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Abstract

Recent advances in high dynamic range (HDR) capture and display technologies have attracted a lot of interest from
scientific, professional, and artistic communities. As in any technology, the evaluation of HDR systems in terms of
quality of experience is essential. Subjective evaluations are time consuming and expensive, and thus objective
quality assessment tools are needed as well. In this paper, we report and analyze the results of an extensive
benchmarking of objective quality metrics for HDR image quality assessment. In total, 35 objective metrics were
benchmarked on a database of 20 HDR contents encoded with 3 compression algorithms at 4 bit rates, leading to a
total of 240 compressed HDR images, using subjective quality scores as ground truth. Performance indexes were
computed to assess the accuracy, monotonicity, and consistency of the metric estimation of subjective scores.
Statistical analysis was performed on the performance indexes to discriminate small differences between metrics.
Results demonstrated that metrics designed for HDR content, i.e., HDR-VDP-2 and HDR-VQM, are the most reliable
predictors of perceived quality. Finally, our findings suggested that the performance of most full-reference metrics can
be improved by considering non-linearities of the human visual system, while further efforts are necessary to improve
performance of no-reference quality metrics for HDR content.
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1 Introduction
Recently, the world of multimedia has been observing

a growth in new imaging modalities aiming at improv-

ing user immersion capability, providing more realistic

perception of content, and consequently, reaching new

levels of quality of experience. This trend has began

with the introduction of 3D capable devices in the con-

sumer market, providing depth perception, followed by

ultra high definition (UHD), focused on higher pixel res-

olutions beyond high definition, high frame rate (HFR),

to provide more fluid motion, and, more recently, high

dynamic range (HDR), intended to capture a wider range

of luminance values. Moreover, academia, industry and

service providers have proposed new models to further

enrich content, such as plenoptic and holographic sys-

tems, although these latest modalities are still in very early

stages. Many aspects need further improvement on such

new trends. For instance, consumers still experience some
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lack of reliable 3D content and still suffer from discom-

fort caused by long exposure. UHD systems face a small

number of appropriate content although they have been

evolving into consumer markets.

HDR imaging systems are stepping into the multimedia

technologies for consumer market. HDR pursues a more

complete representation of information that the human

eye can see, capturing all the brightness information of

the visible range of a scene, even in extreme lighting con-

ditions. Hence, it pursues the representation of the entire

dynamic range and color gamut perceived by human

visual system (HVS). HDR imaging can be exploited to

improve quality of experience in multimedia applications

[1] and to enhance intelligibility in security applications

where lighting conditions cannot be controlled [2].

HDR systems are becoming available for the general

public. Acquisition systems are present in a large vari-

ety of photographic equipment and even in some mobile

devices. Typically, computer rendering and merging of

multiple low dynamic range (LDR) images taken at dif-

ferent exposure settings are the two methods used to

generate HDR images [3]. Nowadays, HDR images can
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also be acquired using specific image sensors. HDR dis-

plays are also becoming increasingly available and enable

representation of better contrasts, higher luminance, and

wider color gamut [4]. Optionally, tonemapping operators

(TMO) that map HDR content into the luminance range

and color gamut of conventional displays can be used [5].

In addition to the acquisition and display technolo-

gies, JPEG has been standardizing new codecs for HDR

content. JPEG XT is a recent standard for JPEG backward-

compatible compression of HDR images [6]. Using this

compression standard, HDR images are coded in two lay-

ers. A tone-mapped version of the HDR image is encoded

using the legacy JPEG format in a base layer, and the

extra HDR information is encoded in a residual layer. The

advantage of this layered scheme is that any conventional

JPEG decoder can extract the tone-mapped image, keep-

ing backward compatibility and allowing for display on a

conventional LDRmonitor. Furthermore, a JPEGXT com-

pliant decoder can use the residual layer to reconstruct

a lossy or even lossless version of the HDR image. Cur-

rently, JPEG XT defines four profiles (A, B, C, and D) for

HDR image compression, of which profile D is a very sim-

ple entry-level decoder that roughly uses the 12-bit mode

of JPEG. Profiles A, B, and C all take into account the

non-linearity of the human visual system. They essentially

differ on the strategy used for creating the residual infor-

mation and on the pre- and post-processing techniques. In

profile A, the residual is represented as a ratio of the lumi-

nance of the HDR image and the tone-mapped image after

inverse gamma correction. The residual is log-encoded

and compressed as an 8-bit greyscale image [7]. In pro-

file B, the image is split into “overexposed” areas and LDR

areas. The extension image is represented as a ratio of

the HDR image and the tone-mapped image, after inverse

gamma correction. Note that instead of a ratio, profile B

uses a difference of logarithms. Finally, rofile C computes

the residual image as a ratio of the HDR image and the

inverse tone-mapped image. Unlike the other profiles, the

inverse TMO is not a simple inverse gamma, but rather a

global approximation of the inverse of the (possibly local)

TMO that was used to generate the base-layer image. Sim-

ilarly to profile B, the ratio is implemented as a difference

of logarithms. However, instead of using the exact math-

ematical log operation, profile C uses a piecewise linear

approximation, defined by re-interpreting the bit-pattern

of the half-logarithmic IEEE representation of floating-

point numbers as integers, which is exactly invertible [8].

MPEG is also starting a new standardization effort on

HDR video [9], revealing the growing importance of HDR

technologies.

As for any technology, evaluation of HDR systems, in

terms of quality of experience, is essential. Subjective eval-

uations are time consuming and expensive, thus objective

quality assessment tools are needed as well. To the best

of our knowledge, only three objective metrics have been

developed so far for HDR content. The most relevant

work on this domain is the HDR visual detection predic-

tor (HDR-VDP) metric proposed by Mantiuk et al. [10],

which is an extension of Daly’s VDP [11] for the HDR

domain. The second version of this metric, HDR-VDP-

2 [12, 13], is considered as the state-of-the-art in HDR

image quality assessment. The dynamic range indepen-

dent metric (DRIM) proposed in [14] can also be used for

HDR quality assessment. Nevertheless, this metric results

in three distortion maps, which is difficult to interpret,

as there is no pooling of the different values. Recently,

the high dynamic range video quality metric (HDR-VQM)

was proposed by Narwaria et al. [15]. The metric was

designed for quality assessment of HDR video content, but

can also be used for HDR still images.

To overcome the lack of HDR objective metrics, LDR

metrics, e.g., PSNR, were also used to evaluate HDR qual-

ity, especially in early HDR studies. However, LDRmetrics

are designed for gamma encoded images, typically hav-

ing luminance values in the range 0.1–100 cd/m2, while

HDR images have linear values and are meant to cap-

ture a much wider range of luminance. Originally, gamma

encoding was developed to compensate for the charac-

teristics of cathode ray tube (CRT) displays, but it also

takes advantage of the non-linearity in HVS to optimize

quantization when encoding an image [16]. Under com-

mon illumination conditions, the HVS is more sensitive

to relative differences between darker and brighter tones.

According to Weber’s law, the HVS sensitivity approxi-

mately follows a logarithm function for light luminance

values [17]. Therefore, in several studies, LDR metrics

have been computed in the log domain to predict HDR

quality. However, at the darkest levels, the HVS sensitivity

is closer to a square-root behavior, according to Rose-

DeVries law [18, 19]. To extend the range of LDR metrics

and to consider the sensitivity of the HVS, Aydin et al.

[20] have proposed the perceptually uniform (PU) encod-

ing. Another approach to apply LDR metrics on HDR

images was proposed in [21]. This technique consists

in tone-mapping the HDR image to several LDR images

with different exposure ranges and to take the average

objective score computed on each exposure. However,

this approach is more time consuming and requires more

computational power, proportionally to the number of

exposures.

For LDR content, extensive studies have shown that not

all metrics can be considered as reliable predictors of per-

ceived quality [22, 23], while only a few recent studies have

benchmarked objective metrics for HDR quality assess-

ment. The study of Valenzise et al. [24] compared the

performance of PSNR and SSIM, computed in the loga-

rithmic and PU [20] spaces, and HDR-VDP. The authors

have concluded that non-uniformitymust be corrected for
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a proper metric application, as most have been designed

for perceptual uniform scales. Another subjective study

was reported by Mantel et al. in [25]. A comparison with

objective metrics in physical domain and using a gamma

correction to approximate perceptually uniform lumi-

nance is also presented, concluding that the mean relative

squared error (MRSE) metric provides the best perfor-

mance in predicting quality. The correlation between 13

well-known full-reference metrics and perceived quality

of compressed HDR content is investigated in [26]. The

metrics were applied on the linear domain, and results

show that only HDR-VDP-2 and FSIM predicted visual

quality reasonably well. Finally, Narwaria et al. [15] have

reported that their HDR-VQM metric performs simi-

lar or slightly better than HDR-VDP-2 for HDR image

quality assessment. Regarding HDR video quality assess-

ment, four studies were also reported by Azimi et al. [27],

Rerabek et al. [28], Hanhart et al. [9], and Narwaria et

al. [15]. The authors of [15] found that HDR-VQM is the

best metric, far beyond HDR-VDP-2, in contradiction to

the findings of [9], which showed lower performance for

HDR-VQM when compared to HDR-VDP-2. Also, the

other two studies found that HDR-VDP-2 has the high-

est correlation. The divergence between these findings

might be due to the contents and types of artifacts con-

sidered in the different studies. Indeed, the first three

studies consider HDR video sequences captured using

HDR video cameras, manually graded, and encoded with

compression schemes based on AVC or HEVC, whereas

Narwaria et al. have mostly used computer-generated

contents, an automatic algorithm to adjust the luminance

of the HDR video sequences, and their own backward

compatible HDR compression algorithm.

The main limitation of these studies lies in the small

number of images or video sequences used in their exper-

iments, which was limited to five or six contents. Also,

a proper adaptation of the contents to the HDR display

and correction of the metrics for non-uniformity were

not always considered. Therefore, in this paper, we report

and analyze the results of an extensive benchmarking of

objective quality metrics for HDR image quality assess-

ment. In total, 35 objective metrics were benchmarked

using subjective scores as ground truth. The database used

in our experiments [29, 30] is composed of 20 different

contents and a total of 240 compressed HDR images with

corresponding subjective quality scores. The HDR images

are adapted (resized, cropped, and tone-mapped using

display-adaptive tone-mapping operator) to SIM2 HDR

monitor. The objective metrics were computed in the lin-

ear, logarithmic, PU [20], and Dolby perceptual quantizer

(PQ) [31] domains. Additionally, the metrics were com-

puted both on the luminance channel alone and as the

average quality score of the Y, Cb, and Cr channels. For

each metric, objective scores were fitted to subjective

scores using logistic fitting. Performance indexes were

computed to assess the accuracy, monotonicity, and con-

sistency of the metrics estimation of subjective scores.

Finally, statistical analysis was performed on the perfor-

mance indexes computed from 240 data points to discrim-

inate small differences between two metrics. Hence, with

this study, we expect to produce a valid contribution for

future objective quality studies on HDR imaging.

The remainder of the paper is organized as follows.

The dataset and corresponding subjective scores used

as ground truth are described in Section 2.1. The dif-

ferent metrics benchmarked in this study are defined

in Section 2.2. In Section 2.3, the methodology used to

evaluate the performance of the metrics is described.

Section 3 provides a detailed analysis of the objective

results and discusses the reliability of objective metrics.

Finally, Section 4 concludes the paper.

2 Methodology
The results of subjective tests can be used as ground truth

to evaluate how well objective metrics estimate perceived

quality. In this paper, we use the publicly available dataset

provided by Korshunov et al. [29, 30] to benchmark 35

objective metrics. This section describes in details the

dataset, objective metrics, and performance analysis used

in our benchmark.

2.1 Dataset and subjective scores

The dataset is composed of 20 HDR images with a reso-

lution of 944 × 1080 pixels. The dataset contains scenes

with architecture, landscapes, and portraits and is com-

posed of HDR images fused from multiple exposure pic-

tures, frames extracted from HDR video, and computer-

generated images. Since publicly available HDR images are

usually not graded, the images are adjusted for a SIM2

HDR monitor using a display-adaptive TMO [32] to map

the relative radiance representation of the images to an

absolute radiance and color space of the HDR monitor.

These display-adapted images are then considered as orig-

inal images and compressed with JPEG XT using profiles

A, B, and C. The base and extension layers chroma-

subsampling are set to 4:2:0 and 4:4:4, respectively, while

optimized Huffman coding is enabled for all implemen-

tations. For each content and profile, four different bit

rates were selected, leading to a total of 240 compressed

HDR images. Figure 1 shows tone-mapped versions of the

images in the dataset, and Table 1 reports the dynamic

range and key [33] characteristics of these images. The key

is in the range [ 0, 1] and gives a measure of the overall

brightness

key =
log Lavg − log Lmin

log Lmax − log Lmin
(1)
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Fig. 1 Display-adapted images of the dataset. The reinhard02 TMO was used for images from a–g and themantiuk06 TMO was used for the
remaining images. Copyrights: ∗2006-2007 Mark D. Fairchild, †Blender Foundation | www.sintel.org, under Creative Commons BY, #Mark Evans,
under Creative Commons BY

where Lmin, Lmax, and Lavg are the minimum, maximum,

and average luminance values, respectively, computed

after excluding 1% of the darkest and lightest pixels.

The evaluation was performed using a full HD 47” SIM2

HDR monitor with individually controlled LED backlight

modulation, capable of displaying content with luminance

values ranging from 0.001 to 4000 cd/m2. In every session,

three subjects assessed the displayed test images simul-

taneously. They were seated in an arc configuration, at a

constant distance of 3.2 times the picture height as recom-

mended in [34], which corresponds to 1.87 m and a visual

resolution of 60 pixels per degree. The laboratory was

equipped with a controlled lighting system with a 6500 K

color temperature, while a mid gray color was used for

all background walls and curtains. The background lumi-

nance behind the monitor was set to 20 cd/m2 and did not

directly reflect off of the monitor.

The double-stimulus impairment scale (DSIS) Variant

I methodology [35] was used for the evaluation. For

scoring, a five-grade impairment scale (1: very annoying,

2: annoying, 3: slightly annoying, 4: perceptible, but not

annoying, 5: imperceptible) was used. Two images were

presented in side-by-side fashion with 32 pixels of black

border separating the two images: one of the two images

was always the reference (unimpaired) image, while the

other was the test image. To reduce the effect of order of

images on the screen, the participants were divided into

two groups: the left image was always the reference image

for the first group, whereas the right image was always

the reference image for the second group. After the pre-

sentation of each pair of images, a six-second voting time

followed. Subjects were asked to rate the impairments of

the test images in relation to the reference image.

Before the experiment, oral instructions were provided

to the subjects to explain their tasks. Additionally, a train-

ing session was organized, allowing subjects to familiarize

themselves with the test procedure. For this purpose two

images outside of the dataset were used. Five samples were

manually selected by expert viewers for each image so

that the quality of samples was representative of the rating

scale.

Since the total number of test samples was too large for

a single test session, the overall experiment was split into

three sessions of approximately 16 min each. Between the

sessions, subjects took a 15-min break. The test material

was randomly distributed over the test sessions. To reduce

contextual effects, the order of displayed stimuli was ran-

domized applying different permutations for each group

of subjects, whereas the same content was never shown

consecutively.

www.sintel.org
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Table 1 Characteristics of HDR images from the dataset

Dynamic range Key

507 4.097 0.743

AirBellowsGap 4.311 0.768

BloomingGorse2 2.336 0.748

CanadianFalls 2.175 0.729

DevilsBathtub 2.886 0.621

dragon 4.386 0.766

HancockKitchenInside 4.263 0.697

LabTypewriter 4.316 0.733

LasVegasStore 4.131 0.636

McKeesPub 3.943 0.713

MtRushmore2 4.082 0.713

PaulBunyan 2.458 0.702

set18 4.376 0.724

set22 3.162 0.766

set23 3.359 0.764

set24 3.862 0.778

set31 4.118 0.678

set33 4.344 0.698

set70 3.441 0.735

showgirl 4.369 0.723

sintel 3.195 0.781

WillyDesk 4.284 0.777

Min 2.175 0.621

Max 4.386 0.781

Mean 3.722 0.727

Median 4.089 0.731

A total of 24 naïve subjects (12 females and 12 males)

took part in the experiments. Subjects were aged between

18 and 30 years old with an average of 22.1. All subjects

were screened for correct visual acuity and color vision

using Snellen and Ishihara charts, respectively.

The subjective scores were processed by first detect-

ing and removing subjects whose scores deviated strongly

from others. The outlier detection was applied to the set

of results obtained from the 24 subjects and performed

according to the guidelines described in Section 2.3.1 of

Annex 2 of [35]. Two outliers were detected. Then, the

mean opinion score (MOS) was computed for each test

stimulus as the mean score across the 22 valid subjects,

as well as the associated 95% confidence interval (CI),

assuming a Student’s t-distribution of the scores. As it

can be observed in Fig. 2, MOS values reflect the sub-

jects perception fairly with enoughMOS samples for each

meaningful value range. More details about the dataset

and subjective evaluations can be found in [29].

2.2 Objective quality metrics

Depending on the amount of information required about

the reference image, objective metrics can be classified

into three categories:

i) Full-reference (FR) metrics, which compare the test

image with a reference image

ii) Reduced-reference (RR) metrics, which have access

to a number of features from the reference image,

extract the same features from the test image and

compare them

iii) No-reference (NR) metrics, which do not use any

information about the reference image

In this study, only FR and NR metrics were considered.

2.2.1 Full-referencemetrics

To the best of our knowledge, there are only two metrics

for HDR quality assessment that have a publicly available

implementation: (1) HDR-VDP: high dynamic range vis-

ible difference predictor [10, 12, 13] and (2) HDR-VQM:

an objective quality measure for high dynamic range

video [15].

The original HDR-VDP metric [10] was the first met-

ric designed for HDR content. It is an extension of the

VDP model [11] that considers a light-adaptive contrast

sensitivity function (CSF), which is necessary for HDR

content as the ranges of light adaptation can vary substan-

tially. The metric was further extended [12] with different

features, including a specific model of the point spread

function (PSF) of the optics of the eye, as human opti-

cal lens flare can be very strong in high contrast HDR

content. The front-end amplitude non-linearity is based

on integration of the Weber-Fechner law. HDR-VDP is a

calibrated metric and takes into account the angular res-

olution. The metric uses a multi-scale decomposition. A

neural noise block is defined to calculate per-pixel proba-

bilities maps of visibility and the predicted quality metric.

In this study, we used the latest version of HDR-VDP, i.e.,

version 2.2.1 [13], referred to as HDR-VDP-2 in this paper.

HDR-VQM was designed for quality assessment of

HDR video content. The metric is computed in the PU

space and relies on a multi-scale and multi-orientations

analysis, similarly to HDR-VDP, based on a subband

decomposition using log-Gabor filters to estimate the

subband errors. The subband errors are pooled over non-

overlapping spatiotemporal tubes to account for short-

term memory effects. Further spatial and long-term tem-

poral poolings are performed to compute the overall qual-

ity score. In the case of still images, only spatial pooling is

performed.

The remaining FR metrics considered in this study are

all designed for LDR content and can be divided into

different categories: difference measures and statistical-

oriented metrics, structural similarity measures, visual
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Fig. 2MOS values distribution

information measures, information weighted metrics,

HVS inspired metrics, and objective color difference mea-

sures (studied in the vision science). The complete list of

considered FR metrics is provided in the following:

• Difference measures and statistical-oriented metrics

These metrics are based on pixel color differences

and provide a measure of the difference between the

reference image and the distorted image. The

following metrics of this category were considered:

(3) MSE: mean squared error, (4) PSNR: peak

signal-to-noise ratio, and (5) SNR: signal-to-noise

ratio.
• Structural similarity measures

These metrics model the quality based on pixel

statistics to model the luminance (using the mean),

the contrast (variance), and the structure (cross-

correlation) [36]. The metrics considered in this

category are the following: (6) UQI: universal quality

index [37], (7) SSIM: structural similarity index [38],

(8) MS-SSIM: multiscale SSIM index [39], (9)

M-SVD: measure - singular value decomposition [40],

and (10) QILV: quality index on local variance [41].

The MS-SSIM index is a multiscale extension of

SSIM, which has a higher correlation with perceived

quality when compared to SSIM. It is a perceptual

metric based on the content features extraction and

abstraction. This quality metric considers that the

HVS uses the structural information from a scene

[38]. The structure of objects in the scene can be

represented by their attributes, which are

independent of both contrast and average luminance.

Hence, the changes in the structural information

from the reference and distorted images can be

perceived as a measure of distortion. The MS-SSIM

algorithm calculates multiple SSIM values at multiple

image scales. By running the algorithm at different

scales, the quality of the image is evaluated for

different viewing distances. MS-SSIM also puts less

emphasis on the luminance component when

compared to contrast and structure components [39].
• Visual information measures

These metrics aim at measuring the image

information by modeling the psycho-visual features

of the HVS or by measuring the information fidelity.

Then, the models are applied to the reference and

distorted images, resulting in a measure of the

difference between them. The following metrics on

this category were considered: (11) IFC: image fidelity

criterion [42], (12) VIF: visual information fidelity

[43], (13) VIFp: VIF pixel-based version [43], and (14)

FSIM: feature similarity index [44].

The VIF criterion analyses the natural scene

statistics, using an image degradation model and the

HVS model. This FR metric is based on the

quantification of the Shannon information present in

both the reference and the distorted images. VIFP is

derived from the VIF criterion.



Hanhart et al. EURASIP Journal on Image and Video Processing  (2015) 2015:39 Page 7 of 18

FSIM is a perceptual metric that results from SSIM.

FSIM adds the comparison of low-level feature sets

between the reference and the distorted images [44].

Hence, FSIM analyzes the high phase congruency

extracting highly informative features and the

gradient magnitude, to encode the contrast

information. This analysis is complementary and

reflects different aspects of the HVS in assessing the

local quality of an image.
• Information weighted metrics

The metrics in this category are based on the

modeling of relative local importance of the image

information. As not all regions of the image have the

same importance in the perception of distortion, the

image differences computed by any metrics have

allocated local weights resulting in a more perceptual

measure of quality. The following metrics were

computed: (15) IW-MSE: information content

weighting MSE [45], (16) IW-PSNR: information

content weighting PSNR [45], and (17) IW-SSIM:

information content weighting SSIM [45].
• HVS-inspired metrics

These metrics try to model empirically the human

perception of images from natural scenes. The

following metrics were considered: (18) JND_st: just

noticeable distortion [46], (19) WSNR: weighted SNR

[47, 48], and (20) DN: divisive normalization [36].
• Objective color difference measures

The color difference metrics were developed because

the CIE1976 color difference [49] magnitude in

different regions of the color space did not appear

correlated with perceived colors. These metrics were

designed to compensate the non-linearities of the

HVS present on the CIE1976 model. The following

CIE metrics were computed: (21) CIE1976 [49], (22)

CIE94 [50], (23) CMC [51], and (24) CIEDE2000 [52].

The CIEDE2000 metric is a color difference measure

that includes not only weighting factors for lightness,

chroma, and hue but also factors to handle the

relationship between chroma and hue. The

CIEDE2000 computation is not reliable in all color

spaces. However, in this case, it can be used because

the tested images are represented in the CIELAB

color space that allows a precise computation.

2.2.2 No-referencemetrics

These metrics are based on the analysis of a set of well-

known sharpness measures. The following NR metrics

were considered: (25) JND: just noticeable distortion [46],

(26) VAR: variance [53], (27) LAP: laplacian [54], (28)

GRAD: gradient [54], (29) FTM: frequency threshold met-

ric [55], (30) HPM: HP metric [56], (31) Marziliano:

Marziliano blurringmetric [55], (32) KurtZhang: kurtosis-

based metric [57], (33) KurtWav: kurtosis of wavelet

coefficients [58], (34) AutoCorr: auto correlation [54], and

(35) RTBM: Riemannian tensor-based metric [59].

2.2.3 Metrics computation and transform domains

LDR metrics are designed for gamma encoded images,

typically having luminance values in the range 0.1–100

cd/m2, while HDR images have linear values and are

meant to capture a much wider range of luminance.

Therefore, in this study, metrics were computed not only

in the linear space but also in transformed spaces that pro-

vide a more perceptual uniformity. This space transfor-

mation was not applied to HDR-VDP-2 and HDR-VQM,

which are calibrated metrics and require absolute lumi-

nance values as input. The color difference metrics, i.e.,

CIE1976, CIE94, CMC, and CIEDE2000, were also not

computed in transformed spaces. These color difference

measures require a conversion from the RGB represen-

tation to the CIELAB color space, considering a D65

100 cd/m2 reflective white point as reference white point.

Before any metric was computed, images were clipped

to the range [0.001,4000] cd/m2 (theoretical range of lumi-

nance values that the HDR monitor used in the subjective

tests can render) tomimic the physical clipping performed

by the HDR display. To compute the metrics in the linear

domain, these luminance values were normalized to the

interval [ 0, 1]. This normalization was not applied to HDR

metrics and to color difference metrics.

The remaining metrics were computed in three trans-

form domains: the log domain, the PU domain [20],

and the PQ domain [31]. The PU transform is derived

using the threshold-integration method [60]. The trans-

form is constrained such that luminance values in the

range 0.1–80 cd/m2, as produced by a typical CRT dis-

play, are mapped to the range 0–255 to mimic the

sRGB non-linearity. The PQ transform is derived from

the Barten contrast sensitivity function [61]. The PQ

curve has a square-root and log behavior at the darkest

and highest light levels, respectively, while it exhibits a

slope similar to the gamma non-linearities between those

extreme luminance regions. Figure 3 depicts the normal-

ized response of the log, PU, and PQ responses in the

range [0,4000] cd/m2.

These transformations were applied before any nor-

malization and only after their application the result-

ing color components were normalized to the interval

[ 0, 1]. After the normalizations, the values considered

to be in the RGB color space were transformed to the

YCbCr color space [62]. The exception is the DN met-

ric, which uses directly these RGB components. The

metrics were computed on each of these components

separately and two final metrics were considered: the

quality score computed on the luminance channel alone

and the average quality score of the Y, Cb, and Cr

channels.
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a b

Fig. 3 Comparison of responses. Comparison of responses for the transformation functions in two different luminance ranges (a: [ 0, 120] cd/m2 ,

b: [ 120, 4000] cd/m2)

2.3 Benchmarking of quality metrics

To evaluate how well an objective metric is able to esti-

mate perceived quality, theMOS obtained from subjective

experiments are taken as ground truth and compared to

predicted MOS values obtained from objective metrics.

To compute the predicted MOS M̃, a regression analysis

on each objective metric results O was performed using a

logistic function as a regression model:

M̃ = a +
b

1 + exp (−c · (O − d))
(2)

where a, b, c, and d are the parameters that define the

shape of the logistic fitting function and were determined

using a least squares method.

2.3.1 Performance indexes

Performance indexes to assess the accuracy of objective

metrics were computed following the same procedure

as in [63]. In particular, the Pearson linear correlation

coefficient (PLCC) and the unbiased estimator of the root-

mean-square error (RMSE) were used. The Spearman

rank order correlation (SROCC) coefficient and the out-

lier ratio (OR) were also used to estimate respectively the

monotonicity and the consistency of the objective met-

ric as compared with the ground truth subjective data.

The OR is the ratio of points for which the error between

the predicted and actual MOS values exceeds the 95%

confidence interval of MOS values.

2.3.2 Statistical analysis

To determine whether the difference between two perfor-

mance index values corresponding to two different met-

rics is statistically significant, two-sample statistical tests

were performed on all four performance indexes. In par-

ticular, for the PLCC and SROCC, a Z-test was performed

using Fisher z-transformation. For the RMSE, an F-test

was performed, whereas a Z-test for the equality of two

proportions was performed for theOR. No processing was

applied to correct for the multiple comparisons. The sta-

tistical tests were performed according to the guidelines

of recommendation ITU-T P.1401 [64].

3 Results
Figures 4, 5, 6, and 7 report the accuracy, monotonic-

ity, and consistency indexes, as defined in Section 2.3,

for the metrics computed in the different domains. The

metrics are sorted from best (top) to least (bottom)

performing, based on the different performance indexes

(higher PLCC/SROCC and lower RMSE/OR values indi-

cate better performance). As HDR-VDP-2 and HDR-

VQM require absolute luminance values as input, these

metrics were computed neither on the chrominance chan-

nels nor in the transform domains. Similarly, the different

color difference metrics were computed only in the linear

domain, after converting the absolute RGB values to the

CIELAB color space. TheDNmetric was computed on the

RGB components, considering all three channels together.

Finally, the remaining 28 metrics were computed both on

the luminance channel alone (_Y suffix) and as the aver-

age quality score of the luminance, blue-difference, and

red-difference channels (_M suffix). The statistical anal-

ysis results are reported in the same tables. This analysis

was performed on the performance indexes computed

from 240 data points to discriminate small differences

between twometrics. Metrics whose performance indexes

are connected by a line are considered statistically not

significantly different. For example, in the linear domain,
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Fig. 4 Accuracy, consistency, and monotonicity indexes for each objective metric computed in the linear space
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Fig. 5 Accuracy, consistency, and monotonicity indexes for each objective metric computed in the logarithm space

according to PLCC, there is no statistical evidence to show

performance differences between IFC and FSIM com-

puted on the luminance channel, but they are statistically

different from HDR-VDP-2 (see Fig. 4).

3.1 Best performingmetrics

As expected, HDR-VDP-2 and HDR-VQM, which are

the only true HDR quality metrics considered in this

study, computed on absolute luminance values, are the
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Fig. 6 Accuracy, consistency, and monotonicity indexes for each objective metric computed in the PU space

best performing metrics when compared to all other

metrics and domains. Both metrics have a correlation

above 0.95 and a particularly low RMSE (around 0.35)

and low OR, whereas all other metrics have an OR

above 0.48. HDR-VDP-2 (OR = 0.35) has a slightly

lower OR than HDR-VQM (OR = 0.4083), but there

is no statistical evidence to show a significant differ-

ence. However, HDR-VQM is over three times faster than
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Fig. 7 Accuracy, consistency, and monotonicity indexes for each objective metric computed in the PQ space

HDR-VDP-2 [15], which makes it a suitable alternative to

HDR-VDP-2.

The results for HDR-VDP-2 are in line with the find-

ing of [26], slightly better than that of Valenzise et al. [24],

but in contradiction with Mantel et al. [25], who reported

a much lower correlation. However, Mantel et al. used

unusual combinations of parameters for the base and

extension layers, especially for content BloomingGorse.
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Narwaria et al. [15] found that HDR-VQM was per-

forming significantly better than HDR-VDP-2 for both

video and still image content. However, our results show

that both metrics have similar performance, while it was

reported in [9] that HDR-VQM performs lower than

HDR-VDP-2 for HDR video compression. The divergence

between these findings might be due to the contents and

types of artifacts considered in the different studies.

In contrast to the HDR metrics, the NR metrics show

the worst performance with PLCC and SROCC values

below 0.5 and RMSE and OR values above 1 and 0.8,

respectively, independently of the domain in which the

metric was computed. These results show that NRmetrics

are not sufficient to reach satisfactory prediction accu-

racy considering a perceptual domain and that specific

NR metrics should be designed for HDR image quality

assessment.

3.2 Difference measures and statistical-oriented metrics

Results show that MSE-based metrics, i.e., MSE, SNR,

and PSNR, are not very reliable predictors of perceived

quality when computed in the linear domain, with corre-

lation between 0.65 and 0.75. Higher PLCC values were

reported in [26] for MSE and SNR (PLCC = 0.88), but

the study was performed considering only five contents.

These metrics are know to be very content dependent

[65], which might explain the drop in performance when

considering 20 images. The correlation of MSE-based

metrics computed on the luminance channel alone can

be improved by about 0.1 by considering a more percep-

tual domain than the linear domain, which does not take

into account the contrast sensitivity response of the HVS.

In the log and PU domains, the correlation is about 0.83

and 0.84, respectively, which is in line with the results

from [24]. Nevertheless, the performance of the MSE-

based metrics computed as the average quality score of

the Y, Cb, and Cr channels did not improve when con-

sidering perceptual domains. These observations indicate

that the log, PU, and PQ domains can better represent the

luminance sensitivity of the HVS than the linear domain,

but they might not be optimal for the chrominance

sensitivity.

3.3 Objective color difference measures

In the linear domain, the color differencemetrics, with the

exception of the original CIE1976 color difference met-

ric, are the best performing pixel-based metrics. They

outperform the MSE-based metrics, but there is no sta-

tistical evidence to show a significant improvement over

SNR computed on the luminance alone. Nevertheless,

their correlation with perceived visual quality is only

about 80%, with an OR above 69%, which cannot be

considered as reliable prediction. Since the release of

the CIE1976 color difference metric, two extensions have

been developed in 1994 and 2000 to better address per-

ceptual non-uniformities of the HVS. But, according to

the benchmarking results, further improvements might

be necessary for HDR images to handle non-uniformities

in low and high luminance ranges, outside of the typical

range of LDR displays. The color difference metrics are

computed in the CIELAB color space, which considers rel-

ative luminance values with respect to a reference white

point, typically a reflective D65 white point about 100–

120 cd/m2. This reference white point is similar to the

targeted peak luminance that is typically considered when

calibrating LDR reference monitors. Therefore, for HDR

images, one would be tempted to set the luminance of

the reference white point considered in the color conver-

sion equal to the peak luminance of the HDR monitor.

However, this leads to lower performance of the color dif-

ference metrics and the reflective white point should also

be used for HDR content instead.

3.4 Structural similarity and visual information measures

The performance of SSIM and its multiscale exten-

sion, MS-SSIM, is improved by considering logarithm

instead of linear values and is even further improved

by considering the PU or PQ transform. In particu-

lar, on the luminance channel, the correlation of SSIM

is increased by about 0.15 from linear to logarithm,

while MS-SSIM improved by only about 0.03. From log

to PU/PQ, improvements are relatively low for SSIM,

whereas MS-SSIM exhibits a gain of about 0.04. Results

show that MS-SSIM (luminance only) performs the best

in PU and PQ spaces according to the PLCC, SROCC,

Fig. 8 Statistical analysis comparing the HDR metrics and best performing metric of each domain
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a b

c d

e f

Fig. 9 Subjective versus objective results. Subjective versus objective evaluation results for the HDR metrics (a-b) and best performing metric of
each domain (c-f). Each symbol, i.e., combination of marker and color, corresponds to a specific content
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and RMSE indexes. The correlation obtained for SSIM

in the log and PU domains is similar to the results of

Valenzise et al. [24]. On the other hand, UQI, which cor-

responds to the special case of SSIM when the constants

C1 and C2 are set to 0, does not perform better in the

log, PU, or PQ space than in the linear domain. Similar

correlation results for SSIM and MS-SSIM are reported

in [26] as in this paper (for the linear domain). However,

it is reported that the relative change between the worst

and best qualities for SSIM and MS-SSIM was less than

0.003 and 0.0003%, respectively. In this study, the aver-

age relative change computed over all domains is 16.5 and

11.5% for SSIM and MS-SSIM, respectively. One major

difference between the two works is the use of absolute

luminance values in [26], whereas luminance values were

linearly mapped from the theoretical display range to the

range [ 0, 1] in this paper. For LDR content, SSIM uses

different values for C1 and C2 depending on whether the

images are in the range [ 0, 1] or [ 0, 255]. For HDR con-

tent, our findings suggest that the value of these constants

should be adjusted according the luminance range and

depending on whether scaling of the values is performed

or not.

Metrics that quantify the loss of image information, i.e.,

VIF, its pixel-based version, VIFP, and its predecessor, IFC,

also show good performance. In particular, IFC (lumi-

nance only) is the second best performing metric in the

linear domain. While the performance of IFC is not influ-

enced by the domain in which the metric is computed,

the performance of VIF(P) is significantly improved when

considering a more perceptual domain than the linear

space. In the log domain, results show that VIF computed

on the luminance alone is the best performing metric.

Note that the correlation reported for VIF(P) in this paper

is significantly better than the one reported in [26]. Sim-

ilarly to (MS-)SSIM, the difference might be due to the

scaling procedure. Among the other HVS-based metrics,

FSIM also shows good performance, especially in the PU

and PQ space (RMSE below 0.5). In the linear domain,

results are similar to our previous work.

3.5 Statistical analyses

To determine how the best metrics of each domain com-

pare to each other, a direct benchmarking of the two HDR

metrics, which are the best performing metrics in the lin-

ear space, and the best performing metric of the log, PU,

and PQ spaces was performed. The PSNR metric com-

puted on the luminance channel in the log space was

added to this comparison, as this metric is widely used in

HDR compression studies. Figure 8 reports the results of

the statistical analysis of the six metrics. To identify met-

rics computed in the log, PU, and PQ spaces, the LOG_,

PU2, and PQ2 prefixes are used, respectively. According to

PLCC and SROCC, there is no statistical evidence to show

performance differences between HDR-VDP-2, HDR-

VQM, andMS-SSIM computed on the luminance channel

in the PU space. However, HDR-VDP-2 and HDR-VQM

have a significantly lower RMSE than all other metrics.

Figure 9 depicts the scatter plots of subjective versus

objective results for these metrics. As it can be observed,

the data points are well concentrated near the fitting curve

for HDR-VDP-2, as well as for HDR-VQM, while they

are more scattered for the other metrics, especially in

the case of LOG_PSNR_Y, which shows higher content

dependency. These findings indicate that HDR-VDP-2

and HDR-VQM have a very high consistency when com-

pared to the other metrics. Nevertheless, HDR-VDP-2

is complex and requires heavy computational resources,

which limits its use in many applications. HDR-VQM and

MS-SSIM computed in the PU space are lower complexity

alternatives to HDR-VDP-2.

The statistical analysis was also used to understand

whether there is a statistically significant difference

between the performance of each metric when computed

on the luminance component alone and when computed

on all components. Only results from the analysis per-

formed on the 28 metrics that were computed both on

the Y channel alone and as the average quality score

of the Y, Cb, and Cr channels were considered. Table 2

reports the number of metrics for which one approach

was significantly better than the other one, as well as when

no significant difference between the two approaches

was observed. The analysis was performed individually

for each performance index and domain. In the linear

domain, there is no statistical evidence to show perfor-

mance differences between the two approaches for about

80% of themetrics. However, in the log, PU, and PQ space,

roughly half of the metrics perform significantly better

Table 2 Comparison of the 28 metrics computed on the Y and YCbCr channels. Comparison of the metrics computed as the average
quality score of the Y channel alone and as the average quality score of the YCbCr channels

lin log PU PQ

PLCC SROCC RMSE OR PLCC SROCC RMSE OR PLCC SROCC RMSE OR PLCC SROCC RMSE OR

Y is better 6 7 8 3 16 14 16 8 16 14 15 14 14 14 15 14

Similar 22 21 20 25 11 14 12 20 12 14 13 14 14 14 13 14

YCbCr is better 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
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Table 3 Comparison of the 57 metrics computed on all domains. Results represent the number of times a metric computed in the
domain i performs significantly better than when computed in the domain j, where i and j are the row and column of the table

PLCC SROCC RMSE OR

lin log PU PQ lin log PU PQ lin log PU PQ lin log PU PQ

lin 0 9 5 6 0 9 6 8 0 8 5 5 0 2 1 1

log 10 0 2 2 10 0 4 4 8 0 0 0 8 0 3 3

PU 14 17 0 11 13 15 0 11 11 16 0 10 9 7 0 7

PQ 13 17 8 0 11 15 8 0 11 16 6 0 9 7 3 0

when computed on the luminance channel alone. Accord-

ing to PLCC, the JND metric, FR version, computed in

the log domain, is the only case for which better perfor-

mance is achieved when considering all channels. As HDR

is often considered in combination with wide color gamut

(WCG), it is expected that the fidelity of color reproduc-

tion will play a more important role in the context of HDR

when compared to LDR. We believe that improvements

can be achieved by considering different domains for com-

puting the metrics on the chrominance channels and by

using better pooling strategies.

Similarly, the statistical analysis was also used to under-

stand whether there is a statistically significant difference

between the performance of a particular metric computed

in one domain and another domain. Only results from the

analysis performed on the 57 metrics that were computed

in all domains were considered. Table 3 reports the num-

ber of times a metric computed in the domain i performs

significantly better than when computed in the domain j,

where i and j are the row and column of the table. Results

show that most metrics perform the best in the PU and

PQ spaces when compared to the lin and log spaces, which

is in line with our previous observations. Note that results

based on PLCC, SROCC, and RMSE are in agreement,

while the OR metric shows fewer cases where statistically

significant differences are observed. Additionally, there

are also metrics for which computations performed in the

linear and logarithm domains perform better than in the

PU and PQ space. Overall, there is no optimal domain that

performs the best for all metrics. Instead, differentmetrics

should use different domains to maximize the correlation

with perceived quality.

4 Conclusions
In this paper, 35 objective metrics were benchmarked on a

database of 240 compressed HDR images using subjective

quality scores as ground truth. Additionally to the linear

space, metrics were computed in the logarithm, PU, and

PQ domains to mimic non-linearities of the HVS. Results

showed that the performance of most full-reference met-

rics can be improved by considering perceptual trans-

forms when compared to linear values. On the other hand,

our findings suggested that a lot of work remains to be

done for no-reference quality assessment of HDR con-

tent. Our benchmark demonstrated that HDR-VDP-2 and

HDR-VQM are ultimately the most reliable predictors

of perceived quality. Nevertheless, HDR-VDP-2 is com-

plex and requires heavy computational resources, which

limits its use in many applications. HDR-VQM is over

three times faster, which makes it a suitable alternative

to HDR-VDP-2. Alternatively, MS-SSIM computed in the

PU space is another lower complexity substitute, as there

is no statistical evidence to show performance differences

between these metrics in terms of PLCC and SROCC.

Even though the numbers of contents and compressed

images considered in the experiments are quite large, dif-

ferent performance might be observed for other contents

and types of artifacts.
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