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Abstract

Numerical results for the three mono-energetic transport coefficients required for a

complete neoclassical description of stellarator plasmas have been benchmarked within an

international collaboration. These transport coefficients are flux-surface-averaged moments

of solutions to the linearised drift kinetic equation which have been determined using

field-line-integration techniques, Monte Carlo simulations, a variational method employing

Fourier-Legendre test functions and a finite difference scheme. The benchmarking has

been successfully carried out for past, present and future devices which represent different

optimisation strategies within the extensive configuration space available to stellarators.

A qualitative comparison of the results with theoretical expectations for simple model

fields is provided. The behaviour of the results for the mono-energetic radial and parallel

transport coefficients can be largely understood from such theoretical considerations but the

mono-energetic bootstrap current coefficient exhibits characteristics which have not been

predicted.
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1 Introduction

This special topics paper describes work carried out within the IEA Implementing Agreement

for Cooperation in Development of the Stellarator Concept, with the ultimate goal of providing

a comprehensive description of neoclassical transport processes in stellarator experiments.

As in the case of axisymmetric tokamaks such a description is essential for calculating the

expected flows within a flux surface (e.g. determining the bootstrap current and the parallel

electric conductivity) but, additionally, the neoclassical transport across flux surfaces represents

a considerable limitation on plasma confinement in stellarators due to its strong temperature

dependence (for example, in the most unfavourable case the radial energy flux scales as T 9=2 in

stellarators in contrast with the far more benign T 1=2 scaling which holds in the tokamak banana

regime or the T 5=2 dependence expected from gyro-Bohm turbulent transport). This has obvious

implications for stellarator reactor prospects but can also be of relevance for experiments of

moderate size as demonstrated by various high-performance discharges in the W7-AS device

which conformed with neoclassical expectations for both particle and energy confinement [1–3].

An additional prediction of stellarator neoclassical theory concerning radial transport — the

possibility of multiple solutions for the value of radial electric field required to satisfy the

ambipolarity constraint on electron and ion particle fluxes — has also been confirmed by

experimental observations on the LHD, CHS, TJ-II and W7-AS devices in general accordance

with theoretical expectations [4, 5].

Neoclassical theory for toroidal devices is commonly considered to be a mature field of

research given the extensive body of scientific literature dealing with the topic; for stellarators

the two most comprehensive treatments of the subject matter are presented in review articles

[6,7]. Practical use of such theoretical results is circumscribed, however, due to the rather simple

magnetic fields which are assumed for analytic calculations of the geometrical factors relevant

to neoclassical transport. Unfortunately, these geometrical factors are often quite sensitive to

details of the magnetic field structure, especially in the case of strong three-dimensional (3-D)

shaping of the stellarator’s magnetic flux surfaces regardless of whether such shaping is intrinsic

to the magnetic configuration or attributable to a finite-pressure equilibrium (or a combination

of the two). An additional practical drawback of the analytic results is the asymptotic nature of

their validity, being appropriate for a particular set of ordering assumptions which may be only

approximately fulfilled under realistic experimental conditions.

Computational methods for determining neoclassical transport in stellarators have been

developed to avoid (or at least ameliorate) such shortcomings of the analytic theory and their

number has become appreciable over the past years. Historically, the results obtained with such

numerical tools have been presented in a variety of ways depending on the desired application,

although for determining neoclassical contributions to the transport of plasma observables such

as density, temperature and current it is most convenient to employ the three so-called mono-
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energetic transport coefficients. These flux-surface-averaged moments of the solution to the

linearised drift kinetic equation are particularly attractive as they contain sufficient information

to calculate all neoclassical fluxes/flows for (nearly) arbitrary plasma parameters in a given

magnetic field configuration. At the initiation of the International Collaboration on Neoclassical

Transport in Stellarators (ICNTS), it was therefore a natural first order of business to carry

out and document a thorough benchmarking of various numerical methods used within the

stellarator community to calculate the mono-energetic transport coefficients for realistic 3-D

magnetic-field configurations. In this manner each computational tool has been exposed to far

more comprehensive investigations than in previous comparisons of code results which have

typically involved the application of two numerical approaches to a single device. The results

of this benchmarking activity, described in the following, were obtained using the field-line-

integration techniques of the NEO family of codes [8, 9], Monte Carlo simulations employing

either full-f [10–12] or Æf schemes [13–15], the variational approach of the Drift Kinetic

Equation Solver, DKES [16, 17] and (where appropriate) a numerical solution of the ripple-

averaged kinetic equation, GSRAKE [18]. The devices for which the benchmarking has been

performed are representative of the extensive configuration space available to stellarators: the

Compact Helical System (CHS) and Large Helical Device (LHD) heliotrons, both located at

Toki, Japan; the Helically-Symmetric Experiment (HSX), in operation at Madison, WI, USA;

the quasi-axisymmetric National Compact Stellarator Experiment (NCSX), under construction

until recently at Princeton, NJ, USA; the Quasi-Poloidal Stellarator (QPS), a design study

initiated by Oak Ridge National Laboratory, USA; the heliac TJ-II, in operation at Madrid,

Spain; an example of a Quasi-Isodynamic stellarator with Poloidally Closed contours of the

magnetic field strength (QIPC), taken from the literature; and two advanced stellarators of the

Wendelstein line, W7-AS which ended operation in 2002 at Garching, Germany, and the helias

W7-X which is under construction at Greifswald, Germany.

The fundamentals of neoclassical transport theory in stellarators are outlined in Section 2

of this paper, beginning with the linearised drift kinetic equation used to describe the plasma

at the microscopic level and culminating in the definition of the mono-energetic transport

coefficients which enable efficient use of the kinetic equation’s solution in the macroscopic

transport equations. Section 3 provides a brief overview of the methods used to solve this

kinetic equation including consideration of each method’s strengths and weaknesses. Section 4

presents the magnetic configurations for which transport coefficients have been determined and

a discussion of the neoclassical optimisation strategy which each device follows. A sample

of benchmarking results is then given in Section 5 and the paper concludes with a number of

observations and remarks.
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2 Basics

Neoclassical theory describes transport processes which are assumed to be radially local and

described by the linearised drift kinetic equation [16]V(f1)� �L(f1) = �drdt 1n dndr � qErT + �K � 32 � 1T dTdr !fM + pvB qhE �BiT hB2i fM (1)

where f1 is the (small) deviation of the distribution function from Maxwellian andV(f1) = �pvBB + Er �BhB2i � � rf1 � v (1� p2)2B2 B�rB �f1�p
is the Vlasov operator, with B the magnetic-field vector, B its magnitude, v is the particle

speed, p = vk=v the pitch-angle variable, Er = Errr is the radial electric field, r is the

flux-surface label, angle brackets denote the flux-surface average and �L is the Lorentz pitch-

angle-scattering collision operator withL(f1) = 12 ��p ��1� p2� �f1�p � :
The radial drift velocity is given bydrdt = mv2 (1 + p2)2qB3 (B�rB) � rr
where m is the particle mass and q its charge, n and T are the density and temperature,

respectively, of the local Maxwellian fM = n(m=2�T )3=2 exp(�K), K = mv2=2T is the

normalised kinetic energy and the term containing hE �Bi describes the effects of the parallel

electric field which appears in response to an externally applied loop voltage. An explicit

particle-species index has not been attached to any of the quantities appearing in eq. (1), it

being understood that all such quantities are those of the species of interest (otherwise assigned

the index �). Only in a single case is it necessary to abandon this convention as the collision

frequency for particle species � � � �� =X� ��=�
is given by the sum of “discrete” collision frequencies with each of the background plasma

species � (including like-particle collisions)��=� = ��=�0 �erf�pK�=���1� 12K�=�� + ��K�=���1=2 exp ��K�=��� ;
in which the reference collision frequency is��=�0 = n� �q�q��2 (ln�)�=�4�("0m�)2v3 ;
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K�=� = (m�=m�)(T �=T �)K, ln� is the Coulomb logarithm, "0 is the permittivity of free

space, and the error function is defined in the usual mannererf(y) = 2p� Z y0 d� exp(��2) :
In the literature, � is commonly referred to as the deflection collision frequency and the notation�d is used (or �?=2) to distinguish it from frequencies which characterise other collisional

processes. In the current paper, it is the only collision frequency of relevance and the subscript

has therefore been dropped.

It will be noted that derivatives of f1 with respect to r and v are lacking in eq. (1) making

it possible to treat these two variables as mere parameters. This represents a considerable

simplification of the general drift kinetic equation from five phase-space variables to a more

manageable three. It also allows one to streamline the notation by expressing the first-order

distribution functionf1 = �qR0B0hE �BiT hB2i fM bfI + vdR0v  1n dndr � qErT + �K � 32 � 1T dTdr !fM bfII
where R0 and B0 are reference values of the torus major radius and magnetic field strength,

respectively, and vd = mv2=(2qR0B0) is characteristic of the radial drift velocity. Written in

dimensionless form, the resulting differential equations for bfI and bfII (which are themselves

dimensionless) are expressed R0v V� bfI�� R0�v L� bfI� = �p BB0 (2)R0v V� bfII�� R0�v L� bfII� = � 1vd drdt : (3)

In the literature, these two equations are often said to govern the transport in the parallel and

radial directions, respectively. On examination, one quickly concludes that their solutions

can depend only on the normalised Er � B drift velocity, v?E = Er=(vB0), the normalised

“mean-free-path”, �? = v=(R0�), and the structure of the confining magnetic field (but not its

magnitude). Perhaps surprisingly, the solutions are thus formally independent of the particle

species, although relevant values of v?E for electrons will typically be much smaller than those

appropriate for ions.

Within this neoclassical formalism, the relationships between the flux-surface-averaged

flows, Ii, and the thermodynamic forces which drive them, Aj, may then be expressedIi = �n 3Xj=1 LijAj : (4)
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Conforming to the standard convention, I1 is related to the radial component of the particle flux

density, �, through I1 = h� � rri = �Z d3v drdt f1� ;I2 to the radial component of the energy flux density,Q,I2 = �QT � rr� = �Z d3v K drdt f1�
and I3 to the parallel component of the current density, J,I3 = hJ �BiqB0 = �Z d3v pv BB0 f1� :
By choosing to combine the thermodynamic forces in the following mannerA1 = 1n dndr � qErT � 32 1T dTdr A2 = 1T dTdr A3 = �qB0hE �BiT hB2i ;
the mono-energetic solutions of the kinetic equations (2) and (3) may be used to determine the

transport coefficients by energy convolution with the local MaxwellianLij = 2p� Z 10 dK pK e�K Dij(K) hihj
where h1 = h3 = 1, h2 = K and the Dij are mono-energetic transport coefficients defined byD11 = D12 = D21 = D22 = �v2dR02v �Z 1�1 dp 1vd drdt bfII�D13 = D23 = �vdR02 �Z 1�1 dp 1vd drdt bfI�D31 = D32 = �vdR02 �Z 1�1 dp p BB0 bfII�D33 = �vR02 �Z 1�1 dp p BB0 bfI� :
Of these mono-energetic coefficients, D11 is said to describe the radial transport,D33 the parallel

transport, D13 is characteristic of the Ware pinch and D31 of the bootstrap current. Only three

of these coefficients are independent, however, as D13 = �D31 due to Onsager symmetry.

Having knowledge of the radial profiles of these mono-energetic coefficients for relevant

values of v?E and �? allows rapid determination of the neoclassical contributions to the

macroscopic fluxes/flows which appear in the 1-D transport equations for plasma observables

such as density, temperature and current. It is especially worth noting in this context, that the

neoclassical fluxes/flows obtained by a straightforward application of eq. (4) may be corrected
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so as to restore the conservation of parallel momentum (which is violated by use of the Lorentz

collision operator) either by solving a system of linear equations in which the coefficients are

differently weighted energy moments of the mono-energetic transport coefficients [19–21] or by

solving a generalised Spitzer problem accounting for an “effective” fraction of trapped particles

derived from the mono-energetic quantityD33 [21]. Thus, these coefficients represent a compact

repository of pertinent information required for neoclassical transport calculations and provide

a natural point of comparison for the various techniques used to solve the linearised drift kinetic

equation.

Before proceeding further, it is appropriate to point out assumptions of the theory used here

which are in some sense “stellarator-specific”, in that they place restrictions on the theory’s use

for general toroidal devices (particularly axisymmetric tokamaks). Foremost is the assumption

made in the derivation of eq. (1) that the lowest-order distribution function is a Maxwellian

at rest in the laboratory frame, thereby precluding strong plasma rotation. Additionally, theEr � B drift in the Vlasov operator is taken to be incompressible (with hB2i appearing in the

denominator instead of the correct B2 so as to allow eq. (1) to remain conservative despite

its reduced number of variables). Both of these assumptions are warranted in stellarators due

to the unavoidable parallel viscosity caused by trapped particles and by the tendency for these

devices to have large aspect ratios. For axisymmetric tokamaks these assumptions are often

justified as well, and in such cases the mono-energetic transport coefficients employed here can

be used to recover well-known results from tokamak neoclassical theory, including the intrinsic

ambipolarity of the radial particle fluxes [19–21]. In the current work, however, tokamak results

will appear only for reference purposes and, in particular, to furnish the analytic expressions

used to normalise the mono-energetic coefficients.

To conclude this section, a short summary of the theoretical expectations concerning

the mono-energetic transport coefficients will be presented. To this purpose, one begins by

considering the simple model magnetic fieldB=B0 = 1� �t os � � �h os(M� �N�) ; (5)

where � and � are the poloidal-angle and toroidal-angle coordinates, respectively, the term with

magnitude �t = r=R0 is a consequence of the toroidal curvature and the term with magnitude�h = �h(r) describes a helical magnetic field with multipolarity M and field period numberN . In spite of its simplicity, this model field contains all the ingredients necessary to define a

number of terms and concepts used throughout the remainder of this paper. Of elementary

importance is the fact that any variation of B along field lines leads to reflection/trapping

of particles with small parallel velocities. In axisymmetric tokamaks (e.g. the model field

with �h = 0), the vertical drift of these trapped particles results in “banana” orbits with

widths a significant fraction of the poloidal gyroradius but which, in the absence of collisions,

experience no net radial displacement on average over the course of their periodic bounce
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motion as bananas spend equal amounts of time above and below the poloidal midplane. In the

long-mean-free-path (lmfp) “banana-regime”, the portion of bfII responsible for radial transport

(symmetric in the pitch-angle variable p) is thus inversely proportional to �? [22] and henceD11 / � (vdR0=v)2. Approximating the velocity dependence of the collision frequency by� / v�3, one obtains D11 / v�1 and thermal transport coefficients Lij / T�1=2 for i; j = 1; 2.

Banana orbits also exist in stellarators, but of far more concern are the orbits of particles

trapped in the helical variation of B which remain highly localised in poloidal angle over the

course of a bounce so that the radial component of their vertical drift is non-zero on average.

Given such orbits, the assumption of radially local transport remains warranted only if the

poloidal Er � B precession frequency of particles trapped in helical ripples is large compared

with vd=r or if pitch-angle scattering is frequent enough to limit the time particles remain

localised by collisionally removing them from the ripple. In the latter case (typical for electrons

in high-temperature stellarator plasmas), the symmetric portion of bfII depends linearly on the

normalised mean-free-path [6, 7] which leads to D11 / vd2=� / v7 and Lij / T 7=2 fori; j = 1; 2. Where this result holds, particles are said to be in the “1=� regime”, an obvious

reference to the scaling of D11 with collision frequency. The very unfavourable temperature

dependence of the radial transport coefficients in this regime has prompted numerous efforts

to optimise the magnetic fields of stellarators so as to reduce the geometrical factor associated

with 1=� losses; various strategies for doing so are discussed in Section 4 of this paper.

When the electric field is responsible for limiting the radial excursion of localised particles,

theoretical solutions of eq. (3) have been derived assuming that trapping/detrapping of localised

particles takes place either due to collisions or drifts. In the case of collisions, the symmetric

portion of bfII scales as (v?E)�3=2(�?)�1=2 which yields D11 / vd2(R0B0=Er)3=2�1=2 and Lij /T 5=4E�3=2r for i; j = 1; 2 [6]; this is commonly referred to as the “
p� regime”. When drifts

are invoked the scaling of the distribution function becomes (v?E)�2(�?)�1 resulting in D11 /(vdR0B0=Er)2� and Lij / T 1=2E�2r for i; j = 1; 2 [23]; this is the so-called “� regime”.

The dependence of these transport coefficients on the radial electric field combined with the

ambipolarity condition on the radial particle fluxes,
P� q�I�1 = 0, leads to a non-linear equation

which can have multiple solutions for Er [24]. This is a feature of lmfp neoclassical transport

theory in stellarators which has no counterpart for axisymmetric tokamaks.

With regard to the parallel transport the differences between stellarators and tokamaks are

much less dramatic. Regardless of the magnetic configuration, the antisymmetric portion of bfI
is linearly proportional to the normalised mean-free-path and independent of the radial electric

field for all collision frequencies [25], yielding D33 / v2=� and L33 / T 5=2. Also regardless

of the configuration, D33 is reduced when reflected particles exist but in this respect stellarators

are affected at somewhat larger values of � due to the higher bounce frequencies of localised

particles compared with tokamak bananas. Further, assuming stellarator and tokamak have

identical values of �t, it is evident from eq. (5) that the stellarator will have a larger fraction of
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trapped particles and thus smaller values of D33 in the collisionless limit.

To obtain the last of the three mono-energetic transport coefficients, needed to determine the

bootstrap current (or the Ware pinch), one must either solve eq. (2) for the symmetric portion

of bfI or eq. (3) for the antisymmetric portion of bfII . Only the trivial solution exists in the limit

of small �? as the inhomogeneous term of each differential equation has the opposite symmetry

of the portion of the distribution function being sought and hence D31 = 0. In the opposite

limit (�? ! 1) the relevant portion of the distribution function becomes independent of the

normalised mean-free-path [26] so that D31 / vdR0 and L3j / T (for j = 1; 2) for both

stellarators and tokamaks. The geometrical factors, on the other hand, can be quite different as

the bootstrap current coefficient is of opposite sign in the axisymmetric (�h = 0) and helically

symmetric (�t = 0) limits of eq. (5) for conventional helical windings with M   � =N < 1, where  � is the rotational transform value of the flux surface under consideration. It is thus conceivable

in a stellarator to make D31 vanish by an appropriate combination of toroidal curvature and

helical variation of B. Finally, in the stellarator lmfp regime the predominant portion of bfII is

symmetric in p and strongly dependent on the radial electric field (in contrast to axisymmetric

tokamaks for which bfII is predominantly antisymmetric and independent of Er) which makes

it plausible that the antisymmetric portion of bfII will also depend on Er due to the coupling

of symmetric and antisymmetric terms in the kinetic equation through the Vlasov and Lorentz

operators. This would argue for a dependence of D31 on the value of v?E in the stellarator lmfp

regime which is lacking for tokamaks although analytic predictions concerning this dependence

have yet to be formulated.

3 Numerical Methods Used to Determine Mono-Energetic

Transport Coefficients

Although analytic solutions of the kinetic equation provide useful physical insight into the

neoclassical transport processes in stellarators, they are usually incapable of providing accurate

values for relevant geometrical factors and are therefore of limited help when it comes

to practical tasks such as comparing experimental results with neoclassical expectations or

performing predictive simulations of high-temperature stellarator plasmas. For these purposes,

mono-energetic transport coefficients calculated using numerical methods are preferable since

they can be determined in all parameter ranges of interest (and not only for a particular ordering

of frequencies appearing in the kinetic equation) and for arbitrarily complex magnetic field

structure. The latter point is of particular relevance for those configurations considered here

which are characterised by strong 3-D plasma shaping achieved through the use of modular

coils.

The earliest numerical tools for investigating neoclassical transport in stellarators evolved
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from codes written to follow particle orbits in magnetic and electric fields [27, 28]. Mathe-

matically, such orbits represent solutions of the Vlasov equation obtained by the method of

characteristics; an extension of this approach to treat the drift kinetic equation is thus largely

a matter of developing numerical algorithms to simulate the effects of the collision operator.

When the algorithm makes use of random numbers it is commonly referred to as a “Monte

Carlo method” to indicate the element of chance involved.

By considering an ensemble of mono-energetic test particles, an orbit-following Monte

Carlo code can be used to obtain a numerical estimate of D11 if the simulation parameters

are chosen to insure that particles deviate little from their original flux surface, r0. This is

best achieved by considering particles with extremely small gyroradii and afterwards scaling

the results to arbitrary values of gyroradius. Mathematically this may be viewed as a numerical

solution of the continuity equation describing the radial diffusion of a particle “density” initially

characterised by a delta function located at r = r0. Assuming sufficient radial localisation

the solution of the continuity equation is known to be Gaussian and a numerical estimate of

the diffusion coefficient can be obtained from the simulation particles’ dispersion [28, 29] once

they have been followed for a time sufficient to eliminate any effects which the particles’ “initial

values” might have on the results (a minimum of one collision time is mandatory).

The results from three Monte Carlo codes [10–12] which perform simulations of this type

are included in the ICNTS benchmarking presented in Section 5. All three employ Boozer

flux coordinates [30] which greatly simplifies the description of particle trajectories for given

magnetic and electric fields. The codes are similar in other respects as well, differing mainly

in numerical details affecting how the integration of particle orbits is carried out. Given these

similarities, it was not considered necessary to apply each of the codes to every configuration

examined here; once the three had been successfully benchmarked for a handful of cases it

was deemed sufficient to treat the remaining configurations with a single code, or with two at

most. This decision was taken to conserve computational resources as the cost of Monte Carlo

calculations increases linearly with the collision time, making each step further into the lmfp

regime increasingly expensive. This demand on computational resources may be considered

a general disadvantage of orbit-following Monte Carlo codes but for the simulations carried

out here it was also observed that the radial distribution of particles becomes non-Gaussian

above some critical value of normalised mean-free-path, with large radial displacements more

common than would be expected. This indicates that non-local transport is present in the

simulations [31, 32] and that the numerical scheme is no longer appropriate for determiningD11 when �? exceeds this critical value.

Although an orbit-following Monte Carlo code has also been used in the past to estimate

the bootstrap current in stellarators [33], this method has not been applied in the ICNTS

benchmarking to determine either D31 or D33. This is simply due to a lack of numerical

candidates for such calculations as recent developments of Monte Carlo methods to determine
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these two mono-energetic transport coefficients have relied almost exclusively on the so-calledÆf approach described in the following.

Another numerical means of determining the mono-energetic transport coefficients is the

direct time integration of eqs. (2) and (3) for an ensemble of mono-energetic simulation

particles (more commonly referred to in the literature as “markers”) with the effects of the

Lorentz collision operator again described using Monte Carlo methods. This yields numerical

representations for the solutions24 bfIbfII 35 =Xi 24 wIwII 35i Æ (X�Xi)
where i is the particle index,X represents the three phase-space variables and the “weights”wI = � vR0 Z dt p BB0 wII = � vR0 Z dt 1vd drdt
will be recognised as the time integrals of the inhomogeneous terms appearing in the dimen-

sionless drift kinetic equations. Numerical schemes of this type are referred to as Æf Monte

Carlo methods [13–15] to indicate that (non-Maxwellian) perturbed portions of the distribution

function are being solved for, from which numerical estimates of the mono-energetic transport

coefficients are obtained in a straightforward manner. Non-local contributions to the transport

cannot arise using this approach as all simulation particles are strictly confined to the flux

surface of interest with dr=dt only affecting their weights wII . The convergence properties

of Æf Monte Carlo estimates for D33 and D11 are satisfactory due to the optimal weightings ofwI and wII for describing the parallel and radial transport, respectively, and required simulation

times for a given statistical accuracy are directly proportional to �? as is the case for calculations

of D11 with orbit-following Monte Carlo codes. These weightings are non-optimal, however,

when it comes to determining the bootstrap current coefficient in stellarators (or its Onsager

conjugate, the Ware pinch coefficient) as the variance of statistical estimates for D31 increases

as the square of the mean free path [15], an effect which is commonly counteracted by increasing

the number of simulation particles [34] (the standard error remains unchanged if the ratio

of variance to number of simulation particles is held constant); the required simulation time

for a given statistical accuracy is thus a cubic function of �? when the conventional marker

weightings are employed [15]. The Monte Carlo results presented here for the bootstrap current

coefficient counteract this statistical degradation either by a “filtering” of weights as is done

in the VENUS+Æf code [14] or by employing an “advanced-weighting” technique [15]. In

the latter case it has been demonstrated that the simulation-time scaling improves to (�?)3=2
which nevertheless indicates that computational costs of D31 using Æf Monte Carlo codes will

exceed those of D11, with the difference widening as the collision frequency of the simulations

is reduced.
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The Drift Kinetic Equation Solver (DKES) [16, 17] uses a variational approach to solve

eqs. (2) and (3), in which the distribution function is expressed as a truncated Fourier-

Legendre series (Fourier harmonics for the poloidal-angle and toroidal-angle dependence and

Legendre polynomials to describe the pitch-angle dependence) and the resulting system of linear

equations is solved using standard library routines. With the magnetic field also specified

in terms of a Fourier series, the orthogonality properties of Fourier harmonics and Legendre

polynomials make it a simple task to determine DKES results for the three mono-energetic

transport coefficients. For the calculations presented here, the minimising and maximising

variational principles have been invoked to obtain upper and lower bounds on the transport

coefficients [17]. The convergence of these bounds is most strongly dependent on the value of �?
(worsening as the normalised mean-free-path increases) but is also affected by the complexity

of B and the value of v?E. Computational time for DKES increases nearly cubically with

the number of Fourier modes used to describe the distribution function and linearly with the

number of Legendre polynomials but convergence of the bounds is a very weak function of

these two numbers in the lmfp regime. This is due to the increasing localisation of the perturbed

distribution function at the phase-space boundary separating trapped and untrapped particles,

which is poorly resolved using Fourier-Legendre test functions. Computational resources have

limited the DKES calculations presented here to less than 2000 Fourier modes and 300 Legendre

polynomials, which does not allow satisfactory convergence for some of the most collisionless

cases investigated.

To reduce the cost in computational resources, efficient methods for solving “simplified”

kinetic equations have also been developed and two such approaches are included here in

the benchmarking. In the first approach, eqs. (2) and (3) are solved ignoring the Er � B
drift in the Vlasov operator, making it possible to determine the mono-energetic transport

coefficients by performing properly weighted integrals along a field line of “infinite” length

(i.e. sufficiently long to cover the magnetic flux surface). A numerical implementation of this

field-line-integration technique is at the heart of all versions of the NEO code, which differ

principally in their treatment of collisions. (These versions of NEO are not to be confused with

another code of the same name recently developed for calculations of neoclassical transport in

axisymmetric tokamaks [35].) In NEO-2 [9], for example, an adaptive third-order conservative

finite-difference scheme is employed to properly resolve the effects of pitch-angle scattering

within each of the boundary layers which form when a local maximum of B is encountered

along the field line. Alternately, extremely efficient calculations are possible in the collisionless

limit making use of the asymptotic behaviour of the solution as was done in the original NEO [8]

which is commonly used in stellarator optimisation packages to determine the level of 1=�
transport for a given magnetic field [36]. Both versions of NEO can deal with arbitrarily

complex B and convergence problems do not arise so that the codes’ only limitation, the

inability to describe the influence of Er on the transport, is due to the initial simplification
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of the Vlasov operator. The second approach, a numerical solution of the ripple-averaged

kinetic equation, GSRAKE [18], does not suffer this shortcoming. The ripple average is

a generalisation of the common bounce average (time average over the periodic motion of

reflected particles) so as to encompass all of phase space (including passing particles) and is

performed as a separation of time scales to eliminate the most rapidly varying spatial coordinate

in the kinetic equation. This separation can only be carried out efficiently if the structure ofB is described accurately within the so-called multiple-helicity model [37] which GSRAKE

employs in the construction of its coordinate system [38]. For the configurations considered

within the ICNTS such a model field is often inadequate and limits the use of GSRAKE in

the benchmarking to a handful of cases. When applicable, however, the method used to solve

the kinetic equation — combining a Fourier expansion in the remaining angular coordinate

and finite differencing in the pitch-angle variable — possesses both computational speed and

excellent convergence even for extreme values of normalised mean-free-path.

4 Configurations

Although the stellarator is the oldest concept for magnetic confinement of a fusion plasma

[39, 40], it has spent the great majority of its existence in the shadow of its toroidal cousin,

the tokamak. This is in spite of the fact that confinement in stellarators has typically been

at least as good as that observed in tokamaks of comparable size [2]. The principal reason

for this neglect is certainly historical but stellarators are also perceived as having disagreeably

complex coil systems and if the magnetic fields they produce also suffer from significant 1=�
transport and poor confinement of energetic particles it is difficult to imagine such a device as an

economically attractive reactor. In defence of stellarator coil systems it must be said that their

“complexity” is accompanied by undeniable advantages, foremost of which include the intrinsic

capability of steady-state, disruption-free operation. With this in mind, considerable effort

has been devoted during recent years to improving the equilibrium, stability and confinement

properties of stellarator magnetic fields employing strong 3-D shaping of the plasma column

made possible by non-planar modular coils [41]. These efforts have resulted in a number of

optimisation strategies which share the common attribute of employing magnetic fields with

a high degree of omnigeneity, meaning that they possess time-averaged drift surfaces — i.e.

contours of constant J , where J is the second (or longitudinal) adiabatic invariant of particle

motion — which (nearly) coincide with their magnetic flux surfaces [42, 43]. Such efforts are

exemplified here by five configurations, among which are one device already in operation and

a second currently under construction. The other four devices considered within the ICNTS

fall into the categories of “classical” or “partially optimised” stellarators and are either active

experiments or have been recently decommissioned.
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Beginning with this latter group, the Compact Helical System (CHS) [44], a low-aspect-ratio

heliotron with M = 2 and N = 8, was in operation at the National Institute for Fusion Science

(NIFS) in Nagoya and Toki, Japan, from 1988 until 2006. Contours of constant magnetic

field strength for the standard vacuum configuration of this device are plotted in Figure 1. For

CHS and all the subsequent configurations depicted in this section, B has been calculated with

the VMEC equilibrium code [45] and then decomposed in Boozer magnetic flux coordinates

according toB(r; �; �)=B0(r) = 1 + 1Xn=1 b0;n(r) os(nN�) + 1Xm=1 1Xn=�1 bm;n(r) os(m� � nN�)
where r remains the flux-surface label but � and � are now generalised angular coordinates

commonly referred to as the Boozer toroidal and poloidal angles, respectively [28]. The flux

surface at � � ps = r=a = 0:5 is shown, where s is the normalised toroidal flux and r = a
defines the last closed flux surface of the equilibrium. In Boozer coordinates, field lines obeyd�=d� =   � (r) and are thus “straight” with a slope given by the rotational transform of the flux

surface. For the convention used here, the helical path of a field line rotates in a left-handed

sense for positive values of the rotational transform while right-handed rotation is indicated by  � < 0. In the bottom portion of Figure 1, the value of B=B0 along the field line passing through� = 0 and � = 0 is plotted along a length corresponding to two poloidal circuits of the device;

the rapid helical modulation and the slower toroidal variation of B are easily identified.

A very similar magnetic field topology is exhibited in Figure 2a by the standard config-

uration of the Large Helical Device (LHD) [46], which is also a heliotron but with M = 2,N = 10 and helical windings which rotate in a left-handed sense as they encircle the torus

instead of the right-handed rotation used for CHS. Since beginning operation at NIFS in 1998,

LHD has been the world’s largest stellarator, the vacuum configuration considered here having

a major radius of R0 = 3:75 m and a minor radius of a = 0:56 m. For both CHS and LHD,

the Boozer representations of B contain only a small number of harmonics with significant

magnitudes. Indeed, the standard configurations of these two devices are approximated well

by the simple model magnetic field of eq. (5). As heliotrons, this magnetic field structure

can be altered to a certain degree by using the vertical field coils of each device to shift the

plasma column in the radial direction. An example for LHD is given in Figure 2b in which

the magnetic axis has been shifted inwards to R0 = 3:6 m. This results in a magnetic field

topology in which deeply trapped particles encounter a nearly constant value of B over the

course of their bounce motion and thus experience rather small radialrB drift; this represents

the simplest type of “drift optimisation” in stellarators [47] and is expected to significantly

reduce 1=� losses since the deeply trapped particles typically contribute disproportionately

in this regime [37]. Improving the neoclassical confinement of heliotrons in this manner has

been traditionally frowned upon, however, as an inward shift of the plasma column leads to a
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Figure 1. Contours of constant magnetic field strength for one field period of CHS (with N = 8) are

shown for the � = 0:5 flux surface of the standard vacuum configuration which has   � = �0:4067. The

thick (black) contour denotes B=B0 = 1, in the shaded region the (red) contours are at lower values,

in the unshaded region the (blue) contours are at higher values. The contours are spaced at intervals of

0.01. The locations of the absolute maximum and minimum values of B on the surface are indicated by�. In the lower frame, the magnitude of B=B0 along the field line passing through � = 0 and � = 0 is

plotted over two poloidal circuits of the torus.
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Figure 2a. Contours of constant magnetic field strength for one field period of LHD (with N = 10) are

shown for the � = 0:5 flux surface of the standard vacuum configuration (R0 = 3:7481 m) which has  � = 0:4542. Contours have been plotted following the same scheme employed in Figure 1. In the lower

frame, the magnitude of B=B0 along the field line passing through � = 0 and � = 0 is plotted over two

poloidal circuits of the torus.
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Figure 2b. Contours of constant magnetic field strength for one field period of LHD are shown for

the � = 0:5 flux surface of the inward-shifted vacuum configuration (R0 = 3:6024 m) which has  � = 0:4692. Contours have been plotted following the same scheme employed in Figure 1. In the

lower frame, the magnitude of B=B0 along the field line passing through � = 0 and � = 0 is plotted

over two poloidal circuits of the torus.
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configuration with a vacuum magnetic hill which is predicted to be Mercier unstable for even

weak pressure gradients. Experimentally, increased MHD activity has been observed in LHD

for inward-shifted configurations but confinement is nevertheless superior to that observed in

the standard or in outward-shifted configurations [48, 49]. Similar results have been reported

for CHS [50], leading to the conclusion that the Mercier stability criterion may be violated

in heliotrons without serious consequences and thus making drift optimisation of this type a

viable strategy for improving the neoclassical confinement. In this context, however, it should

be noted that the Shafranov shift serves to displace the magnetic axis outwards so that the 1=�
transport of such an optimised vacuum configuration will always be degraded when the finite-�
equilibrium is considered [51].

A different type of optimisation was undertaken in the development of the “advanced

stellarator” concept, which had Wendelstein 7-AS (W7-AS) as its prototype [52]. This device

had a major radius of R0 = 2 m, a minor radius of a < 0:2 m and was in operation at the Institute

for Plasma Physics (IPP) in Garching, Germany, from 1988 until 2002. W7-AS was designed

to improve on the MHD equilibrium and stability limits of classical low-shear stellarators (such

as its predecessor Wendelstein 7-A), using non-planar modular coils to achieve an average

“elongation” of its flux surfaces � = (�t=b1;0)2 � 2. Such a reduction in the average toroidal

curvature of B is simultaneously of benefit with regard to neoclassical transport as it serves to

decrease particles’ radial drift velocity. Drift optimisation of deeply trapped particle orbits was

not a goal of the W7-AS design, however, which is evident from the contour plot of B shown

in Figure 3 for the   � > 1=3 vacuum configuration of this device. Indeed, quite the contrary,

deeply trapped particles find themselves localised in regions where B varies considerably and

this shortcoming is further exacerbated by the appearance of secondary minima of appreciable

depth. As a consequence, the 1=� transport of W7-AS was actually somewhat worse than that

of the classical stellarator Wendelstein 7-A [3] (which also had R0 = 2 m but � � 1).

MHD considerations also played a dominant role in the design of the heliac TJ-II [53], in

operation at the CIEMAT laboratory in Madrid, Spain, since 1997. The coil system of TJ-II

was chosen to allow considerable variation of the rotational transform and magnetic well depth

to investigate their influence on the equilibrium and stability properties of the device but little

attention was paid to the magnetic field topology other than to arrange the coils so as to minimise

the variation of B on the magnetic axis [54]. Contours of constant magnetic field strength for the

standard vacuum configuration of TJ-II are plotted in Figure 4 and exhibit the most complicated

structure of B considered within the ICNTS. The deep, highly localised ripples of this field

are particularly detrimental with respect to neoclassical transport; as will be seen in the next

section, TJ-II has the largest 1=� transport among the stellarators considered here.

As mentioned at the beginning of this section, the remaining stellarators investigated here

were designed to achieve a high degree of omnigeneity and the configurations which resulted

appear in the scientific literature accompanied by characterisations such as quasi-helically
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Figure 3. Contours of constant magnetic field strength for one field period of W7-AS (with N = 5) are

shown for the � = 0:5 flux surface of a vacuum configuration which has   � = 0:3525. Contours have

been plotted following the same scheme employed in Figure 1. In the lower frame, the magnitude ofB=B0 along the field line passing through � = 0 and � = 0 is plotted over two poloidal circuits of the

torus.
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Figure 4. Contours of constant magnetic field strength for one field period of TJ-II (with N = 4) are

shown for the � = 0:5 flux surface of the standard vacuum configuration which has   � = �1:4759.

Contours have been plotted following the same scheme employed in Figure 1. In the lower frame, the

magnitude of B=B0 along the field line passing through � = 0 and � = 0 is plotted over two poloidal

circuits of the torus.

20



symmetric, quasi-axisymmetric, quasi-poloidally symmetric and quasi-isodynamic. It will be

noted that quasi is common to all of these designations but this adverb has been chosen by

different authors to mean different things so that a brief digression will be helpful at this

point to clarify the terminology. As originally defined, the concept of quasi-symmetry made

use of the intuitively attractive observation that the structure of B in magnetic coordinates is

the quantity of relevance for determining particle trajectories and if this structure possesses a

particular symmetry then its neoclassical transport properties will be identical with those of

a device which has the same symmetry in real-space coordinates. Thus, an equilibrium withB = B(r; ��N�) is quasi-helically symmetric [55] with neoclassical transport as in a straight

helix (ignoring end losses), while B = B(r; �) is said to be quasi-axisymmetric [56] with

neoclassical transport as in the equivalent tokamak. The third conceivable quasi-symmetry,

quasi-poloidal with B = B(r; �), does not exist in a strict sense as its real-space equivalent,

a simple (straight) mirror, has guiding centre drift trajectories which never leave their flux

surfaces so that neoclassical radial transport and bootstrap current both vanish. At finite aspect

ratio, toroidal equilibria which have zero neoclassical transport cannot exist [57] so that quasi-

poloidal symmetry [36] can hold only in the ‘weak’ sense of describing equilibria for whichb0;n harmonics are dominant in the Boozer representation of B. More precise is the designation

quasi-isodynamic which is used to denote omnigenous equilibria with a large fraction of trapped

particles for all flux surfaces (including the magnetic axis) which experience only slow poloidal

drift, on average, during the course of their bounce motion [58]. Here, quasi is used to

signify a relaxation of the strict demands on truly isodynamic equilibria [59] in which even

the instantaneous particle drift off a field line is directed only poloidally.

Although exact quasi-symmetry is not possible [60], approximations thereof are attainable

to a degree comparable with what is achieved in tokamaks when the ripple due to the finite

extent of the toroidal field coils is accounted for. An example of such a device is the (quasi-)

Helically Symmetric Experiment (HSX) [61] depicted in Figure 5, which has been in operation

at the University of Wisconsin–Madison, U.S.A., since 1999. Although the surface shown has

an inverse aspect ratio of �t = 0:0483, its toroidal curvature in Boozer coordinates is more

than two orders of magnitude smaller and is thus indiscernible with the naked eye. The visible

departure from quasi-helical symmetry is instead largely due to the coil ripple produced by the

twelve modular coils in each field period. In experiments, the improvement in confinement

for thermal and fast particles predicted for quasi-helical symmetry has been demonstrated in

HSX by also considering discharges in which the magnetic configuration has been altered to

purposely spoil the quasi-symmetry [62, 63].

An example of quasi-axisymmetry is provided by the magnetic field of the National

Compact Stellarator Experiment (NCSX) [64], shown in Figure 6 for a standard equilibrium

with a plasma current of Ip = 174 kA and a volume-averaged � of 4.1% [65]. The value ofIp assumed for this equilibrium is on the order of the expected bootstrap current and serves to
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Figure 5. Contours of constant magnetic field strength for one field period of HSX (with N = 4)

are shown for the � = 0:5 flux surface of the standard vacuum configuration which has   � = 1:0537.

Contours have been plotted following the same scheme employed in Figure 1. In the lower frame, the

magnitude of B=B0 along the field line passing through � = 0 and � = 0 is plotted over two poloidal

circuits of the torus.
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Figure 6. Contours of constant magnetic field strength for one field period of NCSX (with N = 3) are

shown for the � = 0:5 flux surface of the reference S3 plasma configuration with Ip = 174 kA and< � >= 4:1% [65] which has   � = 0:4942. Contours have been plotted following the same scheme

employed in Figure 1. In the lower frame, the magnitude of B=B0 along the field line passing through� = 0 and � = 0 is plotted over two poloidal circuits of the torus.
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supply roughly 30% of the rotational transform. Such an increase in   � due to the tokamak-

like nature of the bootstrap current in a quasi-axisymmetric device is perhaps to be preferred

over the reduction which helical or quasi-helical symmetry leads to but neither case offers

a straightforward solution to the problems of particle and energy exhaust in reactor-grade

plasmas. Divertor research is still in its infancy in stellarators and experimental results exist

only for the “island” divertor concept of W7-AS and the “helical” divertor of LHD [66]. The

first of these makes use of a naturally occurring island chain with   � = N=Ma (where Ma is an

appropriate integer specific to the configuration) situated at the edge of the confinement volume

to channel outward-flowing plasma into specially prepared divertor regions where recycling

and exhaust are to take place. To perform this function properly, the position and size of

the islands must conform closely with the design values chosen for the divertor. This was

relatively straightforward in W7-AS, using an ohmic transformer to compensate modest levels

of bootstrap current, thus maintaining the vacuum island structure by means of net-current-free

operation. An island divertor accounting for large plasma current is also conceivable but would

require a considerably more sophisticated procedure than has been experimentally demonstrated

to date. In this respect, the helical divertor inherent to the high-shear scrape-off layer of

heliotrons has an advantage as its physical basis, the strong stochastization of the layer due to

multiple overlapping island chains, is rather insensitive to the equilibrium established in the core

region. Unfortunately, construction of NCSX at the Princeton Plasma Physics Laboratory in the

U.S.A. was essentially terminated in 2008 (although some testing of the coils was undertaken)

and it is currently uncertain whether this device will ever begin plasma operation and have the

opportunity to develop a viable divertor concept for low-shear quasi-symmetric devices with

large bootstrap current.

Quasi-isodynamicity is a concept more amenable to use of the island divertor as it is

consistent with a suppression of the bootstrap current while simultaneously reducing radial

transport to an acceptably low level [67]. The magnetic-field-strength contours of two such

equilibria are given here — the standard vacuum configuration of the Quasi-Poloidal Stellarator

(QPS) [68], proposed by Oak Ridge National Laboratory, U.S.A., as a concept-exploration

experiment is shown in Figure 7 and a Quasi-Isodynamic equilibrium with Poloidally Closed

contours of the magnetic field strength (QIPC) [69] is depicted in Figure 8. The stronger

variation of B with poloidal angle in the case of QPS is largely due to its small aspect ratioR0=a = 2:65 in comparison with R0=a = 11:5 for QIPC. Both configurations have a fraction-

of-trapped-particles well in excess of 50% but nevertheless fulfil the requirement of small radial

transport coefficients in the lmfp regime as will be seen in the next section.

The final configuration investigated within the ICNTS is the Wendelstein 7-X (W7-X)

device [70, 71], which is currently under construction at IPP in Greifswald, Germany. This

helias (helical-axis advanced stellarator) [72] emerged from an integrated design process which

had the goal of finding magnetic fields which simultaneously fulfil a number of optimisation
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Figure 7. Contours of constant magnetic field strength for one field period of QPS (with N = 2)

are shown for the � = 0:5 flux surface of the standard vacuum configuration which has   � = 0:1985.

Contours have been plotted following the same scheme employed in Figure 1. In the lower frame, the

magnitude of B=B0 along the field line passing through � = 0 and � = 0 is plotted over two poloidal

circuits of the torus.
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Figure 8. Contours of constant magnetic field strength for one field period of a QIPC equilibrium (withN = 6) are shown for the � = 0:5 flux surface of a vacuum configuration which has   � = 0:9137.

Contours have been plotted following the same scheme employed in Figure 1. In the lower frame, the

magnitude of B=B0 along the field line passing through � = 0 and � = 0 is plotted over two poloidal

circuits of the torus.
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Figure 9a. Contours of constant magnetic field strength for one field period of W7-X (with N = 5)

are shown for the � = 0:5 flux surface of the low-mirror vacuum configuration which has   � = 0:8623.

Contours have been plotted following the same scheme employed in Figure 1. In the lower frame, the

magnitude of B=B0 along the field line passing through � = 0 and � = 0 is plotted over two poloidal

circuits of the torus.
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Figure 9b. Contours of constant magnetic field strength for one field period of W7-X (with N = 5)

are shown for the � = 0:5 flux surface of the standard vacuum configuration which has   � = 0:8700.

Contours have been plotted following the same scheme employed in Figure 1. In the lower frame, the

magnitude of B=B0 along the field line passing through � = 0 and � = 0 is plotted over two poloidal

circuits of the torus.
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Figure 9c. Contours of constant magnetic field strength for one field period of W7-X (with N = 5) are

shown for the � = 0:5 flux surface of the high-mirror vacuum configuration which has   � = 0:8823.

Contours have been plotted following the same scheme employed in Figure 1. In the lower frame, the

magnitude of B=B0 along the field line passing through � = 0 and � = 0 is plotted over two poloidal

circuits of the torus.
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CHS LHD Standard LHD Inward-ShiftedN 8 10 10R0 (m) 0.9210 3.7481 3.6024a (m) 0.1905 0.5585 0.5400r (m) 0:0953 0:2793 0:2700  � �0:4067 0:4542 0:4692jbm;nj > 0:01 b1;0 = �0:09447 b1;0 = �0:07053 b1;0 = �0:05927b2;�1 = 0:06058 b2;1 = 0:05067 b2;1 = 0:05267b0;1 = �0:01156 b1;1 = �0:01476 b1;1 = �0:04956b0;1 = 0:01045
No. of jbm;nj > 10�3 13 5 9

No. of jbm;nj > 10�4 32 18 14

W7-AS TJ-II HSXN 5 4 4R0 (m) 2.0183 1.5106 1.2375a (m) 0.1776 0.1776 0.1195r (m) 0:0888 0:0888 0:0598  � 0:3525 �1:4759 1:0537jbm;nj > 0:01 b1;0 = �0:03074 b1;�1 = �0:06269 b1;1 = �0:07039b1;�1 = 0:02050 b1;0 = �0:05893b0;2 = �0:01462 b1;�2 = 0:04030b0;8 = �0:01375b0;1 = 0:01159
No. of jbm;nj > 10�3 15 36 10

No. of jbm;nj > 10�4 48 88 61

Table I. Magnetic field data obtained from VMEC equilibria for the twelve configurations used in the

ICNTS benchmarking. In the upper portion of each column appears the name of the configuration and its

field period number, N , along with the major radius, R0, and radius of the last closed flux surface, a, for

the equilibrium considered. Data for the magnetic flux surface r are given in the lower portion of each

column including the value of rotational transform,   � , all Boozer harmonics of B=B0 with magnitudes

exceeding one percent on this flux surface as well as the number of harmonics for which jbm;nj exceeds

the thresholds 10�3 and 10�4.
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NCSX QPS QIPCN 3 2 6R0 (m) 1.4654 0.9173 11.846a (m) 0.3230 0.3463 1.0270r (m) 0:1615 0:1732 0:5135  � 0:4942 0:1985 0:9137jbm;nj > 0:01 b1;0 = �0:06848 b0;1 = 0:16243 b0;1 = �0:22879b0;2 = �0:09310 b0;2 = 0:05894b1;0 = �0:05516 b1;1 = 0:04338b1;1 = �0:04576 b1;�1 = �0:02321b1;2 = 0:02929 b0;3 = �0:02078b1;�1 = 0:01643 b1;�2 = 0:01999b2;0 = �0:01294 b1;0 = �0:01689b1;2 = �0:01680b1;�3 = �0:01397b0;4 = 0:01005
No. of jbm;nj > 10�3 15 40 27

No. of jbm;nj > 10�4 60 134 83

W7-X Standard W7-X Low-Mirror W7-X High-MirrorN 5 5 5R0 (m) 5.5267 5.5276 5.5248a (m) 0.5109 0.5135 0.5122r (m) 0:2555 0:2568 0:2561  � 0:8700 0:8623 0:8823jbm;nj > 0:01 b0;1 = 0:04645 b1;1 = �0:04335 b0;1 = 0:10243b1;1 = �0:04351 b1;0 = �0:01794 b1;1 = �0:04384b1;0 = �0:01902 b1;0 = �0:02051
No. of jbm;nj > 10�3 14 12 15

No. of jbm;nj > 10�4 50 56 54
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criteria relevant to good plasma performance. Additionally, the dimensions of W7-X (R0 =5:5 m, a > 0:5 m) along with its heating and support systems were chosen to enable the

high-performance, steady-state discharges necessary to assess the potential of such a device

for attractive reactor operation. For experimental flexibility the W7-X coil system is capable

of numerous magnetic configurations, among which are examples of the various neoclassical

optimisation strategies discussed here, with the exception of quasi-symmetry (as small bootstrap

current was an optimisation criterion for W7-X). At its simplest, this strategy involves nothing

more than the large average elongation of the W7-X flux surfaces, which lies in the range4:5 < � < 7:0 depending on the configuration. The magnetic field for such a case is exemplified

by the W7-X low-mirror vacuum configuration plotted in Figure 9a, which is obtained by

choosing the coil currents so as to zero the toroidal-mirror term (the b0;1 component of B
in Boozer coordinates) on the magnetic axis. Unlike W7-AS, deeply trapped particles “see”

only a rather small variation of B in this field and thus experience the full benefit of the large

reduction in average toroidal curvature, leading to a significant decrease in the neoclassical

radial transport. Further improvements are possible, however, by introducing a modest toroidal

mirror into B so as to simultaneously profit from large elongation and strong drift optimisation,

as is done for the W7-X standard configuration shown in Figure 9b (which has equal currents

in all non-planar coils, resulting in b0;1 = 0:046 on axis). By further increasing the toroidal

mirror, W7-X has access to quasi-isodynamic equilibria at volume-averaged � values in excess

of 2% for which the diamagnetic effect modifies the radial dependence of the magnetic field

strength so as to produce an average-minimum-B configuration [73, 74]. An example of this

type is provided by the high-mirror W7-X (with b0;1 = 0:1 on axis), depicted in Figure 9c for the

vacuum case. The mono-energetic bootstrap current coefficients are small for all three W7-X

configurations due to the approximate cancellation of the individual contributions attributable

to the dominant toroidal and helical components of B (b1;0 and b1;1, respectively). The residual

portion of D31 can be influenced considerably by varying the toroidal mirror component of B,

and reaches its smallest asymptotic value for the high-mirror case.

Magnetic field data obtained from VMEC equilibria for the twelve configurations inves-

tigated within the ICNTS benchmarking are provided in Table I. The major radius of the

equilibrium and the minor radius of its last closed flux surface (in terms of its flux-surface

label) are given for the configuration in the upper portion of each column; the lower portion

contains data specific to the single flux surfaces depicted in the corresponding figures of this

section including the value of rotational transform, the individual Boozer harmonics of B=B0
with magnitudes larger than one percent and the number of harmonics for which jbm;nj exceeds

the values 10�3 and 10�4. These two thresholds are of relevance for the numerical tools which

employ a spectral representation of the magnetic field strength as accurate determination of

the mono-energetic transport coefficients typically requires that per mill harmonics of B are

accounted for while for some configurations it is even necessary to include all jbm;nj > 10�4.
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5 Benchmarking Results

For later use in calculations of the neoclassical fluxes for a given magnetic field configuration

of interest, it is convenient to precalculate and then store normalised mono-energetic transport

coefficients as functions of the flux-surface label, (mono-energetic) collisionality, �? �R0�=(  � v), and normalised Er � B drift velocity, v?E = Er=(vB0), for which they have been

determined. For the benchmarking results presented in this section, normalisations to the results

for an axisymmetric tokamak with B=B0 = 1 � �t os � in the plateau (p), banana (b) and

Pfirsch-Schlüter (PS) regimes have been chosen:D?11 � D11Dp11 ; Dp11 = �4 v2dR0v  � ;D?31 � D31Db31 ; Db31 = 23 vdR0  � �t (1� f) ;D?33 � D33DPS33 ; DPS33 = v23� hB2iB20 :
In these equations, f is the fraction of circulating (non-reflected) particles which for the large-

aspect-ratio approximation used here is given by f = 1 � 1:46p�t. For the axisymmetric

tokamak with B � rB = �  � �t(B �rB) � rr, one can show that a single mono-energetic

transport coefficient is sufficient to describe all neoclassical effects [19] as the other two may

be determined from D11 = 1  � �t mqB0 B20hB2i �D31 + 83 �vdR0v  � �2 �D31 = 1  � �t mqB0 �v23 � B20hB2i �D33� :
Using these expressions, it is straightforward to determine the collisional and collisionless

asymptotes of the three normalised mono-energetic transport coefficients for the large-aspect-

ratio, axisymmetric tokamakD?11(�? !1) = 323� �? ; D?11(�? ! 0) � 2:5 �?�3=2t ;D?31(�? !1) = 0 ; D?31(�? ! 0) = 1 ;D?33(�? !1) = 1 ; D?33(�? ! 0) = f :
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Figure 10. Radial profiles of the effective helical ripple for 1=� transport are shown for the magnetic

configurations of: (a) CHS, (b) LHD standard, (c) LHD inward-shifted, (d) W7-AS, (e) TJ-II, (f) HSX,

(g) NCSX, (h) QPS, (i) QIPC, (j) W7-X low-mirror, (k) W7-X standard and (l) W7-X high-mirror.

Results from NEO for �? ! 0 are shown by the continuous (black) curves; estimates from DKES are

depicted by the (red) data points with upper and lower bounds on the results indicated by “error bars”;

where applicable, analytic results obtained assuming a multiple-helicity model for B are plotted by the

(black) dotted curve.

Also commonly used as a figure of merit to indicate the level of 1=� transport in stellarators

is the so-called effective helical ripple, �eff [75, 76], which is determined fromD?11 = � 43��2 (2�eff)3=2�?
for the limiting case �? ! 0 and Er = 0 (a slightly different definition of effective helical

ripple has been used previously to quantify results from NEO [8] but in the current paper �eff
has always been calculated from the formula given above). As the name implies, this quantity

is defined such that �eff = �h for the characterisation of 1=� transport in the simple model

field of eq. (5). Improvement of the neoclassical confinement in stellarators is achieved most

“economically” by choosing a magnetic field topology with small �eff , making minimisation

of this quantity one of the most common goals of stellarator optimisation efforts. Field-line

integration assuming �? ! 0 is the most efficient numerical approach for determining �eff and

full radial profiles thereof, calculated by NEO, are given by the continuous curves in Figure

10 for each of the twelve configurations considered here. For comparison, DKES estimates of

the effective helical ripple are also plotted for several flux surfaces, taken from calculations at

the smallest values of �? for which numerical convergence can still be claimed (the DKES data

points are the average of the upper and lower variational bounds on the result with these bounds

indicated in the figure by “error bars”). For the magnetic fields which can be approximated to a

reasonable degree of accuracy using the multiple-helicity model [37], profiles of �eff obtained

from analytic theory [38] are also shown by dotted lines.

A truly omnigenous device has, by definition, no 1=� regime and hence �eff = 0. Given

this observation, one may also interpret �eff as a means of quantifying the departure from this

ideal, condensing all information regarding the number of offending orbits and their deviations

from the flux surface into a single value. For CHS, the standard configuration of LHD, W7-AS

and NCSX the radial profiles of �eff correspond very closely with the average depth of the local

ripples, increasing quadratically to large values at the outer radii of the two heliotrons while

remaining small for the quasi-axisymmetric NCSX as would be expected for this “stellarator
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approximation” to a rippled tokamak. The results for the inward-shifted LHD illustrate the

benefits of drift optimisation in heliotrons as �eff is reduced by a factor of five in comparison

with the standard configuration although the number of localised particles in these two cases

is nearly identical. It is also possible to significantly increase the effective helical ripple in

LHD by an outward shift of the plasma column [77] but such a case was not included in the

ICNTS, leaving only TJ-II to provide an example of such a “drift-amplified” configuration.

QIPC exhibits the largest disparity between �eff and the average depth of local ripples as the

latter exceeds the former by a factor of fifty for the inner flux surfaces.

With respect to benchmarking, the NEO results for �eff fall within the bounds determined

by DKES in the great majority of cases, the maximum discrepancy leading to an uncertainty inD11 of less than 20%. Analytic theory is of comparable accuracy only for the three heliotron

configurations; in the remaining cases it underestimates the 1=� transport as a high degree of

optimisation can be noticeably diminished by even small departures from the multiple-helicity

model for B used by the theory. The accuracy of the �eff values determined by the other

numerical methods used in the course of the ICNTS benchmarking will become apparent from

the Er = 0 portion of the results for D?11(�?; v?E) presented in the next subsection.

5.1 The Mono-Energetic Radial Transport Coefficient —D?11
In the following, benchmarking results for the normalised mono-energetic radial transport

coefficient, D?11, will be presented as functions of �? and v?E for a single flux surface of selected

configurations. One surface is deemed sufficient for the current purposes as the quality of

agreement between different numerical approaches is seldom a function of the flux surface

label for which calculations have been performed. (The small number of cases where this is not

true will be pointed out where they arise.)

As a first example, results from DKES, NEO-2, GSRAKE and five Monte Carlo codes are

compared in Figure 11 for the standard configuration of LHD. Six different values of v?E are

considered and indicated by the colour code given in the figure caption. For reference purposes,

the dotted curve depicts the results for the “equivalent” axisymmetric tokamak with magnetic

field strength B=B0 = 1+b1;0 os � and values of r, R0,   � , and b1;0 identical with those of LHD.

The highest collisionalities plotted here are well into the Pfirsch-Schlüter regime where pitch-

angle scattering is so frequent that the concept of trapped particles becomes meaningless and

accurate estimates of D?11 for both stellarators and tokamaks need account only for the toroidal

nature of these devices, leading to the analytic result [78]D?11 = 323� �?� "1 + �3v?E�?  � �t �2#�1 :
Traditionally, poloidal Er �B precession is ignored when solving the drift kinetic equation in
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Figure 11. Normalised mono-energetic radial transport coefficient as a function of collisionality forv?E = Er=(vB0) = 3� 10�3, 1 � 10�3, 3� 10�4, 1� 10�4, 3 � 10�5 and zero for the LHD standard

configuration at � = 0:5. Numerical results from GSRAKE are depicted as continuous curves, those from

NEO-2 as small filled-in circles (�) and from DKES as triangles (4) with upper and lower variational

bounds indicated when these lie outside the symbol. Results from five different Monte Carlo codes

are plotted as circles (#) [12], squares (2) [10], diamonds (3) [11], stars (✩ ) [13] and right-pointing

triangles (�) [15]. For comparison, results for the equivalent axisymmetric tokamak (r = 0:2793 m,R0 = 3:7481 m,   � = 0:4542, b1;0 = �0:07053) are shown by the dotted line for Er = 0.
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the Pfirsch-Schlüter regime but, as can be seen, it becomes relevant once the product of radial

electric field and collisionality is sufficiently large. Moving to lower �?, the Pfirsch-Schlüter

regime gives way to a clearly recognisable plateau regime with D?11 values somewhat larger

than those of the equivalent axisymmetric tokamak due to the small additional contributions

attributable to the helical components of B [79]. At yet lower collisionality textbook examples

of stellarator lmfp transport are on display with 1=� transport evident until it is suppressed by

the poloidalEr�B precession of localised particles once �?=v?E falls below a certain threshold.

With regard to the accuracy of the numerical approaches, upper and lower variational bounds

on the DKES results are plotted only when these extend outside the symbol (triangle) used

to mark their average. For the Monte Carlo results, ensembles of more than 1000 simulation

particles were commonly employed for the ICNTS benchmarking although in some runs at the

lowest values of collisionality this number was reduced to as few as 250. Even in the latter case,

the relative standard error never exceeds 15%, corresponding roughly to the vertical extent of

the symbols used in the figures so that the 95% confidence interval for these results is at most

a factor of two larger (but not shown explicitly to avoid cluttering the figure). The numerical

convergence for NEO-2 and GSRAKE may be considered exact for all results shown in this plot;

GSRAKE overestimates the transport at high collisionality where the ripple average (which is

performed over collisionless particle trajectories) leads to an improper weighting of the drifts

responsible for transport at these values of �?.
Benchmarking results for the inward-shifted LHD are presented in Figure 12 to illustrate

the effects which strong drift optimisation has on D?11 in classical heliotrons. Noteworthy in

this regard is that the benefits of the optimisation are not confined to the lmfp regime (i.e.

collisionalities satisfying �? < (4=3�)2(2�eff )3=2�, for which the mono-energetic 1=� transport

coefficient exceeds the plateau value of the equivalent axisymmetric tokamak) but also leads

to modest reductions of D?11 at higher collisionality as well, as a comparison with the results

for the LHD standard configuration will show. Within the lmfp regime it will be noted that

small non-zero values of the radial electric field (e.g. v?E = 3 � 10�5 and 10�4) now produce

a much more gradual “roll-over” of the transport coefficients than previously, displaying rather

broad ranges of collisionality over which D?11 is only weakly dependent on �?. To understand

this consequence of strong drift optimisation, one must recall that both collisions and poloidal

precession can set constraints on the radial excursions of localised particles in the stellarator

lmfp regime, with the relative importance of these constraints given by the ratio �=
E , where� = �=F2 is the collisional detrapping frequency, with F the fraction of phase space through

which a particle must be displaced if collisions are to remove it from a local ripple, and 
E =Er=(rB0) is the Er � B precession frequency. Particles with �=
E > 1 participate in 1=�
transport with a characteristic time step proportional to ��1 , making drift optimisation of deeply

trapped particles highly desirable as they must be scattered through a fraction of phase space

corresponding to the full depth of the local ripple and therefore have the smallest �. At the
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Figure 12. Normalised mono-energetic radial transport coefficient as a function of the collisionality forv?E = 3�10�3, 1�10�3 , 3�10�4, 1�10�4, 3�10�5 and zero for the LHD inward-shifted configuration

at � = 0:5. Numerical results from GSRAKE are depicted as continuous curves, those from NEO-2 as

small filled-in circles (�) and from DKES as triangles (4) with upper and lower variational bounds

indicated when these lie outside the symbol. Monte Carlo results are plotted as circles (#) [12], squares

(2) [10], diamonds (3) [11] and right-pointing triangles (�) [15]. For comparison, results for the

equivalent axisymmetric tokamak (r = 0:27 m, R0 = 3:6024 m,   � = 0:4692, b1;0 = �0:0593) are

shown by the dotted line for Er = 0.
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same time, however, as the collisionality decreases deeply trapped particles become the first

to have their radial displacements limited by 
E , signifying the end of the 1=� regime even

though collisional removal of shallowly trapped particles from the local ripples will persist due

to their smaller values of F . Thus, for a stellarator magnetic field without drift optimisation,

the beneficial effects of the Er � B precession first act on those particles making the largest

contribution to the transport so that only a small additional decrease in collisionality is necessary

to reach the roll-over point of the D?11 results. By design, however, deeply trapped particles

contribute little to the transport in strongly drift-optimised stellarators so that �=
E � 1 is

required for even shallowly trapped particles before the roll-over can occur, pushing this point

to considerably smaller values of �? [76].

One might also expect the influence of the radial electric field onD?11 to be modified by more

complicated magnetic field topologies, especially those in which deep secondary minima in B
are present. This was not observed for either W7-AS or TJ-II, however, the two most likely

candidates among the ICNTS configurations. Instead, the dependence of the radial transport

coefficients on Er was found to be (qualitatively) identical to that of a classical stellarator as

illustrated by the results for TJ-II plotted in Figure 13. The comparatively poor convergence of

the DKES results for this device at low collisionality is due to its very broad Fourier spectrum

of B in Boozer coordinates; at outer radii this problem is further exacerbated and convergence

is no longer satisfactory for �? < 10�4.
Among the configurations optimised for small neoclassical losses, benchmarking results forD?11 are presented here for HSX (Figure 14), NCSX (Figure 15), QIPC (Figure 16) and the

standard configuration of W7-X (Figures 17 and 18). For comparison with the HSX results

the dotted curve depicts the neoclassical transport in the equivalent helically symmetric fieldB=B0 = 1 + b1;1 os(� � N�), obtained from a simple isomorphic transformation of the

axisymmetric tokamak results [80]. In plotting the results, however, the normalisation remains

the same in all figures, e.g. in the plateau regime one expects D?11 = (b1;1=�t)2  � =j  � �N j � 0:75
for HSX while for NCSX one has D?11 = 1=� � 0:36. The approximation to quasi-helical

symmetry is sufficiently good for HSX that the banana regime of its helically symmetric

counterpart may be identified in the range of collisionalities satisfying 3 � 10�3 < �? <0:03, although typical stellarator behaviour of the D?11 results is evident at lower values of

collisionality even though it is of a magnitude small compared to that of classical stellarators.

The NCSX data exhibits similar properties except that the banana regime appears less distinctly

as this regime first emerges at lower collisionality in the equivalent axisymmetric device.

Stellarators with predominant b0;n harmonics in their Boozer-coordinate representations ofB are known to exhibit significantly modified behaviour of D?11 over the range of collision

frequencies in which the plateau regime would otherwise be expected to appear [81]. QIPC

offers an excellent example of such behaviour as reference to the results for the equivalent

axisymmetric tokamak (dotted curve in Figure 16) clearly illustrates. For �? < 5 � 10�3,
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Figure 13. Normalised mono-energetic radial transport coefficient as a function of collisionality forv?E = 3 � 10�3, 1 � 10�3, 3 � 10�4, 1 � 10�4, 3 � 10�5 and zero for TJ-II at � = 0:46. Numerical

results from NEO-2 are depicted as small filled-in circles (�) and those from DKES as triangles (4) with

upper and lower variational bounds indicated when these lie outside the symbol. Monte Carlo results

are plotted as circles (#) [12], squares (2) [10], stars (✩ ) [13] and right-pointing triangles (�) [15].

For comparison, results for the equivalent axisymmetric tokamak (r = 0:0815 m, R0 = 1:5106 m,  � = 1:4753, b1;0 = �0:0533) are shown by the dotted line for Er = 0.
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Figure 14. Normalised mono-energetic radial transport coefficient as a function of collisionality forv?E = 3 � 10�3, 1 � 10�3, 3 � 10�4, 1 � 10�4, 3 � 10�5 and zero for HSX at � = 0:5. Numerical

results from NEO-2 are depicted as small filled-in circles (�) and those from DKES as triangles (4) with

upper and lower variational bounds indicated when these lie outside the symbol. Monte Carlo results

are plotted as circles (#) [12] and right-pointing triangles (�) [15]. For comparison, results for the

equivalent helical symmetry (r = 0:0598 m, R0 = 1:2375 m,   � = 1:0537, N = 4, b1;1 = �0:07039)

are shown by the dotted line for Er = 0.
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Figure 15. Normalised mono-energetic radial transport coefficient as a function of collisionality forv?E = 3�10�3, 1�10�3, 3�10�4, 1�10�4, 3�10�5 and zero for NCSX at � = 0:5. Numerical results

from NEO-2 are depicted as small filled-in circles (�) and those from DKES as triangles (4) with upper

and lower variational bounds indicated when these lie outside the symbol. Monte Carlo results are plotted

as circles (#) [12], stars (✩ ) [13] and right-pointing triangles (�) [15]. For comparison, results for the

equivalent axisymmetric tokamak (r = 0:1615 m, R0 = 1:4654 m,   � = 0:4942, b1;0 = �0:06848) are

shown by the dotted line for Er = 0.
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Figure 16. Normalised mono-energetic radial transport coefficient as a function of collisionality forv?E = 3 � 10�3, 1 � 10�3, 3 � 10�4, 1 � 10�4, 3 � 10�5 and zero for QIPC at � = 0:5. Numerical

results from NEO-2 are depicted as small filled-in circles (�) and those from DKES as triangles (4) with

upper and lower variational bounds indicated when these lie outside the symbol. Monte Carlo results

are plotted as circles (#) [12] and right-pointing triangles (�) [15]. For comparison, results for the

equivalent axisymmetric tokamak (r = 0:5135 m, R0 = 11:846 m,   � = 0:9137, b1;0 = �0:01689) are

shown by the dotted line for Er = 0.
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Figure 17. Normalised mono-energetic radial transport coefficient as a function of collisionality forv?E = 3�10�3, 1�10�3, 3�10�4, 1�10�4, 3�10�5 and zero for the W7-X standard configuration at� = 0:5. Numerical results from GSRAKE are depicted as continuous curves, those from NEO-2 as small

filled-in circles (�) and from DKES as triangles (4) with upper and lower variational bounds indicated

when these lie outside the symbol. Results from four different Monte Carlo codes are plotted as circles

(#) [12], squares (2) [10], stars (✩ ) [13] and right-pointing triangles (�) [15]. For comparison, results

for the equivalent axisymmetric tokamak (r = 0:2555 m, R0 = 5:5267 m,   � = 0:870, b1;0 = �0:01902)

are shown by the dotted line for Er = 0.
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Figure 18. Normalised mono-energetic radial transport coefficient as a function of collisionality forv?E = 1�10�3, 3�10�4, 1�10�4, 3�10�5, 1�10�5 and zero for the standard configuration of W7-X

at � = 0:25. Numerical results from GSRAKE are depicted as continuous curves and those from DKES

as triangles (4) with upper and lower variational bounds indicated when these lie outside the symbol.

Results from Monte Carlo codes are plotted as circles (#) [12] and squares (2) [10]. For comparison,

results for the equivalent axisymmetric tokamak (r = 0:1277 m, R0 = 5:5267 m,   � = 0:8589, b1;0 =�0:00936) are shown by the dotted line for Er = 0.
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however, all the typical characteristics of lmfp radial transport in stellarators appear for this

configuration as well. With regard to the numerical results, QIPC is noteworthy as the

convergence of low-collisionality DKES runs shows unusually strong dependence on the

magnitude of the radial electric field; for upper and lower variational bounds differing by

considerably more than an order of magnitude the DKES results are considered unreliable and

do not appear on the plots.

The use of GSRAKE in the ICNTS benchmarking activity has been restricted to the six

configurations with magnetic field strengths which (at least for the majority of flux surfaces)

can be accurately approximated using the multiple-helicity model [37,38]; these comprise CHS,

the standard and inward-shifted LHD and the three W7-X configurations. For the heliotrons,

GSRAKE results are consistently in good agreement with those of the other numerical methods

but this is not always the case for W7-X as the example of Figure 17 demonstrates for the� = 0:5 flux surface of the standard configuration. One notes particularly for these results that

the accuracy of GSRAKE is satisfactory for Er = 0 but then steadily worsens as the value

of the radial electric field is increased. This discrepancy diminishes quite rapidly, however,

as the radius of the flux surface under consideration is decreased and is no longer evident

for the � = 0:25 results plotted in Figure 18. To summarise the full set of benchmarking

results for W7-X, GSRAKE performs rather poorly for the standard configuration, accurately

determining D?11(�?; v?E) only for those flux surfaces with � � 0:4, while for the low-mirror

and high-mirror configurations this “critical” radius moves closer to the plasma edge and

thus to radii where the fairly poor description of B provided by the multiple-helicity model

noticeably influences the accuracy of GSRAKE calculations. Whether the model field also

affects the accuracy of results for the standard configuration was investigated by performing

a second set of DKES computations for the � = 0:5 flux surface assuming the identical B
used by GSRAKE. Perceptible reductions of D?11 for �? < 5v?E were indeed obtained with

the model field but good agreement with GSRAKE results was only extended to the range of

collisionalities v?E=2 < �? < 5v?E with clear differences remaining at smaller �?. This could

indicate that use of the ripple average is not always admissible for simplifying the full drift

kinetic equation even if the structure of B is elementary enough to pose no obvious difficulties

but, on the other hand, it may simply point to shortcomings in the numerical implementation

of GSRAKE. From the point of view of code benchmarking, however, it is sufficient to note

that GSRAKE results must be taken with a grain of salt if corroborating data from Monte Carlo

simulations and/or DKES is lacking.

5.2 The Mono-Energetic Parallel Transport Coefficient —D?33
Calculation of the parallel transport coefficient in toroidal devices is historically associated

with determining a plasma’s electric conductivity. Unlike tokamaks, however, ohmic current
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plays at most a secondary role in establishing the poloidal component of the magnetic field in

stellarators and this is reflected in the early scientific literature describing neoclassical transport

in helical devices by a dearth of papers in which solutions of eq. (2) are presented. This situation

has changed somewhat in recent years with the development of various momentum-correction

techniques [19–21] which correct the flux-surface-averaged neoclassical flows so as to recover

the conservation of parallel momentum which is violated by use of the Lorentz operator to

describe collisions in the drift kinetic equation. Whether seeking the solution of a linear system

of moment equations or the iterative solution of a generalised Spitzer problem, all momentum-

correction techniques require knowledge of D33, and thus a means of solving eq. (2) becomes

mandatory. Nevertheless, the choice of numerical tools for doing so remains rather limited; for

the ICNTS benchmarking, results from DKES, NEO-2 and a Æf Monte Carlo code are compared

in this subsection.

In Figure 19 the normalised mono-energetic parallel transport coefficient is plotted as a

function of �? and v?E for the standard configuration of LHD. Data sets for only three values

of Er are considered sufficient here as the symmetry properties of the Vlasov operator cause

one to expect that the antisymmetric portion of bfI (and hence D33) will be independent of the

radial electric field as long as v?E �   � �t, which is already an ordering assumption required

to express the linearised drift kinetic equation in the mono-energetic form used here. As can

be seen from the DKES and Monte Carlo results, this expectation is confirmed by these two

numerical solutions of eq. (2); a very weak dependence of the DKES results on Er is observed

for v?E = 10�3 (especially for 5 � 10�4 < �? < 5 � 10�2) but these changes in D?33 are too

small to be verified by Monte Carlo simulations given the statistical uncertainty inherent to this

method of solution. As a consequence, the neglect of the E � B drift, which underlies the

field-line-integration technique, represents no drawback to accurate calculations of the mono-

energetic parallel transport coefficient and makes NEO-2 the most efficient numerical tool for

this task.

For comparison, D?33(�?) for the equivalent axial and helical symmetries is given in

Figure 19 by the dotted curves. At the highest collisionalities the results for both symmetries

are identical as collisions are too frequent for details of the magnetic field structure to have

any influence. The bounce frequency of localised particles in LHD is much higher than that of

banana orbits in the equivalent tokamak, however, so that the collisionality at which trapped-

particle effects begin to reduce D?33 is correspondingly larger and coincides quite well with the�? value at which the equivalent helical symmetry is first affected. In the collisionless limit

the value of D?33 asymptotically approaches the fraction of circulating particles (which never

undergo reflection) which for an arbitrarily complex magnetic field is given byf = 34 hB2iB2max Z 10 d� �Dp1� �B=Bmax E
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Figure 19. Normalised mono-energetic parallel transport coefficient as a function of collisionality forv?E = 1 � 10�3, 1 � 10�4 and zero for the LHD standard configuration at � = 0:5. Numerical results

from NEO-2 are depicted as small filled-in circles (�), those from DKES as triangles (4) with upper

and lower variational bounds indicated when these lie outside the symbol and results from a Monte

Carlo code [15] are plotted as right-pointing triangles (�). For comparison, results for the equivalent

axisymmetric tokamak (r = 0:2793 m, R0 = 3:7481 m,   � = 0:4542, b1;0 = �0:07053) and helical

symmetry (N = 10, b2;1 = �0:05067) are shown by the dotted lines for Er = 0. The collisionless

asymptote, the fraction of circulating particles, is indicated for the LHD standard configuration by the

dot-dash line.
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Figure 20. Normalised mono-energetic parallel transport coefficient as a function of collisionality forv?E = 1 � 10�3, 1 � 10�4 and zero for NCSX at � = 0:5. Numerical results from NEO-2 are depicted

as small filled-in circles (�), those from DKES as triangles (4) with upper and lower variational bounds

indicated when these lie outside the symbol and results from a Monte Carlo code [15] are plotted as right-

pointing triangles (�). For comparison, results for the equivalent axisymmetric tokamak (r = 0:1615 m,R0 = 1:4654 m,   � = 0:4942, b1;0 = �0:06848) are shown by the dotted line for Er = 0. The

collisionless asymptote, the fraction of circulating particles, is indicated for NCSX by the dot-dash line.

50



10-5 10-4 10-3 10-2 10-1 100 101

    ν★      

0.5

0.6

0.7

0.8

0.9

1.0
  

 D
33★

Figure 21. Normalised mono-energetic parallel transport coefficient as a function of collisionality forv?E = 1 � 10�3, 1 � 10�4 and zero for the W7-X standard configuration at � = 0:5. Numerical results

from NEO-2 are depicted as small filled-in circles (�), those from DKES as triangles (4) with upper

and lower variational bounds indicated when these lie outside the symbol and results from a Monte

Carlo code [15] are plotted as right-pointing triangles (�). For comparison, results for the equivalent

axisymmetric tokamak (r = 0:2555 m, R0 = 5:5267 m,   � = 0:870, b1;0 = �0:01902) and helical

symmetry (N = 5, b1;1 = �0:04351) are shown by the dotted lines for Er = 0. The collisionless

asymptote, the fraction of circulating particles, is indicated for the W7-X standard configuration by the

dot-dash line.
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where Bmax is the maximum value of B on the flux surface. This quantity is easily determined

by numerical integration and its value for LHD is indicated in the figure by the dot-dash line,

providing an additional “analytic benchmark” for small-�? results. The three sets of numerical

results recover the expected values of D?33 in both the collisional and collisionless limits and

exhibit excellent agreement for all other values of collisionality as well, marking a successful

benchmarking of the mono-energetic parallel transport coefficient for LHD.

The numerical calculations of D?33 are in equally good agreement for the other ICNTS

configurations and the qualitative behaviour of the results is uniformly in line with expectations

so that it will suffice here to present only two further benchmarking examples. These are

given in Figure 20 for NCSX and in Figure 21 for the standard configuration of W7-X. For

NCSX, D?33(�?) departs only marginally from the curve for the equivalent tokamak in keeping

with its approximation to quasi-symmetry; a similar conformity of the results for HSX and

the equivalent helically symmetric configuration has also been obtained. For the remaining

configurations, however, the D?33 values bear little resemblance to any set of results obtained

using a single-harmonic truncation of B, as the curves for W7-X serve to illustrate.

5.3 The Mono-Energetic Bootstrap Current Coefficient —D?31
Benchmarking results are presented in this subsection for the last of the three mono-energetic

transport coefficients, which may be said to characterise either the bootstrap current (when

used in eq. (4) to determine I3) or the Ware pinch (when calculating I1 and I2). Under

common experimental conditions in stellarators the thermodynamic force A3 is much too

weak to produce an appreciable particle or energy pinch, however, so that the terminology

mono-energetic bootstrap current coefficient is often applied interchangeably to both D31 and�D13. This convention is also followed here — all results are expressed in terms of the

normalised mono-energetic bootstrap current coefficient, D?31, regardless of whether they have

been obtained from numerical solutions for the symmetric portion of bfI or for the antisymmetric

portion of bfII .
As a first example, benchmarking results as functions of �? and v?E are compared in

Figure 22 for the LHD standard configuration. The results for the equivalent axisymmetric

tokamak are shown by the dotted curve and the predicted asymptotic value of D?31 in the

collisionless limit [82,83] has been evaluated numerically for LHD and is given by the dot-dash

line. This asymptotic value is well below one (as would be expected due to partial cancellation

of the contributions attributable to the toroidal curvature and helical variation of B) but unlike

the case of a tokamak it does not represent the upper bound on D?31 for this configuration.

Instead, depending on the magnitude of v?E , the numerical results can attain values more than

a factor of two larger and even exceed the level of the equivalent axisymmetric tokamak in

a handful of cases. This “overshoot” is strongly reduced as v?E increases and the larger the
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Figure 22. Normalised mono-energetic bootstrap current coefficient as a function of collisionality forv?E = 3� 10�3, 1� 10�3, 3� 10�4, 1� 10�4, 3� 10�5 and zero for the LHD standard configuration at� = 0:5. Numerical results from NEO-2 are depicted as small filled-in circles (�) and those from DKES

as triangles (4) with upper and lower variational bounds indicated when these lie outside the symbol.

The results from VENUS+Æf are plotted as upside-down triangles (5) and those from a second Monte

Carlo code [15] are shown by right-pointing triangles (�) with the standard error indicated when this is

larger than the symbol. For comparison, results for the equivalent axisymmetric tokamak (r = 0:2793 m,R0 = 3:7481 m,   � = 0:4542, b1;0 = �0:07053) are shown by the dotted line for Er = 0. The

collisionless asymptote [82, 83] for LHD has been evaluated by numerical integration and is

shown by the dot-dash line.
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normalised radial electric field becomes the more rapidly the numerical results in the lmfp

regime approach the collisionless asymptote.

As regards the actual benchmarking for LHD, the results from the different numerical

calculations of D?31 exhibit satisfactory agreement although accuracy does suffer somewhat at

the smallest values of collisionality. For DKES, the problem is the usual one at low �? of poor

convergence of the upper and lower variational bounds on the transport coefficient (at least

for v?E = 0). As collisionality is reduced the VENUS+Æf Monte Carlo code, which employs

filtering to reduce the statistical noise in its calculations of the mono-energetic bootstrap current

coefficient, produces results which become increasingly dependent on the choice of filters with

the numerical value for D?31 changing by 40% for the most collisionless case as the upper limit

on the perturbed distribution function was varied in the range 0:01 � Æf=fM � 0:05. The

right-pointing triangles indicate the statistical mean of results from the Æf Monte Carlo code

which uses advanced weighting techniques [15] with error bars used to depict the standard error

of the mean when this exceeds the size of the symbol.

Several other ICNTS configurations were found to have results for D?31(�?; v?E) which,

at least qualitatively, mirror those of the LHD standard configuration. CHS, the inward-

shifted LHD, W7-AS and TJ-II all have mono-energetic bootstrap current coefficients which are

reduced in the lmfp regime as the magnitude of the radial electric field is increased, until finally

converging to the value of the collisionless asymptote for the configuration. Although this

asymptote always satisfies D?31 < 1, the maximum overshoot generally exceeds unity (reaching

as high as D?31 � 3 for TJ-II) and occurs for small values of v?E at experimentally relevant

collisionalities. This becomes of some practical importance when the “ion-root” solution forEr emerges from the ambipolarity constraint on the radial particle fluxes [24], the value of

which may be often estimated by solving h�i � rri = 0, since for comparable ion and electron

temperatures the radial electron particle flux is smaller than its ion counterpart by the square-

root of their mass ratio, (me=mi)1=2, if ambipolarity is ignored. Expressing the thermodynamic

forces A1 and A2 explicitly, assuming A3 to be negligible and setting qi = Zie, where Z is the

charge state and e the elementary charge, the radial electric field is then found to satisfyZieErT i = 1ni dnidr + �Li12Li11 � 32� 1T i dT idr :
Substituting this into the expressions for the ion and electron parallel current densities yieldshJi �BieB0 = �niZiLi31 �Li32Li31 � Li12Li11� 1T i dT idrhJe �BieB0 =neLe31� 1ne dnedr + �Le32Le31 � 32� 1T e dT edr + 1Zi T iT e� 1ni dnidr + �Li12Li11 � 32� 1T i dT idr �� :
With regard to D11 the ions will be found predominantly in the

p� or � regimes, whereL�12=L�11 � 3=2 varies from 5/4 to 1/2, respectively [84]. The thermal transport coefficients
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obtained by convolutions of D31 may be expected to adhere closely to the relationship valid in

the collisionless limitL�32=L�31�3=2 = 1. Thus, the ion-root solution forEr is seen to “transfer”

current from the ion to the electron channel to such an extent that the bootstrap current in the

stellarator lmfp regime is carried chiefly by electrons for which small values of v?E are relevant

for determining the crucial Le31 coefficient. More accurate calculations of the ion and electron

bootstrap current densities — in which the ambipolarity condition is solved exactly and the

flows are corrected to satisfy parallel momentum conservation — will deviate to some extent

from these analytic expressions but the electron channel remains dominant when the ion-root

solution for Er is realised [21, 85].

For magnetic configurations which are approximately quasi-symmetric it is perhaps plausi-

ble to expect results for D?31 which reflect the corresponding spatial symmetry and have little or

no dependence on the radial electric field. What actually occurs is considerably more intriguing,

however, as the benchmarking results for NCSX (Figure 23) and HSX (Figure 24) demonstrate.

In the case of NCSX there is indeed relatively little dependence of the numerical results onv?E but the calculated values of D?31 agree with those of the equivalent axisymmetric tokamak

only when �? > 5� 10�3 and otherwise lie below this reference curve, the departure therefrom

increasing as the collisionality is reduced. It is also notable that the numerical results show

no clear tendency to converge to a constant value at the lowest �? considered here, having

already dropped below the predicted collisionless asymptote. This behaviour is confirmed by

each of the computational methods and may be considered certain due to the relatively small

numerical/statistical errors of the NCSX calculations.

For HSX, the most dramatic departure of the numerical results from the reference curve for

the equivalent helical symmetry occurs at low collisionality for v?E = 0 and is verified by Monte

Carlo, NEO-2 and DKES calculations. By performing additional DKES computations with

greatly simplified magnetic field spectra it was found that such behaviour appears when the strict

helical symmetry of a single b1;1 harmonic is perturbed by an additional bm;1 term with m > 1;

in this particular example when b1;1 = �0:07039 is augmented by b2;1 = �0:00268. Although

the importance of such small magnetic field harmonics to the D?31 results is rapidly suppressed

by introducing modest values of v?E into the calculation this will often be of little relevance

when determining the electron bootstrap current. Given the size and plasma parameters of

HSX there is little to fear from larger negative values of the bootstrap current but for a high-

temperature ion-root discharge in a larger version of this device the resulting reduction of the

rotational transform might be a cause for concern, warranting further investigations in which

VMEC equilibrium calculations account for the bootstrap current density profiles in a self-

consistent manner.

Strict poloidal symmetry produces zero bootstrap current and although the corresponding

quasi-symmetry cannot exist, it is nonetheless possible for a stellarator which has dominantb0;n harmonics in its Boozer representation of B to achieve extremely small values of D?31 at
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Figure 23. Normalised mono-energetic bootstrap current coefficient as a function of collisionality forv?E = 3�10�3, 1�10�3, 3�10�4, 1�10�4, 3�10�5 and zero for NCSX at � = 0:5. Numerical results

from NEO-2 are depicted as small filled-in circles (�) and those from DKES as triangles (4) with upper

and lower variational bounds indicated when these lie outside the symbol. The results from VENUS+Æf
are plotted as upside-down triangles (5) and those from a second Monte Carlo code [15] are shown

by right-pointing triangles (�) with the standard error indicated when this is larger than the symbol.

For comparison, results for the equivalent axisymmetric tokamak (r = 0:1615 m, R0 = 1:4654 m,  � = 0:4942, b1;0 = �0:06848) are shown by the dotted line for Er = 0. The collisionless asymptote

[82, 83] for NCSX has been evaluated by numerical integration and is shown by the dot-dash line.
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Figure 24. Normalised mono-energetic bootstrap current coefficient as a function of collisionality forv?E = 3 � 10�3, 1 � 10�3, 3 � 10�4, 1 � 10�4, 3 � 10�5 and zero for HSX at � = 0:5. Numerical

results from NEO-2 are depicted as small filled-in circles (�), those from DKES as triangles (4) with

upper and lower variational bounds indicated when these lie outside the symbol and results from a Monte

Carlo codes [15] are plotted as right-pointing triangles (�) with the standard error indicated when this

is larger than the symbol. For comparison, results for the equivalent helical symmetry (r = 0:0598 m,R0 = 1:2375 m,   � = 1:0537, N = 4, b1;1 = �0:07039) are shown by the dotted line for Er = 0. The

collisionless asymptote [82, 83] for HSX has been evaluated by numerical integration and is shown by

the dot-dash line.
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Figure 25. Normalised mono-energetic bootstrap current coefficient as a function of collisionality forv?E = 3 � 10�3, 1 � 10�3, 3 � 10�4, 1 � 10�4, 3 � 10�5 and zero for QIPC at � = 0:5. Numerical

results from NEO-2 are depicted as small filled-in circles (�), those from DKES as triangles (4) with

upper and lower variational bounds indicated when these lie outside the symbol and results from a Monte

Carlo codes are plotted as right-pointing triangles (�) [15]. For comparison, results for the equivalent

axisymmetric tokamak (r = 0:5135 m, R0 = 11:846 m,   � = 0:9137, b1;0 = �0:01689) are shown by

the dotted line for Er = 0. The collisionless asymptote [82, 83] for QIPC has been evaluated by

numerical integration and is shown by the dot-dash line.
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Figure 26. Normalised mono-energetic bootstrap current coefficient as a function of collisionality forv?E = 3�10�3, 1�10�3, 3�10�4, 1�10�4, 3�10�5 and zero for the W7-X standard configuration at� = 0:5. Numerical results from NEO-2 are depicted as small filled-in circles (�) and those from DKES

as triangles (4) with upper and lower variational bounds indicated when these lie outside the symbol.

The results from VENUS+Æf are plotted as upside-down triangles (5) and those from a second Monte

Carlo code [15] are shown by right-pointing triangles (�) with the standard error indicated when this is

larger than the symbol. For comparison, results for the equivalent axisymmetric tokamak (r = 0:2555 m,R0 = 5:5267 m,   � = 0:870, b1;0 = �0:01902) are shown by the dotted line for Er = 0. The

collisionless asymptote [82, 83] for W7-X has been evaluated by numerical integration and is

shown by the dot-dash line.
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experimentally relevant collisionalities. The best ICNTS example of such a configuration is

QIPC, for which the benchmarking results, depicted in Figure 25, only depart appreciably from

zero for v?E = 0 at the lowest value of �? considered here. As in the case of HSX, it is suspected

that the bm;n with poloidal index one larger than that of the dominant magnetic field harmonic

(b1;1 = 0:04338 in addition to b0;1 = �0:22879 in this example) is largely responsible for this

departure but an attempt to verify this numerically has not yet been undertaken. Considerable

effort was made in the design of QIPC to align not only the local minima of B along a field line

but to achieve the same for the maxima as well (see the bottom frame of Figure 8). Values of

the normalised mono-energetic bootstrap current coefficient are significantly larger for a quasi-

isodynamic device without the latter property; for example, QPS was found to have values ofD?31 as large as 0.25 in the lmfp regime for the flux surface � = 0:5.

An alternative strategy for reduction of the bootstrap current in stellarators is to more fully

exploit the cancellation of “toroidal” and “helical” contributions to D?31, as was done in the

optimisation of W7-X by choosing a magnetic field structure with appropriate magnitudes

of the two harmonics b1;0 and b1;1 [70]. The benchmarking results for the W7-X standard

configuration, plotted in Figure 26, demonstrate the viability of such an optimisation strategy

but also illustrate its limitations; numerical values of D?31 never exceed 0.15 but nonetheless

exhibit the same overshoot of the collisionless asymptote for small values of v?E displayed by

the LHD results. For the expected plasma parameters of W7-X this would imply a bootstrap

current large enough to cause experimentally relevant alterations to the magnetic topology of

the island divertor in the standard configuration [86]. Similar conclusions may be drawn for

the W7-X low-mirror configuration for which the normalised mono-energetic bootstrap current

coefficient reaches values as high as 0.3 (for v?E = 0), which is an order of magnitude larger

than the collisionless asymptote. Such overshoot is steadily reduced, however, by increasing the

magnitude of the mirror term in the B spectrum of W7-X as the ICNTS benchmarking activity

has been able to confirm for the high-mirror configuration. Indeed, the generally observed

behaviour of the D?31 results with v?E at low collisionality is reversed in this case with the

smallest values (satisfying D?31 � 0:01) occurring for zero electric field over the relevant range

of collisionalities. Consequently, the bootstrap current in the W7-X high-mirror configuration

is not expected to exceed a negligible level on the order of a few kA even when accounting for

the small reduction in b0;1 which occurs for finite-� equilibria.

Data points of two calculations for W7-X performed with the VENUS+Æf Monte Carlo

code do not appear in Figure 26. These were carried out for Er = 0 with the resultsD?31 = 0:047
at �? = 1:9 � 10�6 and D?31 = 0:040 at �? = 6:4 � 10�7. These values are consistent

with a gradual convergence to the predicted collisionless asymptote but also demonstrate

how extreme the collisionality must become in certain cases before this asymptote is of any

practical relevance. As a consequence, determining the value of D?31 for a configuration in the

collisionless limit — which would otherwise be attractive as a figure of merit since it depends
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only on the structure of B — will often provide a rather poor measure for the magnitude of the

bootstrap current to be expected under realistic experimental conditions.

6 Comments and Conclusions

The principal task of the ICNTS benchmarking activity was to compare the accuracy and

applicability of various numerical tools used within the stellarator community for determining

mono-energetic transport coefficients in realistic magnetic fields; the successful completion

of this task is demonstrated by the representative sample of results presented in the previous

section of this paper. Beyond this formal benchmarking, however, the calculations also provide

a wealth of additional information concerning neoclassical transport in stellarators and a few

observations are sufficiently noteworthy to be included in the following summary of results.� Of the numerical tools used in the ICNTS benchmarking, the Æf Monte Carlo codes have

the widest range of applicability as they are able to determine the mono-energetic transport

coefficients in arbitrarily complex magnetic fields for given values of the normalised Er � B
drift velocity, (v?E = Er=(vB0)) at values of the mono-energetic collisionality (�? = R0�=(  � v))

which are limited only by the available computational resources; as an extreme example, the

calculation of the mono-energetic bootstrap current coefficient (D31) for the W7-X standard

configuration at �? = 6:4 � 10�7 by VENUS+Æf consumed the equivalent of 155 days

of process time on 2.66 GHz processors (more typical is the 40 hours of process time on

3.06 GHz processors required for LHD at �? = 7:0 � 10�5 by the Æf approach employing

advanced weighting techniques). Similar claims can be made for the orbit-following Monte

Carlo codes with two notable caveats: determination of the mono-energetic radial transport

coefficient (D11) becomes impossible with this approach for �? values below the threshold at

which non-local transport appears in the simulations and calculations of D31 using such codes

were not undertaken here. In the former case it is possible to view this failure in a positive

light as it is a clear indication that the local ansatz underlying neoclassical theory becomes

unrealistic for particles with such small values of �?; in the latter case the lack of results makes

any verdict impossible. Use of the Drift Kinetic Equation Solver (DKES) is also attractive

as it allows simultaneous determination of the three mono-energetic transport coefficients for

specified values of �? and v?E in magnetic fields of arbitrary complexity. Convergence of

the upper and lower variational bounds on the DKES results worsens as the collisionality

decreases, however, becoming unacceptably poor for (rather) small values of �?; DKES test

functions have been circumscribed here so as to require at most 30 hours of process time for

a single calculation performed with 2.60 GHz processors as the convergence of the bounds is

not improved significantly even by a ten-fold expenditure of computational resources. Solution

of the kinetic equation using the field-line following approach of the NEO codes is far more
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efficient numerically regardless of the complexity of B, requiring at most five hours of process

time on 2.60 GHz processors to determine the three mono-energetic transport coefficients at

the smallest values of �? considered and determining the effective helical ripple (�eff , which

characterises D11 in the 1=� regime) in a fraction of a second. Field-line following assumesv?E = 0, however, and although this is of no consequence in determining values of the parallel

transport coefficient (D33 being independent of Er), practical use of the results for D11 and D31
is thus confined to electrons. Use of the General Solution of the Ripple-Averaged Kinetic

Equation (GSRAKE) was limited in the ICNTS benchmarking to CHS, LHD and W7-X,

i.e. to those magnetic configurations with field structures simple enough to allow accurate

performance of the averaging. When appropriate, however, GSRAKE offers the advantage

of very rapid calculation of D11 in the presence of a radial electric field, consuming only a few

seconds of process time even for extremely small values of collisionality.� Neoclassical fluxes/flows for a stellarator plasma may be determined very efficiently assuming

that a precalculated database of the three mono-energetic transport coefficients already exists

for the magnetic configuration of interest at experimentally relevant values of �? and v?E . The

creation of such a database consumes considerable computational resources, however, and it is

therefore desirable to keep the number of expensive calculations to a minimum. Thus, at low

collisionality, having results from more than one Monte Carlo code or from both DKES and

Monte Carlo computations will be the exception rather than the rule. The ICNTS benchmarking

results allow one to view this situation with equanimity as the isolated disparities observed in

the numerical computations of the Dij (in the worst case, differences as large as a factor of

two for individual calculations of D11) have at most a modest effect on the weighted energy

convolutions with the local Maxwellian which must be performed to determine the Lij (the

elements of the thermal transport matrix).� The “density” of entries in the database should be at least two per decade throughout the

relevant ranges of �? and v?E values (this number was commonly used during the ICNTS

benchmarking) for at least seven flux surfaces which adequately represent the variation of the

results in the radial direction. This implies performing a minimum of around 500 separate

computations for a single magnetic configuration although this number increases rapidly when

greater radial resolution is required. Interpolation within the dataset is done using standard

algorithms or with the aid of a neural network [12], which is especially attractive when the

dataset is extended by an additional dimension to also describe the � dependence of the results

[87] arising due to the influence of the plasma pressure on the structure of B.� Extrapolation outside the dataset is a different matter. In the analysis of current experimental

data this is required most often for high-temperature, low-density discharges for which a non-

negligible portion of the local Maxwellian finds itself at collisionalities less than the smallest

value of �? in the dataset. There is no entirely satisfactory solution to this problem but the

benchmarking results offer ways to proceed in some specific cases. For example, in stellarators
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at these collisionalities momentum conservation yields a totally negligible correction to the

neoclassical radial particle and energy fluxes [21] so that knowledge of D?11 alone is sufficient

for their determination. Consequently, the D?11 database of Monte Carlo results used to

analyse LHD discharges has been extended to lower collisionalities by performing additional

calculations with GSRAKE [88]. The results of magnetic configurations for which GSRAKE

is not applicable can also be “extended” using the observation that the scaling of D11 with

collision frequency and radial electric field behaves consistently with the analytic results derived

for classical stellarators [6]. ExtendingD?33 results is also straightforward, either with additional

NEO-2 calculations or using an asymptotic extrapolation to the fraction of circulating particles.

The greatest difficulties arise for the mono-energetic bootstrap current coefficient which exhibits

a dependence on the radial electric field which is not theoretically understood and for which

the low-collisionality results do not always conform with the asymptotic predictions. Thus,

extension of the D?31 results under physics considerations is not possible and instead one resorts

to ad hoc models such as setting D?31(�?; v?E) = D?31(�?min; v?E) for �? < �?min, where �?min is the

smallest value of collisionality for which numerical results are available [89]. In this regard, the

benchmarking results document the shortcomings of the existing theoretical descriptions of the

bootstrap current in stellarators and indicate topics for future investigation.� The energy confinement time of existing stellarator experiments increases roughly with the

square root of the line-averaged density [49, 90] and operation is possible well above the

equivalent Greenwald density limit observed in tokamaks [91]. In stellarator reactor studies it

is thus common to consider high-density (ne(0) between 2 and 4� 1020 m�3), low-temperature

(T (0) between 12 and 18 keV) operation as particularly attractive [92, 93]. Predictive transport

simulations for such plasma parameters are straightforward as far as neoclassical theory is

concerned as the resultant range of collisionalities never encompasses values of �? which are

inaccessible to any of the computational tools. From the viewpoint of confinement, operation

at higher collisionality is favourable as it leads to a reduction of electron 1=� losses and a

corresponding drop in ion transport is brought about by the ambipolar radial electric field. For

stellarators with sufficiently small effective helical ripple, �eff , the neoclassical confinement

is then sufficiently good to allow ignition in a device of reactor dimensions as has been

shown for a scaled-up version of W7-X with R0 = 22 m, a = 1:8 m and B0 = 5 T forne(0) � 3:9�1020 m�3 and T (0) � 13 keV [92]. Evaluating the reactor prospects of all ICNTS

configurations with regards to neoclassical confinement is beyond the scope of the current paper

(a superficial comparison with the W7-X reactor is possible by noting that the electron energy

diffusivity scales as �e / �3=2eff (T e)7=2=(neR20B20) in the 1=� regime) although the benchmarking

results for a given configuration can be scaled to arbitrary values of B0 and R0 (at fixed aspect

ratio) making it possible to carry out such an evaluation in future work.

With benchmarking having reached its conclusion, the emphasis of the ICNTS has shifted to

development and testing of the theoretical and numerical tools required for practical application
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of the results. This includes benchmarking of the various momentum-correction techniques

[19–21] used to restore conservation of parallel momentum to the calculation of the neoclassical

fluxes/flows and a comparison of the “neoclassical packages” used by different 1-D transport

codes. Reports on these activities will be provided in future publications.
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