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Sparse system identification is the data-driven process of obtaining parsimonious differential equations that
describe the evolution of a dynamical system, balancing model complexity and accuracy. There has been rapid
innovation in system identification across scientific domains, but there remains a gap in the literature for large-
scale methodological comparisons that are evaluated on a variety of dynamical systems. In this work, we sys-
tematically benchmark sparse regression variants by utilizing the dysts standardized database of chaotic systems
introduced by Gilpin [1]. In particular, we demonstrate how this open-source tool can be used to quantitatively
compare different methods of system identification. To illustrate how this benchmark can be utilized, we per-
form a large comparison of four algorithms for solving the sparse identification of nonlinear dynamics (SINDy)
optimization problem, finding strong performance of the original algorithm and a recent mixed-integer discrete
algorithm. In all cases, we used ensembling to improve the noise robustness of SINDy and provide statistical
comparisons. In addition, we show very compelling evidence that the weak SINDy formulation provides signif-
icant improvements over the traditional method, even on clean data. Lastly, we investigate how Pareto-optimal
models generated from SINDy algorithms depend on the properties of the equations, finding that the perfor-
mance shows no significant dependence on a set of dynamical properties that quantify the amount of chaos,
scale separation, degree of nonlinearity, and the syntactic complexity.
Keywords: system identification, dynamical systems, chaos, nonlinear systems, sparse regression, SINDy

I. INTRODUCTION

The governing equations of a dynamical system have tra-
ditionally been derived from first principles or phenomenol-
ogy and confirmed with experimentation. However, the avail-
ability of enormous volumes of data in the modern era is fa-
cilitating data-driven model discovery, which is now widely
applied to many areas such as mathematics, physics, chem-
istry, biology, engineering, and economics. A large num-
ber of such approaches have been developed in recent years,
such as the dynamic mode decomposition [2–4], Koopman
theory [5, 6], nonlinear autoregressive algorithms [7], neu-
ral networks [8–10], Gaussian process regression [11], opera-
tor inference and reduced-order modeling [12–14], symbolic
regression [15, 16], divide-and-conquer strategies [17], and
sparse regression [18]. Even within each of these approaches,
there has been prolific methodological innovation.

There are several factors that must be considered when
choosing a data-driven modeling strategy, including the quan-
tity and quality of the data and the ultimate use of the model.
A key tradeoff for all of these methods is balancing accuracy
with model complexity, since a naíve determination of many
free, nonzero parameters will likely result in a model that is
overfit to the training data, especially as real-world data will
contain noise of various types. Despite the variety of new
methods for data-driven model discovery, there is a relative
lack of comparisons between such methods on a large set of
nontrivial dynamical systems. It is this gap in the literature
that we intend to address by providing a systematic compari-
son of sparse system identification variants on a recently de-
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veloped large, curated database of known, chaotic, dynamical
systems [1].

Sparse system identification is an umbrella term for system
identification methods that address this key tradeoff between
model complexity and accuracy by promoting sparsity in the
parameterization of the model. This facilitates a-priori parsi-
monious descriptions that model the data with as few terms
as necessary. The sparse identification of nonlinear dynamics
(SINDy) [18] is a leading method for parsimonious modeling,
and it and its variants will be investigated here. It is based
on sparsity-regularized linear regression, so it can be com-
puted quickly and robustly. Moreover, identified models and
optimization results can be readily understood by researchers,
as there is a wealth of literature on generalized linear regres-
sion and sparse optimization. Another compelling reason to
investigate variations of SINDy is that it has seen rapid ap-
plication and extension since its introduction in 2016. SINDy
has been widely applied for model identification in applica-
tions such as chemical reaction dynamics [19], chemical pro-
cesses [20, 21], air pollutant modeling [22], biological trans-
port [23], stellar dynamics [24], disease transmission [25],
convective heat transfer [26], nonlinear optics [27], power
systems [28, 29], hydraulics [30], scientific computing [31],
human behavior models [32], fluid dynamics [33–44], turbu-
lence modeling [45–50], plasma physics [51–53], structural
modeling [54], among others [30, 55–61]. It has also been
extended to handle more complex modeling scenarios such
as PDEs [62, 63], delay equations [64], stochastic differen-
tial equations [65–69], Bayesian modelling [70], dimensional
analysis [71], systems with inputs or control [72–74], systems
with implicit dynamics [75, 76], hybrid systems [77, 78], to
enforce physical constraints [33, 52, 79], to incorporate in-
formation theory [80] or group sparsity [81] or global stabil-
ity [82], to identify models from corrupt or limited data [83–
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87], to identify models with partial measurements of the state
space [88–91], to identify models with clever subsampling
strategies [92], and ensembles of initial conditions [93], to
perform cross-validation with ensemble methods [94, 95], and
extending to related objective functions [96], a weak or inte-
gral formulation [97–107], tensor representations [108, 109],
and stochastic forcing [110].

Most of the work in this field demonstrates performance on
just a few canonical dynamical systems, such as the Lorenz63
system [111]. Moreover, there has been little systematic in-
vestigation of the comparative performance of different sparse
system identification techniques. We posit two plausible rea-
sons for the relative lack of these investigations in the litera-
ture: (1) for more sophisticated variants of system identifica-
tion, it can be computationally intensive to compute thousands
or hundreds of thousands of dynamical models to draw statis-
tical conclusions like those presented here, and (2) an analysis
of the performance of system identification is more straight-
forward if the true governing equations are actually known.
This is clearly not an option for real experimental data. With
benchmarks, proper comparisons can be made between new
and existing methods to understand the way in which a new
algorithm produces novel benefits and functionality. More-
over, essentially all system identification methods require hy-
perparameter tuning and a proper comparison between meth-
ods necessitates that only the optimally tuned models from
each method are compared on a large set of examples.

At first glance, there may seem to be too many confounding
variables for a thorough comparison of methods. In princi-
ple, sparse system identification performance can depend on
the equation complexity, the searchable space of functional
forms, the size and diversity of the training data, the amount
of computing power available for hyperparameter scans, the
nonlinearity of the underlying dynamics, the amount and type
of noise in the data, the quality of the algorithm used to solve
the problem (and its associated hyperparameters), and poten-
tially many more factors.

A. Contributions of this work

To control for these parameters, we have carefully designed
our experiments in a number of ways. We use a fixed func-
tional space for fitting all systems, containing all possible
terms necessary for successful model identification. More-
over, the dynamics and size of the training data are standard-
ized by using all of the polynomial dynamical systems in the
dysts database [1], and the amount of computing power is
negligible by using sparse regression algorithms with mini-
mal hyperparameters. For generating robust conclusions, the
following steps have been taken: d% noise is sampled from
a zero-mean Gaussian N (0,σ = d‖Xtrain‖2/100) and added
to every data point in the training data Xtrain (and the noise
is subsequently amplified by computing Ẋtrain from Xtrain).
Moreover, a large ensemble of SINDy models are generated
by sub-sampling the same data [94], hyperparameter scans
are performed, and finally, only statistical model performance
metrics are reported. This work begins by detailing this stan-

dardization and methodology.
The entirety of the methods and results in the present work

can be reproduced with the PySINDy code [112, 113]. More-
over, we have included a discussion in Appendix A about how
to effectively use this tool in future work, as researchers de-
sign new algorithms, libraries, databases, or other function-
ality. The present work illustrates the scope and flexibility
of this tool by performing a few large-scale investigations re-
garding SINDy optimization and performance.

First, we generate a statistical comparison of different op-
timization algorithms for solving the SINDy model identifi-
cation problem across a large database. The STLSQ [18],
SR3 [114], Lasso [115], MIOSR [116], and weak form [117]
algorithms are compared. To our knowledge, this is the first
large-scale and statistical comparison of these algorithms. We
find that the original STLSQ algorithm [18] holds up well for
performing SINDy optimization and the recent MIOSR algo-
rithm is high performance particularly for low-dimensional
or constrained problems. Moreover, we find compelling ev-
idence that the weak formulation of the SINDy problem pro-
vides significant performance improvements, even in the clean
data setting. Next, we classify the Pareto-optimal model per-
formance against properties of the true underlying dynamics.
We find that the SINDy method has no significant dependence
on the amount of chaos, scale separation, degree of nonlin-
earity, and even the syntactical complexity of the equations,
albeit with some interesting deviations that could merit addi-
tional future investigation.

II. METHODOLOGY

Robust conclusions about the performance of system iden-
tification methods require that only standardized comparisons
are made. We now proceed by explaining the dataset, met-
rics for measuring sparse system identification performance,
how we use hyperparameter scanning to find Pareto optimal
models for each system, and explicitly define the dynamical
properties to be investigated. This section is intended to clar-
ify how we have carefully managed confounding variables in
the system identification in order to draw conclusions with re-
spect to different optimization algorithms and with respect to
the dynamical properties of the database.

A. Dysts database

The dysts database [1], introduced by Gilpin in 2021, is
ideal for evaluating system identification performance, be-
cause it is a large and highly standardized set of chaotic
systems with known equations of motion. Many of the
chaotic systems exhibit syntactically simple equations, e.g.
Lorenz63 is a three-state system with quadratic nonlinearity
and only seven terms in the differential equation. However,
this database generates far more complicated and dynami-
cal data than that of many existing databases, such as the
Nguyen symbolic regression database [118] used previously
for benchmarking symbolic regression algorithms [119]. The

https://github.com/dynamicslab/pysindy
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FIG. 1: A training trajectory in the (x1,x2) subspace with 1%
added noise (black), along with a clean testing trajectory
(red) for the systems in the present work, taken from [1].
Some of the dynamical systems have multiple attractors, and
the data may not be sufficient to fully “cover” the attractor.

database also provides data, equations, and dynamical proper-
ties for over 100 chaotic systems exhibiting strange attractors
and coming from disparate scientific fields. It can be used
for testing sparse system identification because the dynam-
ical properties have been pre-computed and there is a high
degree of standardization across the systems. For instance,
phase surrogate significance testing is used to select optimal
integration timesteps and sampling rates for all the systems, so
that dynamics across systems are aligned with respect to their
smallest and largest timescales [120]. This is a critical step for
generating similar time series for each model; the minimum
significant time scale in this dataset varies by more than four
orders of magnitude. Most importantly, the true governing
equations are available for evaluating the model performance.

To narrow the scope of our comparison, we consider 70
systems in the database, representing systems of ordinary dif-
ferential equations (ODEs) that have polynomial nonlineari-
ties, with degree no more than four. We exclusively consider
these systems and define a single “feature library” (space of
functions that can be used to fit the data) for every model fit.
Polynomial models are often the natural choice for capturing
leading-order dynamics for general nonlinear systems near an
attracting set or fixed point, where the dynamics might be rea-
sonably expanded in a Taylor series.

Unlike some other dynamical systems, chaotic systems ex-
hibit a continuous spectrum of frequencies, making the dy-
namical data particularly challenging to systematically distin-
guish from noise, e.g. by using frequency filters. Our chosen
systems exhibit a specific subclass of chaos, as they are all
bounded and are characterized by strange attractor(s) with the
default system parameters used in the database. Moreover,
54 of the systems have a state space dimension of three, the
remaining 16 have a dimension of four, and there is a single
Hamiltonian system in the data. 51 of the systems are “hyper-
chaotic” systems that have been estimated to exhibit two or
more positive Lyapunov exponents. A training and testing tra-
jectory of 1000 data points are each visualized in Fig. 1 so that
the strange attractors are apparent.

To generate statistical conclusions, we generate five train-
ing trajectories and five testing trajectories representing ten
periods of motion, all sampled at 100 points per period for a
total of 1000 data points for each trajectory. Each trajectory is
generated from a different initial condition on the attractor.

To summarize, the underlying dynamics are chaotic, and
we assume that the dynamical equations can be represented as
systems of ODEs with polynomial nonlinearities up to fourth
order. Additionally, full state measurements are available that,
at various points in the coming analysis, contain added zero-
mean Gaussian noise.

B. The SINDy method

SINDy utilizes sparse regression to discover governing
equations from data [18]. The aim is to identify differential
equation models of the form

ẋ= f(x)≈Θ(x)Ξ, (1)
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where f(x) is a nonlinear function of the state x, Θ is a li-
brary of nonlinear functions, and Ξ is a matrix of constant
coefficients. Together ΘΞ represents a linear combination of
nonlinear functions that are chosen to best approximate f(x).
The choice of nonlinear functions in Θ is clearly important for
successful approximation. Before moving from continuous
state space to discrete measurement data, recall that high or-
der differential equations can always be reduced to first order
coupled differential equations, so this form is fairly general.
Extensions of Eq. (1) for control inputs [72], partial differen-
tial equations [63], implicit terms [76], and other variations
are available with PySINDy [121].

In order to identify Eq. (1) from data, we need measure-
ments of the state x. First, we uniformly sample the full-
state data on a set of training trajectories and a data matrix
X ∈ RM×d is formed from the time-series data of the state,
x(t1),x(t2), ...,x(tM):

X =

state
−−−−−−−−−−−−−−−−−−−−→

x1(t1) x2(t1) · · · xd(t1)
x1(t2) x2(t2) · · · xd(t2)

...
...

. . .
...

x1(tM) x2(tM) · · · xd(tM)


y

tim
e . (2)

M is the number of time points and d is the size of the state
space, i.e. three or four for our dataset. A matrix of deriva-
tives in time, Ẋ , is defined similarly and can be numerically
computed from X , for instance by finite differences or more
sophisticated differentiation [86, 122, 123]. Then we form a
feature library Θ(X) of possible terms that could describe
the evolution of the system, and attempt to find a sparse vec-
tor of coefficients ξ representing the best linear combination
of terms in the library. In general, the feature library Θ can
include a wide range of generalized functions, and designing
this library often requires domain-knowledge; however, the
systems of interest in the present work are all polynomial.
Therefore, we fix Θ to be a polynomial library in X , up to
fourth order. This is an important point; in general system
identification methods rely on adequate functional forms in
the feature library, and here we have completely bypassed this
issue, isolating and disambiguating the optimization perfor-
mance from the choice of library. We know definitively that
the feature library contains the necessary terms in order to de-
scribe all 70 chaotic systems considered in the present work.

The vector of coefficients ξ is determined via the following
sparse optimization problem:

argmin
ξ

[
1
2
‖Θξ−Ẋ‖2 +λ‖ξ‖0

]
. (3)

The first term in the SINDy optimization problem in Eq. (3)
is a least-squares fit of a system of ODEs Θξ to the given
data in Ẋ . The l0 loss, ‖ξ‖0, is a function that counts the
number of nonzero elements of ξ. Using the l0 loss or al-
ternative regularization to promote sparsity in the coefficients
of an identified model tends to improve robustness to numer-
ical or experimental noise, addressing the tradeoff between

accuracy and generalizability and avoiding overfitting to the
training data. The l0 loss is nonconvex and nonsmooth, and
therefore many convex relaxations of this problem have been
introduced [18, 63, 79]. The first major result presented in this
work compares a number of different algorithms for solving
Eq. (3), including the sequentially-thresholded least-squares
(STLSQ) algorithm from the original SINDy paper [18], the
traditional convex relaxation of Eq. (3) using the Lasso [115],
the SR3 algorithm [79, 114], and a recent mixed-integer dis-
crete algorithm called MIOSR [116].

As much as is feasible, we use default PySINDy param-
eters to reduce the number of hyperparameters that must be
scanned. For instance, in the present work Ẋ is calculated
by simple finite differences. Improved performance is imme-
diately available for future work using more sophisticated dif-
ferentation methods [86, 122, 123], many of which are already
available in the PySINDy code. Weak or integral formula-
tions of SINDy [97] are also known to mitigate the noise am-
plification inherent to finite differencing, and we illustrate in
Sec. III B that the weak formulation implemented in PySINDy
produces substantial performance benefits.

C. Metrics for performance

Methodological comparisons require appropriate metrics
for determining the relative performance quality of different
methods. Unlike real-world data, we have access to the true
equations of motion of all 70 systems to be tested. There-
fore we can compute a number of useful metrics to character-
ize the performance of the resulting sparse symbolic models
on these examples. We define the normalized coefficient and
root-mean-square errors

Ecoef =
‖ξTrue−ξSINDy‖2

‖ξTrue‖2
, (4)

ERMSE =
‖ẊTrue−ẊSINDy‖F

‖ẊTrue‖F
. (5)

Other works have also explored the ‖ · ‖1 and ‖ · ‖0 norm ver-
sions of Eq. (4) to quantify model mismatch [76, 119]. Ob-
taining very small values for ERMSE (or variants such as the
mean absolute error, regular mean absolute percent error, etc.)
is simple with a basic system identification algorithm applied
to clean data from our chosen database. This is because mod-
els with many parameters can overfit using many small but
nonzero terms and potentially produce very accurate testing
trajectories if we only investigate regions that are nearby to
the strange attractor(s). Despite this caveat, for forecasting,
prediction, reconstruction of the strange attractor, calculation
of the Lyapunov spectrum, and other important metrics for
capturing the behavior of a dynamical system, models with
low ERMSE are often more than adequate. Moreover, the usual
situation of interest is one in which the dynamical equations
and therefore the coefficient errors are unknown. We com-
ment further on errors and stability in Appendix B.

Given that we know the true coefficients, we can check for
overfitting by considering the coefficient errors, which can be
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incorrect even when ERMSE is extremely small∗. Indeed, on
the strange attractor, the dynamics may be significantly re-
duced compared to the dynamics on the full state space. A
connection to invariant manifolds and the reduced effective
dimension and entropy of the dynamical system are discussed
in Appendix C.

D. Automated hyperparameter scanning with ensembles

Before any conclusions can be drawn about system identi-
fication performance, each algorithm’s hyperparameters must
be tuned. Sweeping the sparsity-related hyperparameters gen-
erates a spectrum ranging from very sparse models with lim-
ited accuracy to dense models with high prediction accu-
racy, which is typically referred to as a Pareto-front [124].
The dataset is too large to manually tune hyperparameters
for optimal system identification performance on each chaotic
trajectory, so for hyperparameter scanning, we use the fol-
lowing procedure. For all the algorithms, we use ensem-
bling [94]. We subsample the five training trajectories by
choosing 50% of the total trajectory data without replacement
in order to generate 10 models for each value of the threshold
hyperparameter. For STLSQ, we then sweep over 300 val-
ues of increasingly large hard thresholds, and determine the
best threshold by the minimal, finite-sample-size-corrected,
Akaike information criterion (AIC) [80] averaged over the 10
models generated by subsampling,

AIC = M log(‖ẊTrue−ẊSINDy‖2
2)+2k+

2k(k+1)
(M− k−1)

, (6)

where k = ‖ξSINDy‖0 and ẊTrue and ẊSINDy are both com-
puted from the test trajectories. The AIC is a well-known sta-
tistical metric for comparing models while balancing sparsity
and accuracy [80]. This systematic process requires the iden-
tification of 300× 10× 70 = 210,000 models. Despite the
large number of models to generate, the entire procedure for
STLSQ takes about 10 minutes to run on single Intel Core i9-
7920X 2.90GHz CPU. After the best threshold is determined
via this Pareto sweep, the corresponding ten models allow us
to characterize a distribution of identified coefficients and er-
rors. The other SINDy algorithms are tuned similarly for their
respective hyperparameters. The SR3 algorithm has an extra
parameter ν that we set to either 1 or 0.1 since these values
tend to work well on clean data and it avoids additional hy-
perparameter scanning.

The use of SINDy, rather than more sophisticated sys-
tem identification methods, facilitates very fast calculation of

∗Another common metric is the recovery rate [119], which returns a discrete 0
or 1 value for each correctly identified term in the equations. However, small
errors may result from insufficient hyperparameter tuning, noise in the data,
insufficient optimization convergence, and many other sources. Moreover,
it is often useful to penalize large coefficient errors more than small ones.
Thus, we omit the recovery rate metric in this work but mention it for future
investigation.

many models. For instance, previous work [125] investigat-
ing mostly genetic programming algorithms for symbolic re-
gression required roughly 200 core-hours per algorithm per
dynamical system in order to generate a best model from the
Pareto front. In contrast, using STLSQ we require roughly ∼
10−3 core-hours per dynamical system to generate our Pareto-
optimal model, consistent with findings elsewhere [1, 126].
This speed is required because the systematic process we have
outlined requires generating O(105) SINDy models per algo-
rithm.

E. Dynamical properties

Systems of differential equations can often be effectively
classified by various dynamical properties. Now that the dy-
namical systems used in the present work have been intro-
duced, we define a set of dynamical properties for testing
sparse system identification performance: the degree of chaos,
the degree of scale separation, the syntactic complexity of the
underlying equations, and the amount of nonlinearity. In the
present work, the degree of chaos is measured by the largest
Lyapunov exponent. The degree of scale separation is taken
as the system’s dominant timescale divided by the system’s
smallest significant timescale as determined by the method in
Gilpin [1]. The syntactic complexity is quantified as the de-
scription length, representing the number of bits to describe
every object in the equations. Lastly, the amount of nonlin-
earity is taken as sum of the total number of terms in the
equations, weighted by each term’s polynomial degree, so
it is a mix between the degree of nonlinearity and the num-
ber of equation terms. For more precise definitions and dis-
cussion of the metric choices, see Appendix C. A summary
of the nonlinearities appearing in the dynamical equations is
shown in Fig. 2, indicating that most of the systems exhibit
strong quadratic nonlinearity. Quadratic nonlinearity is com-
mon in reduced-order models of fluids and many other dynam-
ical systems, e.g. the Lorenz or Rossler systems, because of
the quadratic nonlinearity coming from the convective term
of the material derivative. Ten systems exhibit up to cubic
nonlinearity and only two systems have quartic nonlinearity.
Fig. 3 summarizes the distribution of the remaining dynami-
cal properties, indicating a wide range of values taken by the
dataset.

III. RESULTS

We now demonstrate the utility of combining dysts with
PySINDy by illustrating a series of benchmark experiments
to better understand performance tradeoffs of sparse system
identification variants. Now that we have explained the char-
acteristics of the database, the sparse system identification al-
gorithm, the error metrics, and the dynamical properties of
interest, we illustrate the results of our investigations with
the standardized, Pareto-optimal SINDy models. We empha-
size that the entirety of these results are reproduced as ex-
amples in the PySINDy code and the following investigations

https://github.com/dynamicslab/pysindy/tree/master/examples/16_noise_robustness
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FIG. 2: Total number of polynomial terms in each equation, for each polynomial degree. It can be seen that quadratic
nonlinearities are dominantly represented.
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FIG. 3: Distributions of the different properties of the
dynamical system used in this work.

use Pareto-optimal identified models that have been chosen by
producing the minimal AIC in a hyperparameter scan.

A. Comparison of SINDy algorithms

As an illustration of this methodology and database, we
compare Pareto-optimal models for a class of SINDy algo-
rithms: STLSQ, Lasso, SR3 (fixing the ν hyperparameter to
1 or 0.1), and MIOSR. Additionally, we use the STLSQ op-
timizer with the weak form implementation in the PySINDy
code in order to compare with the traditional method. Al-
though not shown in this work, the weak formulation can also
be used with any of the other PySINDy optimizers with min-
imal modification. Weak form runs were performed with the
other algorithms and similar trends were seen between algo-
rithms, so we have omitted these results. The weak form uses
200 subdomains, which becomes 200 points to use in the opti-
mization, rather than the 1000 trajectory points used in the tra-
ditional optimization. This many subdomains is probably ex-
cessive; it was found empirically that, after 100 subdomains,
there is essentially no further improvement (in fact just 10 sub-
domains is much faster to compute and still performs quite
well). The MIOSR optimizer is set to use no more than five
seconds to solve and prove optimality per state variable. The
limit of five seconds is rarely invoked with clean data but more
often invoked once the data has 1% added noise.

The results were generated by the process outlined earlier
in Section II D. Figure 4a illustrates the Pareto-optimal model
performances for each of the SINDy algorithms. Results are
shown for both clean data and data with 1% added noise.
These results illustrate the known insufficiency of the Lasso
for generating high-performance system identification results,
although the Lasso degrades less than some of the other opti-
mizers as noise is added. On the clean data, the remainder of
the optimizers regularly produce models with Ecoef < 1% and
ERMSE < 10%.

For additional evidence that these are accurate dynamical
models, Fig. 5 illustrates the Pareto-optimal STLSQ model
simulations of ten trajectories from new initial conditions
starting slightly off each of the strange attractors. An increas-
ingly grey-tinted background indicates an increasing number
of simulated trajectories that went unstable in the ODE solver.
Overall, the major conclusion is that, without noise, Pareto-
optimal SINDy models regularly produce new trajectories that
recreate the strange attractor of each chaotic system, meaning
that the dynamical features such as the Lyapunov spectrum
can be accurately computed.

B. Weak formulation results

The weak or integral form of SINDy [97, 98, 100] subdi-
vides the time span of the trajectories and considers integrals
of the ODEs over these subdomains. This method then avoids
the calculation of derivatives on noisy data and subsequent
noise amplification by integrating by parts when appropriate.

The results in Figure 4a indicate that the weak formulation
performs extraordinarily well in producing the correct equa-
tion coefficients. The weak form ERMSE results appear slightly
less impressive for a rather technical reason. We are comput-
ing the pointwise ERMSE defined in Eq. (5) in order to com-
pare against the other optimizers. Unlike the other optimiz-
ers, ERMSE (of the training data) is not directly minimized in
the weak formulation of the problem; the weak form solves
its optimization problem by minimizing an error metric that
is integrated over the subdomains. Despite not directly mini-
mizing these quantities, the weak form still generally obtains
the smallest values of ERMSE.

These results provide compelling evidence for the consider-
able strength of the weak formulation. Interestingly, the typ-
ical justification for the high performance of weak formula-
tions of sparse regression is that it allows the user to avoid am-
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(a)
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FIG. 4: (a) Summary of the average errors for each optimization algorithm, without noise (top two rows) and with 1% noise
(bottom two rows), on all 70 chaotic systems. STLSQ and MIOSR generally produce the best models of the traditional
optimizers. Lasso has weak performance, and SR3 seems to require additional hyperparameter scanning to avoid substantial
errors when noise is present. The weak formulation with STLSQ identifies the coefficients extremely well and demonstrates the
substantial advantages of using the weak form. (b) Algorithm average and median performance aggregated over all the
dynamical systems. Marker colors indicate different optimizers, and the marker shapes indicate the type of error. All runs were
performed serially with an Intel Core i9-7920X 2.90GHz CPU.

plifying noise when computing derivatives of the data. How-
ever, we find significant improvements with the weak formu-
lation even when there is no added noise – only the intrinsic
and unavoidable “noise” of finite sampling rates. Even further,
the weak formulation results are not truly Pareto-optimal; the
threshold value for STLSQ is still scanned but the additional
hyperparameters available in the weak form are just fixed to a
set of plausible values. Combined, we consider these results
persuasive for using the weak formulation whenever possible.
For flexible usage, the weak formulation is entirely integrated
into the feature library functionality of the PySINDy code,
and therefore can be used with any of the current or future
optimizers, or with any generic library terms of interest.

C. Greedy vs exact algorithms

MIOSR is an exact mixed-integer algorithm that can often
solve the l0-regularized (i.e. nonconvex) SINDy problem to
optimality. In contrast, the STLSQ algorithm solves this prob-
lem greedily, meaning it chooses the best model on a subset
of the coefficients at each iteration, and it cannot recover from
thresholding mistakes that occur in earlier iterations.

On the noisy data, the MIOSR algorithm seems to outper-
form the others, while with clean data all of the non-weak al-
gorithms perform similarly well except for Lasso. With clean
data, the SR3 algorithms very well. Some variation is seen
with SR3 between the ν = 1 and ν = 0.1 cases but a clear
trend is not distinguishable. The SR3 errors become signif-
icantly larger as noise is added and these results seem to in-
dicate that hyperparameter scans over ν are required for high
performance when noise is present. All of the optimizer per-
formances degrade somewhat when noise is added. These
overall takeaways are summarized further in Figure 4b.

At 1% noise, STLSQ and MIOSR show performance ad-
vantages over the other optimizers. As measured by the aver-
age coefficient errors, MIOSR leads the group. STLSQ at 1%
noise exhibits a small number of very large RMSE errors and
this tends to reduce the average performance. This is consis-
tent with the explanation that greedy methods can increasingly
make catastrophic mistakes as the noise levels increase. This
trend can also been seen to an extent in the weak formulation
results since the optimization is still being performed greedily
with STLSQ.

One takeaway is that the MIOSR algorithm performs well,
as we might expect for an exact mixed-integer optimization.
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FIG. 5: Pareto-optimal SINDy STLSQ model simulations
(red) vs true trajectories (black) in the (x1,x2) subspace using
ten new initial conditions. Greyer backgrounds indicate more
unstable trajectories, which are otherwise not pictured.

However, Fig. 4b shows that, at larger levels of noise, the
MIOSR algorithm requires much more computing time than
the other algorithms. This is true despite putting a time limit
on the computation, but it is reassuring that strong perfor-
mance is seen even if the optimizer does not finish finding
a solution to optimality. Indeed, as is pointed out in detail in
Bertsimas et al. [116], MIOSR runs slower when the regres-
sion is harder, e.g. in the noisy setting, but the computational
efficiency scales very well with the amount of data and addi-
tionally sees substantial speedups with parallelization or bet-
ter CPUs than used in this work. However, our results appear
to show MIOSR does not significantly dominate the other al-
gorithms in our chosen performance metrics. This difference
with the results in Bertsimas et al. [116] may be because their
performance metric focus is primarily on the true positive rate
of the model coefficients, and their MIOSR results are most
impressive in the low-data limit.

In fact, these results also highlight the strong performance
of the STLSQ algorithm; STLSQ appears relatively robust to
noise, very fast to compute (regardless of the noise level),
and, for the most part, generates models of comparable per-
formance to MIOSR. Even at 1% noise, the errors that ac-
cumulate from the greedy nature of STLSQ appear tolerable.
These optimizers were not tested at larger values of noise. It
is well known that weak or integral formulations of the opti-
mization problem are required for retaining high performance
in the high-noise setting [94, 97, 99]. This fact is clearly rein-
forced by the impressive weak form performance in Fig. 4a.

D. Dynamical properties

A pressing question for practitioners of system identifica-
tion is whether certain types of dynamical systems are more
difficult to identify than others. For instance, some meth-
ods are specifically designed to search for Hamiltonian sys-
tems [127–129]. Another example is that traditional RNNs
should be modified for modeling chaotic systems in order to
avoid unbounded gradients [130].

We now present an investigation into the importance of the
dynamical properties with respect to the performance of the
various SINDy optimizers. The required data and compu-
tations for this analysis have already been generated in the
previous section. For each chaotic system in our dataset, the
errors of the Pareto-optimal models are sorted by the dynam-
ical property in question, and some simple data fits are at-
tempted: linear, log-linear, and log-log. Linear fits between
log(ERMSE) and the scale separation seemed to produce the
largest R2 coefficient of determination for all the optimizers,
and similarly for log-log fits between log(ERMSE) and the log-
arithm of the remaining dynamical properties. We make no
claims that these simple fits to the data best capture the cor-
relations, but rather they are used to roughly quantify if there
are correlations between increasing dynamical property val-
ues and worsening system identification performance.

Visual inspection of the different dynamical property fits for
the weak form STLSQ optimizer at 0.1% noise in Fig. 6 does
seem to indicate that, on average, the optimizer performance
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STLSQ (weak), noise 0.1%

MIOSR, noise 1%

FIG. 6: Two illustrations of the ERMSE results for the Pareto-optimal STLSQ optimizer (weak form) on data with 0.1% noise
and for the MIOSR optimizer at 1% noise. The STLSQ result suggests that ERMSE grows quickly with the scale separation. The
MIOSR algorithm produces weak log-log trends with the other three dynamical properties tested in this work, although these
trends strengthen as noise increases.

rapidly drops as the scale separation increases. Similarly, vi-
sual inspection of the different dynamical property fits for the
MIOSR optimizer at 1% noise in Fig. 6 indicates that log-
log fits to the data weakly capture the optimizer performance
for all of the dynamical properties except the scale separation,
which shows no clear trend.

All of the best R2 coefficients of determination are illus-
trated in Fig. 7 for each optimizer, each dynamical property,
and for noise levels of 0, 0.1, and 1%. Most of the R2 val-
ues are below 0.25, indicating that the dominant behavior is
that the optimizers produce results that are approximately in-
dependent of the dynamical properties. Nonetheless, there ap-
pear to be some intriguing trends; for instance, the weak for-
mulation ERMSE shows substantial correlation with the scale
separation. MIOSR seems to increasingly correlate with the
dynamical properties (except that of scale separation) at larger
values of noise.

These results suggest that there are some relatively persis-
tent but quite weak correlations with the underlying dynami-
cal properties of the equations. Moreover, which correlations

dominate appears to depend on the level of noise in the data
and the choice of optimization algorithm.

Our large experiments are a strong affirmation of the “Task
4” result in Gilpin indicating that SINDy model results were
independent of the level of chaos [1]. Our metric for the de-
gree of chaos in the system is a rather coarse measure, but
similar results were found in both Gilpin and the present work
when alternative metrics for chaos were used. The lack of
correlation with the description length is an interesting and
potentially counter-intuitive discovery. To be more specific, if
the dynamical terms live in the subspace of the feature library,
the quality of Pareto-optimal models generated by sparse re-
gression onto data seems to be approximately uncorrelated
with the length or complexity of the underlying dynamical
equations. This could be seen as a positive result. If ade-
quate functional terms are available to describe the underly-
ing dynamics, and the data is high-quality, the complexity of
the equation factors out. This motivates large and expansive
libraries, although this will generally increase the condition
number of the feature library and therefore require additional
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FIG. 7: Summary of the weak R2 coefficients of determination found between each optimizer’s Pareto-optimal ERMSE and the
dynamical properties, choosing the best fit from linear, log-linear, and log-log regressions. Some differing trends can be
observed for each optimizer. Even weaker correlations are found between Ecoef and the dynamical properties (not pictured).

regularization and shift the Pareto-front.
At 1% noise levels, the quality of the Pareto-optimal mod-

els generally drops; for instance, a typical result with STLSQ
produces only a few models with less than 10% ERMSE and
eight of the models are not able to produce any new trajecto-
ries (starting from slightly off the attractor) that either stay
bounded or remotely match the qualitative behavior of the
strange attractor.

IV. CONCLUSIONS

The methodology and analysis in the present work has
shown that sparse system identification can be used to identify
the dynamics of 70 polynomial chaotic systems, reproducing
the strange attractors and therefore reproducing the fundamen-
tal dynamics. We extensively used sub-sampling to generate
large ensembles of models, utilized the AIC to identify ensem-
bles at the optimal hyperparameter values, and relied on the
computational speed of sparse linear regression to compute
over one million dynamical models in just two days worth of
CPU time (mostly expended during the MIOSR algorithm).

This methodology was used to benchmark a variety of dif-
ferent SINDy optimizers, finding that: STLSQ & MIOSR
produce the best performance, Lasso is relatively robust to
noise but otherwise lower performance, and large-scale fit-
ting with SR3 requires additional hyperparameter scanning for
high performance. As significant noise is added to the data,

STLSQ retains its fast computational speed but starts making
“greedy” mistakes that cannot be recovered from, while con-
versely, MIOSR slows down considerably but can retain its
strong performance for most systems. Lastly, we find very
persuasive evidence that the weak formulation provides sig-
nificant performance improvements across the database, even
in the zero-added-noise setting. The weak form can be used
with any of the PySINDy optimizers and we recommend us-
ing the weak formulation for almost all cases. Similarly, sub-
sampling the data to create an ensemble of SINDy models [94]
is highly recommended, especially in the presence of noise.

We have also presented one of the first large-scale and quan-
titative analyses into how sparse regression depends on the
dynamical properties of the underlying governing equations.
Overall, we found very weak correlations between the dy-
namical properties and the performance of the Pareto-optimal
SINDy models, with some noteworthy deviations, providing
a foundation for more sophisticated investigations in future
work.

There are many opportunities for future work that builds
on the database and analysis presented here. Examples in-
clude further improvements to recent and important work ad-
dressing partial measurements [89, 131], the low-data high-
noise regime [94, 116], extended feature libraries (which can
already be built in PySINDy), and algorithm comparisons
with convex constraints. For instance, most of the optimizers,
STLSQ, SR3, Lasso, and MIOSR, can in principle accommo-
date general convex constraints. However, future PySINDy
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work is required to implement these options. Currently, con-
straints with STLSQ [33] and Lasso are not supported, while
SR3 constraints in PySINDy (except linear equalities) rely on
a CVXPY [132] backend which significantly slows down the
algorithm. See e.g. Kaptanoglu et al. [133] for a much faster
SR3 algorithm with quadratic inequality constraints.

There are also numerous other dynamical metrics, sparse
system identification algorithms, subsampling methods, types
of dynamical systems (i.e. not just those defined by poly-
nomial dynamics), and other parameters to systematically
test. Although it is beyond the scope of this work, the dysts
database facilitates another very interesting line of inquiry –
building data-driven models for predicting chaotic bifurca-
tions in global dynamical behavior, e.g. between exhibiting a
strange attractor and a stable periodic solution. Additional fu-
ture work could perform a quantitative analysis of how invari-
ant manifolds affect the performance and usefulness of system
identification; this topic is discussed in Appendix C. Lastly,
many dynamical or engineering-focused metrics, such as the
description length of the equations, can be directly minimized
during the optimization and this may change the qualitative
conclusions found in this work with the baseline SINDy op-
timization problem, especially since the present work found
that the correlations are weak between model performance
and the metrics tested.
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Appendix A: How to use this benchmark

The goal of the present work is to provide a systematic ap-
proach to benchmark new and existing innovations in the field
of sparse system identification. In order to do so, we have
endeavored to provide simple, intuitive scripts, built on the
open-source PySINDy code. A script for performing the type
of Pareto-optimal scans in this work can be found in one of
the PySINDy code examples. It contains options for the user
to specify (1) the data (including the number of points, sam-
pling rates, etc. of the training and testing trajectories), (2) the
optimization algorithm, and (3) the feature library (including
whether to normalize the feature library, how to subsample the
data for making model ensembles, and the number of models
to generate for making statistical conclusions). For the dysts
database, it shows additionally how to aggregate all the equa-
tions and their associated dynamical properties. The entirety
of the results in this work can be reproduced by running the
run_all.py script in the same directory.

The PySINDy code is regularly updated with new methods
from the literature and now contains many SINDy variations

and advanced functionality. New algorithms, feature libraries,
subsampling strategies, and more can be readily added into
the PySINDy code and then immediately used with the scripts
mentioned above. Much of the backend for forming general
SINDy libraries and new optimizers is already pre-made in the
code and should significantly reduce the overhead designing
and testing new algorithms.

Appendix B: Small model errors and associated instability

True sparse regression is a nonconvex problem because of
the l0 loss term in the objective function. The l1 loss term is
often used in place of the l0 since, under certain conditions, it
will produce the same solution with high probability [134].
When these conditions are not met, the Lasso is known to
weakly choose irrelevant features [135]. Furthermore, even
the optimally-solved l0-regularized problem can fail to pre-
dict exactly the correct features when the data is sufficiently
corrupted by noise. In the context of system identification,
small model errors can generate significant issues.

For instance, very small errors in the model identification
can cause finite-time and unphysical instability when gener-
ating new trajectories from the identified models (although
this is not an issue if the user merely seeks to find an ap-
proximation of the equations rather than to use them for gen-
erating new trajectories). In the case of fourth order poly-
nomials, we can use the following heuristic. We would ex-
pect that small coefficient errors on the third and fourth order
terms will almost inevitably produce instability on some tra-
jectory since these terms will be negligible near the origin (or
near the attractor) but an initial condition can always be cho-
sen far enough from the origin in order to make high order
terms dominant. Only in the constrained [33] and stability-
promoted [82] settings should we expect that most (or all)
trajectories generated from the identified models are stable.
Finite-time blow up of the solution obviously prevents a rea-
sonable comparison of the RMSE error of X (rather than Ẋ)
and additionally prevents calculation of the Lyapunov spec-
trum and other dynamical properties of interest.

There are two half-remedies: only test the model with tra-
jectories with initial conditions reasonably close to the strange
attractor(s) and avoid rescaling the SINDy matrix. The first
remedy comes from the intuition that small coefficient errors
on high-order terms will only become dominant in regions of
the state space sufficiently far from the origin. The latter rem-
edy is also intuitive if we consider the STLSQ algorithm. It
has been previously noted, e.g. in Delahunt et al. [85], that
if x(t) ∼ 10 on the strange attractor, the two terms x(t) and
0.1x2(t) will contribute similarly to the time evolution, yet
the latter term will be the first term to be truncated by an al-
gorithm that relies on some version of hard-thresholding the
smallest coefficients in the equations. Rather than seeing this
as a problem of the algorithm, we can view this instead as
an algorithmic bias towards describing each system with low
order polynomial terms, which we expect should contribute
indirectly to boundedness. Unfortunately, the opposite is true
if x(t) ∼ 0.1, so it can be useful to rescale the different dy-

https://github.com/dynamicslab/pysindy/tree/master/examples/16_noise_robustness
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namical systems so that this thresholding mismatch is all in
the same direction for the entire database. Although not ex-
plored in this work, minimizing an objective function related
to the Nt -step SINDy model prediction as in e.g. Kaheman et
al. [87] or Bakarji et al. [89], rather than the traditional single
time-step prediction, should generally improve the model sta-
bility but at the expense of nonconvexity (it is no longer sparse
linear regression).

Lastly, even when the identified models are essentially per-
fect and reproduce the strange attractor(s), reporting the X
RMSE error for chaotic systems can often be profoundly mis-
leading, since inevitably there will be (initially exponentially
large and then bounded) errors in the trajectory RMSEs from
tiny errors in the integration, identified coefficients, and so
on. We found it much more convincing to simply show vi-
sually that, with new initial conditions, the identified models
can approximately reproduce the correct attractors, and there-
fore accurate calculations of the Lyapunov spectrum and other
dynamical properties are possible.

Appendix C: Dynamical property definitions

In this section we provide precise definitions for the dynam-
ical properties computed and analyzed in the present work.

1. The amount of chaos can be measured in numerous
ways [1], and a common choice is the largest Lya-
punov exponent. The largest Lyapunov exponent mea-
sures the rate at which trajectories from two initially
infinitesimally-close points exponentially separate as
time evolves [136]. This exponent can have very large
variation over a trajectory, so it is usually considered
as a global average. There is some evidence [1] that
deep symbolic regression [119] and recurrent neural
networks see degraded performance at higher levels of
chaos [130].

2. The degree of scale separation could be defined through
a ratio of the largest timescale to smallest timescale in
the underlying equations. However, these timescales
are not typically well-defined even for polynomially
nonlinear systems, so we could instead use the ratio
of the largest to smallest Lyapunov exponents. As be-
fore, the Lyapunov spectrum can often vary tremen-
dously over a trajectory and therefore this is quite a
coarse measure of scale separation. For a much im-
proved metric to measure scale separation, we use the
dominant timescale divided by the smallest significant
timescale as defined in Gilpin [1]. To see why this mea-
sure of scale separation might be dynamically relevant
to symbolic regression, consider the following simpli-
fied model

ẋ1 = f (x1,x2), (C1)

ẋ2 =
1
ε

g(x1,x2),

for ε � 1 and assuming the existence of a strange at-

tractor, as in the case for our dataset. Following the
standard derivation for invariant manifolds [137], on
long time intervals (compared to the ε timescale) x2(t)
quickly finds an equilibrium parametrized as x2(t) ∼
η(x1(t)), and is functionally controlled by the x1(t)
evolution. The conclusion is the existence of an invari-
ant manifold defined by

ẋ1 = f (x1,η(x1)), (C2)
ẋ2 = ∂x1η(x1)ẋ1 = ∂x1η(x1) f (x1,η(x1)),

which is a manifold in the (x1,x2) state space. If few
data points are available for the period when t ∼ ε (or,
equivalently, if the initial value x2(0) starts close to the
equilibrium or strange attractor), we cannot reasonably
expect that Eqs. (C1) and (C2) can be distinguished. In
other words, we might expect that for the best symbolic
regression results (i.e. results that correctly capture the
dynamical terms necessary to converge to the strange
attractor from initial conditions starting substantially
off the attractor) we need to use initial conditions far
from the equilibrium, and resolved at the smallest time
scale. This intuition is given some additional practical
and theoretical justification in Bucci et al. [138]. It is
shown explicitly that trajectories from linearly unstable
fixed points contain less entropy, i.e. less information,
than trajectories starting on the attractors, since near the
fixed points only the linear terms are active and infor-
mation about the nonlinearities cannot be gleaned. Sim-
ilarly, on the attractor there is a balance of terms that
reduces the information available about the equation
terms, relative to some generic trajectory in the phase
space. Some chaotic systems can have effective dimen-
sions on the attractor that are significantly smaller than
the state space dimension.
There is another important note to make here. We know
that Eqs. (C1) are discoverable with the pre-defined,
fourth-order polynomial feature library used for sym-
bolic regression. This is not guaranteed for the equa-
tions defining the invariant manifold, and thus we may
still find the correct equations simply because the more
specific invariant manifold equations are not accessible
in the regression. Proceeding down this line of analysis
is complex and further complicated by the fact that of-
ten polynomial terms are very close to linearly depen-
dent and therefore multiple sparse models may fit the
data well [85].
In order to sample trajectories while they are off the
attractor, i.e. when t ∼ ε , we need to sample each
period such that ∼ ε−1 points are generated, greatly
increasing the required sampling resolution. Alterna-
tively, a more sophisticated weighting strategy may be
employed. There has been some recent symbolic re-
gression work [139–142] connecting system identifica-
tion and invariant manifolds. An interesting future in-
vestigation could attempt to identify the map η(x1(t))
by searching for Eq. (C2) with the constraint that library
terms for ẋ2 must be proportional to ẋ1. These types of
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constraints are already implemented in PySINDy.

3. The syntactic complexity of the model has been consid-
ered in earlier work as useful for both direct optimiza-
tion and as a post-fit metric [143]. There are many pos-
sible definitions of syntactic complexity, but we adopt
the approximate description-length metric [144] since
the description length has been used in a number of con-
texts for direct optimization and has a natural interpre-
tation as approximating the number of bits to describe
each object in the equations.

4. The amount of nonlinearity is also not typically well-
defined. The highest degree of nonlinearity can be de-
fined as the largest polynomial appearing in the equa-
tions governing each system, and previous work has
used this definition for a complexity measure in sparse
regression [145]. However, some systems have many
quadratic nonlinear terms, and we might consider such
systems very nonlinear despite the lack of higher-order
polynomials. As a basic metric to trade-off between
these considerations, we consider a weight vector wi =

[1,2,3,4,5] and for each system simply report

Nnonlinearity =
d

∑
j=1

5

∑
i=1

wi‖xi−1 terms in equation j‖0. (C3)

In other words, we sum all of the terms present in the
coupled set of ODEs, weighted by the polynomial de-
gree of each term. This includes the linear and constant
terms, so it is a mix between the degree of nonlinearity
and the number of equation terms. Because this defi-
nition takes into account the number of terms, there is
presumably some overlap with the information captured
by the description length metric.

We make no claims that any of these metrics are the most
compelling choice for capturing the particular dynamical in-
formation, but each metric seems to capture an important as-
pect. A substantial discussion on some of these points can be
found in Murdoch et al. [146]. Future work could investigate
more sophisticated metrics such as the stiffness or integrabil-
ity of the identified ODE systems, or investigating the corre-
sponding stability features of the models. For generic nonlin-
ear ODE systems, investigating stability seems intractable, but
there is a significant volume of literature for finding Lyapunov
functions for polynomially nonlinear systems [147, 148]. Op-
timizing stiffness [149] and stability would be additionally
useful for finding models that can be used for applying chaos
control [150].
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