
8 0 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 0 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E

factors affect software-development pro-
ductivity in any given environment.1–5 Also,
because industry-wide productivity rates
vary widely, and there are many different
ways to “cut” the data, determining which
projects to benchmark against is not easy.
As a solution, a company could use bench-
marking equations—such as the ones we
derived from a productivity-variation
analysis we performed on the Experience
database—to compare their software-devel-
opment productivity to that of similar proj-
ects. This article presents the results of our

analysis, including those benchmarking
equations.

Results of Experience—Database
Productivity Analysis

The Experience database comprises 206
business-software projects from 26 compa-
nies in Finland. For more information on
the database, see the “Experience Database”
sidebar. Table 1 presents the variables used
in our Experience-database productivity
analysis. Because our analysis showed that

feature
Benchmarking
Software
Development
Productivity

Katrina D. Maxwell, Datamax

Pekka Forselius, Software Technology Transfer Finland

Determining how
to most effectively
use multicompany

databases to
benchmark soft-

ware development
productivity can

be challenging. In
this article, the
authors present

results of an anal-
ysis performed on

the Experience
database, with an

in-depth look at
key productivity

factors.

I
n response to the widespread need to benchmark software-develop-
ment productivity, numerous software-metrics databases comprising
data collected from companies operating in different business sectors
have become available. For effective benchmarking, a company must

select the projects in the databases that most resemble their own. However,
in addition to the problems associated with multicompany databases, such
as measurement comparability, past research has shown that only a few

applied research results

the customer company’s business sector is
the most important across-company bench-
marking variable for this database, we

examine productivity-factor differences in
the banking, insurance, manufacturing,
wholesale-and-retail, and public-administra-

J a n u a r y / F e b r u a r y 2 0 0 0 I E E E S O F T W A R E 81

Table 1
Variables Considered in the Analysis

Variable Values
name Type (or levels) Definition

Classification variables
LANG Nominal 90 Application programming language
APP Nominal 8 Application type (customer service, MIS, and so on)
HAR Nominal 5 Hardware platform (mainframe, PC, and so on)
IFC Nominal 2 User interface (graphical, character)
ACQ Nominal 5 Development model (waterfall, and so on)
DBA Nominal 5 DBMS architecture (hierarchical, and so on)
CDB Nominal 3 Database centralization (in client, server, combined)
CSW Nominal 3 Software centralization (in client, server, combined)
DBT1 Nominal 22 DBMS tools (Db/2, Idms, DI/1, Ingres, and so on)
CAS1 Nominal 8 CASE tools (lew/adw, foundation, and so on)
OPE Nominal 17 Operating system (DOS, Unix, VMS, and so on)
COMPANY Nominal 26 Company where project was developed
SECTOR Nominal 5 Customer’s business sector: banking, insurance, manufacturing, retail, public administration

Quantitative project data
EFFORT Ratio Effort from specification to delivery in hours
DUR Ratio Duration of project in months
INP Ratio Sum of inputs
INQ Ratio Sum of inquiries
OUT Ratio Sum of outputs
INT Ratio Sum of interfaces
FIL Ratio Sum of entities
LAS Ratio Sum of algorithms
SUMFXN Ratio Unweighted Experience 2.0 function points
WSUMFXN Ratio Weighted Experience 2.0 function points
YSTART Interval 1978–1994 Start year of project
NMET Ratio 0–9 Number of different methods used
NLAN Ratio 1–4 Number of different languages used

Productivity factors 6 (1: very low, 5: very high)
P01 Ordinal 1–5 Customer participation
P02 Ordinal 1–5 Development environment adequacy
P03 Ordinal 1–5 Staff availability
P04 Ordinal 1–5 Standards use
P05 Ordinal 1–5 Methods use
P06 Ordinal 1–5 Tools use
P07 Ordinal 1–5 Software’s logical complexity
P08 Ordinal 1–5 Requirements volatility
P09 Ordinal 1–5 Quality requirements
P10 Ordinal 1–5 Efficiency requirements
P11 Ordinal 1–5 Installation requirements
P12 Ordinal 1–5 Staff’s analysis skills
P13 Ordinal 1–5 Staff’s application knowledge
P14 Ordinal 1–5 Staff’s tool skills
P15 Ordinal 1–5 Staff’s team skills

tion sectors in more detail.
In Figure 1, we show the variance ac-

counted for by each significant classification
variable.

That the Company variable (company
that developed project) accounted for the
greatest productivity variance (45%) high-
lights the need for companies to establish
their own software-metrics databases, in
addition to benchmarking their data against
that of other companies. The next most sig-
nificant classification variable was the cus-
tomer company’s business sector, which
accounted for 36% of the variance. Ap-
plication programming language, CASE
tools, and software centralization did not sig-
nificantly account for any productivity varia-
tion. The insignificance of language runs
counter to other studies’ results might be due
to Cobol’s inclusion in most of the language
combinations with enough observations to
analyze.2–4,7,8 If data concerning each lan-
guage’s share and role in multilanguage proj-
ects had been collected, the number of differ-
ent language combinations (90 for 206 proj-
ects) might have been radically reduced and
the results might have been different.

In Figure 2, we break down the mean pro-
ductivity by business sector. The manufactur-
ing sector has the highest productivity, and
the banking and insurance sectors the lowest.

This might be because
the manufacturing and
wholesale-and-retail
companies functioned
in a more competitive
environment than the
banking and insurance
companies during the
timeframe considered.
External suppliers, cho-
sen through a bidding
process, also undertook
most of the public-

administration projects. Most companies de-
veloped their banking and insurance projects
in-house. In addition, the manufacturing,
wholesale-and-retail, and public-administra-
tion data contained more projects developing
administrative-type systems, while the data-
processing projects in the banking and insur-
ance sectors were more related to the compa-
nies’ core operations. Project intents likely
affected quality requirements. Furthermore,
requirements volatility was higher in the
banking and insurance sectors because of
merging companies and changes in manage-
ment. The International Software Bench-
marking Standards Group also found that, in
their database, banking and insurance had
the lowest productivity of these five sectors.9

Results of Productivity Analysis by
Business Sector

In Table 2, we show the variables most
affecting each sector’s productivity. The
table can be interpreted as follows: for the
insurance sector, three variables account for
36% of the productivity variance. Require-
ments volatility accounts for 19%, the soft-
ware’s logical complexity accounts for an
additional 11%, and tools use accounts for
an additional 6%. The table also shows the
effect on productivity of increasing the value

of the variable. For example,
increasing tools use has a positive
impact on productivity in the
insurance sector.

Banking
In the banking sector, five

variables accounted for 46% of
the variance in the data. Pro-
ductivity in the banking sector
decreases with increasing effi-
ciency requirements and require-

8 2 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 0

0

Company
Business sector

Operating system
DBMS tools

Hardware platform
Centralization of database

User interface
Application type

DBMS architecture
Development model

45
36

19
13
13
12

6
4
4
3

10 20 30
Productivity variance (%)

40 50

Cl
as

si
fic

at
io

n
va

ria
bl

es

Figure 1. Summary of
individual-classifica-
tion-variable produc-
tivity analysis. (For
details on the statis-
tical analysis, see
the references.10)

0.337

0.253

0.232

0.116

0.116

0

Manufacturing (38)

Retail (19)

Public admin (14)

Banking (79)

Insurance (56)

0.1 0.2 0.3
Productivity (fp/hour)

0.4

Bu
si

ne
ss

 s
ec

to
rs

Figure 2. Mean pro-
ductivity by business
sector, in function
points per hour. The
number after each
business-sector label
refers to the number
of projects.

ments volatility, and increases with increas-
ing staff tool skills and size. This last finding
is especially interesting, as it is contrary to
most function-point practitioners’ belief. As
past research had revealed large disec-
onomies of scale, the trend in the banks was
to break large software-development pro-
jects into smaller projects. However, these
smaller projects’ proportionally larger over-
head made them less productive. Large cus-
tomer databases (1–2 million customers),
large account databases, and advanced
online services typify banking projects.
Managing transactions quickly requires a
high efficiency level. Some projects’ require-
ments volatility was high because of merging
banks and changes in management. As most
companies developed their projects in-house,
it was also more tempting and easier for the
client to change the requirements during the
project. Tool skills are also important in the
banking sector. Data processing is vital to
banks’ core business, and banks invest in
tools. In the late ’80s and early ’90s, the
banks also heavily invested in training in this
area.

Productivity also depends on the user
interface. Productivity is twice as high for
projects with a graphical, rather than a
character, user interface. The graphical-
user-interface projects might show higher
productivity because they took place more

recently. (The combined effects of many fac-
tors’ evolution over time—such as modern
programming practices, tools use, and stor-
age constraints—might explain why more
recent projects have higher productivity.)
Another explanation might be that GUI-
development-tool ease-of-use entices soft-
ware developers to build more functionality
into applications, without much additional
effort. This causes the GUI projects to have
a higher function-point count and thus a
higher productivity.

J a n u a r y / F e b r u a r y 2 0 0 0 I E E E S O F T W A R E 83

Table 2
Best Productivity Model by Business Sector

Variance Total
Effect accounted for variance

Business Significant on per variable accounted
sector variables productivity (%) for (%)

Banking User interface Depends on type 17
Efficiency requirements Negative 14 46
Requirements volatility Negative 10
Weighted Experience 2.0 function pts. Positive 3
Staffer tool skills Positive 2

Insurance Requirements volatility Negative 19 36
Software’s logical complexity Negative 11
Tools use Positive 6

Manufacturing Hardware platform Depends on type 45 70
Requirements volatility Negative 10
CASE tools Depends on type 7
Standards use Negative 5
Staff’s tool skills Positive 3

Wholesale-and-retail Staff availability Positive 16 30
Number of languages Negative 14

Public administration Number of inquiries Positive 24 39
Customer participation Negative 15

The Experience database began as a publicly organized cooperative
project to launch and support the measurement programs of 16 member
companies in Finland. The project grew and is now an STTF-managed
commercial activity (www.sttf.fi/html/exppro.html). Project managers use
Experience Pro, a tool incorporating the database, for preliminary proj-
ect planning, including cost estimation, reuse analysis, software-process-
capability analysis, risk analysis, and productivity benchmarking.
Companies buy the tool and pay an annual maintenance fee. In return,
they receive the tool, new software versions, and updated data. Com-
panies can add their own data to the tool; also, STTF offers a mainte-
nance-fee reduction to companies for each project they contribute to the
shared database. The data validity and comparability is maximized, as
all companies collect data using the same tool and every variable’s value
is defined (to reduce subjectivity). Users discuss interpretation problems in
Experience-user-group meetings.

Experience Database

Insurance
Productivity in the insurance sector

decreases with the software’s increasing re-
quirements volatility and logical complexity,
and increases with increasing tools use. These
three variables account for 36% of the vari-
ance. The banking and insurance sectors have
many similarities. Like those in the banking
sector, insurance-sector companies invest in
tools and training because data processing is
vital to their core business. In addition, some
insurance projects’ requirements volatility

was high because of merging companies and
changes in management. As most insurance
companies also developed their projects in-
house, the client could change the require-
ments during the project more easily. The
software’s logical complexity is important in
the insurance sector because the software is
very algorithmic.

Manufacturing
The project data in the manufacturing sec-

tor mainly comprised administration-and-

8 4 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 0

Table 3
Productivity-Benchmarking Equations by Business Sector

Business sector Productivity (fp/hour) = (variables defined in Table 1)

Banking Text user interface
0.1828 x WSUMFXN0.1622 x P08-0.7973 x P10-0.8530 x P140.3115

Graphical user interface
0.4590 x WSUMFXN0.1622 x P08-0.7973 x P10-0.8530 x P140.3115

Insurance 0.1757 x P060.8950 x P07-0.4911 x P08-0.8409

Manufacturing 2.8157 x HC x P04-1.0047 x P08-0.5592 x P140.2872

where HC = hardware and CASE-tool multiplier (values below)

Tools No CASE tool IEW/ADW Other CASE tools
Network 0.3479 0.2792 no data
Mainframe 0.2339 0.3585 no data
Mini 0.9666 0.3493 no data
Combined 1.0000 no data no data

If you used a CASE tool other than IEW/ADW, you can calculate productivity using the following equation,
which doesn’t depend on a CASE tool: 1.3012 x HAR x P08-0.5720

where HAR = Hardware Multiplier (values below)

Network 0.3095
Mainframe 0.2988
Mini 0.5921
Combined 1.0000

Wholesale and retail 0.1072 x NLAN-0.4627 x P030.6651

Public administration 0.2127 x INQ0.1493 x P01-0.3950

Table 4
Comparison of Benchmarking Accuracy between Average

Productivity and Productivity Equation
Average productivity Average productivity Productivity equation

Business sector (fp/hour) MMRE PRED(.25) MMRE PRED(.25)

Banking .116 81% 42% 42% 32%
Insurance .116 56% 41% 36% 55%
Manufacturing .337 67% 29% 23% 69%
Wholesale and retail .253 59% 37% 27% 47%
Public administration .232 36% 57% 21% 79%

information-service projects that weren’t
related to the company’s core business.
Productivity decreases with increasing re-
quirements volatility and standards use, and
increases with the staff’s increasing tool
skills. Requirements volatility was impor-
tant, as internal software units—where the
owner is more likely to change the require-
ments—undertook the development. The
Finnish manufacturing sector had no com-
mon IT or software-development standards,
so the standards the companies used weren’t
stable during this time. A couple of large
companies in the sector have been investing
heavily in tools and training.

Productivity also depends on the combi-
nation of the hardware platform and CASE
tools used in the project (see Figure 3).
Productivity was higher for mini and com-
bined hardware platforms than for network
and mainframe platforms. Network and
mini projects in which IEW/ADW, a CASE
tool for preliminary planning and require-
ments specification, were less productive
than projects that did not. In contrast, the
developer’s productivity on mainframe pro-
jects was higher when they used this tool.
This might be because the mainframe envi-
ronment is older and developers had more
experience using the tool. (IEW/ADW was
the only CASE tool with enough observa-
tions to analyze.) The significant interaction
between CASE-tool use and hardware plat-
form is a good example of the danger of
making conclusions using one variable’s
averages. Had we simply calculated the
average productivity of CASE-tool use for
all manufacturing projects, ignoring the
interaction with hardware platform, we
would have concluded that projects using
IEW/ADW are less productive than projects
using no CASE tools. Together, the variables
account for 70% of the variance in produc-
tivity.

Wholesale-and-retail
One characteristic of projects in the whole-

sale-and-retail sector is that they have distrib-
uted systems. Shops have cash terminals con-
nected to small computers in the back office,
communicating with a mainframe computer
at the main office. Thus, developers must de-
velop software for different environments and
with very specific languages. This requires
specialized knowledge, more interfaces, and
complicated testing. Productivity in the

wholesale-and-retail sector decreases with the
increased number of languages and increases
with increased staff availability. These two
variables combined accounted for 30% of the
productivity variation. Cost efficiency is also
important in this sector. Though companies
often develop software in-house, which they
figure to be cheaper, these companies don’t
have large software-development staffs. Thus,
staff availability is an important factor
because the few high-salaried software devel-
opers are fully utilized.

Public administration
Productivity in the public-administration

sector decreases with increasing customer
participation, and increases with an increas-
ing number of inquiries. These two vari-
ables account for 39% of the productivity
variance. Though high customer participa-
tion decreases project productivity, it might
result in a more satisfied customer. The
inquiry function’s high influence might be
due to the possibility that if the customer
does not participate much, the software
developer will develop extra inquiry func-
tions—which are simple to copy—in case
the customer asks for them at a later date.

Productivity-Benchmarking
Equations

Table 3 contains each business sector’s
productivity-benchmarking equation. Al-
though most valuable to companies that
contributed to the Experience database, we
provide the equations here so readers can
test them on their own data. For an example
of how to use the equations, see the
“Productivity Measurement” sidebar. The
sidebar also contains a description of the
Experience 2.0 method and relates it to the
IFPUG4.0 method. Table 4 shows the results

J a n u a r y / F e b r u a r y 2 0 0 0 I E E E S O F T W A R E 85

12

2

5
0

1

8

3

0

Network

Mainframe

Mini

Combined

0.2 0.4 0.6
Productivity (fp/hour)

0.8

Ha
rd

w
ar

e
pl

at
fo

rm

4

No CASE tool
CASE tool

Figure 3. Productivity
(fp/hour) by hard-
ware platform and
CASE tools. The num-
ber in each bar refers
to the number of
observations.

of comparing the productivity-benchmark
equations’ accuracy with the accuracy ob-
tained when the average productivity in each
business sector is used as a benchmark for
the Experience database projects. The table
can be interpreted as follows: the average
productivity of projects in the manufactur-
ing sector is 0.337 fp/hour. If we compare
the actual productivity of each Experience
database manufacturing project to 0.337

fp/hour, the average error (MMRE) is 67%.
The value of 0.337 fp/hour is within 25%
(PRED(.25)) of the actual productivity for
only 29% of the projects. If, instead, we use
the productivity equation, the average error
is 23%, and 69% of the estimates are with-
in 25% of the actual productivity values.
The results show that using the productivity
equation improves estimation accuracy,
especially in the average error. Thus, these

8 6 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 0

Productivity Measurement

We define productivity as output
divided by the effort required to pro-
duce that output. But how should we
measure software-development pro-
ductivity? How do we translate the out-
put—a completed software-develop-
ment project—into a meaningful mea-
surement? We believe software-project
managers should base output mea-
surement on a combination of a pro-
ject’s size, functionality, and quality.
However, such a measurement doesn’t
yet exist. Line-of-code and function-
point counts are currently the most
common output measurements used.
The Experience 2.0 method measures
productivity in function points per hour.

Experience 2.0 function-point
method

Nearly 40 different function-point-
analysis-method variants exist today.
Software-project managers use these
methods for software functional siz-
ing. From the user’s viewpoint, Exper-
ience 2.0
■ categorizes the software applica-

tion’s functions into six groups: in-
puts, outputs, inquiries, entities, inter-
faces, and algorithms (the software’s
total unweighted function-count is the
sum of the count for each category),

■ rates the functions in each category
by difficulty, on a five-point scale
ranging from very easy to very dif-
ficult, and then

■ multiplies each of these 30 ele-
ments (each of the five difficulty rat-
ings for each of the six groups) by

an empirically determined weight-
ing factor.
The total weighted function-point

count (that is, the software’s functional
size) is the sum of each weighted ele-
ment. The biggest difference between
the Experience 2.0 method1,2 and the
widely used IFPUG4.0 method,3 is that
IFPUG4.0 also adjusts the count for a
number of external complexity factors.
Experience 2.0 treats these separately
as productivity factors, so they don’t
affect the function-point count. This is
why the unweighted IFPUG4.0 count
is approximately equivalent to the
weighted Experience 2.0 count. The
Experience 2.0 function-point count
will also be higher for software con-
taining many algorithms. Client-server
systems’ interpretation rules are also
different from IFPUG4.0.

Using the productivity
equations

Software-project managers can use
the productivity-benchmarking equa-
tions to calculate a productivity value
for benchmarking their completed
projects against projects in the Ex-
perience database, or to estimate a
new project’s productivity. They can
also use the equations to determine
the likely impact on productivity of
changes in a key factor. Table A con-
tains the definitions of the key produc-
tivity factors. (If a productivity factor’s
value is unknown, assume it is aver-
age.) Consider a public-administra-
tion project with six inquiries and

average customer participation. Plug-
ging INQ = 6 and P01 = 3 into the
public-administration-sector equation
given in Table 3 results in a productiv-
ity of 0.180 fp/hour:

Productivity = 0.2127 × 60.1493 ×
3–0.3950 = 0.180 fp/hour.

This is the expected productivity for
this project type and the benchmark
with which to compare the project’s
actual productivity value.

What if the number of inquiries
remained the same (INQ = 6), but the
customer participation was very high
(P01 = 5)? In a similar manner, we can
calculate a productivity of 0.147
fp/hour. Thus, we can determine that
the impact of very-high customer par-
ticipation, with everything else remain-
ing constant, decreases this project’s
productivity by 18%.

A software-development-productiv-
ity-benchmarking service based on
these equations is available at www.
datamax-france.com.

References
1. www.sttf.fi/html/exppro.html.
2. Laturi-System Product Manual Version

2.0, Information Technology
Development Center, Helsinki, 1996.

3. Function Point Counting Practices
Manual, Release 4.0, International
Function Point Users Group, Westerville,
Ohio, 1994.

4. R. Nevalainen and H. Maki, Laturi-
System Productivity Model Version 1.4,
Tech. Report 30.3.1994, Information
Technology Development Center,
Helsinki, 1994.

equations better reflect the actual productiv-
ity of projects in the Experience database.

B enchmarking projects using the
average productivity of one “slice”
or dimension of the data is not very

accurate, even when used on the underlying
data. Many of the variables collected don’t
even affect productivity, and only a few

variables are important in each sector. For
example, the hardware platform, operating
system, and DBMS architecture don’t affect
productivity in the banking sector, so there
is no reason to limit comparison of banking
projects to other banking projects based on
these variables. Companies must statistical-
ly analyze the data to develop benchmark-
ing equations based on the key productivity
factors.

J a n u a r y / F e b r u a r y 2 0 0 0 I E E E S O F T W A R E 87

Productivity factor Very low (1) Low (2) Nominal (3) High (4) Very high (5)

Customer participa-
tion (P01)

None Passive; client defines
or approves < 30% of
the functions

Client defines or
approves 30–70% of
the functions

Active; client defines
or approves > 70% of
the most important
functions.

Very active
participation

Staff availability
(P03)

Big problems in key
software personnel
availability; software
requires specialized
knowledge

Members involved
in other projects
simultaneously and
have maintenance
responsibilities

Key members are
involved in only one
other project

Members of project
are involved almost
full time

Qualified software
personnel are avail-
able when needed
and can participate
fully in project

Standards use (P04)
Quality of standards
applied in the project

Project managers
must develop stan-
dards during project

Some standards are
available, but not
familiar; project man-
agers must develop
more

Project members
use generally known
standards in known
environments

Project members use
new standards, which
other customers or
software houses have
applied in the same
environment

Project members use
new standards, which
aren’t familiar in the
industry, but must be
followed; use is
controlled

Tools use (P06) Minimal tools; edi-
tors, compilers, test-
ing tools

Basic tools; inter-
preters, editors, com-
pilers, debuggers,
databases, libraries

Development envi-
ronment, DBMS,
support for most
phases

Modern tools like
CASE, project plan-
ning, application gen-
erators, standardized
interfaces between
phases

Integrated CASE
environment covers
entire lifecycle; all
tools can support
each other flexibly

Logical complexity
(P07) Computing, I/O
needs, and user-inter-
face requirements

Only routines; no
need for user inter-
face; simple
database

Functionally clear; no
algorithmic tasks;
database solution
clear

Functionally typical;
normal standard
database; no
algorithms

Processing more de-
manding; database
large and complex;
new requirements for
user interfaces

Functionally and
technically difficult
solution; user inter-
face very complex;
distributed database

Requirements
volatility (P08)

No new features;
standard compo-
nents; conversions
only

Some changes to
specifications; some
new or adapted func-
tions; some minor
changes in data
contents

More changes to
specifications, but
project members can
handle them, and their
impact is minor
(< 15% new or modi-
fied functions)

Some major changes,
impacting total archi-
tecture and requiring
rework; 15–30% of
functions new or
modified

Continuously new
requirements; lots of
rework; > 30% of
the functions new or
modified

Staff tool skills
(P14) Average pro-
ject-team experience

< 6 months
experience

6–12 months 1–3 years 3–6 years > 6 years experience

Efficiency require-
ments (P10)

No efficiency require-
ments needing atten-
tion and planning

Efficiency goals easy
to reach, require-
ments below average

Capacity level of the
software is stable and
predictable; response
time, transaction
load, and turnaround
time are typical

Specific peaks in
capacity, response
time, transaction pro-
cessing, and turn-
around time can be
reached by specific
design and implemen-
tation techniques

Efficiency is essential;
strict efficiency goals
need continuous
attention and specific
skills

Table A. Definitions of Key Productivity Factors4

Also, the variables collected in the data-
base accounted for less than 50% of the
productivity variation in each business sec-
tor (with the exception of the manufactur-
ing sector). This means there are likely to
be other variables important in explaining
each business sector’s productivity varia-
tion that weren’t in the database. For ex-
ample, in the banking sector an important
factor might be whether the bank is gov-
ernment owned. Additionally, many of one
bank’s projects had a lower productivity
level because they were migration projects,
requiring additional effort for converting
the old system to the new. Unfortunately,
we couldn’t observe this effect in more
detail because this data didn’t exist for all
bank projects. Nevertheless, our data-
analysis process resulted in a greater under-
standing of the relationships among vari-
ables, and further insight as to why these
factors are important.

As the Experience database grows, we
plan to periodically reanalyze the data to
determine how the key productivity factors
are evolving over time. We are currently
studying the factors affecting the productiv-
ity and cost of annual software-application
maintenance in the banking sector.

Acknowledgments
Special thanks to Risto Nevalainen of Software

Technology Transfer Finland for defining, collecting,
and providing the data; without his initiative this study
would not have been possible. Thanks also to Herve
Balloux, Barbara Kitchenham, and the reviewers for
their comments on an earlier version of this article.

References
1. R.D. Banker, S.M. Datar, and C.F. Kemerer, “A Model

to Evaluate Variables Impacting the Productivity of
Software Maintenance Projects,” Management Science,
Vol. 37, No. 1, Jan. 1991, pp. 1–18.

2. B.A. Kitchenham, “Empirical Studies of Assumptions
that Underlie Software Cost-Estimation Models,”
Information and Software Technology, Vol. 34, No. 4,
Apr. 1992, pp. 211–218.

3. K. Maxwell, L. Van Wassenhove, and S. Dutta,
“Software Development Productivity of European
Space, Military and Industrial Applications,” IEEE
Trans. Software Eng., Vol. 22, No. 10, Oct. 1996, pp.
706–718.

4. K. Maxwell, L. Van Wassenhove, and S. Dutta, “Per-
formance Evaluation of General and Company Specific
Models in Software Development Effort Estimation,”
Management Science, Vol. 45, No. 6, June 1999, pp.
787-803

5. T. Mukhopadhyay and S. Kekre, “Software Effort
Models for Early Estimation of Process Control Ap-
plications,” IEEE Trans. Software Engineering, Vol. 18,
No. 10, Oct. 1992, pp. 915–924.

6. R. Nevalainen and H. Maki, Laturi-System Pro-
ductivity Model Version 1.4, Tech. Report 30.3, 1994,
Information Technology Development Center, Helsinki,
1994.

7. K. Maxwell, L. Van Wassenhove, and S. Dutta,
“Benchmarking: The Data Contribution Dilemma,”
Proc. 1997 European Software Control and Metrics
Conference, The ESCOM Conference, 30 Willow Tree
Glade, Calcot, Reading RG31 7AZ, UK, 1997, pp
82–92.

8. C. Jones, Applied Software Measurement: Assuring
Productivity and Quality, McGraw-Hill, New York,
1991.

9. ISBSG, “Worldwide Software Development—the Bench-
mark”, Release 5, International Software Benchmarking
Standards Group, Mar. 1998, Warrandyte, Victoria,
Australia, p. 63.

10. K. Maxwell, “Benchmarking Software Development
Productivity: Statistical Analysis by Business Sector,”
Process Control for 2000 and Beyond, R. Kusters et al.,
eds., Shaker Publishing, Maastricht, The Netherlands,
1998, pp. 33–41.

Our data-
analysis pro-
cess resulted
in a greater

understanding
of the relation-

ships among
variables, and
further insight
as to why these

factors are
important.

8 8 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 0

Katrina D. Maxwell is a Datamax–Adding Value to Data co-founder. Her research
interests include applied data analysis, software productivity, and effort estimation. She has
taught courses in quantitative methods at the University of Illinois, INSEAD and the ESCP-Paris
School of Management. She received a BS in civil engineering from the University of Illinois
and a PhD in mechanical engineering from Brunel University. She is the program chair of
the European Software Control and Metrics Conference for 2000 and 2001, and an IEEE
Computer Society member.

Pekka Forselius is director and project management consultant at Software Tech-
nology Transfer Finland. He developed the Experience Pro data-collection concept and is
responsible for Experience Pro software development. His research interest is in learning soft-
ware-development organizations, especially organizational-memory and organizational-under-
standing concepts. He received an MS in informatics from the University of Helsinki and an
executive MBA from the University of Jyvaskyla. He has been a research associate at INSEAD
since 1996 and is the secretary of the board of the Finnish Software Metrics Association.

Address questions about this article to Maxwell at Datamax, 14 Avenue Franklin-Roosevelt, 77210 Avon, France; data-
max@computer.org.

About the Authors

