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Abstract

Background: Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq

(scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts

of memory.

Results: In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and

evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA

algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and

more accurate than the other algorithms.

Conclusion: We develop a guideline to select an appropriate PCA implementation based on the differences in the

computational environment of users and developers.

Keywords: Single-cell RNA-seq, Cellular heterogeneity, Dimension reduction, Principal component analysis,

Online/incremental algorithm, Randomized algorithm, Out-of-core, Sparse data format, R, Python, Julia

Background
The emergence of single-cell RNA sequencing (scRNA-

seq) technologies [1] has enabled the examination of

many types of cellular heterogeneity. For example, cellu-

lar subpopulations consisting of various tissues [2–6], rare

cells and stem cell niches [7], continuous gene expression

changes related to cell cycle progression [8], spatial coor-

dinates [9–11], and differences in differentiation maturity

[12, 13] have been captured by many scRNA-seq stud-

ies. As the measurement of cellular heterogeneity is highly

dependent on the number of cells measured simultane-

ously, a wide variety of large-scale scRNA-seq technolo-

gies have been developed [14], including those using cell

sorting devices [15–17], Fludigm C1 [18–21], droplet-

based technologies (Drop-Seq [2–4], inDrop RNA-Seq

[5, 6], the 10X Genomics Chromium system [22]), and
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single-cell combinatorial-indexing RNA-sequencing (sci-

RNA-seq [23]). Such technologies have encouraged the

establishment of several large-scale genomics consor-

tiums, such as the Human Cell Atlas [24–26], Mouse Cell

Atlas [27], and Tabula Muris [28]. These projects are ana-

lyzing a tremendous number of cells by scRNA-seq and

tackling basic life science problems such as the number

of cell types comprising an individual, cell-type-specific

marker gene expression and gene functions, and molecu-

lar mechanisms of diseases at a single-cell resolution.

Nevertheless, the analysis of scRNA-seq datasets poses

a potentially difficult problem; the cell type correspond-

ing to each data point is unknown a priori [1, 29–35].

Accordingly, researchers perform unsupervised machine

learning (UML) methods, such as dimensionality reduc-

tion and clustering, to reveal the cell type corresponding

to each individual data point. In particular, principal com-

ponent analysis (PCA [36–38]) is a commonly used UML

algorithm applied across many situations.

Despite its wide use, there are several reasons why

it is unclear how PCA should be conducted for large-

scale scRNA-seq. First, because the widely used PCA
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algorithms and implementations load all elements of a

data matrix into memory space, for large-scale datasets

such as the 1.3 million cells measured by 10X Genomics

Chromium [39] or the 2 million cells measured by sci-

RNA-seq [23], the calculation is difficult unless the mem-

ory size of the user’s machine is very large. Furthermore,

the same data analysis workflow is performed repeat-

edly, with deletions or additions to the data or parameter

changes for the workflow, and under such trial-and-error

cycles, PCA can become a bottleneck for the workflow.

Therefore, some fast and memory-efficient PCA algo-

rithms are required.

Second, there are indeed some PCA algorithms that are

fast and memory-efficient, but their practicality for use

with large-scale scRNA-seq datasets is not fully under-

stood. Generally, there are trade-offs between the acceler-

ation of algorithms by some approximation methods and

the accuracy of biological data analysis. Fast PCA algo-

rithms might overlook some important differential gene

expression patterns. In the case of large-scale scRNA-seq

studies aiming to find novel cell types, this property may

cause a loss of clustering accuracy and not be acceptable.

Finally, actual computational time and memory effi-

ciency are highly dependent on the specific implemen-

tation, including the programming language, the method

for loading input files, and the data format. However,

there is no benchmarking to evaluate these properties.

Such information is directly related to the practicality of

the software and is useful as a guideline for users and

developers.

For the above reasons, in this research, we exam-

ine the practicality of fast and memory-efficient

PCA algorithms for use with large-scale scRNA-seq

datasets. This work provides four key contributions.

First, we review the existing PCA algorithms and

their implementations (Fig. 1). Second, we present

a benchmark test with selected PCA algorithms and

implementations. To our knowledge, this is the first

comprehensive benchmarking of PCA algorithms and

implementations with large-scale scRNA-seq datasets.

Third, we provide some original implementations of some

PCA algorithms and utility functions for quality control

(QC), filtering, and feature selection. All commands are

implemented in a fast andmemory-efficient Julia package.

Finally, we propose guidelines for end-users and software

developers.

Results
Review of PCA algorithms and implementations

PCA is widely used for data visualization [39–41], data

QC [42], feature selection [13, 43–49], de-noising [50, 51],

imputation [52–54], confirmation and removal of batch

effects [55–57], confirmation and estimation of cell-cycle

effects [58], rare cell type detection [59, 60], cell type

and cell state similarity search [61], pseudotime inference

[13, 62–66], and spatial reconstruction [9].

Additionally, principal component (PC) scores are also

used as the input of other non-linear dimensionality

reduction [67–73] and clustering methods [74–77] in

order to preserve the global structure, avoid the “curse of

Fig. 1 Overview of benchmarking in this work. a Schematic overview of this work. b Evaluation metrics of the benchmarking with real-world

datasets. c Evaluation metrics of the benchmarking with synthetic datasets
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dimensionality” [78–81], and save memory space. A wide

variety of scRNA-seq data analysis tools actually include

PCA as an internal function or utilize PC scores as input

for downstream analyses [22, 82–89].

We reviewed the existing PCA algorithms and imple-

mentations and classified the algorithms into six cat-

egories, namely similarity transformation-based (SimT),

downsampling-based (DS), singular value decomposi-

tion (SVD) update-based (SU), Krylov subspace-based

(Krylov), gradient descent-based (GD), and random

projection-based (Rand) (Additional file 1 [22, 42–44,

49–52, 55–61, 63, 65, 69, 74–77, 82, 85, 89–113]). We

have listed 21 PCA implementations (comprising 10 algo-

rithms) that are freely available and easy to download,

install, and use for analyses. The correspondence of the

reviewed PCA implementations and scRNA-seq studies is

summarized in Table 1.

To extend the scope of the algorithms used in the bench-

marking, we originally implemented some PCA algo-

rithms in an out-of-core manner (Additional file 1). The

pseudocode and source code of all the algorithms bench-

marked in this study are summarized in Additional files 2

and 3, respectively.

Benchmarking of PCA algorithms and implementations

Next, we performed the benchmarking tests of the

PCA algorithms and implementations. The results of the

benchmarking are summarized in Fig. 2 [69, 90, 92, 94–99,

107–109, 114, 115].

Real-world datasets

In consideration of the trade-offs among the large

number of methods evaluated with our limited time,

computational resources, and manpower, we carefully

selected real-world datasets for the benchmarking. The

latest scRNA-seq methods are divided into two cat-

egories, namely full-length scRNA-seq methods and

high-throughput scRNA-seq methods with specific cell

dissociation and cellular/molecular barcoding technolo-

gies such as droplet-based and split-and-pool experi-

ments [34, 35]. Because the number of cells measured by

scRNA-seq has been increased by the latter technology,

we selected the following four datasets generated by such

technologies: human peripheral blood mononuclear cells

(PBMCs), human pancreatic cells (Pancreas), mouse brain

and spinal cord (BrainSpinalCord), and mouse cells from

the cortex, hippocampus, and ventricular zone (Brain)

Table 1 Use cases of PCA implementations in scRNA-seq studies

scRNA-seq studies PCA algorithms Commands or functions used in the studies

In most cases [13, 42, 43, 51, 52, 55, 56, 58, 60, 63, 65, 74, 77, 82, 85, 91, 93] Golub-Kahan method prcomp/svd (R) PCA (Python, sklearn)

Bhaduri et al. [94] Downsampling Unknown

Loompy [93] SKL IncrementalPCA (Python, sklearn)

Scanpy [93] IRLBA PCA (Python, sklearn)

SKL IncrementalPCA (Python, sklearn)

Halko’s method TruncatedSVD (Python, sklearn)

Cell Ranger [22] IRLBA irlb (Python, from scratch)

Seurat2 [49] IRLBA irlba (R, irlba)

Scran [50] Golub-Kahan method svd (R)

IRLBA irlba (R, irlba)

SAFE [76] IRLBA irlba (R, irlba)

MAGIC [52] Golub-Kahan method svds (MATLAB)

Halko’s method randPCA (MATLAB, from scratch)

Halko’s method PCA (Python, sklearn)

Harmony [57] IRLBA irlba (R, irlba)

Scater [82] Golub-Kahan method prcomp (R)

IRLBA irlba (R, irlba)

GiniClust2 [59] IRLBA propack.svd (R, svd)

SIMLR[75] Halko’s method fast.rsvd (R, from scratch)

SEQC[89] Golub-Kahan method PCA (Python, sklearn)

Halko’s method PCA (Python, sklearn)

CellFishing.jl [61] Li’s method rsvd (Julia, from scratch)
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Fig. 2 Summary of results. a Theoretical properties summarized by our literature review. b Properties related to each implementation. c

Performance evaluated by benchmarking with real-world and synthetic datasets. d User-friendliness evaluated by some metrics

(Table 2). These datasets have been used in many previous

scRNA-seq studies [61, 76, 94, 116–122].

The accuracy of PCA algorithms

Here, we evaluate the accuracy of the various PCA algo-

rithms by using the four real-world datasets. For the

analyses of the PBMCs and Pancreas datasets, we set the

result of prcomp as the gold standard, which is a wrap-

per function for performing SVD with LAPACK subrou-

tines (Additional file 1). The other implementations are

compared with this result (Figs. 1b and 2). For the Brain-

SpinalCord and Brain dataset analyses, full-rank SVD by

LAPACK is computationally difficult. According to the

benchmarking guidelines developed by Mark D. Robin-

son’s group [123], comparing the methods against each

other is recommended when the ground truth cannot be

defined. Therefore, we just compared the results of the

methods against each other using several different cri-

teria, such as the magnitude of the eigenvalues and the

clustering accuracy.

Table 2 Real-world datasets for benchmarking

Dataset No. of genes No. of cells No. of cell types PCs used File size (LogCPMED, CSV) File size (count, CSV) File size (count, binary)

PBMCs 17,484 713 6 PC1–3 45 MB 24 MB 2.1 MB

Pancreas 17,499 3605 14 PC1–12 530 MB 287 MB 22 MB

BrainSpinalCord 25,893 156,049 73 PC1–16 9.3 MB 7.5 GB 197 MB

Brain 18,782 130,6127 60 PC1–20 290 GB 58 GB 3.2 GB
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First, we performed t-stochastic neighbor embedding (t-

SNE [67, 68]) and uniform manifold approximation and

projection (UMAP [71, 72]) for the results of each PCA

algorithm and compared the clarity of the cluster struc-

tures detected by the original studies (Figs. 1b and 3,

Additional files 4, and 5). For the BrainSpinalCord and

Brain datasets, only downsampling, IncrementalPCA

(sklearn), orthiter/gd/sgd/halko/algorithm971

(OnlinePCA.jl), and oocPCA_CSV (oocRPCA) could be

performed, while the other implementations were ter-

minated by out-of-memory errors on 96 and 128 GB

RAM machines. For the PBMCS and Pancreas datasets,

compared with the gold standard cluster structures,

the structures detected by downsampling were unclear,

and some distinct clusters determined by the original

studies were incorrectly combined into single clusters

(red circled cluster in Fig. 3). In the realistic situa-

tion when the cellular labels were unavailable a pri-

ori, the labels were exploratorily estimated by confirm-

ing differentially expressed genes, known marker genes,

or related gene functions of clusters. In such a situa-

tion, downsampling may overlook subgroups hiding in

a cluster.

We also performed four clustering algorithms

on all the results of the PCA implementations and

calculated the adjusted Rand index (ARI [124])

to evaluate clustering accuracy (Additional file 6).

Here, we only show the result of Louvain cluster-

ing [125] (Figs. 1b and 4). The ARI values show that

the results of downsampling and sgd (OnlinePCA.jl)

were worse compared with the gold standard or other

implementations.

Next, we performed an all-to-all comparison between

PCs from the gold standard and the other PCA implemen-

tations (Figs. 1b and 5a, and Additional file 7). Because

the PCs are unit vectors, when two PCs are directed

in the same or opposite direction, their cross product

becomes 1 or − 1, respectively. Both the same and oppo-

site direction vectors are mathematically identical in PCA

optimization, and different PCA implementations may

yield PCs with different signs. Accordingly, we calculated

the absolute value of the cross product ranging from 0

to 1 for the all-to-all comparison and evaluated whether

higher PCs, which correspond to lower eigenvalues, are

accurately calculated. Figure 5a and Additional file 7

show that the higher PCs based on downsampling,

orthiter/gd/sgd (OnlinePCA.jl), and PCA (dask-ml

[115]) become inaccurate as the dimensionality of a

PC increases. The higher PCs of these implementa-

tions also appear noisy and unclear in pair plots of PCs

between each implementation and seem uninformative

(Additional files 8, 9, 10, and 11). In particular, the higher

Fig. 3 The comparison of t-stochastic neighbor embedding (t-SNE) plots. Comparison of multiple principal component analysis (PCA)

implementations performed with empirical datasets: PBMCs (102 cells), Pancreas (103 cells), BrainSpinalCord (105 cells), and Brain datasets (106 cells).

t-SNE was performed with the result of each PCA implementation. Some distinct clusters determined by the original studies were incorrectly

combined into single clusters (red circled cluster)
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Fig. 4 Clustering accuracy comparison. Clustering accuracy was evaluated by the adjusted Rand index (ARI) of the result of Louvain clustering.

Multiple principal component analysis (PCA) implementations were performed for PBMCs (102 cells), Pancreas (103 cells), BrainSpinalCord (105 cells),

and Brain datasets (106 cells); Louvain clustering was performed for the PCA results. For each PCA result, Louvain clustering calculations were

performed ten times and the average values were calculated. The cluster labels are the same as those of the respective original papers

PCs calculated by downsampling and sgd (OnlinePCA.jl)

are sometimes influenced by the existence of outlier cells

(Additional file 8 and Additional file 9). When performing

some clustering methods, such as k-means and Gaussian

mixture model (GMM [126]) methods, such outlier cells

are also detected as singleton clusters having only a single

cell as their cluster member (Additional file 12). Contrary

to these results, all the implementations of IRLBA and

IRAM, as well as the randomized SVD approaches except

for PCA (dask-ml), are surprisingly accurate regardless of

the language in which they are written or their developers.

Although PCA (dask-ml) is based on Halko’s method and

is nearly identical to the other implementations of Halko’s

method, this function uses the direct tall-and-skinny

QR algorithm [127] (https://github.com/dask/dask/

blob/a7bf545580c5cd4180373b5a2774276c2ccbb573/

dask/array/linalg.py#L52), and this characteristic

might be related to the inaccuracy of the imple-

mentations. Because there is no gold standard in

the case of the BrainSpinalCord and Brain datasets,

we compared the eigenvectors of the PCA imple-

mentations in all possible combinations (Additional

file 13) and found that the higher PCs of downsam-

pling and sgd differed from those of the other PCA

implementations.

Because gene-wise eigenvectors (i.e., loading vectors)

are also retrieved from the data matrix and cell-wise

eigenvectors (i.e., PCs), we also compared the loading

vectors (Fig. 5b and Additional file 14). We extracted

the top 500 genes in terms of the largest absolute val-

ues of loading vectors and calculated the number of

genes in common between the two loading vectors. As

is the case with the eigenvectors, even for loading vec-

tors, downsampling, orthiter/gd/sgd (OnlinePCA.jl),

and PCA (dask-ml [115]) become inaccurate as the dimen-

sionality of the PC increases. Because the genes with

large absolute values for loading vectors are used as fea-

ture values in some studies [43–48], inaccurate PCA

implementations may lower the accuracy of such an

approach.

The distributions of the eigenvalues of downsampling,

IncrementalPCA (sklearn), and sgd (OnlinePCA.jl)

also differ from those of the other implementations

(Fig. 6).

https://github.com/dask/dask/blob/a7bf545580c5cd4180373b5a2774276c2ccbb573/dask/array/linalg.py#L52
https://github.com/dask/dask/blob/a7bf545580c5cd4180373b5a2774276c2ccbb573/dask/array/linalg.py#L52
https://github.com/dask/dask/blob/a7bf545580c5cd4180373b5a2774276c2ccbb573/dask/array/linalg.py#L52
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Fig. 5 (a) Comparison of all combinations of eigenvectors. Absolute values of the cross products of all combinations between the eigenvectors of

the gold standard methods and those of the other principal component analysis (PCA) implementations were calculated. The closer the value is to 1

(yellow), the closer the two corresponding eigenvectors are to each other. If two PCA results are equal without considering differences in sign, the

matrix in this figure becomes an identity matrix. (b) Comparison of all combinations of loading vectors. Number of intersection elements between

the top 500 largest absolute value elements of the gold standard methods and those of the other PCA implementations were calculated. The closer

the value is to 500 2 (yellow), the closer the two corresponding loading vectors are to each other. If two PCA results are equal without considering

differences in their sign, all the diagonal elements of the matrix in this figure become 500

Calculation time, memory usage, and scalability

We compared the computational time and memory usage

of all the PCA implementations (Fig. 7). For the Brain-

SpinalCord dataset, downsampling itself was faster than

most of the PCA implementations, but other preprocess-

ing steps, such as matrix transposition and multiplication

of the transposed data matrix and loading vectors to

calculate PCs, were slow and had high memory space

requirements (Additional file 3). For the Brain dataset,

downsampling became slower than most of the PCA

implementations, and such a tendency is noticeable as the

size of the data matrix increases, because downsampling

is based on the full-rank SVD in LAPACK.

We also found that the calculation time of PCA

(dask-ml) was not as fast in spite of its out-of-

core implementation; for the BrainSpinalCord and

Brain datasets, this implementation could not finish

the calculation within 3 days in our computational

environment. The other out-of-core PCA imple-

mentations, such as IncrementalPCA (sklearn),

orthiter/gd/sgd/halko/algorithm971 (OnlinePCA.jl),

and oocPCA_CSV (oocRPCA), were able to finish those

calculations.

We also systemically estimated the calculation time,

memory usage, and scalability of all the PCA imple-

mentations using 18 synthetic datasets consisting of
{

102, 103, 104
}

gene ×
{

102, 103, 104, 105, 106, 107
}

cell

matrices (see the “Materials and methods” section). We

evaluated whether the calculations could be finished or

were interrupted by out-of-memory errors (Fig. 1b). We

also manually terminated a PCA process that was unable

to generate output files within 3 days (i.e., dask-ml).

All the terminated jobs are summarized in Additional

file 15. To evaluate only the scalability and computability,

we set the number of epochs (also known as passes) in

orthiter/gd/sgd (OnlinePCA.jl) to one. However, in

actual data analysis, a value several times larger should be

used.

Additional files 16 and 17 show the calculation time

and the memory usage of all the PCA implementa-

tions, which can be scaled to a 104 × 107 matrix.

IncrementalPCA (sklearn) and oocPCA_CSV (oocR-

PCA) were slightly slower than the other implementations

(Additional file 16), and this was probably because the

inputs of these implementations were CSV files while

the other implementations used compressed binary files
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Fig. 6 Comparison of eigenvalues. Distribution of eigenvalues of four real datasets used in this work ((a) PBMCs, (b) Pancreas, (c) BrainSpincalCord,

and (d) Brain). The x-axis means the principal components of each principal component analysis (PCA) implementation, and the y-axis means the

corresponding eigenvalues

(Zstd). The memory usage of all the implementations was

almost the same, except for IncrementalPCA (sklearn)

and oocPCA_CSV (oocRPCA). oocPCA_CSV (oocRPCA)

has a parameter that controls the maximum memory

usage (mem), and we set the value to 10 GB (Addi-

tional file 3). Indeed, the memory usage had converged

to around 10 GB (Additional file 17). This property is

considered an advantage of this implementation; users

can specify a different value to suit their computational

environment.

The relationship between file format and performance

We also counted the passes of the Brain matrix in

the out-of-core implementations such as oocPCA_CSV

(R, oocRPCA), IncrementalPCA (Python, sklearn),

and orthiter/gd/sgd/halko/algorithm971 (Julia,

OnlinePCA.jl) (Additional file 18a). In the oocPCA_CSV

(R, oocRPCA) and IncrementalPCA (Python, sklearn),

the data matrix was passed to these function as the CSV

format, and in the other out-of-core implementations,

the data matrix was firstly binarized and compressed in

the Zstd file format. We found that the calculation time

was correlated with the number of passes of the imple-

mentation. Furthermore, binarizing and data compression

substantially accelerated the calculation time. This sug-

gests that the data loading process is very critical for

out-of-core implementation and that the overhead for this

process has a great effect on the overall calculation time

and memory usage.

Accordingly, using different data formats, such as CSV,

Zstd, Loom [93], and hierarchical data format 5 (HDF5),

provided by the 10X Genomics (10X-HDF5) for the Brain

dataset, we evaluated the calculation time and the mem-

ory usage for the simple one-pass orthogonal iteration

(qr(XW )), where qr is the QR decomposition,X is the data

matrix, andW represents the 30 vectors to be estimated as

the eigenvectors (Additional file 18b). For this algorithm,

incremental loading of large block matrices (e.g., 5000

rows) from a sparse matrix was faster than incremental

loading of row vectors from a dense matrix, although the

memory usage of the former was lower.

While it is not obvious that the usage of a sparse matrix

accelerates the PCA with scRNA-seq datasets because

scRNA-seq datasets are not particularly sparse compared
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Fig. 7 Comparison of the elapsed time and maximummemory usage for empirical datasets. a The elapsed time of preprocessing steps such as

binalization and normalization (orange bar) and the elapsed time of each PCA calculation itself (green bar). Only when performing the PCA

implementations to the Brain dataset, we used our in-house Julia script to preprocess. This is because this dataset cannot be loaded to the memory

space as a data.frame of R language. b The memory usage of all principal component analysis (PCA) implementations calculated for each empirical

dataset (blue bar)

with data from other fields (cf. recommender systems or

social networks [128, 129]), we showed that it has the

potential to speed up the calculation time for scRNA-seq

datasets.

When all row vectors stored in 10X-HDF5 are loaded at

once, the calculation is fastest, but the memory usage is

also highest. Because the calculation time and the mem-

ory usage have a trade-off and the user’s computational

environment is not always high-spec, the block size should

be optionally specified as a command argument. For the

above reasons, we also developed tenxpca, which is

a new implementation that performs Li’s method for a

sparse matrix stored in the 10X-HDF5 format. Using all

the genes in the CSC matrix incrementally, tenxpca was

able to finish the calculation in 1.3 h with a maximum

memory usage of 83.0 GB. This is the fastest analysis of

the Brain dataset in this study.

In addition to tenxpca, some algorithms used in this

benchmarking, such as orthogonal iteration, GD, SGD,

Halko’s method, and Li’s method, are implemented as Julia

functions and command line tools, which have been pub-

lished as a Julia packageOnlinePCA.jl (Additional file 19).

When data are stored as a CSV file, they are binarized and

compressed in the Zstd file format (Additional file 19a),
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and then, some out-of-core PCA implementations are

performed. When data are in 10X-HDF5 format, Li’s

method is directly performed with the data by tenxpca

(Additional file 19b). We also implemented some

functions and command line tools to extract row-

wise/column-wise statistics such as mean and variance

as well as highly variable genes (HVGs) [130] in an

out-of-core manner. Because such statistics are saved

as small vectors, they can be loaded by any program-

ming language without out-of-core implementation and

used for QC, and the users can select only informa-

tive genes and cells. After QC, the filtering command

removes low-quality genes/cells and generates another

Zstd file.

Discussion
Guidelines for users

Based on all the benchmarking results and our imple-

mentation in this work, we propose some user guidelines

(Fig. 8). Considering that bioinformatics studies combine

multiple tools to construct a user’s specific workflow, the

programming language is an important factor in selecting

the right PCA implementation. Therefore, we categorized

the PCA implementations according to language (i.e., R

[111], Python [112], and Julia [113]; Fig. 8, column-wise).

In addition to the data matrix size, we also categorized

implementations according to the way they load data (in-

memory or out-of-core) as well as their input matrix

format (dense or sparse, Fig. 8, row-wise). Here, we define

the GC value of a datamatrix as the number of genes× the

number of cells.

If the data matrix is not too large (e.g., GC ≤ 107),

the data matrix can be loaded as a dense matrix, and

full-rank SVD in LAPACK is then accurate and opti-

mal (in-memory and dense matrix). In such a situation,

the wrapper functions for the full-rank SVD written in

each language are suitable. However, if the data matrix

is much larger (e.g., GC ≥ 108), an alternative to the

full-rank SVD is needed. Based on the benchmarking

results, we recommend IRLBA, IRAM, Halko’s method,

and Li’s method as alternatives to the full-rank SVD.

For intermediate GC values (108 ≤ GC ≤ 1010), if

the data matrix can be loaded into memory as a sparse

matrix, some implementations for these algorithms are

available (in-memory and sparse matrix). In particular,

such implementations are effective for large data matri-

ces stored in 10X-HDF5 format using CSC format. Seu-

rat2 [49] also introduces this approach by combining

the matrix market format (R, Matrix) and irlba func-

tion (R, irlba). When the data matrix is dense and can-

not be loaded into memory space (e.g., GC ≥ 1010),

the out-of-core implementations, such as oocPCA_CSV

(R, oocRPCA), IncrementalPCA (Python, sklearn), and

algorithm971 (Julia, OnlinePCA.jl), are useful (dense

matrix and out-of-core). If the data matrix is extremely

large and cannot be loaded into memory even if the

data are formatted as a sparse matrix, out-of-core PCA

implementations for sparse matrix are needed. Actually,

Fig. 8 User guidelines. Recommended PCA implementations categorized based on written language and matrix size. The recommended parameter

of each PCA implementation is also described (red)
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R cannot load the Brain dataset, even if the data is for-

matted as a sparse matrix (https://github.com/satijalab/

seurat/issues/1644). Hence, in such a situation, tenxpca

can be used if the data is stored in the 10X-HDF5 format.

The PCA implementations examined in this work are

affected by various parameters. For example, in gd and

sgd (OnlinePCA.jl), the result is sensitive to the value of

learning parameters and the number of epochs. Therefore,

a grid-search of such parameters is necessary (Additional

file 20). When using IncrementalPCA (sklearn), the

user specifies the chunk size of the input matrix, and

a larger value slightly improves the accuracy of PCA

(Additional file 21) and the calculation time (Additional

file 16), although there is a trade-off between these prop-

erties andmemory usage (Additional file 17). Both Halko’s

method and Li’s method have a parameter for specifying

the number of power iterations (niter), and this itera-

tion step sharpens the distribution of eigenvalues and

enforces a more rapid decay of singular values ([114] and

Additional file 3). In our experiments, the value of niter is

critical for achieving accuracy, and we highly recommend

a niter value of three or larger (Additional file 22). In some

implementations, the default values of the parameters are

specified as inappropriate values or cannot be accessed as

a function parameter. Therefore, users should carefully set

the parameter or select an appropriate implementation.

Guidelines for developers

We have also established guidelines for developers. Many

technologies such as data formats, algorithms, and com-

putational frameworks and environments are available

for developing fast, memory-efficient, and scalable PCA

implementations (Additional file 23). Here, we focus on

two topics.

The first topic is “loss of sparsity.” As described above,

the use of a sparse matrix can effectively reduce memory

space and accelerate calculation, but developers must

be careful not to destroy the sparsity of a sparse matrix.

PCA with a sparse matrix is not equivalent to SVD with

a sparse matrix; in PCA, all sparse matrix elements must

be centered by the subtraction of gene-wise average

values. Once the sparse matrix X is centered (X − Xmean),

where Xmean has gene-wise average values as column

vectors, it becomes a dense matrix and the memory

usage is significantly increased. Obviously, the explicit

calculation of the subtraction described above should

be avoided. In such a situation, if multiplication of this

centered matrix and a dense vector/matrix is required,

the calculation should be divided into two parts, such

as (X − Xmean)W = XW − XmeanW , where W repre-

sents the vectors to be estimated as eigenvectors, and

these parts should be calculated separately. If one or

both parts require more than the available memory

space, such parts should be incrementally calculated

in an out-of-core manner. There are actually some

PCA implementations that can accept a sparse matrix,

but they may require very long calculation times and

large memory space because of a loss of sparsity (cf.

rpca of rsvd https://github.com/cran/rsvd/blob/7a409

fe77b220c26e88d29f393fe12a20a5f24fb/R/rpca.R#L158).

To our knowledge, only prcomp_irlba in irlba

(https://github.com/bwlewis/irlba/blob/8aa970a7d399b46

f0d5ad90fb8a29d5991051bfe/R/irlba.R#L379), irlb in

CellRanger (https://github.com/10XGenomics/cellranger/

blob/e5396c6c444acec6af84caa7d3655dd33a162852/lib/

python/cellranger/analysis/irlb.py#L118), safe_sparse

_dot in sklearn (https://scikit-learn.org/stable/modules/

generated/sklearn.utils.extmath.safe_sparse_dot.html),

and tenxpca in OnlinePCA.jl (https://github.com/

rikenbit/OnlinePCA.jl/blob/c95a2455acdd9ee14f8833dc

5c53615d5e24b5f1/src/tenxpca.jl#L183) deal with this

issue. Likewise, as an alternative to the centering calcu-

lation, MaxAbsScaler in sklearn (https://scikit-learn.

org/stable/modules/generated/sklearn.preprocessing.

MaxAbsScaler.html) introduces a scaling method in

which the maximum absolute value of each gene vector

becomes one, thereby avoiding the loss of sparsity.

The second topic is “lazy loading.” The out-of-core

PCA implementations used in this benchmarking explic-

itly calculate centering, scaling, and all other relevant

arithmetic operations from the extracted blocks of the

data matrix. However, to reduce the complexity of the

source code, it is desirable to calculate such processes as

if the matrix was in memory and only when the data are

actually required, so the processes are lazily evaluated

on the fly. Some packages, such as DeferredMatrix

in BiocSingular (R/Bioconductor, https://bioconductor.

org/packages/devel/bioc/html/BiocSingular.html), Cen-

teredSparseMatrix (Julia, https://github.com/jsams/

CenteredSparseMatrix), Dask [115] (Python, https://

dask.org), and Vaex (Python, https://vaex.io/), support

lazy loading.

Future perspective

In this benchmarking study, we found that PCA imple-

mentations based on full-rank SVD are accurate but can-

not be scaled for use with high-throughput scRNA-seq

datasets such as the BrainSpinalCord and Brain datasets,

and alternative implementations are thus required. Some

methods approximate this calculation by using trun-

cated SVD forms that are sufficiently accurate as well

as faster and more memory-efficient than full-rank SVD.

The actual memory usage highly depends on whether

an algorithm is implemented as out-of-core and whether

sparse matrix can be specified as input. Some sophisti-

cated implementations, including our OnlinePCA.jl, can

handle such issues. Other PCA algorithms, such as down-

sampling and SGD, are actually not accurate, and their

https://github.com/satijalab/seurat/issues/1644
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use risks overlooking cellular subgroups contained within

scRNA-seq datasets. These methods commonly update

eigenvectors with small fractions of the data matrix, and

this process may overlook subgroups or subgroup-related

gene expression, thereby causing the observed inaccuracy.

Our literature review, benchmarking, special implemen-

tation for scRNA-seq datasets, and guidelines provide

important resources for new users and developers tackling

the UML of high-throughput scRNA-seq.

Although the downstream analyses of PCA vary widely,

and we could not examine all the topics of scRNA-seq

analyses, such as rare cell-type detection [59, 60] and

pseudotime analysis [13, 62–66], differences among PCA

algorithmsmight also affect the accuracy of such analyses.

Butler et al. showed batch effect removal can be formal-

ized as canonical correlation analysis (CCA) [49], which

is mathematically very similar to PCA. The optimiza-

tion of CCA is also formalized in various ways, including

randomized CCA [131] or SGD of CCA [132].

This work also sheds light on the effectiveness of

randomized SVD. This algorithm is popular in popula-

tion genetic studies[110]. In the present study, we also

assessed its effectiveness with scRNA-seq datasets with

high heterogeneity. This algorithm is relatively simple,

and some studies have implemented it from scratch

(Table 1). Simplicity may be the most attractive feature of

this algorithm.

There are also many focuses of recent PCA algorithms

(Additional file 23). The randomized subspace iteration

algorithm, which is a hybrid of Krylov and Rand method-

ologies, was developed based on randomized SVD [133,

134]. In pass-efficient or one-pass randomized SVD, some

tricks to reduce the number of passes have been consid-

ered [135, 136]. TeraPCA, which is a software tool for use

in population genetics studies, utilizes the Mailman algo-

rithm to accelerate the expectation–maximization algo-

rithms for PCA [137, 138]. Townes et al. recently proposed

the use of PCA for generalized linear models (GLM-PCA)

and unified some PCA topics, such as log-transformation,

size factor normalization, non-normal distribution, and

feature selection, in their GLM framework [139, 140].

Although such topics are beyond the scope of the

present work, the current discussion will be useful

for the development and application of such methods

above.

Materials andmethods
Benchmarking procedures

Assuming digital expression matrices of unique molecu-

lar identifier (UMI) counts, all the data files, including

real and synthetic datasets, were in CSV format. When

using the Brain dataset, the matrix stored in 10X-HDF5

format was converted to CSV using our in-house Python

script [141].

After being loaded by each PCA implementation, the

raw data matrix Xraw was converted to normalized values

by count per median (CPMED [142–144]) normalization

according to the formula Xcpmed

(

i, j
)

=
Xraw(i,j)

∑M
k=1 Xraw(i,k)

×

median (Libsize), where M is the number of columns

and Libsize is the column-wise sum of counts of X.

After normalization, Xcpmed was transformed to X by the

logarithm-transformation X = log10
(

Xcpmed + 1
)

, where

log10 is the element-wise logarithm. In all the randomized

PCA implementation, random seed was fixed.

When Xraw was extremely large and could not be

loaded into the memory space all at once, we pre-

pared two approaches to perform PCA with X. When

PCA implementations are orthiter, gd, sgd, halko,

or algorithm971 (OnlinePCA.jl), each row vector

of Xraw is normalized using the pre-calculated Libsize

by the sumr command, then log-transformed, and

finally used for each of the PCA algorithms. When

using other out-of-core PCA implementations such as

IncrementalPCA (sklearn), oocPCA_CSV (oocRPCA),

or PCA (dask-ml), there is no option to normalize and

log-transform each row vector of Xraw, so we first cal-

culated Xcpmed using our in-house Python script [141],

which was then used for the input matrix of the PCA

implementations.

We also investigated the effect of differences in normal-

ization methods on the PCA results (Additional file 25).

When performing each PCA implementation based on

the truncated SVD, the number of PCs was specified in

advance (Table 2).

Although it is unclear how many cells should be used

in downsampling, one empirical analysis [94] suggests

that 20,000 to 50,000 cells are sufficient for clustering

and detecting subpopulations in the Brain dataset. Thus

50, 000/1, 300, 000 × 100 = 3.8% of cells were sam-

pled from each dataset and used for the downsampling

method. When performing IncrementalPCA (sklearn),

the row vectors, which match the number of PCs, were

extracted until the end of the lines of the files. When

performing irlb (Cell Ranger), the loaded dataset was

first converted to a scipy sparse matrix and passed to it

because this function supports sparse matrix data stored

in 10X-HDF5 format. When performing the benchmark,

conversion time and memory usage were also recorded.

When performing all the functions of OnlinePCA.jl,

including orthiter/gd/sgd/halko/algorithm971,

we converted the CSV data to Zstd format, and the

calculation time and the memory usage were recorded

in the benchmarking for fairness. For orthiter, gd,

and sgd (OnlinePCA.jl), calculations were performed

until they converged (Additional file 20). For all the

randomized SVD implementations, the niter parameter

value was set to 3 (Additional file 22). When performing
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oocPCA_CSV, the users can also use oocPCA_BIN,

which performs PCA with binarized CSV files. The

binarization is performed by the csv2binary function,

which is also implemented in the oocRPCA package.

Although data binarization accelerates the calculation

time for PCA itself, we confirmed that csv2binary is

based on in-memory calculation, and in our computing

environment, csv2binarywas terminated by an out-of-

memory error. Accordingly, we only used oocPCA_CSV,

and the CSV files were directly loaded by this

function.

Computational environment

All computations were performed on two-node machines

with Intel Xeon E5-2697 v2 (2.70 GHz) processors and

128 GB of RAM, four-node machines with Intel Xeon

E5-2670 v3 (2.30 GHz) processors and 96 GB of RAM,

and four-node machines with Intel Xeon E5-2680 v3

(2.50 GHz) processors and 128 GB of RAM. Storage

among machines was shared by NFS, connected using

InfiniBand. All jobs were queued by the OpenGrid Sched-

uler/Grid Engine (v2011.11) in parallel. The elapsed time

and maximum memory usage were evaluated using the

GNU time command (v1.7).

Reproducibility

All the analyses were performed on the machines

described above. We used R v3.5.0, Python v3.6.4, and

Julia v1.0.1 in the benchmarking; for t-SNE and CSV con-

version of the Brain dataset, we used Python v2.7.9. The

Sklearn (Python) package was used to perform k-means

and GMM clustering methods. The igraph (R), nn2 (R),

and Matrix (R) packages were used to perform Louvain

clustering (Additional file 6). The hdbscan (Python) pack-

age was used to perform HDBScan clustering. The bhtsne

(Python) package was used to perform t-SNE. Lastly, the

umap (Python) package was used to perform UMAP.

All the programs used to perform the PCA implementa-

tions in the benchmarking are summarized in Additional

file 3.
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