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Abstract

The application of single-cell RNA sequencing (scRNAseq) for the evaluation of chemicals, drugs, and food
contaminants presents the opportunity to consider cellular heterogeneity in pharmacological and toxicological
responses. Current differential gene expression analysis (DGEA) methods focus primarily on two group
comparisons, not multi-group dose-response study designs used in safety assessments. To benchmark DGEA
methods for dose-response scRNAseq experiments, we proposed a multiplicity corrected Bayesian testing
approach and compare it against 8 other methods including two frequentist fit-for-purpose tests using simulated
and experimental data. Our Bayesian test method outperformed all other tests for a broad range of accuracy
metrics including control of false positive error rates. Most notable, the fit-for-purpose and standard multiple
group DGEA methods were superior to the two group scRNAseq methods for dose-response study designs.
Collectively, our benchmarking of DGEA methods demonstrates the importance in considering study design

when determining the most appropriate test methods.
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Introduction

Single-cell transcriptomics enables researchers to investigate homeostasis, development, and disease
at unprecedented cellular resolution’™®. As with any new innovative technology, diverse tools soon follow to
address specific applications and unique challenges. Currently, there are dozens of differential gene expression
analysis (DGEA) approaches for single-cell RNAseq (scRNAseq) data; developed based on differences in
assumptions, statistical methodologies, and study designs®''. A recent comparison of 36 approaches
demonstrated acceptable performance for common bulk RNAseq tools such as edgeR and limma-trend, and
MAST for snRNAseq, as well as common statistical tests such as the Wilcoxon Rank Sum (WRS) and the t-test®.
However, most methods have been developed primarily for two group comparisons whereas experiments that
include multiple groups, such as when assessing risk in pharmacology and toxicology studies where dose-
response designs are required. The use of two sample tests for multiple group study designs elevate the type |
error rate warranting further investigation of these methods for multiple group dose-response study designs'2.

Dose-response studies are used to derive the efficacy and/or safety margins such as effective dose and
the point of departure (POD). Significant efforts by the toxicology and regulatory communities have suggested
that acute (<14 days) and sub-acute (14 — 28 days) transcriptomic studies as viable alternative to the current
standard 2-year rodent bioassay that significantly reduces the time and resources needed to assess risk'3'5.
Gene expression profiling at single-cell resolution could further support such evaluations by identifying cell-
specific dose-dependent responses indicative of an adverse event. The U.S. National Toxicology Program (NTP)
recently reported a robust DGEA approach is essential to deriving biologically relevant PODs"'. However,
concerns regarding the inclusion of false positives that produce less conservative POD estimates potentially
leads to incorrect classification of mode-of-action, thus highlighting the importance of controlling type | error
rates'® 17,

Unlike microarray and bulk RNAseq datasets, single-cell RNAseq (scRNAseq) data is zero inflated due
to the low per cell RNA input, biases in capture and amplification, transcriptional bursts, and other technical
factors'®. Consequently, scRNAseq test methods usually consider the gene expression distribution as a mixture
of a zero and a positively (non-zero) expressed population'®?'. For example, the Seurat Bimod approach tests
for differential gene expression using a likelihood ratio test designed for the said mixture population. MAST
extends the Seurat Bimod test to a two-part generalized linear model structure capable of incorporating
covariates' 2. Given the improved performance of MAST® ® 29" we hypothesized that multiple group tests
developed assuming the same distributional framework would be most favorable for dose-response study
designs. Furthermore, a Bayesian approach which considers prior knowledge is anticipated to minimize type |
error rates? 23,

We propose a novel, multiplicity corrected, Bayesian multiple group test (scBT) designed exclusively for
DGEA in zero inflated continuous data populations, characteristic of dose-response scRNAseq data. Two other
fit-for-purpose frequentist multiple group tests are also examined: (1) a multiple group extension of the Seurat

Bimod test and (2) a simple extension of test (1) to a generalized linear model framework. The proposed methods
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are benchmarked against commonly used approaches for DGEA on simulated and real experimental dose-

response datasets.

Results
Dose-response single-cell data simulations

For benchmarking of DGEA methods, a ground truth is required. Existing simulation tools such as
PowSimR, SymSim, SPsimSeq, and Splatter are commonly used for power analyses, evaluating DE analysis
methods, and testing cell clustering strategies?*?’. Tools such as SymSim and Splatter are also capable of
simulating cell trajectories and model differentiation processes. Trajectories which exhibit non-linear changes
over time or across different developmental stages are not unlike dose-response effects which change over a
continuum of doses. However, dose-responsive changes commonly follow defined trajectories such as Hill,
exponential, power, and linear models?. To simulate dose-response scRNAseq data we developed a wrapper
for the Splatter scRNAseq data simulation tool named SplattDR. SplattDR modified the Splatter grouped data
simulation strategy by adjusting counts from means defined by one of the dose-response functions outlined in
the Materials and Methods.

To demonstrate the modeling capability of SplattDR, 10,000 gene expression responses were simulated
with a 10% probability of being differentially expressed, equally distributed across the dose-response models.
Parameters used in Splatter were initially estimated from our experimental single nuclei RNAseq (snRNAseq)
dose-response dataset. The simulated data compared to the experimental data showed the relationship between
the mean expression, percentage of zeroes, and mean variance were consistent (Figs. 1a-b). Estimation of the
normalized root mean square deviation (NRMSD) from a curve fit to the experimental data indicated excellent
concordance. This strong concordance was also maintained within distinct dose groups (Figs. S1-2). The
distribution of log(fold-changes) between vehicle (dose 0) and the highest simulated dose (dose 9; 30 ug/kg)
showed a more even distribution within a similar range compared to experimental data which was skewed
towards induction (Fig. 1¢). However, the gene induction skew was captured by modulating the parameters
affecting the probability of differential expression and the proportion of differentially repressed genes (Fig. $3).
Principal components analysis (PCA) of the simulated data clearly showed the dose-dependent characteristics
of scRNAseq data with distinct clusters increasing in separation with increasing dose (Fig. 1d) which was also
resolved by PCA within the experimental data (Fig. S4).

To our knowledge, no other published in-vivo dose-response scRNAseq datasets are available limiting
the number of datasets to estimate initial parameters for simulation to date. To investigate whether existing
datasets generated using a different study design (e.g., whole cells or different tissue source) could be used to
derive initial parameters, we also simulated 10,000 genes starting with parameters estimated from (i) a two-dose
liver snRNAseq (GSE148339), (ii) whole cell liver scRNAseq (GSE129516), and (iii) peripheral blood
mononuclear cells (PBMC; GSE108313) datasets. When compared to a model fit for experimental data to

determine the relation between mean expression and percent zeroes or mean variance, the NRMSD for data
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simulated from these datasets were between 1 - 10% with data simulated from whole cell data differing the most
from the model fit (Fig. 1e). We then explored whether parameters estimated from distinct cell types could
replicate the characteristics of that same cell type (Fig. 1f). Not surprisingly, lower NRMSD values were observed
for simulated cell-specific data based on experimental dose-response data estimated starting parameters with
whole cell data performing the worst. Notably, when data derived from a lower abundant cell subtype was used
to estimate starting parameters, the dose-response characteristics for that cell subtype was also poorly modeled
(Figs. 1e-f, $1-2).

Performance Accuracy of DE test methods

We evaluated the performance of several differential gene expression analysis methods on simulated
datasets consisting of 9 dose groups of 500 cells each (4,500 total) and 5,000 genes with a 10% probability of
being differentially expressed (500 differentially expressed genes). Selection criteria for test inclusion are
outlined in the Materials and Methods section and included 9 test methods; ANOVA?®, single-cell Bayes Hurdle
Model test (scBT), Kruskall-Wallis (KW)*°, limma-trend3" 32, Likelihood-ratio test (LRT) linear and multiple,
MAST", Seurat Bimod*®, and Wilcoxon Rank Sum (WRS)**. With ground truth from simulated data, the
sensitivity, specificity, and precision for each test method was computed. Area under the receiver-operating
characteristic curve (AUROC) was used to measure test performance for correctly classified differentially
expressed genes. In unfiltered data, AUROC scores showed similar performance for most tests except scBT
which had the largest AUROC among all test methods (Fig. 2a). To account for the inherent class imbalance
between differentially expressed and non-differentially expressed classes the area under the precision-recall
curves (AUPRC) was also calculated. Similar to AUROCs, AUPRCs identified scBT as the best performing test
(Fig. 2c). In most standard differential expression testing pipelines genes expressed at low levels are removed
to minimize false detection rates. Following filtering of genes expressed in £5% of cells in any dose group, scBT
was consistently ranked as the best test based on AUROC and AUPRC scores. The performance of LRT linear
test also improved, with comparable AUROC and AUPRC scores relative to scBT, suggesting LRT linear is
poorly suited for genes expressed at low levels (Fig. 2b,d).

AUROC and AUPRC reflect the performance of each test method with varying significance (i.e., p-value)
thresholds. In the standard pipeline a fixed threshold is used, typically a p-value < 0.05 after adjustment for
multiple hypothesis testing (i.e., Bonferroni correction). For each method except scBT, the performance at an
adjusted p-value < 0.05 significance criteria was evaluated. In scBT analysis, a gene was considered differentially

expressed when the estimated posterior probabilities of the null hypothesis, p(HO,j|Dj), was less than ¢, where

the ¢ value was chosen to achieve a target FDR of 0.05. scBT significantly outperformed all other tests in
precision rates irrespective of low expression filtering (Figs. 2e, S§5). However, scBT was less effective in
identifying true positives (Figs. 2f, S5). Applying the filtering criteria improved the recall rates, but the precision

rates remain largely unchanged (Figs. 2e,f). Test method classification performance scores were estimated as
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the Matthews Correlation Coefficient (MCC) which is well suited for unbalanced data®. We see that the scBT

and LRT linear tests performed best for this metric on both unfiltered and filtered data (Fig. 2g).

Type | error control and power

To investigate test performance in controlling type | errors (false positives), DGEA methods on simulated
datasets were examined with 0% DE genes (i.e., negative control). Using the ¢ threshold for the computed
posterior null probabilities, scBT identified only 1 false positive gene in 2 of 10 simulations (Fig. 3a). ANOVA,
scBT, KW, limma-trend, and LRT linear had false positive rates (FPRs) below 3% indicating better performance
compared to two group tests. After filtering for genes with low expression levels, scBT still correctly identified all
the non-differentially expressed genes and was the best performing test. These are the same tests that had a
better FPR control in initial simulations (Fig. 2). To explore whether mean expression or percentage of zeroes
influenced type | error rates, a logistic regression model was fit to negative control data. We predicted the
probability for each gene to be identified as differentially expressed in the negative control data. While the curve
for scBT is missing since few false positives were identified, the predicted FPR for all the other tests except LRT
linear were also high for highly expressed genes with few zeroes (Fig. 3b,c). Next, a positive control dataset
with 100% differentially expressed genes was simulated to evaluate test performance for detecting true positives.
All tests except scBT exhibited a false negative rate (FNR) < 40% (Fig. 3d). The best performing tests for FNR
also had high FPR. Logistic model regression fitting for false negative classification of genes shows that the false

negative rates were highest when the mean expression was either too high or too low for all tests (Fig. 3e,f).

Parameter sensitivity analyses

Experimental scRNAseq datasets will vary between cell types, cell composition, and responses
depending on the target tissue, treatment, number of cells sequenced, and more. For example, some distinct
cell types are very abundant (e.g., hepatocytes), with others present at lower levels (e.g., portal fibroblasts) in
hepatic scRNAseq datasets. Moreover, treatments such as exposure to a xenobiotic, can elicit dose-dependent
changes in relative proportions of cell types such as the infiltration of immune cells®¢. We investigated the impact
by changing cell abundance from 25 to 2,000 cells per dose group and observed an increase in the false positive
rate (FPR) when increasing the number of cells (Fig. $6). The scBT and LRT linear tests were less sensitive to
an increase in the FPR as cell abundance increased while the total positive rates (TPR + FPR) increased with
cell abundance for all methods. Although all tests exhibited comparable performance at low cell numbers (< 500),
as cell numbers increased scBT outperformed all other tests in both precision and MCC score (Fig. 4a, S6).
Comparison of AUROCs and AUPRCs across cell numbers showed that ANOVA, KW, limma-trend, and LRT
linear tests performed best for a small number of cells, but the increase in AUROC was steeper for scBT (Fig.
S7-8).

It was also evident from the experimental snRNAseq dataset that the number of cells per dose group was

not fixed. We evaluated the performance of the test methods when the number of cells dose-dependently
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increased or decreased, and when the number of cells per dose group were taken from experimental data.
Notably, while scBT had the best MCC for increasing number of cells per dose, LRT linear performed better than
scBT when the number of cells decreased before and after filtering for genes expressed at low levels (Fig. 4b).
The shift in MCC between increasing and decreasing cell numbers for scBT appears to be driven by a
concomitant decrease in FTPR and increase in FNR (Fig. S9).

Unique chemical, drug, environmental contaminant, and natural product classes elicit distinct differential
gene expression profiles defined by the mode-of-action (MoA) as well as by their metabolism, potency
(sensitivity) and efficacy (maximal response). Differences between compound classes are reflected in the gene
expression profile in (a) the proportion of differential expressed genes, (b) the number of induced/repressed
genes, (c) the mean fold-change for differentially expressed genes, and (d) the distribution of fold-change for
differentially expressed genes. These 4 parameters were modulated in simulated data to determine the effect of
the percentage of differentially expressed genes, the mean fold-change (aka /ocation), and the fold-change
distribution (aka scale) on test performance. Among these scenarios, changing the proportion of repressed
genes had little to no impact on test method performance (Fig. 4c-f, S14).

Increasing the proportion of differentially expressed genes led to an improvement in MCC except for scBT
and LRT linear, though these tests maintained the top MCC scores as well as AUROC and AUPRC (Fig. 4c,
S$11-13). As the magnitude of the effect increased, LRT linear performed best at the low end while scBT exhibited
the greatest improvement in MCC (Fig. 4d). Conversely, while the MCC decreased for most tests when
modulating the fold-change scale of differentially expressed genes, scBT improved and was more stable (Fig.
4e). As zero inflation increased, the FPR increased and the precision decreased for all tests (Fig. $23). However,
scBT was least affected, and maintained the highest MCC among all tests (Fig. 4f). AUROC and AUPRC values
also indicated that scBT consistently outperformed other test methods (Fig. S24-25).

Test method agreement

To assess agreement between tests, the area under the concordance curve (AUCC) for each pair of tests
for the top 100 genes ranked by adjusted p-value was calculated as previously described® %’. All methods showed
excellent concordance (AUCC = 0.77) with LRT linear showing the poorest consistency compared to all other
tests while the limma-trend and ANOVA tests showed perfect agreement with an AUCC of 1 (Fig. S5). Pairwise
differential gene expression comparisons between DE, Seurat Bimod, MAST and WRS had AUCCs >0.95
AUCCs while the multiple group tests ANOVA, LRT multiple, KW, and scBT clustered together with AUCC
ranging between 0.9 - 1. In the absence of nuisance covariates, MAST and Seurat Bimod provided similar results,
as expected given their similar mixture normal model structure. Likewise for ANOVA and limma-trend, both of

which rely on normality assumptions for testing differential gene expression.
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Real dose-response dataset DE analysis

Without ground truth for experimental data, the performance of the differential expression test methods
was examined by first evaluating the agreement for each identified cell type (Fig. 5, $26). Genes in the
experimental dataset were considered differentially expressed when expressed in >=5% of cells in at least one
dose group and had a [fold-change| = 1.5. In hepatocytes, the most abundant cell type, fewer than 5 genes were
not detected in all test methods, with the majority missed by the WRS test (Fig. 5a). Upon closer examination,
those genes were not expressed in control hepatocytes. Not surprisingly, for all cell types, the largest intersection
was between all tests indicating strong agreement within all test methods. Only a few tests identified a subset of
unique genes as differentially expressed, which accounted for a very small fraction. For example, LRT linear
identified 12 unique differentially expressed genes in portal fibroblasts one of the least abundant cell types (Fig.
5b). LRT linear was the best performing test for low cell numbers indicating that the 12 unique differentially
expressed genes may in fact be true positives. Consistent with simulations of varying cell numbers (Fig. 4a), 24
genes were not identified as differentially expressed by the scBT method for stellate cells which exhibit a dose-
dependent decrease in numbers (Fig. 5¢,d). Although scBT outperformed other tests in most scenarios, it under
performed in this scenario. Nevertheless, when ranking genes by significance level (i.e., p-values), AUCC were

high for all pairwise comparisons.

Discussion

The goal of this study was to compare the performance of newly developed DGEA test methods for dose-
response experiments to existing analysis methods. Using simulated data to generate ground truth, we evaluated
the performance of 9 differential expression testing methods which were broadly classified as either fit-for-
purpose, multiple group, or two group tests. Criteria for test method selection was based on previous
benchmarking efforts for two group study designs identifying MAST, limma-trend, WRS, and t-test as the best
performers® 3. ANOVA and KW tests were also included for evaluating multiple group comparisons, and Seurat
Bimod, for having the same modelling framework as scBT, LRT multiple, and LRT linear tests. The test methods
were ranked from best to worse (1 — 9) based on type | error rate, type Il error rate, MCC, AUROC, and AUPRC
(Fig- 6, Table S1).

While several scRNAseq tools have been developed?*?’, none are developed to simulate dose-response
models commonly identified in toxicological and pharmacological datasets?® 3°. Our SplattDR wrapper for the
Splatter package?” was able to show that simulated data can effectively emulate key experimental scRNAseq
data characteristics when simulation parameters were estimated from various Unique Molecular Identifier (UMI)-
based datasets. In agreement with a previous report, technical and biological factors, such as cell type, does
appear to influence gene dropout rates'. We primarily focused on 10X Genomics UMI data given the
unavailability of real experimental dose-response data generated using other platforms.

Overall, test method performance was consistent with their intended application. For example, fit-for-

purpose tests scBT and LRT linear consistently ranked higher followed by multiple groups tests such as KW and
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LRT multiple. scBT exhibited the best overall performance with excellent FPR control and top ranked MCC while
LRT linear struck a balance between type | and type Il error rates. The scBT results are not surprising as Bayes
factor-based tests have proven to be conservative and consequently more appropriate when false positives are
of concern?> 2%, In the context of investigating chemical or drug MoAs, false positives have the potential to lead
to wasted effort and resources in attempts to validation and support findings*®. Moreover, when assessing a
large number of genes, a 5% FP rate (P-value < 0.05) can result in hundreds of FPs that skew MoA
classifications™’.

A single test method was not expected to outperform all other tests under all conditions as previously
demonstrated when comparing pairwise testing® ® 3. Therefore, we assessed the strengths and limitations of
each test method by varying parameters likely to change within and across various experimental datasets. The
number and relative abundance of cell types is known to be affected by disease or treatment, and the distribution
of differential expression influenced by the chemical, drug, or food contaminant being evaluated® 6. scBT
consistently ranked at the top under most scenarios, particularly when the mean and standard deviation of the
fold-change for differentially expressed genes varied. However, scBT under performed in MCC when the number
of cells decrease in a dose-dependent manner which would be expected in treatments which alter cell population
sizes (e.g., inflammation). Under these circumstances LRT linear outperformed all other tests with scBT
performing similar to the other test methods as evident when 24 differentially expressed genes were not identified
by scBT within experimental data for stellate cells which experienced a dose-dependent decrease in relative
abundance following TCDD treatment. Although excluding genes expressed at low levels generally improved
the performance of all test methods, the comparative performance of test methods did not significantly change
in most cases.

Collectively, our findings suggest that scBT and LRT linear fit-for-purpose tests are better suited for the
differential expression analysis of dose-response studies and when false positives are of greater concern than
false negatives. Moreover, consistent with previous benchmarking efforts, we show that common non-parametric
tests such as KW outperform test methods developed for scRNAseq data when the study involves comparisons
between multiple groups. Ultimately, each test method performs optimally under diverse scenarios. While the
importance of controlling type | error rates is acknowledged, a balance must be struck with type Il error rates.
The tradeoff should be determined based on the individual research question being investigated. It may even
become reasonable to apply disparate test methods for distinct cell types based on dropout rates, cell

abundance, and changes in relative cell proportions given the strengths and weaknesses of each test method.
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Methods

Animal handling and treatment

Animal handling and treatment Male C57BL/6 mice aged postnatal day (PND) 25 were obtained
from Charles Rivers Laboratories (Kingston, NY) were housed and treated as previously de-
scribed*!. Mice were housed in Innovive cages (San Diego, CA) with ALPHA-dri bedding (Shep-
herd Specialty Papers, IL) at 23°C, 30-40% relative humidity, and a 12:12h ligh:dark cycle. Aqua-
vive water (Innovive) and Harlan Teklad 22/5 Rodent Diet 8940 (Madison, WI) was provided ad
libitum. On PND 29, randomly assigned mice were gavaged at Zeitgeber time (ZT) 0 with 0.1
mL sesame oil vehicle (Sigma-Aldrich, St. Louis, MO), 0.01, 0.03, 0.1, 0.3, 1, 3, 10, or 30 g/kg
TCDD every 4 days for 28 days (7 total administered doses). At day 28 mice were euthanized
by CO2 asphyxiation and livers were immediately flash frozen in liquid nitrogen and stored at
—80°C. All animal procedures were approved by the Michigan State University (MSU) Intitutional
Animal Care and Use Committee (IACUC) and reporting of in vivo experiments follow the Animal
Research: Reporting of In Vivo Experiments (ARRIVE) and Minimum Information about Animal

Toxicology Experiments (MIATE) guidelines (https:/fairsharing.org/FAIRsharing.wYScsE).

Real scRNAseq datasets

Hepatic single-nuclei RNA-sequencing (snRNAseq) was performed as previously described using
the 10X Genomics Chromium Single Cell 3’ v3.1 kit (10X Genomics, Pleasanton, CA)36. Briefly,
nuclei were isolated using EZ Lysis Buffer (Sigma-Aldrich), homogenized by disposable Dounce
homogenizer, washed, filtered using a 70-um cell strainer. The nuclei pellet was resuspended in
buffer containing DAPI (10 pg/mL), filtered using a 40-um strainer, and immediately sorted using a
BD FACSAria llu (BD Biosciences, San Jose, CA) at the MSU Pharmacology and Toxicology Flow
Cytometry Core (facs.ig.msu.edu/). Sequencing (150-bp paired end) was performed at a depth
of 50,000 reads/cell using a NovaSeq6000 at Novogene (Beijing, China). Cell Ranger v3.0.2 was
used to align reads to mouse gene models (mm10, release 93) including introns and exons to con-
sider pre-mRNA and mature mRNA. Seurat was used to integrate and log-normalize expression
data*?>. Additional real datasets were publicly available. Hepatic whole-cell generated using the
10X Genomics platform was obtained from GEO (GSE129516)°. Hepatic single-nuclei processed

as the dose-response data for control and high dose TCDD treatment (0 and 30 pg/kg) was ob-
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tained from GEO (GSE148339). Peripheral blood mononuclear cell (PBMC) data also generated

using the 10X Genomics platform and Seurat was obtained from the SeuratData R package*®.

Dose-response data simulation

To simulate dose-response scRNAseq datasets we developed a wrapper for the Splatter R pack-
age?’. Splatter simulates counts using parameters estimated from real data to set the mean ex-
pressions, variance, and outlier probability. Other parameters such as the number of cells, genes,
probability of being differentially expressed, mean fold-change of DE genes (location) and standard
deviation of fold-change of DE genes (scale) were manually assigned to best reflect real data. The
wrapper (SplattDR) leverages the group simulation feature of Splatter by applying a multiplicative
factor estimated using dose-response models in Table 1 based on the US EPA Benchmark Dose
Software®®. SplattDR R package is available at (github.com/zacharewskilab/splattdr).

Table 1. Dose-response models for simulation of scRNAseq data.

Model Formula
Hill wu(dose) =~ + (v * dose™)/(k™ + dose™)

Exponential 2 or 3 p(dose) = a * exp(sign(b x dose?))
Exponential 3or4 j(dose) = a * (¢ — (¢ — 1) * exp(dose?))
Power pu(dose) = 4 Bdose®

Single cell RNA-seq Hurdle Model

We model the log-normalized gene expression matrix using a hurdle distribution wherein the rate of
gene expression is assumed to follow a Bernoulli distribution and conditional on a cell expressing
the gene, the log-normalized expression level is assumed to follow a Gaussian distribution®® We
denote Y; ; to be the log-normalized expression value of gene j in cell i, for i = 1,...n and
j = 1,...p. To characterize the bimodal properties of single cell data, for a given cell, a gene
is defined to be either positively expressed or undetected. Define R;; = I[Y;; > 0] to be the
indicator variable denoting the presence or absence of expression for gene j in cell i. Following?°

the log-normalized gene expression values are modeled as follows:

Y iR ~ Normal(,uj,af-),
Yi; = 0 with probability 1 when R; ; =0, (1)

R; j ~ Bernoulli(wj),
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where p; and 0]2- denote the mean and variance of the gene expression level, conditional on the

gene being expressed and w; denotes the rate of gene expression of gene j across all cells.

Hypothesis Formulation

We now assume that our data has been collected under K conditions (doses), and denote the data
by Dio = {(Yi,ij, Reij).i = 1,...,n,} . The underlying populations for the sample data D;,, for
k=1,2,..., K, dose groups are assumed to be identified by the parameters (ukvj,ajz,wk,j). The
aim of this study is to test for difference in gene expression patterns between the different dose
groups. Traditionally one would perform an ANOVA test to detect changes in mean across groups
for samples with continuous measurements. However, to account for the bimodality in single cell
gene expression distribution, the test should detect for changes in x; and w; simultaneously, as

both could drive differential gene expression. Therefore we define,
H() : Pl = K2 = - UK,j = My and Wij =W = ... WKj = Wj. (2)
versus the alternative

H,:  p; is different for at least one k£ and

wy,j is different for at leastone k. k =1,... K

Single cell Bayesian Hurdle model Analysis (scBT)

Given the single cell RNA-seq hurdle model structure, we sssume that a priori, given af., M j ~
Normal(mho,m,#a]z-), ajz- ~ IG(ag,bs), wij ~ Beta(agy, brw), Where IG is the inverse gamma
distribution with shape a, and scale b, and my, Tk, ao, bs, akw, br are the hyperparameters.
Given the large number of gene-wise model fits arising from a single cell expreriment, there is
a pressing need to allow for a parallel structure whereby the same model is fitted to each gene.
The prior distributions on the parameters describe how the unknown coefficients 1 ; wi.; and o7
vary across the genes and the dose groups while allowing for information borrowing between the
genes. Now, based on the model assumptions, we propose a Bayesian test for simultaneously
testing the differences in mean gene expression and dropout proportions as formulated in . Under

the null hypothesis the marginal likelihood is written as

i=1
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(gl (02 (w; o

Under the alternative hypothesis we compute the marginal likelihood without any restriction on
the K means 1 ; and the dropout parameter w;, j;k = 1,2,... K. Particularly, we assume that
i ; ~ Normal(my o, 7 10 2), and a ~ IG(ag,bs), wi,j ~ Beta(ag . brw); k= 1,2,... K. Now, the

marginal likelihood under the alternative hypothesis is given by

K ng o 2 Ry,ij
tus =[] {Hnlm p{‘%}w] S

k=11i=1
K K
X H {w(ukyj)ﬂ(wkvj)}ﬂ(of-) H {dukvjdwkvj}dojz

k=1 k=1
The Bayes factor is then defined as
Lp,; m(Hy,)
BFq  — 0,J ~\rraj 5
"7 Ly, w(Ho) ©

where 7(H,) and 7(Hy) are the prior probabilities for the alternative and null model, respectively.
The hyperparameters are obtained by maximising the marginal likelihood under the null and the
alternative hypothesis. Detailed derivations of the likelihood function and the Bayes Factor are
provided in Supplementary Material. Using the test of hypothesis described in Equation (2) scBHM
conducts a test of DE for each gene independently. To control for multiplicity we adopt the FDR
correction approach discussed in**. The rejection threshold is estimated in terms of the posterior

probabilities of the null hypothesis, p(Ho ;|D;). For a target FDR «, the procedure rejects all

hypotheses with p(Hy ;|D;) < ¢, where p(Hy ;|D;) = [1+ BFtlj]‘l and ¢ is the largest value such

that S8 < - where, J(¢) = {j : p(Ho,|D;) < (} and C(Q) = Y 5oy P(Ho | D;).

Multiple group Likelihood Ratio Test (LRT)

To carry out a direct performance comparison with scBT, we extend the Seurat Bimod?° for multiple
groups. Assuming that all the K groups have the same variance 032» and omitting the index j for
clarity, the likelihood ratio test can be defined as;

supger, L(0]Y, R)

AV = e, LY, R)

where the likelihood can be written as;

L(0|Y,R) = Hwk L—wp)™ = T F(Vikluk, 0

1€Cy
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Y and R represent the gene observation vector and the gene indicator vector across K dose
groups, 0 = {ux, 0% m, k = 1,..., K} is the vector of unknown parameters, C, is the set of cells
expressing the gene in group k (i.e.Cy, = {i : R, = 1}),ex, = >, R;  is the number of cells
expressing the gene in group k£ and f is the density function of the normal distribution with param-
eters u;, and o2. Following®?, it can be shown that the combined LRT is the product of a binomial
and a normal LRT statistic, both of which can easily be derived using classical statistical theory.
Applying classical asymptotic results about LRTs , —2logA(Y, R) converges to a x? distribution
with (2K — 2) degrees of freedom under H,. Detailed derivations of the test statistic can be found

in the Supplementary Material.

Linear model-based Likelihood Ratio Test (LRT linear)

The generalized linear model approach MAST was identified as one of the top performing tests for
pairwise differential expression testing® '®. Deriving from their approach, the LRT multiple test is
extended to a generalized linear model framework, where the mean and the dropout proportions
are modelled as a linear function of the dose groups (assumed to be a continuous covariate).
Using the same distributional assumptions defined in (1)we fit a logistic regression model for the
discrete variable R and a Gaussian linear model for the continuous variable Y conditional on
(R = 1) independently, as follows: E(Y;;|Ri; = 1) = mg ;+mi ;*d; and logit{ P(R;; = 1)} = ¢ j+
Yn ; * d;, where d represents the continuous dose groups. Under this modelling approach, the null
hypothesis described in Equation (2) can be rewritten as Hy : p1;; = mo; and logit{ P(R; ; = 1)} =
1o;. The regression models are fit using the im and brglm functions in the stats and brgim R
packages. The likelihood ratio test statistic is computed using the same statistical theory discussed

discussed for the LRT multiple test and it asymptotically follows a y? distribution under H,.

Benchmarking method selection

Our fit-for-purpose tests were benchmarked to existing differential expression testing methods or
their multiple group equivalent based on previously reported performance, ability to consider mul-
tiple groups, or whether they served as foundation for the scBT and multiple group LRT (LRT
multiple) tests developed here. Seurat Bimod served as foundation for the scBT and LRT multiple
tests as previously outlined, and MAST was identified as one of the top performing test for two

group comparisons®. Similarly, limma-trend performed well for two sample comparisons and can
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consider multiple groups. The Wilcoxon Rank Sum test was identified as providing excellent bal-
ance between its ability to identify DE genes and speed, and is the default test for the Seurat R
package for scRNAseq analysis. It was also reported that the t test performed well and therefore
we included the ANOVA and Kruskal-Wallis (KW) tests, a parametric and non-parametric alterna-
tive of the t test for multiple group comparisons. All tests were run without correction for batch
effects or other nuisance covariates. Multiplicity for each test was controlled using FDR correction
31. All tests, including scBT, LRT multiple and LRT Linear are available in our scBT R package
(github.com/satabdisaha1288/scBT).

Seurat Bimod

Seurat Bimod test? is a pairwise differential gene expression testing approach developed assum-
ing the single cell RNA-seq hurdle model framework. The test is formulated as H,, the mean and
the dropout parameters of the gene vector under two dose groups are equal versus H,: the mean
and the dropout parameters differ over the two groups. The LRT based test statistic —2logA(y, r)
converges to a x? distribution with (2K — 2) degrees of freedom under H,. The computations are

carried out using the R Package Seurat .

MAST

MAST'® proposes a two-part generalized linear model for differential expression analysis of
scRNAseq data. The first part models the rate of gene expression using logistic regression
logit(w;;) = X; 87 and the second part uses a linear model to express the positive gene-expression
Yij, conditional on R;; as p;; = X;}; where 3¢ andf} are the coefficients of the covariates used in
the logistic and linear regression model respectively. A test with an asympotic x? null distribution
is employed for identifying DEGs and multiplicity is controlled using FDR correction*>. Despite
the fact that LRT-linear and MAST have the same hurdle regression framework, the estimation
process for the two methods has some significant differences. First, to achieve shrinkage of the
continuous variance, MAST assumes a gamma prior distribution on the precision (inverse of vari-
ance) parameter and estimates its posterior maximum likelihood estimator (MLE) and uses that in
place of the regular MLE of the precision parameter. Second, it fits a Bayesian logistic regression
model for the discrete component by assuming Cauchy distribution priors centered at zero for the
regression parameters. This is done to deal with cases of “linear separation” where the param-

eter estimates diverge to 0o and the Fisher information matrix becomes singular. And finally, it
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considers the cellular detection rate defined as CDR; = %Zle R;; to be a covariate in both the
logistic and linear regression models. LRT linear on the other hand simply fits the non-Bayesian
linear and the logistic regression models without considering variance shrinkage or adjustment for

additional covariates.

limma-trend

Limma-trend®' proposes a linear model based differential expression approach for modelling RNA-
seq experiments of arbitrary complexity. Their framework models the mean gene expression as a
function of several continuous and categorical covariates. A separate linear model is fitted for each
gene, but the gene-wise models are linked by global parameters using the parametric empirical
Bayes approaches®2. The global variance estimated by the empirical Bayes procedure also incor-
porates a mean variance trend, allowing better modelling of low abundance genes. Finally, test of
differential gene expression is carried out by testing the significance of one or more coefficients of

the fitted linear model.

Wilcoxon Rank Sum (WRS) Test

WRS3* test is a non-parametric test commonly used for pairwise DGE testing. The test is for-
mulated as Hy, the distributions of the gene vector under two dose groups are equal versus H,:
the distributions are not equal.The test involves the calculation of the U statistic, which for large
samples is approximtaly normally distributed. Since this is a pairwise test, a union is taken over
all the genes found to be DE in each of the pairwise tests. The computations are carried out using

the wilcox.test function in R package stats and multiplicity is controlled using FDR correction.

ANOVA

Analysis of variance (ANOVA)?° is very commonly used for testing the differences among means
in multiple groups. For a fixed gene j, it is assumed that the observed gene vector y,, ; ; for cell i is
grouped by dose. Assuming that Yy, ; ; ~ Normal(uy, ;, 0]2-), ANOVA aims to test the null hypothesis
Ho:pij=poj=...1K; =pjversus Hy : ppj,i=1,...,n5=1,...,p;k =1,..., K is different
for at least one k. The test statistic is computed using the aov function in R package stats and it
follows a F-distribution with (K — 1) and (n — K) degrees of freedom. Multiplicity is controlled by

applying FDR correction on the obtained p-values.
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Kruskal-Wallis (KW) Test

KW20 test extends the WRS test for multiple groups. It is also a non-parametric extension of the
ANOVA test.The test is formulated as; Hy, the distributions of the gene vector under K dose groups
are equal versus H,: the distributions are not equal. The computation of the KW test statistic is
carried out using the kruskal.test function in R- package stats and it asymptotically follows a y?
distribution with K — 1 degrees of freedom. Multiplicity is controlled by applying FDR correction on

the obtained p-values.

Benchmarking and sensitivity analyses

Benchmarking of DE test methods was performed on simulated datasets based on initial param-
eters derived from real dose-response snRNAseq data. The probability of differential expression
was set to 10% with a 50% probability of being down-regulated, equally distributed among the
dose-response models in Table 1. Batch parameters were used to include sample variation as-
sociated with data obtained from 3 individuals in each dose group. A total of 5,000 genes were
simulated for 4,500 cells (500 per dose group) using the same doses as the real dataset. Sensi-
tivity analyses varied each of the following parameters according to values is supplementary Table
1: cell abundance equally distributed among dose groups, varying cell numbers in each dose
group, percent DE genes, proportion of downregulated DE genes, fold-change location or scale,
and dropout rate. Each simulation was replicated 10 times using a different initial seed. Method
concordance was determined as area under the concordance curve (AUCC) for the top 100- or

500-ranked genes in simulated and real datasets, respectively, as previously described®’.
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Fig. 1: Comparison of simulated and real dose-response data. a Relationship between gene-wise mean
expression and percent zeroes for simulated and real dose-response data. Simulation data consisted of 10,000
genes and 9 dose groups based on parameters derived from experimental dose-response snRNAseq data. Black
line represents a fitted model to the experimental data from which the normalized root mean square deviation
(NRMSD) of simulated data was determined. b Relationship between gene-wise mean expression and variance
for simulated and experimental data. NMRSD was calculated for simulated data from the fitted model
represented as a black line. ¢ Distribution of log(fold-changes) in experimental and simulated data showing the
median and minimum and maximum values. d Principal components analysis of simulated data colored
according to simulated dose groups. e NMRSD estimated relative to fitted model in a,b for simulated data
generated from initial parameters derived from published hepatic scRNAseq (two dose; GSE148339), hepatic
whole cell (whole cell; GSE129516), and peripheral blood mononuclear cell (PBMC; GSE10°8313) datasets. f
NMRSD estimated relative to model fitted to cell-type specific experimental dose-response data when simulated
from initial parameters estimated from that same cell type. Box and whisker plots show median NMRSD, 25 and

75" percentiles, and minimum and maximum values.
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Fig. 2: Classification performed of DE analysis tests. a ROCs estimated from simulated dose-response

scRNAseq data for 9 DE test methods including all genes expressed in at least 1 cell (unfiltered). b ROCs for 9

DE test methods after filtering simulated dose-response scRNAseq data for genes expressed in only 25% of

cells (low levels) in at least one dose group. ¢ Precision-recall curves (PRCs) for 9 DE test methods on unfiltered

simulated dose-response scRNAseq data. d PRCs for 9 DE test methods on filtered simulated dose-response

scRNAseq data. Lines represent the mean values and shaded region reflects the standard deviation for 10
independent simulations. e Precision of DE test methods. f FPR of DE test methods. g MCC for test methods.

e,f,g Box and whisker plots median values, 25" and 75" percentiles, and minimum and maximum values for 10

independent simulations. Points reflects values for each independent simulation. Panels display comparisons of

unfiltered and filtered datasets.
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Fig. 4: Matthews correlation coefficient (MCC) from sensitivity analyses of differential expression test
methods. a MCC for 9 DGEA test methods determined from simulated dose response data with varying number
of cells per dose group. Simulations consisted of 5,000 genes with a probability of differential expression of 10%
and 9 dose groups. b MCC for simulated data varying the cells numbers by dose group. The number of cells in
each of the 9 doses groups is shown on the right. ¢ MCC for varying proportion of differentially expressed genes.
d MCC for varying proportion of repressed differentially expressed genes. e MCC for varying fold-change
location. f MCC for varying fold-change scale. Points represent median and error bars represent minimum to
maximum values. Boxplots represent median, 25" to 75" percentile, and minimum to maximum values. Each
analysis consisted of 10 replicate datasets including all genes expressed in at least 1 cell (unfiltered) and genes

expressed in 2 5% of cells in at least one dose group (filtered).
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Fig. 5: Agreement of differential expression test methods on experimental dose-response data. a Upset
plot showing the intersection size of genes identified as differentially expressed by 9 different test methods in
hepatocytes from the portal region of the liver lobule. b Intersect of differentially expressed genes in portal
fibroblasts. ¢ Intersect size in hepatic stellate cells. Vertical bars represent the intersect size for test methods
denoted by a black dot. Horizontal bars show the total number of differentially expressed genes identified within
each test (set sizes). Only intersects for which genes were identified are shown. Genes were considered
differentially expressed when (i) expressed in >5% of cells within any given dose group and (ii) exhibit a |fold-
change| = 1.5. A heatmap in the upper left corner of each panel shows the pairwise AUCC comparisons for the
500 lowest p-values. d Relative proportion of cell types identified in each dose group of the real dataset for the
cell types in a,b,c. Experimental snRNAseq data was obtained from male mice gavaged with sesame oil vehicle
(vehicle control) or 0.01 — 30 pg/kg TCDD every 4 days for 28 days.
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Fig. 6: Median ranking of differential expression test methods across all simulations. The median rank of
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multiple group tests, and two group tests. The overall rank represents the median value for the 5 key metrics
presented here.
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Supplementary Figure 1: Comparison of experimental and simulated dose-response data from cell specific initial
parameters. Simulation parameters were estimated from each cell type identified in our experimental hepatic
dose-response snRNAseq dataset. A total of 4500 cells (500 per dose) distributed across 3 individuals for 9 dose
groups were simulated. The percent zeroes and mean log expression was calculated for each gene for all dose
groups combined.
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Supplementary Figure 2: Comparison of experimental and simulated dose-response data from cell specific initial
parameters. Simulation parameters were estimated from each cell type identified in our experimental hepatic
dose-response snRNAseq dataset. A total of 4500 cells (500 per dose) distributed across 3 individuals for 9 dose
groups were simulated. The percent zeroes and mean log variance was calculated for each gene for all dose
groups combined.
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Supplementary Figure 3: Intrinsic discrepancy scores of fold-change distributions under varying simulation
parameters. Datasets were simulated for 5,000 genes by varying the probability of differential expression,
probability of repression, mean fold-change of differentially expressed genes (location) and distribution of fold-
change for differentially expressed genes (scale). Fold-change location and scale of differentially expressed
genes from 0 — 1.5 and 0 — 1, respectively, represent the values for mean and standard deviation of a log-normal
distribution. 5,000 simulated genes were compared to an equivalent number sampled from experimental data
for the fold-changes between 30 pg/kg TCDD and control groups. The Kullback-Leibler Divergence (KLD)
intrinsic discrepancy (ID) was used to evaluate the similarity in distributions.
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Supplementary Figure 4: Principal components analysis (PCA) of experimental hepatic dose-response data from
male mice gavaged with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. PCA was
performed for all genes and each identified cell type. Each point represents an individual cell. Colors represent
treatment groups.
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Supplementary Figure 5: Benchmarking metrics of 9 differential expression test methods for simulated dose

response data using default initial parameters. A total of 4,500 cells (500 cells per dose group) and 5,000 genes

were simulated across 9 dose groups with a probability of being differentially expressed of 10%, of which 50%

were repressed. Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Given a

ground truth from simulation outputs, false positive rates (FPR), true positive rates (TPR), false negative rates

(FNR), true negative rates (TNR), precision, and Matthews correlation coefficient (MCC) were calculated. Points

represent median £ minimum to maximum values for 10 replicate simulations. Heat map represents the area

under the concordance curve (AUCC) of the 100 most significant gene expression changes (lowest P-values)

calculated for each pairwise comparison and clustered based on the similarity of the scores. Box and whisker

plots represent median and 25" and 75" percentile, and minimum and maximum values for 10 replicate

simulations.
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Supplementary Figure 6: Benchmarking metrics of 9 differential expression test methods for simulated dose
response data with varying cell abundances. 5,000 genes were simulated across 9 dose groups with a probability
of being differentially expressed of 10%, of which 50% were repressed. Differential expression fold-change
location and scale were 0.8 and 0.4, respectively. Given a ground truth from simulation outputs, false positive
rates (FPR), true positive rates (TPR), false negative rates (FNR), true negative rates (TNR), precision, and
Matthews correlation coefficient (MCC) were calculated. Points represent median £ minimum to maximum values
for 10 replicate simulations.
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Supplementary Figure 7: Area under the receiver-operating curve (AUROC) of 9 differential expression test
methods for simulated dose response data with varying cell abundances. 5,000 genes were simulated across 9
dose groups with a probability of being differentially expressed of 10%, of which 50% were repressed. Differential
expression fold-change location and scale were 0.8 and 0.4, respectively. Box and whisker plots represent

median and 25" and 75" percentile, and minimum and maximum values for 10 replicate simulations.
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Supplementary Figure 8: Area under the precision-recall curve (AUPRC) of 9 differential expression test methods
for simulated dose response data with varying number of cell abundances. 5,000 genes were simulated across
9 dose groups with a probability of being differentially expressed of 10%, of which 50% were repressed.
Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Box and whisker plots

represent median and 25" and 75" percentile, and minimum and maximum values for 10 replicate simulations.
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Supplementary Figure 9: Benchmarking metrics of 9 differential expression test methods for simulated dose
response data with varying number of cells per dose group. 5,000 genes were simulated across 9 dose groups
with a probability of being differentially expressed of 10%, of which 50% were repressed. Differential expression
fold-change location and scale were 0.8 and 0.4, respectively. Given a ground truth from simulation outputs,
false positive rates (FPR), true positive rates (TPR), false negative rates (FNR), true negative rates (TNR),
precision, and Matthews correlation coefficient (MCC) were calculated. Box and whisker plots represent median

and 25" and 75" percentile, and minimum and maximum values for 10 replicate simulations.
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Supplementary Figure 10: Area under the receiver-operating curve (AUROC) and area under the precision-recall
curve (AUPRC) of 9 differential expression test methods for simulated dose response data with varying number
of cells per dose group. 5,000 genes were simulated across 9 dose groups with a probability of being differentially
expressed of 10%, of which 50% were repressed. Box and whisker plots represent median and 25" and 75™

percentile, and minimum and maximum values for 10 replicate simulations.
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Supplementary Figure 11: Benchmarking metrics of 9 differential expression test methods for simulated dose
response data with varying differential expression probabilities. A total of 4,500 cells (500 cells per group) and
5,000 genes were simulated across 9 dose groups with a 50% probability of being repressed. Differential
expression fold-change location and scale were 0.8 and 0.4, respectively. Given a ground truth from simulation
outputs, false positive rates (FPR), true positive rates (TPR), false negative rates (FNR), true negative rates
(TNR), precision, and Matthews correlation coefficient (MCC) were calculated. Points represent median +
minimum to maximum values for 10 replicate simulations.
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Supplementary Figure 12: Area under the receiver-operating curve (AUROC) of 9 differential expression test

methods for simulated dose response data with varying differential expression probabilities. A total of 4,500 cells

(500 cells per group) and 5,000 genes were simulated across 9 dose groups with a 50% probability of being

repressed. Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Box and

whisker plots represent median and 25" and 75" percentile, and minimum and maximum values for 10 replicate

simulations.
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Supplementary Figure 13: Area under the receiver-operating curve (AUPRC) of 9 differential expression test
methods for simulated dose response data with varying differential expression probabilities. A total of 4,500 cells

(500 cells per group) and 5,000 genes were simulated across 9 dose groups with a 50% probability of being

repressed. Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Box and

whisker plots represent median and 25" and 75" percentile, and minimum and maximum values for 10 replicate

simulations.
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Supplementary Figure 14: Benchmarking metrics of 9 differential expression test methods for simulated dose
response data with varying probability of repressed genes. A total of 4,500 cells (500 cells per group) and 5,000
genes were simulated across 9 dose groups with a 10% probability of differential expression. Differential
expression fold-change location and scale were 0.8 and 0.4, respectively. Given a ground truth from simulation
outputs, false positive rates (FPR), true positive rates (TPR), false negative rates (FNR), true negative rates
(TNR), precision, and Matthews correlation coefficient (MCC) were calculated. Points represent median *

minimum to maximum values for 10 replicate simulations.
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Supplementary Figure 15: Area under the receiver-operating curve (AUROC) of 9 differential expression test

methods for simulated dose response data with varying probability of repressed genes. A total of 4,500 cells

(500 cells per group) and 5,000 genes were simulated across 9 dose groups with a 10% probability of differential

expression. Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Box and

whisker plots represent median and 25" and 75" percentile, and minimum and maximum values for 10 replicate

simulations.
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Supplementary Figure 16: Area under the receiver-operating curve (AUPRC) of 9 differential expression test
methods for simulated dose response data with varying probability of repressed genes. A total of 4,500 cells
(500 cells per group) and 5,000 genes were simulated across 9 dose groups with a 10% probability of differential
expression. Differential expression fold-change location and scale were 0.8 and 0.4, respectively. Box and
whisker plots represent median and 25" and 75" percentile, and minimum and maximum values for 10 replicate

simulations.
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Supplementary Figure 17: Benchmarking metrics of 9 differential expression test methods for simulated dose

response data with varying scale of differentially expressed genes. A total of 4,500 cells (500 cells per group)

and 5,000 genes were simulated across 9 dose groups with a probability of being differentially expressed of

10%, of which 50% were repressed. Differential expression fold-change location was 0.8. Given a ground truth

from simulation outputs, false positive rates (FPR), true positive rates (TPR), false negative rates (FNR), true

negative rates (TNR), precision, and Matthews correlation coefficient (MCC) were calculated. Points represent

median + minimum to maximum values for 10 replicate simulations.
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Supplementary Figure 18: Area under the receiver-operating curve (AUROC) of 9 differential expression test
methods for simulated dose response data with varying scale of differentially expressed genes. A total of 4,500
cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with a probability of being
differentially expressed of 10%, 50% of which were repressed. Differential expression fold-change location was
0.8. Box and whisker plots represent median and 25" and 75" percentile, and minimum and maximum values

for 10 replicate simulations.
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Supplementary Figure 19: Area under the precision-recall curve (AUPRC) of 9 differential expression test
methods for simulated dose response data with varying scale of differentially expressed genes. A total of 4,500
cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with a probability of being
differentially expressed of 10%, of which 50% were repressed. Differential expression fold-change location was
0.8. Box and whisker plots represent median and 25" and 75" percentile, and minimum and maximum values

for 10 replicate simulations.
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Supplementary Figure 20: Benchmarking metrics of 9 differential expression test methods for simulated dose
response data with varying location of differentially expressed genes. A total of 4,500 cells (500 cells per group)
and 5,000 genes were simulated across 9 dose groups with a probability of being differentially expressed of
10%, of which 50% were repressed. Differential expression fold-change scale was 0.4. Given a ground truth
from simulation outputs, false positive rates (FPR), true positive rates (TPR), false negative rates (FNR), true
negative rates (TNR), precision, and Matthews correlation coefficient (MCC) were calculated. Points represent

median + minimum to maximum values for 10 replicate simulations.
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Supplementary Figure 21: Area under the receiver-operating curve (AUROC) of 9 differential expression test
methods for simulated dose response data with varying location of differentially expressed genes. A total of
4,500 cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with a probability of
being differentially expressed of 10%, of which 50% were repressed. Differential expression fold-change scale
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was 0.4. Box and whisker plots represent median and 25" and 75™ percentile, and minimum and maximum

values for 10 replicate simulations.
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Supplementary Figure 22: Area under the precision-recall curve (AUPRC) of 9 differential expression test

methods for simulated dose response data with varying location of differentially expressed genes. A total of

4,500 cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with a probability of

being differentially expressed of 10%, of which 50% were repressed. Differential expression fold-change scale

was 0.4. Box and whisker plots represent median and 25" and 75™ percentile, and minimum and maximum

values for 10 replicate simulations.
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Supplementary Figure 23: Benchmarking metrics of 9 differential expression test methods for simulated dose

response data with varying relationship between mean expression and percent zeroes. A total of 4,500 cells

(500 cells per group) and 5,000 genes were simulated across 9 dose groups with a probability of being

differentially expressed of 10%, of which 50% were downregulated. Differential expression fold-change location

and scale were 0.8 and 0.4, respectively. Given a ground truth from simulation outputs, false positive rates (FPR),

true positive rates (TPR), false negative rates (FNR), true negative rates (TNR), precision, and Matthews

correlation coefficient (MCC) were calculated. Points represent median = minimum to maximum values for 10

replicate simulations. Dropout rates are calculated as Percent zeroes = a » eP*meanlogexpression 4  \where

parameters are shown in Table S2.
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Supplementary Figure 24: Area under the receiver-operating curve (AUROC) of 9 differential expression test
methods for simulated dose response data with varying relationship between mean expression and percent
zeroes. A total of 4,500 cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with
a probability of being differentially expressed of 10%, of which 50% were repressed. Differential expression fold-
change location and scale were 0.8 and 0.4, respectively. Box and whisker plots represent median and 25" and
75" percentile, and minimum and maximum values for 10 replicate simulations. Dropout rates are calculated as

Percent zeroes = a * ebrmeanlogexpression ¢ where parameters are shown in Table S2.


https://doi.org/10.1101/2021.09.08.459475
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.08.459475; this version posted September 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ANOVA scBT KW
0.8 %
i
FEddy, + e
0.5
limma-trend LRT linear LRT multiple
2
0.8 1 o.
Q
£ 7] 3 $ %
2 >

0.6 A

4
T

s S

%%ﬁ@

0.5
MAST Seurat Bimod WRS
0.8 A
or{ [k 3 H 3
$ 3 ¢ .
Y
. , 4 »
0.6 4 T
9 T
L
0.5 1
. ™ © o o @ © ° o 0 ® © o o
- N I3 - -~ N

1.54

=

Dropout rate (arbitrary units)

Supplementary Figure 25: Area under the precision-recall curve (AUPRC) of 9 differential expression test
methods for simulated dose response data with varying relationship between mean expression and percent
zeroes. A total of 4,500 cells (500 cells per group) and 5,000 genes were simulated across 9 dose groups with
a probability of being differentially expressed of 10%, of which 50% were repressed. Differential expression fold-
change location and scale were 0.8 and 0.4, respectively. Box and whisker plots represent median and 25" and
75" percentile, and minimum and maximum values for 10 replicate simulations. Dropout rates are calculated as

Percent zeroes = a * ebrmeanlogexpression ¢ where parameters are shown in Table S2.
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Supplementary Figure 26: Comparison of differential gene expression analysis of hepatic single-nuclei RNA
sequencing data from male mice gavaged with sesame oil vehicle control or 0.01 — 30 pg/kg TCDD every 4 days
for 28 days. Each panel represents a distinct cell type showing the intersection of differentially expressed genes
(vertical bars) for each combination of tests (filled circles) and total number of differentially expressed genes
(horizontal bars). Intersect sizes are displayed on top of vertical bars. The tile plot in the upper left represents
the area under the concordance curve (AUCC) calculated in the bottom right panel (page 2). A higher score
indicates stronger agreement in the lowest 500 ranked adjusted p-values. Genes were considered differentially
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expressed when expressed in at least 5% of cells in any dose group and with a |fold-change| = 1.5.
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Table S3. Parameters for modeling of dropout rate calculated using the equation Percent zeroes = a *

eb*mean log expression +t.

Dropout rate a b t
1 1.070 0.008 -0.683 0.009 -0.0714 0.008
1.5 1.040 £ 0.004 -0.86 + 0.01 -0.044 + 0.004
3 0.997 + 0.004 -1.29 £ 0.01 -0.003 + 0.004
6 0.970 £ 0.002 -2.00 £0.02 0.018 £ 0.002
10 0.960 + 0.002 -2.80 £ 0.02 0.023 + 0.002
20 0.952 + 0.002 -4.60 £ 0.07 0.023 + 0.002
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Benchmarking of a Bayesian single cell RNAseq differential
gene expression test for dose-response study designs-
Supplementary Material
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(3 Derivation of the combined Likelihood Ratio Test Statistic for the linear model setup |

(LRT-linear) 4

1 Derivation of the marginal likelihoods under the null and alterna-
tive hypothesis for scBA

Consider the following K-sample test,

Hy U1 =25 = .. . UK j = Hj and W1j =W =...WK; = Wj. (1)
versus the alternative

H,:  p; is different for at least one k£ and
wy,; is different for at leastone k,k =1,... K.

Given this model structure we sssume that a priori, given o7, . ; ~ Normal(my o, Tk ,073), 05 ~
IG(as,bs), wi j ~ Beta(ag ., biw), Where IG is the inverse gamma distribution with shape «a, and
scale b, and my o, Tk 4, Ao, bs, Ak w, brw are the hyperparameters. Now, let's assume that data are
collected under K conditions, and denote the data by Dy, = { (Y4, Rrij),% = 1,...,nx} . The
underlying populations for the sample data Dy, , for the k=1,2, ..., K, are assumed to be identified
by the parameters (ux;, 07, wr ;). Under the null hypothesis i1 ; = po; = ...pux; = p; and

wij = wyj = ...wk,; = wj. We sssume that a priori, given o7, u ; ~ Normal(my o, 7% ,073), and

1
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03 ~ 1G (g, by ), wy,; ~ Beta(agy, i), Where myo, i, 1, ao, b, g ., bk are the hyperparameters.
Now we calculate the marginal likelihood under the null hypothesis and alternative hypothesis.

Under the null hypothesis the marginal likelihood is

en= [ [ 11T {<>}] T———

X W(uj\aj)ﬁ(%z)ﬂ(wj)dujd% dwj

1 1
(2m){oxiems 22y e \/1 + T S her iy R
1 ['(ay + (ZkK:1 > ik Riig)/2)

X X n
L(as)bs”  (1/b, + Atat/z)ao+(ZkK:1 Xiky Beig)/2

« Beta(a,, + (Zszl > ik Riig) b + Zé{:l ng — (Zszl > ik Riij))
Beta(ay, by) '

where
K ng K ng 1 - K ng 2
T S MR 55 ST B 63 o AT
k=1 1=1 k=1 i=1 k=1 1=1

Under the alternative hypothesis we compute the marginal likelihood without any restriction on the
K means p ; and the zero inflation parameter wy, j; &k = 1,2,... K . Particularly, we assume that
pik,; ~ Normal(my o, T u0; %), and o ~ I1G(ag,bs), wij ~ Beta(arw, brw); k= 1,2,... K. Now,

K N

Vi =\
k7i7 T k? j —_ ’L .
£Ha7] / / { H H [\/% exp {_ 320]2 J } Wk,j] (1 — Wk,j)l Ry, J}

k=11i=1
K

H {7‘(’ Pk )T (W } H {duk7jdwk7j}daj2~

1 1
- X
(Zw)(zlle'(:l 2t Riig)/2 Hllle V1+ Tho Dimy R
R S T(ao + 3 ry 3o Rei/2)
L(@o)bs” " (1/by + SOp ) Ap/2)% k=1 Tk Riig /2

Beta(agw + D% Riijr Okw + 1k — D15y Riig)
Beta(ag w, bi w) ’

—:

B
Il
—

where

1 ¢ o, 2
1 my
A = {E R Vi + o, } {E :Rk,er} {E RyijYeij + - 70} for k=1,2...K.
=1

i—1 tp
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The ratio of the marginal likelihood from H, to H, is

K
Loy _ ey VI + 7o 205 By
L, K
Ha.j \/1 T Dk 2oiy B
(1/by + S8 Ak/z)aner:l S B /2
(1/by + Aror/2)o+ Eims 2it B2

% Beta(a,, + Eszl Z?:’H Ryij, b + Zé(:l Ng — Eszl Z?:kl Rkﬂ’,j)
Beta(ay, by)

X

y ﬁ Beta(agw, bk w)
i Beta(ag + Dot Riigs b + 1 — D00 Ry j)
The Bayes factor can be thus be defined as

Litgs |, w(Ha)

BFy, ; = ,
T Lh,y " w(Ho)

where 7(H,) and ©(Hy) are the prior probabilities for the alternative and null model, respectively.
To control for multiplicity we adopt the FDR correction approach discussed in'. The rejection
threshold is estimated in terms of the posterior probabilities of the null hypothesis, p(Hj ;|D;). For
atarget FDR «, the procedure rejects all hypotheses with p(Hy ;| D;) < ¢, where p(Hy ;|D;) = (1+
1/BFy;)~! and ( is the largest value such that C(¢)/J(¢) < awhere, J(¢) = {j : p(Ho ;|D;) < ¢}
and C(¢) = > e () P(Ho;|Dj).

2 Derivation of the combined Likelihood Ratio Test Statistic (LRT-
multiple)

In this section, we extend the two-sample test proposed by? to a test for k-samples. Consider the
composite K-sample test

Hy:wv1=wy=---=wg=w and 3 = uo

Il
Il
=
=
|
=

versus the alternative
H, : wy is different for at leastone k¥ and  py is different for at leastone k, ke1l,..., K.

Similar to ANOVA, we assume homogeneity for variance parameter 0']2-. Now, fixing the gene index
7, the likelihood ratio test can be defined as;

A(Y R) — Sup9€H0 L(9|Y7 R)
’ supgepr, L(O]Y, R)
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where the likelihood can be written as;

LO|)Y,R) = Hwk 1 — ) H f( lk!uk,

1€Cy

Y and R represent the gene observation vector and the gene indicator vector across K dose
groups and 0 = {ug,0? m, k = 1,..., K} is the vector of unknown parameters. We define C
to be the set of cells expressing the gene in group £ (i.e.C}, = {i : Ry, = 1}) and e, = Y, Rix
is the cardinality of set C;. Here, f denotes the density function of the normal distribution with
parameters p;, and o2. Therefore, it follows that the likelihood ratio test can be written as

supgep, L(0]Y, R)
supgepy, L(0|Y, R)
SUD [ 1,02y W 2k 8 (1 — w) 2k ™2k ) TT [Liec, N(Yiklw, 0?)
SUD oy i 02ihet, . i} Lk Wit (1= wi) =) TT, Tlico, N (Yikl ik, 02)
_ supy,, W@k er) (1 — w) Xk =2 o) y supguo2) [k [Licc, IV (Yiklp, o?)
SUP{wy, k=1,...,K} I, wZ’“(l — wy) (ne—ek) SUP{uy,02k=1,...K} L1, Hz’eCk N (Y, 0?)
Dk Ck >k €k dek

:H{m}e’“x{l‘ m}”’“‘e’“x{H Sper(Yy — Y }
k e 1— % Sk ik (Y —Y,)?

= Ay(R) x A (YT),

A(Y,R) =

where N(-|u,o?) denotes the normal density with mean and variance p and o2, A, is a binomial
LRT, A, is a normal LRT ,Y'* is the set of positive Y values, Y, = (1/e;) X%, v, and Y+ =
(1/ >k er) Yok Yok, Y. Thus our combined LRT can be computed as the product of a binomial
and a normal LRT statistic, both of which can easily be derived using classical statistical theory.

3 Derivation of the combined Likelihood Ratio Test Statistic for the
linear model setup (LRT-linear)

In this section we extend the combined Likelihood Ratio Test Statistic (LRT-multiple) to a lin-
ear model setup. Treating dose (d) as a continuous covariate we write j;; = mo; + d;ymq; and
logit(wi;) = 1o;+ditb1;. Under the null hypothesis the model can be reformulated as Hy : 1;; = mo;
and logit(w;;) = vo;. Therefore the likelihood function for gene j under the full model can be writ-
ten as:
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where R; = I(Y; # 0) denotes the gene expression indicator vector of size n = S5 | ny, Yj+
denotes the positively expressed gene observation vector of size n, = >, >, Rijx and 6; =
{moj,mlj,ajz, Yoj,115} Using the likelihood function described above, the likelihood ratio test can
be derived following the same approach detailed in Section 2. Since R; and Y; are conditionally
independent for each gene j, the individuals LRT statistics derived from the logistic and linear
regression parts can be summed to obtain an asymptotically x? distribution with the degrees of
freedom of the component tests added.
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