose and standard multiple 

group DGEA methods were superior to the two group scRNAseq methods for dose-response study designs.  

Collectively, our benchmarking of DGEA methods demonstrates the importance in considering study design 

when determining the most appropriate test methods.  

 

 

Keywords: Bayesian; Dose-response; Hypothesis test; Simulation; Single cell sequencing; Toxicogenomics. 
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Introduction  
Single-cell transcriptomics enables researchers to investigate homeostasis, development, and disease 

at unprecedented cellular resolution1-5. As with any new innovative technology, diverse tools soon follow to 

address specific applications and unique challenges. Currently, there are dozens of differential gene expression 

analysis (DGEA) approaches for single-cell RNAseq (scRNAseq) data; developed based on differences in 

assumptions, statistical methodologies, and study designs6-11. A recent comparison of 36 approaches 

demonstrated acceptable performance for common bulk RNAseq tools such as edgeR and limma-trend, and 

MAST for snRNAseq, as well as common statistical tests such as the Wilcoxon Rank Sum (WRS) and the t-test9. 

However, most methods have been developed primarily for two group comparisons whereas experiments that 

include multiple groups, such as when assessing risk in pharmacology and toxicology studies where dose-

response designs are required. The use of two sample tests for multiple group study designs elevate the type I 

error rate warranting further investigation of these methods for multiple group dose-response study designs12. 

Dose-response studies are used to derive the efficacy and/or safety margins such as effective dose and 

the point of departure (POD). Significant efforts by the toxicology and regulatory communities have suggested 

that acute (<14 days) and sub-acute (14 – 28 days) transcriptomic studies as viable alternative to the current 

standard 2-year rodent bioassay that significantly reduces the time and resources needed to assess risk13-15. 

Gene expression profiling at single-cell resolution could further support such evaluations by identifying cell-

specific dose-dependent responses indicative of an adverse event. The U.S. National Toxicology Program (NTP) 

recently reported a robust DGEA approach is essential to deriving biologically relevant PODs15. However, 

concerns regarding the inclusion of false positives that produce less conservative POD estimates potentially 

leads to incorrect classification of mode-of-action, thus highlighting the importance of controlling type I error 

rates16, 17.  

Unlike microarray and bulk RNAseq datasets, single-cell RNAseq (scRNAseq) data is zero inflated due 

to the low per cell RNA input, biases in capture and amplification, transcriptional bursts, and other technical 

factors18. Consequently, scRNAseq test methods usually consider the gene expression distribution as a mixture 

of a zero and a positively (non-zero) expressed population19-21. For example, the Seurat Bimod approach tests 

for differential gene expression using a likelihood ratio test designed for the said mixture population. MAST 

extends the Seurat Bimod test to a two-part generalized linear model structure capable of incorporating 

covariates19, 20. Given the improved performance of MAST9, 19, 20, we hypothesized that multiple group tests 

developed assuming the same distributional framework would be most favorable for dose-response study 

designs. Furthermore, a Bayesian approach which considers prior knowledge is anticipated to minimize type I 

error rates22, 23. 

We propose a novel, multiplicity corrected, Bayesian multiple group test (scBT) designed exclusively for 

DGEA in zero inflated continuous data populations, characteristic of dose-response scRNAseq data. Two other 

fit-for-purpose frequentist multiple group tests are also examined: (1) a multiple group extension of the Seurat 

Bimod test and (2) a simple extension of test (1) to a generalized linear model framework. The proposed methods 
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are benchmarked against commonly used approaches for DGEA on simulated and real experimental dose-

response datasets.  

 

Results 
Dose-response single-cell data simulations 

For benchmarking of DGEA methods, a ground truth is required. Existing simulation tools such as 

PowSimR, SymSim, SPsimSeq, and Splatter are commonly used for power analyses, evaluating DE analysis 

methods, and testing cell clustering strategies24-27. Tools such as SymSim and Splatter are also capable of 

simulating cell trajectories and model differentiation processes. Trajectories which exhibit non-linear changes 

over time or across different developmental stages are not unlike dose-response effects which change over a 

continuum of doses. However, dose-responsive changes commonly follow defined trajectories such as Hill, 

exponential, power, and linear models28. To simulate dose-response scRNAseq data we developed a wrapper 

for the Splatter scRNAseq data simulation tool named SplattDR. SplattDR modified the Splatter grouped data 

simulation strategy by adjusting counts from means defined by one of the dose-response functions outlined in 

the Materials and Methods. 

To demonstrate the modeling capability of SplattDR, 10,000 gene expression responses were simulated 

with a 10% probability of being differentially expressed, equally distributed across the dose-response models. 

Parameters used in Splatter were initially estimated from our experimental single nuclei RNAseq (snRNAseq) 

dose-response dataset. The simulated data compared to the experimental data showed the relationship between 

the mean expression, percentage of zeroes, and mean variance were consistent (Figs. 1a-b). Estimation of the 

normalized root mean square deviation (NRMSD) from a curve fit to the experimental data indicated excellent 

concordance. This strong concordance was also maintained within distinct dose groups (Figs. S1-2). The 

distribution of log(fold-changes) between vehicle (dose 0) and the highest simulated dose (dose 9; 30 µg/kg) 

showed a more even distribution within a similar range compared to experimental data which was skewed 

towards induction (Fig. 1c). However, the gene induction skew was captured by modulating the parameters 

affecting the probability of differential expression and the proportion of differentially repressed genes (Fig. S3). 

Principal components analysis (PCA) of the simulated data clearly showed the dose-dependent characteristics 

of scRNAseq data with distinct clusters increasing in separation with increasing dose (Fig. 1d) which was also 

resolved by PCA within the experimental data (Fig. S4). 
To our knowledge, no other published in-vivo dose-response scRNAseq datasets are available limiting 

the number of datasets to estimate initial parameters for simulation to date. To investigate whether existing 

datasets generated using a different study design (e.g., whole cells or different tissue source) could be used to 

derive initial parameters, we also simulated 10,000 genes starting with parameters estimated from (i) a two-dose 

liver snRNAseq (GSE148339), (ii) whole cell liver scRNAseq (GSE129516), and (iii) peripheral blood 

mononuclear cells (PBMC; GSE108313) datasets. When compared to a model fit for experimental data to 

determine the relation between mean expression and percent zeroes or mean variance, the NRMSD for data 
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simulated from these datasets were between 1 - 10% with data simulated from whole cell data differing the most 

from the model fit (Fig. 1e). We then explored whether parameters estimated from distinct cell types could 

replicate the characteristics of that same cell type (Fig. 1f). Not surprisingly, lower NRMSD values were observed 

for simulated cell-specific data based on experimental dose-response data estimated starting parameters with 

whole cell data performing the worst. Notably, when data derived from a lower abundant cell subtype was used 

to estimate starting parameters, the dose-response characteristics for that cell subtype was also poorly modeled 

(Figs. 1e-f, S1-2). 

 

Performance Accuracy of DE test methods  
We evaluated the performance of several differential gene expression analysis methods on simulated 

datasets consisting of 9 dose groups of 500 cells each (4,500 total) and 5,000 genes with a 10% probability of 

being differentially expressed (500 differentially expressed genes). Selection criteria for test inclusion are 

outlined in the Materials and Methods section and included 9 test methods; ANOVA29, single-cell Bayes Hurdle 

Model test (scBT), Kruskall-Wallis (KW)30, limma-trend31, 32, Likelihood-ratio test (LRT) linear and multiple, 

MAST19, Seurat Bimod33, and Wilcoxon Rank Sum (WRS)34. With ground truth from simulated data, the 

sensitivity, specificity, and precision for each test method was computed. Area under the receiver-operating 

characteristic curve (AUROC) was used to measure test performance for correctly classified differentially 

expressed genes. In unfiltered data, AUROC scores showed similar performance for most tests except scBT 

which had the largest AUROC among all test methods (Fig. 2a). To account for the inherent class imbalance 

between differentially expressed and non-differentially expressed classes the area under the precision-recall 

curves (AUPRC) was also calculated. Similar to AUROCs, AUPRCs identified scBT as the best performing test 

(Fig. 2c). In most standard differential expression testing pipelines genes expressed at low levels are removed 

to minimize false detection rates. Following filtering of genes expressed in ≤5% of cells in any dose group, scBT 

was consistently ranked as the best test based on AUROC and AUPRC scores. The performance of LRT linear 

test also improved, with comparable AUROC and AUPRC scores relative to scBT, suggesting LRT linear is 

poorly suited for genes expressed at low levels (Fig. 2b,d).  

AUROC and AUPRC reflect the performance of each test method with varying significance (i.e., p-value) 

thresholds. In the standard pipeline a fixed threshold is used, typically a p-value ≤ 0.05 after adjustment for 

multiple hypothesis testing (i.e., Bonferroni correction). For each method except scBT, the performance at an 

adjusted p-value ≤ 0.05 significance criteria was evaluated. In scBT analysis, a gene was considered differentially 

expressed when the estimated posterior probabilities of the null hypothesis, 𝑝൫𝐻଴,௝|𝐷௝൯, was less than 𝜁, where 

the 𝜁 value was chosen to achieve a target FDR of 0.05. scBT significantly outperformed all other tests in 

precision rates irrespective of low expression filtering (Figs. 2e, S5). However, scBT was less effective in 

identifying true positives (Figs. 2f, S5). Applying the filtering criteria improved the recall rates, but the precision 

rates remain largely unchanged (Figs. 2e,f). Test method classification performance scores were estimated as 
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the Matthews Correlation Coefficient (MCC) which is well suited for unbalanced data35. We see that the scBT 

and LRT linear tests performed best for this metric on both unfiltered and filtered data (Fig. 2g). 

  
Type I error control and power 
To investigate test performance in controlling type I errors (false positives), DGEA methods on simulated 

datasets were examined with 0% DE genes (i.e., negative control). Using the ζ threshold for the computed 

posterior null probabilities, scBT identified only 1 false positive gene in 2 of 10 simulations (Fig. 3a). ANOVA, 

scBT, KW, limma-trend, and LRT linear had false positive rates (FPRs) below 3% indicating better performance 

compared to two group tests. After filtering for genes with low expression levels, scBT still correctly identified all 

the non-differentially expressed genes and was the best performing test. These are the same tests that had a 

better FPR control in initial simulations (Fig. 2). To explore whether mean expression or percentage of zeroes 

influenced type I error rates, a logistic regression model was fit to negative control data. We predicted the 

probability for each gene to be identified as differentially expressed in the negative control data. While the curve 

for scBT is missing since few false positives were identified, the predicted FPR for all the other tests except LRT 

linear were also high for highly expressed genes with few zeroes (Fig. 3b,c). Next, a positive control dataset 

with 100% differentially expressed genes was simulated to evaluate test performance for detecting true positives. 

All tests except scBT exhibited a false negative rate (FNR) ≤ 40% (Fig. 3d). The best performing tests for FNR 

also had high FPR. Logistic model regression fitting for false negative classification of genes shows that the false 

negative rates were highest when the mean expression was either too high or too low for all tests (Fig. 3e,f).   
 

Parameter sensitivity analyses 
Experimental scRNAseq datasets will vary between cell types, cell composition, and responses 

depending on the target tissue, treatment, number of cells sequenced, and more. For example, some distinct 

cell types are very abundant (e.g., hepatocytes), with others present at lower levels (e.g., portal fibroblasts) in 

hepatic scRNAseq datasets. Moreover, treatments such as exposure to a xenobiotic, can elicit dose-dependent 

changes in relative proportions of cell types such as the infiltration of immune cells36. We investigated the impact 

by changing cell abundance from 25 to 2,000 cells per dose group and observed an increase in the false positive 

rate (FPR) when increasing the number of cells (Fig. S6). The scBT and LRT linear tests were less sensitive to 

an increase in the FPR as cell abundance increased while the total positive rates (TPR + FPR) increased with 

cell abundance for all methods. Although all tests exhibited comparable performance at low cell numbers (≤ 500), 

as cell numbers increased scBT outperformed all other tests in both precision and MCC score (Fig. 4a, S6). 

Comparison of AUROCs and AUPRCs across cell numbers showed that ANOVA, KW, limma-trend, and LRT 

linear tests performed best for a small number of cells, but the increase in AUROC was steeper for scBT (Fig. 
S7-8).  

It was also evident from the experimental snRNAseq dataset that the number of cells per dose group was 

not fixed. We evaluated the performance of the test methods when the number of cells dose-dependently 
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increased or decreased, and when the number of cells per dose group were taken from experimental data. 

Notably, while scBT had the best MCC for increasing number of cells per dose, LRT linear performed better than 

scBT when the number of cells decreased before and after filtering for genes expressed at low levels (Fig. 4b). 

The shift in MCC between increasing and decreasing cell numbers for scBT appears to be driven by a 

concomitant decrease in FTPR and increase in FNR (Fig. S9). 

Unique chemical, drug, environmental contaminant, and natural product classes elicit distinct differential 

gene expression profiles defined by the mode-of-action (MoA) as well as by their metabolism, potency 

(sensitivity) and efficacy (maximal response). Differences between compound classes are reflected in the gene 

expression profile in (a) the proportion of differential expressed genes, (b) the number of induced/repressed 

genes, (c) the mean fold-change for differentially expressed genes, and (d) the distribution of fold-change for 

differentially expressed genes. These 4 parameters were modulated in simulated data to determine the effect of 

the percentage of differentially expressed genes, the mean fold-change (aka location), and the fold-change 

distribution (aka scale) on test performance. Among these scenarios, changing the proportion of repressed 

genes had little to no impact on test method performance (Fig. 4c-f, S14).  

Increasing the proportion of differentially expressed genes led to an improvement in MCC except for scBT 

and LRT linear, though these tests maintained the top MCC scores as well as AUROC and AUPRC (Fig. 4c, 
S11-13). As the magnitude of the effect increased, LRT linear performed best at the low end while scBT exhibited 

the greatest improvement in MCC (Fig. 4d). Conversely, while the MCC decreased for most tests when 

modulating the fold-change scale of differentially expressed genes, scBT improved and was more stable (Fig. 
4e). As zero inflation increased, the FPR increased and the precision decreased for all tests (Fig. S23). However, 

scBT was least affected, and maintained the highest MCC among all tests (Fig. 4f). AUROC and AUPRC values 

also indicated that scBT consistently outperformed other test methods (Fig. S24-25). 

 

Test method agreement 
To assess agreement between tests, the area under the concordance curve (AUCC) for each pair of tests 

for the top 100 genes ranked by adjusted p-value was calculated as previously described9, 37. All methods showed 

excellent concordance (AUCC ≥ 0.77) with LRT linear showing the poorest consistency compared to all other 

tests while the limma-trend and ANOVA tests showed perfect agreement with an AUCC of 1 (Fig. S5). Pairwise 

differential gene expression comparisons between DE, Seurat Bimod, MAST and WRS had AUCCs >0.95 

AUCCs while the multiple group tests ANOVA, LRT multiple, KW, and scBT clustered together with AUCC 

ranging between 0.9 - 1. In the absence of nuisance covariates, MAST and Seurat Bimod provided similar results, 

as expected given their similar mixture normal model structure. Likewise for ANOVA and limma-trend, both of 

which rely on normality assumptions for testing differential gene expression.  
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Real dose-response dataset DE analysis 
Without ground truth for experimental data, the performance of the differential expression test methods 

was examined by first evaluating the agreement for each identified cell type (Fig. 5, S26). Genes in the 

experimental dataset were considered differentially expressed when expressed in ≥5% of cells in at least one 

dose group and had a |fold-change| ≥ 1.5. In hepatocytes, the most abundant cell type, fewer than 5 genes were 

not detected in all test methods, with the majority missed by the WRS test (Fig. 5a). Upon closer examination, 

those genes were not expressed in control hepatocytes. Not surprisingly, for all cell types, the largest intersection 

was between all tests indicating strong agreement within all test methods. Only a few tests identified a subset of 

unique genes as differentially expressed, which accounted for a very small fraction. For example, LRT linear 

identified 12 unique differentially expressed genes in portal fibroblasts one of the least abundant cell types (Fig. 
5b). LRT linear was the best performing test for low cell numbers indicating that the 12 unique differentially 

expressed genes may in fact be true positives. Consistent with simulations of varying cell numbers (Fig. 4a), 24 

genes were not identified as differentially expressed by the scBT method for stellate cells which exhibit a dose-

dependent decrease in numbers (Fig. 5c,d). Although scBT outperformed other tests in most scenarios, it under 

performed in this scenario. Nevertheless, when ranking genes by significance level (i.e., p-values), AUCC were 

high for all pairwise comparisons.  

 

Discussion 
 The goal of this study was to compare the performance of newly developed DGEA test methods for dose-

response experiments to existing analysis methods. Using simulated data to generate ground truth, we evaluated 

the performance of 9 differential expression testing methods which were broadly classified as either fit-for-

purpose, multiple group, or two group tests. Criteria for test method selection was based on previous 

benchmarking efforts for two group study designs identifying MAST, limma-trend, WRS, and t-test as the best 

performers9, 38. ANOVA and KW tests were also included for evaluating multiple group comparisons, and Seurat 

Bimod, for having the same modelling framework as scBT, LRT multiple, and LRT linear tests. The test methods 

were ranked from best to worse (1 – 9) based on type I error rate, type II error rate, MCC, AUROC, and AUPRC 

(Fig. 6, Table S1). 

 While several scRNAseq tools have been developed24-27, none are developed to simulate dose-response 

models commonly identified in toxicological and pharmacological datasets28, 39. Our SplattDR wrapper for the 

Splatter package27 was able to show that simulated data can effectively emulate key experimental scRNAseq 

data characteristics when simulation parameters were estimated from various Unique Molecular Identifier (UMI)-

based datasets. In agreement with a previous report, technical and biological factors, such as cell type, does 

appear to influence gene dropout rates18. We primarily focused on 10X Genomics UMI data given the 

unavailability of real experimental dose-response data generated using other platforms.  

 Overall, test method performance was consistent with their intended application. For example, fit-for-

purpose tests scBT and LRT linear consistently ranked higher followed by multiple groups tests such as KW and 
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LRT multiple. scBT exhibited the best overall performance with excellent FPR control and top ranked MCC while 

LRT linear struck a balance between type I and type II error rates. The scBT results are not surprising as Bayes 

factor-based tests have proven to be conservative and consequently more appropriate when false positives are 

of concern22, 23. In the context of investigating chemical or drug  MoAs, false positives have the potential to lead 

to wasted effort and resources in attempts to validation and support findings40. Moreover, when assessing a 

large number of genes, a 5% FP rate (P-value ≤ 0.05) can result in hundreds of FPs that skew MoA 

classifications17.  

A single test method was not expected to outperform all other tests under all conditions as previously 

demonstrated when comparing pairwise testing6, 9, 38. Therefore, we assessed the strengths and limitations of 

each test method by varying parameters likely to change within and across various experimental datasets. The 

number and relative abundance of cell types is known to be affected by disease or treatment, and the distribution 

of differential expression influenced by the chemical, drug, or food contaminant being evaluated5, 36. scBT 

consistently ranked at the top under most scenarios, particularly when the mean and standard deviation of the 

fold-change for differentially expressed genes varied. However, scBT under performed in MCC when the number 

of cells decrease in a dose-dependent manner which would be expected in treatments which alter cell population 

sizes (e.g., inflammation). Under these circumstances LRT linear outperformed all other tests with scBT 

performing similar to the other test methods as evident when 24 differentially expressed genes were not identified 

by scBT within experimental data for stellate cells which experienced a dose-dependent decrease in relative 

abundance following TCDD treatment. Although excluding genes expressed at low levels generally improved 

the performance of all test methods, the comparative performance of test methods did not significantly change 

in most cases. 

Collectively, our findings suggest that scBT and LRT linear fit-for-purpose tests are better suited for the 

differential expression analysis of dose-response studies and when false positives are of greater concern than 

false negatives. Moreover, consistent with previous benchmarking efforts, we show that common non-parametric 

tests such as KW outperform test methods developed for scRNAseq data when the study involves comparisons 

between multiple groups. Ultimately, each test method performs optimally under diverse scenarios. While the 

importance of controlling type I error rates is acknowledged, a balance must be struck with type II error rates. 

The tradeoff should be determined based on the individual research question being investigated. It may even 

become reasonable to apply disparate test methods for distinct cell types based on dropout rates, cell 

abundance, and changes in relative cell proportions given the strengths and weaknesses of each test method.   
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Fig. 1: Comparison of simulated and real dose-response data. a Relationship between gene-wise mean 

expression and percent zeroes for simulated and real dose-response data. Simulation data consisted of 10,000 

genes and 9 dose groups based on parameters derived from experimental dose-response snRNAseq data. Black 

line represents a fitted model to the experimental data from which the normalized root mean square deviation 

(NRMSD) of simulated data was determined. b Relationship between gene-wise mean expression and variance 

for simulated and experimental data. NMRSD was calculated for simulated data from the fitted model 

represented as a black line. c Distribution of log(fold-changes) in experimental and simulated data showing the 

median and minimum and maximum values. d Principal components analysis of simulated data colored 

according to simulated dose groups. e NMRSD estimated relative to fitted model in a,b for simulated data 

generated from initial parameters derived from published hepatic scRNAseq (two dose; GSE148339), hepatic 

whole cell (whole cell; GSE129516), and peripheral blood mononuclear cell (PBMC; GSE10`8313) datasets. f 

NMRSD estimated relative to model fitted to cell-type specific experimental dose-response data when simulated 

from initial parameters estimated from that same cell type. Box and whisker plots show median NMRSD, 25 and 

75th percentiles, and minimum and maximum values.  
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Fig. 2: Classification performed of DE analysis tests.  a ROCs estimated from simulated dose-response 

scRNAseq data for 9 DE test methods including all genes expressed in at least 1 cell (unfiltered). b ROCs for 9 

DE test methods after filtering simulated dose-response scRNAseq data for genes expressed in only ≥5% of 

cells (low levels) in at least one dose group. c Precision-recall curves (PRCs) for 9 DE test methods on unfiltered 

simulated dose-response scRNAseq data. d PRCs for 9 DE test methods on filtered simulated dose-response 

scRNAseq data. Lines represent the mean values and shaded region reflects the standard deviation for 10 

independent simulations. e Precision of DE test methods. f FPR of DE test methods. g MCC for test methods. 

e,f,g Box and whisker plots median values, 25th and 75th percentiles, and minimum and maximum values for 10 

independent simulations. Points reflects values for each independent simulation. Panels display comparisons of 

unfiltered and filtered datasets. 
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Fig. 3: Evaluation of Type I and II error control. a False positive rate (FPR) of 9 differential expression test 

methods estimated from negative control (0% DE genes) simulated dose-response scRNAseq data including all 

genes expressed in at least 1 cell (unfiltered) and genes expressed in only ≥ 5% of cells in at least one dose 

group (filtered). b,c Logistic regression models were fitted to negative control data to predict the probability of 

false positive identification using percent zeroes and mean expression as covariates. Lines represent the 

predicted probability of false positive classification with the shaded region representing the 95% confidence 

interval. d False negative rate (FNR) of 9 differential expression test methods estimated from positive control 

(100% DE genes) simulated dose-response scRNAseq data including unfiltered and filtered datasets. e,f Logistic 

regression models were fit to positive control data. Lines represent predicted probability of false negative 

classification with shaded region representing the 95% confidence interval. 
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Fig. 4: Matthews correlation coefficient (MCC) from sensitivity analyses of differential expression test 

methods. a MCC for 9 DGEA test methods determined from simulated dose response data with varying number 

of cells per dose group. Simulations consisted of 5,000 genes with a probability of differential expression of 10% 

and 9 dose groups. b MCC for simulated data varying the cells numbers by dose group. The number of cells in 

each of the 9 doses groups is shown on the right. c MCC for varying proportion of differentially expressed genes. 

d MCC for varying proportion of repressed differentially expressed genes. e MCC for varying fold-change 

location. f MCC for varying fold-change scale. Points represent median and error bars represent minimum to 

maximum values. Boxplots represent median, 25th to 75th percentile, and minimum to maximum values. Each 

analysis consisted of 10 replicate datasets including all genes expressed in at least 1 cell (unfiltered) and genes 

expressed in ≥ 5% of cells in at least one dose group (filtered). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.09.08.459475doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459475
http://creativecommons.org/licenses/by/4.0/


 

Fig. 5: Agreement of differential expression test methods on experimental dose-response data. a Upset 

plot showing the intersection size of genes identified as differentially expressed by 9 different test methods in 

hepatocytes from the portal region of the liver lobule. b Intersect of differentially expressed genes in portal 

fibroblasts. c Intersect size in hepatic stellate cells. Vertical bars represent the intersect size for test methods 

denoted by a black dot. Horizontal bars show the total number of differentially expressed genes identified within 

each test (set sizes). Only intersects for which genes were identified are shown. Genes were considered 

differentially expressed when (i) expressed in ˃5% of cells within any given dose group and (ii) exhibit a |fold-

change| ≥ 1.5. A heatmap in the upper left corner of each panel shows the pairwise AUCC comparisons for the 

500 lowest p-values. d Relative proportion of cell types identified in each dose group of the real dataset for the 

cell types in a,b,c. Experimental snRNAseq data was obtained from male mice gavaged with sesame oil vehicle 

(vehicle control) or 0.01 – 30 µg/kg TCDD every 4 days for 28 days.  
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Fig. 6: Median ranking of differential expression test methods across all simulations. The median rank of 

each test method was calculated for AUPRC, AUROC, MCC, FNR, and FPR. Tests were grouped according to 

intended application including fit-for-purpose tests developed for the analysis of dose-response datasets, 

multiple group tests, and two group tests. The overall rank represents the median value for the 5 key metrics 

presented here.  
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Supplementary Figure 1: Comparison of experimental and simulated dose-response data from cell specific initial 

parameters. Simulation parameters were estimated from each cell type identified in our experimental hepatic 

dose-response snRNAseq dataset. A total of 4500 cells (500 per dose) distributed across 3 individuals for 9 dose 

groups were simulated. The percent zeroes and mean log expression was calculated for each gene for all dose 

groups combined. 
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Supplementary Figure 2: Comparison of experimental and simulated dose-response data from cell specific initial 

parameters. Simulation parameters were estimated from each cell type identified in our experimental hepatic 

dose-response snRNAseq dataset. A total of 4500 cells (500 per dose) distributed across 3 individuals for 9 dose 

groups were simulated. The percent zeroes and mean log variance was calculated for each gene for all dose 

groups combined. 
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Supplementary Figure 3: Intrinsic discrepancy scores of fold-change distributions under varying simulation 

parameters. Datasets were simulated for 5,000 genes by varying the probability of differential expression, 

probability of repression, mean fold-change of differentially expressed genes (location) and distribution of fold-

change for differentially expressed  genes (scale). Fold-change location and scale of differentially expressed  

genes from 0 – 1.5 and 0 – 1, respectively, represent the values for mean and standard deviation of a log-normal 

distribution. 5,000 simulated genes were compared to an equivalent number sampled from experimental data 

for the fold-changes between 30 µg/kg TCDD and control groups. The Kullback-Leibler Divergence (KLD) 

intrinsic discrepancy (ID) was used to evaluate the similarity in distributions. 
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Supplementary Figure 4: Principal components analysis (PCA) of experimental hepatic dose-response data from 

male mice gavaged with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. PCA was 

performed for all genes and each identified cell type. Each point represents an individual cell. Colors represent 

treatment groups. 
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Supplementary Figure 5: Benchmarking metrics of 9 differential expression test methods for simulated dose 

response data using default initial parameters. A total of 4,500 cells (500 cells per dose group) and 5,000 genes 

were simulated across 9 dose groups with a probability of being differentially expressed of 10%, of which 50% 

were repressed. Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Given a 

ground truth from simulation outputs, false positive rates (FPR), true positive rates (TPR), false negative rates 

(FNR), true negative rates (TNR), precision, and Matthews correlation coefficient (MCC) were calculated. Points 

represent median ± minimum to maximum values for 10 replicate simulations. Heat map represents the area 

under the concordance curve (AUCC) of the 100 most significant gene expression changes (lowest P-values) 

calculated for each pairwise comparison and clustered based on the similarity of the scores. Box and whisker 

plots represent median and 25th and 75th percentile, and minimum and maximum values for 10 replicate 

simulations. 
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Supplementary Figure 6: Benchmarking metrics of 9 differential expression test methods for simulated dose 

response data with varying cell abundances. 5,000 genes were simulated across 9 dose groups with a probability 

of being differentially expressed of 10%, of which 50% were repressed. Differential expression fold-change 

location and scale were 0.8 and 0.4, respectively. Given a ground truth from simulation outputs, false positive 

rates (FPR), true positive rates (TPR), false negative rates (FNR), true negative rates (TNR), precision, and 

Matthews correlation coefficient (MCC) were calculated. Points represent median ± minimum to maximum values 

for 10 replicate simulations. 
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Supplementary Figure 7: Area under the receiver-operating curve (AUROC) of 9 differential expression test 

methods for simulated dose response data with varying cell abundances. 5,000 genes were simulated across 9 

dose groups with a probability of being differentially expressed of 10%, of which 50% were repressed. Differential 

expression fold-change location and scale were 0.8 and 0.4, respectively. Box and whisker plots represent 

median and 25th and 75th percentile, and minimum and maximum values for 10 replicate simulations. 
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Supplementary Figure 8: Area under the precision-recall curve (AUPRC) of 9 differential expression test methods 

for simulated dose response data with varying number of cell abundances. 5,000 genes were simulated across 

9 dose groups with a probability of being differentially expressed of 10%, of which 50% were repressed. 

Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Box and whisker plots 

represent median and 25th and 75th percentile, and minimum and maximum values for 10 replicate simulations. 
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Supplementary Figure 9: Benchmarking metrics of 9 differential expression test methods for simulated dose 

response data with varying number of cells per dose group. 5,000 genes were simulated across 9 dose groups 

with a probability of being differentially expressed of 10%, of which 50% were repressed. Differential expression 

fold-change location and scale were 0.8 and 0.4, respectively. Given a ground truth from simulation outputs, 

false positive rates (FPR), true positive rates (TPR), false negative rates (FNR), true negative rates (TNR), 

precision, and Matthews correlation coefficient (MCC) were calculated. Box and whisker plots represent median 

and 25th and 75th percentile, and minimum and maximum values for 10 replicate simulations.  
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Supplementary Figure 10: Area under the receiver-operating curve (AUROC) and area under the precision-recall 

curve (AUPRC) of 9 differential expression test methods for simulated dose response data with varying number 

of cells per dose group. 5,000 genes were simulated across 9 dose groups with a probability of being differentially 

expressed of 10%, of which 50% were repressed. Box and whisker plots represent median and 25th and 75th 

percentile, and minimum and maximum values for 10 replicate simulations. 
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Supplementary Figure 11: Benchmarking metrics of 9 differential expression  test methods for simulated dose 

response data with varying differential expression probabilities. A total of 4,500 cells (500 cells per group) and 

5,000 genes were simulated across 9 dose groups with a 50% probability of being repressed. Differential 

expression  fold-change location and scale were 0.8 and 0.4, respectively. Given a ground truth from simulation 

outputs, false positive rates (FPR), true positive rates (TPR), false negative rates (FNR), true negative rates 

(TNR), precision, and Matthews correlation coefficient (MCC) were calculated. Points represent median ± 

minimum to maximum values for 10 replicate simulations.  
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Supplementary Figure 12: Area under the receiver-operating curve (AUROC) of 9 differential expression  test 

methods for simulated dose response data with varying differential expression probabilities. A total of 4,500 cells 

(500 cells per group) and 5,000 genes were simulated across 9 dose groups with a 50% probability of being 

repressed. Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Box and 

whisker plots represent median and 25th and 75th percentile, and minimum and maximum values for 10 replicate 

simulations.  

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.09.08.459475doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459475
http://creativecommons.org/licenses/by/4.0/


 

Supplementary Figure 13: Area under the receiver-operating curve (AUPRC) of 9 differential expression test 

methods for simulated dose response data with varying differential expression probabilities. A total of 4,500 cells 

(500 cells per group) and 5,000 genes were simulated across 9 dose groups with a 50% probability of being 

repressed. Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Box and 

whisker plots represent median and 25th and 75th percentile, and minimum and maximum values for 10 replicate 

simulations. 
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Supplementary Figure 14: Benchmarking metrics of 9 differential expression test methods for simulated dose 

response data with varying probability of repressed genes. A total of 4,500 cells (500 cells per group) and 5,000 

genes were simulated across 9 dose groups with a 10% probability of differential expression. Differential 

expression fold-change location and scale were 0.8 and 0.4, respectively. Given a ground truth from simulation 

outputs, false positive rates (FPR), true positive rates (TPR), false negative rates (FNR), true negative rates 

(TNR), precision, and Matthews correlation coefficient (MCC) were calculated. Points represent median ± 

minimum to maximum values for 10 replicate simulations.  
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Supplementary Figure 15: Area under the receiver-operating curve (AUROC) of 9 differential expression test 

methods for simulated dose response data with varying probability of repressed genes. A total of 4,500 cells 

(500 cells per group) and 5,000 genes were simulated across 9 dose groups with a 10% probability of differential 

expression. Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Box and 

whisker plots represent median and 25th and 75th percentile, and minimum and maximum values for 10 replicate 

simulations. 
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Supplementary Figure 16: Area under the receiver-operating curve (AUPRC) of 9 differential expression test 

methods for simulated dose response data with varying probability of repressed genes. A total of 4,500 cells 

(500 cells per group) and 5,000 genes were simulated across 9 dose groups with a 10% probability of differential 

expression. Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Box and 

whisker plots represent median and 25th and 75th percentile, and minimum and maximum values for 10 replicate 

simulations. 
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Supplementary Figure 17: Benchmarking metrics of 9 differential expression test methods for simulated dose 

response data with varying scale of differentially expressed genes. A total of 4,500 cells (500 cells per group) 

and 5,000 genes were simulated across 9 dose groups with a probability of being differentially expressed of 

10%, of which 50% were repressed. Differential expression  fold-change location was 0.8. Given a ground truth 

from simulation outputs, false positive rates (FPR), true positive rates (TPR), false negative rates (FNR), true 

negative rates (TNR), precision, and Matthews correlation coefficient (MCC) were calculated. Points represent 

median ± minimum to maximum values for 10 replicate simulations. 
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Supplementary Figure 18: Area under the receiver-operating curve (AUROC) of 9 differential expression test 

methods for simulated dose response data with varying scale of differentially expressed genes. A total of 4,500 

cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with a probability of being 

differentially expressed of 10%, 50% of which were repressed. Differential expression fold-change location was 

0.8. Box and whisker plots represent median and 25th and 75th percentile, and minimum and maximum values 

for 10 replicate simulations. 
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Supplementary Figure 19: Area under the precision-recall curve (AUPRC) of 9 differential expression test 

methods for simulated dose response data with varying scale of differentially expressed genes. A total of 4,500 

cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with a probability of being 

differentially expressed of 10%, of which 50% were repressed. Differential expression fold-change location was 

0.8. Box and whisker plots represent median and 25th and 75th percentile, and minimum and maximum values 

for 10 replicate simulations. 
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Supplementary Figure 20: Benchmarking metrics of 9 differential expression test methods for simulated dose 

response data with varying location of differentially expressed genes. A total of 4,500 cells (500 cells per group) 

and 5,000 genes were simulated across 9 dose groups with a probability of being differentially expressed of 

10%, of which 50% were repressed. Differential expression fold-change scale was 0.4. Given a ground truth 

from simulation outputs, false positive rates (FPR), true positive rates (TPR), false negative rates (FNR), true 

negative rates (TNR), precision, and Matthews correlation coefficient (MCC) were calculated. Points represent 

median ± minimum to maximum values for 10 replicate simulations. 
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Supplementary Figure 21: Area under the receiver-operating curve (AUROC) of 9 differential expression  test 

methods for simulated dose response data with varying location of differentially expressed genes. A total of 

4,500 cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with a probability of 

being differentially expressed of 10%, of which 50% were repressed. Differential expression fold-change scale 

was 0.4. Box and whisker plots represent median and 25th and 75th percentile, and minimum and maximum 

values for 10 replicate simulations. 
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Supplementary Figure 22: Area under the precision-recall curve (AUPRC) of 9 differential expression test 

methods for simulated dose response data with varying location of differentially expressed genes. A total of 

4,500 cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with a probability of 

being differentially expressed of 10%, of which 50% were repressed. Differential expression fold-change scale 

was 0.4. Box and whisker plots represent median and 25th and 75th percentile, and minimum and maximum 

values for 10 replicate simulations. 
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Supplementary Figure 23: Benchmarking metrics of 9 differential expression test methods for simulated dose 

response data with varying relationship between mean expression and percent zeroes. A total of 4,500 cells 

(500 cells per group) and 5,000 genes were simulated across 9 dose groups with a probability of being 

differentially expressed of 10%, of which 50% were downregulated. Differential expression fold-change location 

and scale were 0.8 and 0.4, respectively. Given a ground truth from simulation outputs, false positive rates (FPR), 

true positive rates (TPR), false negative rates (FNR), true negative rates (TNR), precision, and Matthews 

correlation coefficient (MCC) were calculated. Points represent median ± minimum to maximum values for 10 

replicate simulations. Dropout rates are calculated as 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑧𝑒𝑟𝑜𝑒𝑠 = 𝑎 ∗  𝑒𝑏∗𝑚𝑒𝑎𝑛 𝑙𝑜𝑔 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑡 where 

parameters are shown in Table S2. 
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Supplementary Figure 24: Area under the receiver-operating curve (AUROC) of 9 differential expression test 

methods for simulated dose response data with varying relationship between mean expression and percent 

zeroes. A total of 4,500 cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with 

a probability of being differentially expressed of 10%, of which 50% were repressed. Differential expression fold-

change location and scale were 0.8 and 0.4, respectively. Box and whisker plots represent median and 25th and 

75th percentile, and minimum and maximum values for 10 replicate simulations. Dropout rates are calculated as 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑧𝑒𝑟𝑜𝑒𝑠 = 𝑎 ∗ 𝑒𝑏∗𝑚𝑒𝑎𝑛 𝑙𝑜𝑔 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑡 where parameters are shown in Table S2. 
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Supplementary Figure 25: Area under the precision-recall curve (AUPRC) of 9 differential expression test 

methods for simulated dose response data with varying relationship between mean expression and percent 

zeroes. A total of 4,500 cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with 

a probability of being differentially expressed of 10%, of which 50% were repressed. Differential expression fold-

change location and scale were 0.8 and 0.4, respectively. Box and whisker plots represent median and 25th and 

75th percentile, and minimum and maximum values for 10 replicate simulations. Dropout rates are calculated as 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑧𝑒𝑟𝑜𝑒𝑠 = 𝑎 ∗ 𝑒𝑏∗𝑚𝑒𝑎𝑛 𝑙𝑜𝑔 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑡 where parameters are shown in Table S2. 
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Supplementary Figure 26: Comparison of differential gene expression analysis of hepatic single-nuclei RNA 

sequencing data from male mice gavaged with sesame oil vehicle control or 0.01 – 30 µg/kg TCDD every 4 days 

for 28 days. Each panel represents a distinct cell type showing the intersection of differentially expressed genes 

(vertical bars) for each combination of tests (filled circles) and total number of differentially expressed genes 

(horizontal bars). Intersect sizes are displayed on top of vertical bars. The tile plot in the upper left represents 

the area under the concordance curve (AUCC) calculated in the bottom right panel (page 2). A higher score 

indicates stronger agreement in the lowest 500 ranked adjusted p-values. Genes were considered differentially 

expressed when expressed in at least 5% of cells in any dose group and with a |fold-change| ≥ 1.5.  
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Supplementary Figure 26: (continued) 
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Table S3. Parameters for modeling of dropout rate calculated using the equation 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑧𝑒𝑟𝑜𝑒𝑠 = 𝑎 ∗ 𝑒𝑏∗𝑚𝑒𝑎𝑛 𝑙𝑜𝑔 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑡.  

Dropout rate a b t 

1 1.070 0.008 -0.683 0.009 -0.0714 0.008 

1.5 1.040 ± 0.004 -0.86 ± 0.01 -0.044 ± 0.004 

3 0.997 ± 0.004 -1.29 ± 0.01 -0.003 ± 0.004 

6 0.970 ± 0.002 -2.00 ± 0.02 0.018 ± 0.002 

10 0.960 ± 0.002 -2.80 ± 0.02 0.023 ± 0.002 

20 0.952 ± 0.002 -4.60 ± 0.07 0.023 ± 0.002 
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Benchmarking of a Bayesian single cell RNAseq differential

gene expression test for dose-response study designs-

Supplementary Material
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1 Derivation of the marginal likelihoods under the null and alternative hypothesis for

scBA 1

2 Derivation of the combined Likelihood Ratio Test Statistic (LRT-multiple) 3

3 Derivation of the combined Likelihood Ratio Test Statistic for the linear model setup

(LRT-linear) 4

1 Derivation of the marginal likelihoods under the null and alterna-

tive hypothesis for scBA

Consider the following K-sample test,

H0 : µ1,j = µ2,j = . . . µK,j = µj and ω1,j = ω2,j = . . . ωK,j = ωj . (1)

versus the alternative

Ha : µk,j is different for at least one k and

ωk,j is different for at least one k, k = 1, . . .K.

Given this model structure we sssume that a priori, given σ2j , µk,j ∼ Normal(mk,0, τk,µσ
2
j ), σ

2
j ∼

IG(aσ, bσ), ωk,j ∼ Beta(ak,ω, bk,ω), where IG is the inverse gamma distribution with shape aσ and

scale bσ and mk,0, τk,µ, aσ, bσ, ak,ω, bk,ω are the hyperparameters. Now, let’s assume that data are

collected under K conditions, and denote the data by Dk,o ≡ {(Yk,i,j , Rk,i,j), i = 1, . . . , nk} . The

underlying populations for the sample data Dk,o for the k=1,2, . . . , K, are assumed to be identified

by the parameters (µk,j , σ
2
j , ωk,j). Under the null hypothesis µ1,j = µ2,j = . . . µK,j = µj and

ω1,j = ω2,j = . . . ωK,j = ωj . We sssume that a priori, given σ2j , µk,j ∼ Normal(mk,0, τk,µσ
2
j ), and

1
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σ2j ∼ IG(aσ, bσ), ωk,j ∼ Beta(ak,ω, bk,ω), wheremk,0, τk,µ, aσ, bσ, ak,ω, bk,ω are the hyperparameters.

Now we calculate the marginal likelihood under the null hypothesis and alternative hypothesis.

Under the null hypothesis the marginal likelihood is

LH0,j =

∫ ∫ ∫ K
∏

k=1

{ nk
∏

i=1

[

1√
2πσj

exp

{

−(Yk,i,j − µj)
2

2σ2j

}

ωj

]Rk,i,j

(1− ωj)
1−Rk,i,j

}

× π(µj |σ2j )π(σ2j )π(ωj)dµjdσ
2
j dωj

=
1

(2π)(
∑K

k=1

∑nk
i=1

Rk,i,j)/2
× 1

√

1 + τµ
∑K

k=1

∑nk

i=1Rk,i,j

× 1

Γ(aσ)b
aσ
σ

× Γ(aσ + (
∑K

k=1

∑nk

i=1Rk,i,j)/2)

(1/bσ +Atot/2)
aσ+(

∑K
k=1

∑nk
i=1

Rk,i,j)/2

× Beta(aω + (
∑K

k=1

∑nk

i=1Rk,i,j), bω +
∑K

k=1 nk − (
∑K

k=1

∑nk

i=1Rk,i,j))

Beta(aω, bω)
,

where

Atot =

{

K
∑

k=1

nk
∑

i=1

Rk,i,jY
2
k,i,j +

m2
0

τµ

}

−
{

K
∑

k=1

nk
∑

i=1

Rk,i,j +
1

τµ

}−1{ K
∑

k=1

nk
∑

i=1

Rk,i,jYk,i,j +
m0

τµ

}2

.

Under the alternative hypothesis we compute the marginal likelihood without any restriction on the

K means µk,j and the zero inflation parameter ωk,j ; k = 1, 2, . . .K . Particularly, we assume that

µk,j ∼ Normal(mk,0, τk,µσ
2
j ), and σ2j ∼ IG(aσ, bσ), ωk,j ∼ Beta(ak,ω, bk,ω); k = 1, 2, . . .K. Now,

LHa,j =

∫

· · ·
∫

{ K
∏

k=1

nk
∏

i=1

[

1√
2πσj

exp

{

−(Yk,i,j − µk,j)
2

2σ2j

}

ωk,j

]Rk,i,j

(1− ωk,j)
1−Rk,i,j

}

×
K
∏

k=1

{

π(µk,j)π(ωk,j)

}

π(σ2j )
K
∏

k=1

{

dµk,jdωk,j

}

dσ2j

=
1

(2π)(
∑K

k=1

∑nk
i=1

Rk,i,j)/2
× 1

∏K
k=1

√

1 + τk,µ
∑nk

i=1Rk,i,j

× 1

Γ(aσ)b
aσ
σ

× Γ(aσ +
∑K

k=1

∑nk

i=1Rk,i,j/2)

(1/bσ +
∑K

k=1Ak/2)
aσ+

∑K
k=1

∑nk
i=1

Rk,i,j/2

×
K
∏

k=1

Beta(ak,ω +
∑nk

i=1Rk,i,j , bk,ω + nk −
∑nk

i=1Rk,i,j)

Beta(ak,ω, bk,ω)
,

where

Ak =

{

nk
∑

i=1

Rk,i,jY
2
k,i,j +

m2
k,0

τk,µ

}

−
{

nk
∑

i=1

Rk,i,j +
1

τk,µ

}−1{ nk
∑

i=1

Rk,i,jYk,i,j +
mk,0

τt,µ

}2

for k = 1, 2 . . .K.
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The ratio of the marginal likelihood from H0 to Ha is

LH0,j

LHa,j
=

∏K
k=1

√

1 + τk,µ
∑nk

i=1Rk,i,j
√

1 + τµ
∑K

k=1

∑nk

i=1Rk,i,j

× (1/bσ +
∑K

k=1Ak/2)
aσ+

∑K
k=1

∑nk
i=1

Rk,i,j/2

(1/bσ +Atot/2)
aσ+

∑K
k=1

∑nk
i=1

Rk,i,j/2

× Beta(aω +
∑K

k=1

∑nk

i=1Rk,i,j , bω +
∑K

k=1 nk −
∑K

k=1

∑nk

i=1Rk,i,j)

Beta(aω, bω)

×
K
∏

k=1

Beta(ak,ω, bk,ω)

Beta(ak,ω +
∑nk

i=1Rk,i,j , bk,ω + nk −
∑nk

i=1Rk,i,j)
.

The Bayes factor can be thus be defined as

BF01,j =
LH0,j

LHa,j
× π(Ha)

π(H0)
,

where π(Ha) and π(H0) are the prior probabilities for the alternative and null model, respectively.

To control for multiplicity we adopt the FDR correction approach discussed in1. The rejection

threshold is estimated in terms of the posterior probabilities of the null hypothesis, p(H0,j |Dj). For

a target FDR α, the procedure rejects all hypotheses with p(H0,j |Dj) < ζ , where p(H0,j |Dj) = (1+

1/BF01,j)
−1 and ζ is the largest value such that C(ζ)/J(ζ) ≤ α where, J(ζ) = {j : p(H0,j |Dj) ≤ ζ}

and C(ζ) =
∑

j∈J(ζ) p(Ho,j |Dj).

2 Derivation of the combined Likelihood Ratio Test Statistic (LRT-

multiple)

In this section, we extend the two-sample test proposed by2 to a test for k-samples. Consider the

composite K-sample test

H0 : ω1 = ω2 = · · · = ωK = ω and µ1 = µ2 = · · · = µK = µ

versus the alternative

Ha : ωk is different for at least one k and µk is different for at least one k, k ∈ 1, . . . ,K.

Similar to ANOVA, we assume homogeneity for variance parameter σ2j . Now, fixing the gene index

j, the likelihood ratio test can be defined as;

Λ(Y,R) =
supθ∈H0

L(θ|Y,R)
supθ∈Ha

L(θ|Y,R)
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where the likelihood can be written as;

L(θ|Y,R) =
∏

k

ωek
k (1− ωk)

nk−ek
∏

i∈Ck

f(Yi,k|µk, σ2)

Y and R represent the gene observation vector and the gene indicator vector across K dose

groups and θ = {µk, σ2, πk, k = 1, . . . ,K} is the vector of unknown parameters. We define Ck

to be the set of cells expressing the gene in group k (i.e.Ck = {i : Rik = 1}) and ek =
∑

iRik

is the cardinality of set Ck. Here, f denotes the density function of the normal distribution with

parameters µk and σ2. Therefore, it follows that the likelihood ratio test can be written as

Λ(Y,R) =
supθ∈H0

L(θ|Y,R)
supθ∈Ha

L(θ|Y,R)

=
sup{ω,µ,σ2} ω

(
∑

k ek)(1− ω)(
∑

k nk−
∑

k ek)
∏

k

∏

i∈Ck
N(Yi,k|µ, σ2)

sup{ωk,µk,σ2;k=1,...,K}

∏

k ω
ek
k (1− ωk)(nk−ek)

∏

k

∏

i∈Ck
N(Yi,k|µk, σ2)

=
sup{ω} ω

(
∑

k ek)(1− ω)(
∑

k nk−
∑

k ek)

sup{ωk,k=1,...,K}

∏

k ω
ek
k (1− ωk)(nk−ek)

×
sup{µ,σ2}

∏

k

∏

i∈Ck
N(Yi,k|µ, σ2)

sup{µk,σ2;k=1,...,K}

∏

k

∏

i∈Ck
N(Yi,k|µk, σ2)

=
∏

k

{

∑
k ek∑
k nk

ek
nk

}ek

×
{1−

∑
k ek∑
k nk

1− ek
nk

}nk−ek

×
{

1 +

∑

k ek(Ȳ
+
k − ¯̄

Y +)2
∑

k

∑ek
i=1(Y

+
ik − Ȳ +

k )2

}−
∑

k ek
2

= Λb(R)× Λn(Y
+),

where N(·|µ, σ2) denotes the normal density with mean and variance µ and σ2, Λb is a binomial

LRT, Λn is a normal LRT ,Y + is the set of positive Y values, Y +
k = (1/ek)

∑ek
i=1 Y

+
ik and Y + =

(1/
∑

k ek)
∑

k

∑ek
i=1 Y

+
ik . Thus our combined LRT can be computed as the product of a binomial

and a normal LRT statistic, both of which can easily be derived using classical statistical theory.

3 Derivation of the combined Likelihood Ratio Test Statistic for the

linear model setup (LRT-linear)

In this section we extend the combined Likelihood Ratio Test Statistic (LRT-multiple) to a lin-

ear model setup. Treating dose (d) as a continuous covariate we write µij = m0j + dim1j and

logit(ωij) = ψ0j+diψ1j . Under the null hypothesis the model can be reformulated asH0 : µij = m0j

and logit(ωij) = ψ0j . Therefore the likelihood function for gene j under the full model can be writ-

ten as:

L(θj |Yj , Rj) =
n
∏

i=1

{exp(ψ0j + diψ1j)}Rij

1 + exp(ψ0j + diψ1j)

ne
∏

i=1

N(Y +
ij |µij = m0j + dim1j , σ

2
j ),
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where Rj = I(Yj 6= 0) denotes the gene expression indicator vector of size n =
∑K

k=1 nk, Y +
j

denotes the positively expressed gene observation vector of size ne =
∑

k

∑

iRijk and θj =

{m0j ,m1j , σ
2
j , ψ0j , ψ1j} Using the likelihood function described above, the likelihood ratio test can

be derived following the same approach detailed in Section 2. Since Rj and Yj are conditionally

independent for each gene j, the individuals LRT statistics derived from the logistic and linear

regression parts can be summed to obtain an asymptotically χ2 distribution with the degrees of

freedom of the component tests added.
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