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Abstract Master equations are commonly employed in
cosmology to model the effect of additional degrees of free-
dom, treated as an “environment”, onto a given “system”.
However, they rely on assumptions that are not necessar-
ily satisfied in cosmology, where the environment may be
out of equilibrium and the background is dynamical. In this
work, we apply the master-equation program to a model that
is exactly solvable, and which consists of two linearly cou-
pled scalar fields evolving on a cosmological background.
The light field plays the role of the system and the heavy
field is the environment. By comparing the exact solution to
the output of the master equation, we can critically assess
its performance. We find that the master equation exhibits
a set of “spurious” terms that explicitly depend on the ini-
tial conditions, and which arise as a consequence of work-
ing on a dynamical background. Although they cancel out
in the perturbative limit of the theory (i.e. at leading orders
in the interaction strength), they spoil resummation. How-
ever, when those terms are removed, the master equation
performs impressively well to reproduce the power spectra
and the amount of the decoherence of the light field, even
in the strongly decohered regime. We conclude that master
equations are able to perform late-time resummation, even
though the system is far from the Markovian limit, provided
spurious contributions are suppressed.
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1 Introduction

According to the standard model of cosmology, all structures
in our universe emerge from the gravitational amplification
of vacuum quantum fluctuations at early times. This idea
is supported by the data, e.g. the measurements of the cos-
mic microwave background anisotropies [1], which reveal
that primordial fluctuations are almost scale invariant, quasi
Gaussian and adiabatic. Those observations are consistent
with a phase of primordial inflation, driven by a single scalar
field along a smooth potential.

However, most physical setups that have been proposed to
embed inflation contain a large number of additional degrees
of freedom [2]. Even if they provide negligible contribu-
tions to the dynamics of the universe expansion, they may
affect the emergence of cosmic structures in various ways.
For instance, they could lead to entropic fluctuations, or to
deviations from Gaussian statistics, that future cosmologi-
cal surveys might be able to detect [3,4]. They may also
contribute to processes occurring after inflation (such as the
production of curvature perturbations [5], dark matter [6], or
dark energy [7,8] ) but that crucially depend on the way those
extra fields are excited during inflation. At the more funda-
mental level, additional degrees of freedom may also alter
the quantum state in which primordial density fluctuations
are placed, in particular through the mechanism of decoher-
ence [9–18]. Decoherence [19–21] is usually associated with
the erasure of genuine quantum signatures so this may affect
our ability to prove or disprove that cosmic structures are of
quantum-mechanical origin [22,23].

For those reasons, it has become of increasing impor-
tance to design reliable tools to model the presence of addi-
tional degrees of freedom in the early universe [24–40] . One
such approach is the so-called master equation program (see
for instance Refs. [41,42]), where an effective equation of
motion is obtained for the reduced density matrix of a “sys-
tem” of interest, once the degrees of freedom contained in
the “environment” have been traced out. One of its appeal-
ing advantages is its ability to resum late-time secular effects
[43–49] , hence to go beyond standard perturbation theory

and implement non-perturbative resummations in cosmol-
ogy.

However, master equations were primarily developed in
the context of quantum optics, so they rely on assumptions
(e.g. that the environment comprises a large reservoir in ther-
mal equilibrium) that are not necessarily satisfied in cosmol-
ogy. There, since the background is dynamical, the Hamilto-
nian is time-dependent [50] and the environment is generally
out-of-equilibrium [51]. This is why, in this work, we want
to understand under which conditions the master-equation
program can be employed in cosmology, and what physical
insight one shall expect to get out of it.

We address this issue by considering a toy model that is
exactly solvable, such that the output of master equations
can be compared to the exact result and examined in a crit-
ical way. This allows us to benchmark master equations. In
practice, we consider two linearly coupled scalar field evolv-
ing on a homogeneous and isotropic universe. The model has
been solved exactly in Refs. [52,53], where it has been shown
that each Fourier sector is placed in a four-mode squeezed
state, which is a Gaussian state. By tracing over the heaviest
field, one obtains the reduced state of the lightest field, which
follows a non-unitary evolution, and which can be compared
with the predictions of different approaches, such as master
equations or standard perturbative techniques. In this model,
the environment does not reach thermal equilibrium, and as
we will show the Markovian limit [54] is not attained either.
This is why it is a priori challenging for conventional master-
equation approaches to properly describe its dynamics.

The rest of this article is organised as follows. In Sect. 2,
we introduce the master-equation formalism, and clarify the
levels at which the different approximations enter the cal-
culation. In Sect. 3, we introduce the cosmological model
mentioned above, and show how it can be solved exactly. We
then apply the master-equation program to this setting, and
find that it exhibits a set of terms that we dub “spurious”.
These terms do not exist in the perturbative limit of the the-
ory, and they prevent resummation due to their dependence
on the initial conditions. In Sect. 4 we then analyse the abil-
ity of the master equation to reproduce the power spectra
of the model, as well as to predict the amount of quantum
decoherence, when spurious terms are removed “by hand”.
We find that master equations are impressively efficient in
that case, even in the strongly decohered regime, and that
they perform much better than standard perturbative meth-
ods (such as e.g. the in-in formalism). This also leads us to
draw a few conclusions as to whether a heavy scalar field can
efficiently decohere cosmological fluctuations. In Sect. 5, we
summarise our main findings and further discuss the status of
the spurious terms. The paper ends by a few technical appen-
dices, to which we defer the derivation of some of the results
given in the main text.
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2 The master-equation bestiary

The master-equation program proposes to describe the quan-
tum state of a system when it weakly couples to an environ-
ment. In practice, one considers a Hamiltonian of the form

̂H = ̂HS + ̂HE + ĝHint, (2.1)

where ̂HS and ̂HE respectively denote the Hamiltonians for
the system and the environment in the absence of interactions,
and ĝHint is the interaction term, controlled by the coupling
constant g. The system alone is described by the reduced
density matrix, which is obtained from the full density matrix
by tracing over the environmental degrees of freedom,

ρ̂red = TrE(ρ̂). (2.2)

An evolution equation for ρ̂red can be derived with different
levels of approximation, corresponding to as many different
master equations. In this section, we review the most common
master equations, see Ref. [41] for further details (readers
already familiar with the master-equation basic tools may
want to skip this section and jump to Sect. 3).

2.1 An exact master equation: the Nakajima–Zwanzig
equation

Our first step is to derive an exact, formal master equa-
tion, before applying an approximation scheme. Hereafter
we work in the interaction picture, where quantum states
evolve with the interaction Hamiltonian ĝHint and operators
evolve with the free Hamiltonian, i.e. the Hamiltonian in the
absence of interactions ̂H0 ≡ ̂HS + ̂HE. Operators in the
interaction picture are denoted with an overall tilde, in order
to make the distinction with the Schrödinger and Heisenberg
pictures where they carry an overall hat. The link between
the Schrödinger and the interaction picture is given by

ρ̃(η) =̂U†
0 (η)ρ̂(η)̂U0(η) and

˜Hint(η) = ̂U†
0 (η)̂Hint(η)̂U0(η),

(2.3)

where η denotes time and where we have introduced the free
evolution operator

̂U0(η) = T exp

[

−i
∫ η

η0

̂H0(η
′)dη′

]

= T exp

[

−i
∫ η

η0

̂HS(η′)dη′
]

⊗ T exp

[

−i
∫ η

η0

̂HE(η′)dη′
]

,

(2.4)

with T indicating time ordering (time arguments increase
from right to left). In this work we employ natural units where
h̄ = c = 1. As mentioned above, in the interaction picture the

total density matrix evolves with the interaction Hamiltonian,

dρ̃

dη
= −ig

[

˜Hint(η), ρ̃(η)
] ≡ gL(η)ρ̃(η), (2.5)

which defines the Liouville–Von-Neumann super-operator1

L.
Let us now introduce the projection super-operator P ,

defined as

P ρ̃ = TrE (ρ̃) ⊗ ρ̃E, (2.6)

where ρ̃E is a fixed reference state in the environment. In prac-
tice, it is taken as the state of the environment in the absence
of interactions with the system, which is indeed constant in
the interaction picture. One can check that P is a projector,
i.e. P2 = P , and that P ρ̃ contains the relevant information
to reconstruct the reduced state (2.2) of the system. Upon
applying the super-projector P and its complementary pro-
jector Q = Id − P to Eq. (2.5), one obtains

∂

∂η
P ρ̃(η) = gPL(η)ρ̃(η), (2.7)

∂

∂η
Qρ̃(η) = gQL(η)ρ̃(η). (2.8)

Here we have used that since the reference state ρ̃E is inde-
pendent of time, P and Q commute with ∂/∂η. Inserting the
identity Id = P +Q between the Liouville operator and the
density matrix, one obtains

∂

∂η
P ρ̃(η) = gPL(η)P ρ̃(η) + gPL(η)Qρ̃(η), (2.9)

∂

∂η
Qρ̃(η) = gQL(η)P ρ̃(η) + gQL(η)Qρ̃(η). (2.10)

A formal solution of Eq. (2.10) is given by

Qρ̃(η) = GQ(η, η0)Qρ̃(η0)

+ g
∫ η

η0

dη′GQ(η, η′)QL(η′)P ρ̃(η′), (2.11)

where η0 is some initial time and GQ(η, η′) is the propagator
defined as

GQ(η, η′) ≡ T exp

[

g
∫ η

η′
dη′′QL(η′′)

]

. (2.12)

Plugging Eq. (2.11) into Eq. (2.9), one then obtains a closed
equation for the time evolution of the projected density matrix
P ρ̃, namely

1 In this work, following Ref. [41], “super-operator” denotes an oper-
ation which maps positive operators to positive operators.
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∂

∂η
P ρ̃(η) = gPL(η)GQ(η, η0)Qρ̃(η0) + gPL(η)P ρ̃(η)

+ g2
∫ η

η0

dη′PL(η)GQ(η, η′)QL(η′)P ρ̃(η′).

(2.13)

This is the Nakajima–Zwanzig equation. Although formal,
it provides an exact master equation for the reduced state of
the system. It can be further simplified by assuming that the
initial state does not contain correlations between the sys-
tem and the environment, i.e. ρ̃(η0) = TrE(ρ̃) ⊗ TrS(ρ̃) =
TrE(ρ̃) ⊗ ρ̃E, hence Qρ̃(η0) = 0. Moreover, without loss
of generality one can assume that the expectation value of
the interaction Hamiltonian vanishes in the reference state,
i.e. TrE(˜Hintρ̃E) = 0 [if this is not satisfied, one simply rede-
fines ˜HS by adding gTrE(˜Hintρ̃E) ⊗ IdE to it]. This leads to
PL(η)P = 0,2 so the Nakajima–Zwanzig equation reduces
to

∂

∂η
P ρ̃(η) = g2

∫ η

η0

dη′K(η, η′)P ρ̃(η′), (2.15)

where we have introduced the memory kernel K(η, η′)
defined as

K(η, η′) = PL(η)GQ(η, η′)QL(η′)P. (2.16)

In this form, the master equation is as difficult to solve as the
Liouville equation (2.5) of the full setup. However, it allows
efficient approximation schemes to be designed, as we shall
now see. The first approximation relies on the assumption
of weak coupling between the system and the environment
and is discussed in Sect. 2.2, the second approximation con-
cerns properties of the environment itself and is developed
in Sect. 2.3.

2.2 Born approximation: the time-convolutionless
cumulant expansion

An effective description of the system alone is in general
possible only when it weakly couples to its environment.
This naturally provides a small parameter, namely the inter-
action strength, in which to perform an expansion. This is
the so-called Born approximation, which also addresses one

2 This can be shown by computing

PLPρ̃ = −iP
[

˜Hint,Pρ̃
]

(2.14)

= −iP
[

˜Hint, TrE(ρ̃) ⊗ ρ̃E
]

= −i
[

TrE
(

˜Hintρ̃E
)

, TrE (ρ̃)
]⊗ ρ̃E

= 0.

of the difficulties inherent to the Nakajima–Zwanzig equa-
tion (2.15), namely the fact that it is non-local in time, i.e. the
time derivative of P ρ̃(η) depends on its past history P ρ̃(η′)
for η′ < η. The Time-ConvolutionLess projection operator
method (TCL in the following) consists in expanding the
dynamics of the system in powers of the coupling constant
g, rendering the equation local in time (while preserving its
non-Markovian nature3). One thus obtains an equation of the
form

∂

∂η
P ρ̃(η) =

∞
∑

n=2

gnKn(η)P ρ̃(η), (2.17)

where the Kn operators are called the TCLn operators and
can be computed iteratively. This can be done by expand-
ing Eq. (2.12) in g, and by using Eq. (2.17) to express
P ρ̃(η′) in terms ofP ρ̃(η) in the right-hand side of Eq. (2.15),
at the required order. For instance, at leading order in g,
GQ(η, η′) = Id, see Eq. (2.12), so Eq. (2.16) leads to
K(η, η′) = PL(η)QL(η′)P = PL(η)L(η′)P , where we
have used that Q = 1 − P and that PLP = 0, see foot-
note 2. At that order, Eq. (2.15) also indicates that P ρ̃ is
constant hence

K2(η) =
∫ η

η0

dη′PL(η)L(η′)P, (2.18)

and truncating Eq. (2.17) at order n = 2 leads to the TCL2

master equation

dρ̃red

dη

= −g2
∫ η

η0

dη′TrE
[

˜Hint(η),
[

˜Hint(η
′), ρ̃red(η) ⊗ ρ̃E

]]

.

(2.19)

This expansion can be carried on. At order n = 3, one
needs to expand the memory kernel K(η, η′) at order g and
keep P ρ̃(η′) � P ρ̃(η) in the right-hand side of Eq. (2.15),
given that P ρ̃(η′) − P ρ̃(η) = O

(

g2
)

as shown above. One
obtains K3(η) = ∫ η

η0
dη′ ∫ η

η′ dη′′PL(η)QL(η′′)QL(η′)P , so

K3(η) =
∫ η

η0

dη′
∫ η

η′
dη′′PL(η)L(η′′)L(η′)P (2.20)

where we have used again that Q = 1 − P and that
PLP = 0. Note that, if the odd moments of the inter-
action Hamiltonian vanish in the environment (as will be
the case for the model studied in the rest of this work),

3 In this work, following Ref. [41], the dynamical map ρ̃(η) → ρ̃(η′) =
Mη→η′ ρ̃(η) is said to be Markovian if its generators form a semi-group,
i.e.Mη→η′ = Mη′′→η′Mη→η′′ . Note that a Markovian master equation
is necessarily local in time, but the reverse is not necessarily true.
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i.e. TrE[Hint(η1) · · ·Hint(η2p+1)ρ̃E] = 0, a similar calcu-
lation as the one performed in footnote 2 for p = 1 then
shows that PL(η1) · · ·L(ηp+1)P = 0. This implies that K3

vanishes, as well as all odd TCLn generators.
In that case, the leading correction comes from TCL4,

which receives two contributions. The first one comes from
the term of order g2 in the memory kernel K(η, η′) while
keepingP ρ̃(η′) � P ρ̃(η) in the right-hand side of Eq. (2.15).
The second contribution comes from keeping the memory
kernel at leading order but expand P ρ̃(η′) at order g2.
The latter can be formally obtained from the TCL2 equa-
tion, the solution of which reads P ρ̃(η′) = P ρ̃(η0) +
g2
∫ η′
η0

K2(η
′′)P ρ̃(η′′)dη′′. Together with Eq. (2.18), this

leads to

K4(η) =
∫ η

η0

dη1

∫ η1

η0

dη2

∫ η2

η0

dη3

×
[

PL(η)L(η1)L(η2)L(η3)P

− PL(η)L(η1)PL(η2)L(η3)P
− PL(η)L(η2)PL(η1)L(η3)P

− PL(η)L(η3)PL(η1)L(η2)P
]

. (2.21)

This expansion can be carried on to the required level of
accuracy, which allows one to work out Eq. (2.17) when
truncated at the corresponding order TCLn . Note that, even
if the TCL2 order may be sufficient for practical purposes, the
derivation of the fourth-order generator is useful to control
the validity of the cumulant expansion, by evaluating the error
estimate g2||K4||/||K2|| and checking that it is indeed small.

2.3 Markovian approximation: the Lindblad equation

The TCL2 master equation (2.19) is in general not Markovian
in the sense given in footnote 3, since it involves a convolu-
tion over the past history through the integral over η′. How-
ever, a further approximation can be performed that renders
the dynamics Markovian. This leads to the so-called Gorini–
Kossakowski–Sudarshan–Lindblad equation, in short Lind-
blad equation in what follows. It can be obtained by first
decomposing the interaction Hamiltonian as

̂Hint(η) =
∑

i

̂O
(S)

i (η) ⊗ ̂O
(E)

i (η), (2.22)

where ̂O
(S)

i and ̂O
(E)

i form a basis of operators acting on
the system and the environment respectively. Plugging this
decomposition into Eq. (2.19), the TCL2 master equation
reads

dρ̃red

dη
= −

∑

i, j

g2
∫ η

η0

dη′
{

�e
[

K>
i j (η, η′)

]

×
[

˜O
(S)

i (η),
[

˜O
(S)†
j (η′), ρ̃red(η)

]]

+ i	m
[

K>
i j (η, η′)

]

×
[

˜O
(S)

i (η),
{

˜O
(S)†
j (η′), ρ̃red(η)

}]

}

, (2.23)

where {A, B} ≡ AB + BA denotes the anticommutator and
the memory kernel K>

i j (η, η′) is defined as

K>
i j (η, η′) = TrE

[

̂O
(E)

i (η)̂O
(E)†
j (η′)ρ̂E

]

. (2.24)

This expression is given in the Heisenberg picture. It involves

the two-point correlation functions of the ̂O
(E)

i operators in
the environment, and thus depends on the environment prop-
erties.

Typical environments contain a large number of degrees of
freedom, hence they behave as reservoirs in which these cor-
relation functions quickly decay with |η−η′|. More precisely,
if the relaxation time of the environment is small compared
to the typical time scales over which the system evolves,
one may coarse-grain the evolution of the system on scales
larger than the environment relaxation time. The memory
kernel is then sharply peaked, such that the integral over η′
only receives contributions close to its upper bound η. In this
limit, the past history (η′ < η) is not involved in the dynamics
anymore, which therefore becomes Markovian.

Formally, if K>
i j (η, η′) ∝ δ(η − η′), in the Schrödinger

picture Eq. (2.23) takes the form

dρ̂red

dη
= −i

[

̂HS(η), ρ̂red(η)
]

+
∑

i, j

Di j

[

̂O
(S)

i ρ̂red(η)̂O
†(S)

j

− 1

2

{

̂O
†(S)

j
̂O

(S)

i , ρ̂red(η)
}

]

, (2.25)

where the dissipator matrix Di j is a positive semi-definite
matrix. This entails that it can be diagonalised by a unitary
transformation (due to the hermiticity implied by the positive
semi-definiteness), and in this basis Eq. (2.25) becomes4

4 Another approximation known as the rotating-wave approximation is
sometimes performed to obtain the Lindblad equation. Since the evolu-
tion of the system is coarse-grained over time scales larger than those
describing the dynamics of the environment, this approximation consists
in removing the quickly oscillating terms appearing in the master equa-
tion, for consistency. The implementation of this approach is however
challenging in cosmology, where the dynamical background prevents
the existence of a natural frequency basis [55].
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dρ̂red

dη
= −i

[

̂HS(η), ρ̂red(η)
]+

∑

k

γk

[

̂Lk ρ̂red(η)̂L
†
k

− 1

2

{

̂L
†
k
̂Lk, ρ̂red(η)

}

]

(2.26)

wherêLk are the so-called jump operators and γk are the posi-
tive eigenvalues of the dissipator matrix. This is called a Lind-
blad equation and is the most generic form of a Markovian
dynamical equation that preserves trace, Hermiticity and pos-
itivity of the density matrix [54]. This is why Lindblad equa-
tions play a key role when studying environmental effects.
However, they rely on strong hypotheses regarding the decay
rate of the memory kernel in the environment, which may or
may not be always satisfied. Indeed, in the cosmological con-
text, fields evolve on a dynamical background, which implies
that the environment does not necessarily reach a stationary
state in which fluctuations swiftly decay. One of the goals of
this article is to check the reliability of the master-equation
approach for cosmological systems.

2.4 Link with perturbative methods

Later on in this work, we will investigate the extent to which
TCL master equations go beyond perturbative effects and
enable some non-perturbative resummation. At this stage
however, it is important to stress that, when solved pertur-
batively, they reduce to standard perturbative results. This is
because, when deriving the TCLn equation, no contribution
of order lower than gn has been dropped.

More explicitly, the Liouville–Von-Neumann equation (2.5)
can be formally solved as

ρ̃(η) = |�0〉〈�0| − ig
∫ η

−∞
dη′ [

˜Hint(η
′), ρ̃(η′)

]

, (2.27)

where |�0〉 denotes the initial state of the combined system-
environment setup. By recursively evaluating ρ̃ in the right-
hand side with Eq. (2.27) itself, one obtains

ρ̃(η) =
∞
∑

n=0

(−ig)n
∫ η

−∞
dη1

∫ η1

−∞
dη2 · · ·

∫ ηn−1

−∞
dηn

× [˜Hint(η1),
[

˜Hint(η2), · · ·
[

˜Hint(ηn), |�0〉〈�0|] · · · ]] ,
(2.28)

which displays all contributions to the quantum state order-
by-order in g. In turn, this allows one to compute corrections
to the observables at all orders, as in the in-in formalism.5

5 This can also be shown in the in-in formalism, where the expectation
value of an operator ̂O at time η reads

〈̂O〉(η) =
〈

�0
∣

∣

∣ T
[

eig
∫ η
−∞ dη′

˜Hint(η
′)
]

˜O(η) (2.29)

Let us see how this compares with a perturbative solution
of TCLn . For TCL2, since the right-hand side of Eq. (2.19) is
proportional to g2, one has ρ̃red(η) ⊗ ρ̃E = ρ̃red(η0) ⊗ ρ̃E +
O
(

g2
) = |�0〉〈�0| + O

(

g2
)

, and Eq. (2.19) leads to

ρ̃red(η) = |�0〉〈�0| − g2
∫ η

η0

dη′TrE

× [˜Hint(η),
[

˜Hint(η
′), |�0〉〈�0|]]+ O

(

g4
)

.

(2.31)

Assuming that TrE(˜Hintρ̃E) = 0 as done above Eq. (2.15),
this reduces to Eq. (2.28) when traced over the environmental
degrees of freedom and truncated at order g2. This shows that
solving TCL2 at order g2 is equivalent to Standard Pertur-
bation Theory (SPT hereafter) at that same order. Likewise,
one can show that solving TCLn perturbatively at order gn

is equivalent to SPTn . Therefore, TCLn contains all terms of
order gn , and some terms of order gm>n .6

This is why TCL is at least as good as SPT, and one of our
goals is to determine how much better it is when employed
in a cosmological context. In other words, when master
equations are used as bona fide dynamical maps (i.e. when
they are taken per se and solved without further perturba-
tive expansion), we want to investigate their ability to resum
late-time secular effects in situations of cosmological inter-
est [44,46,59].

3 Curved-space Caldeira–Leggett model

Let us now apply the master-equation program to two massive
test fields ϕ and χ in a Friedmann–Lemaître–Robertson–
Walker geometry, described by the metric

ds2 = a2(η)
(

−dη2 + dx2
)

, (3.1)

where a is the scale factor and η is conformal time. For con-
venience we restrict the analysis to a de-Sitter background

× T
[

e−ig
∫ η
−∞ dη′′

˜Hint(η
′′)
] ∣

∣

∣�0
〉

,

where T denotes anti time-ordering. By Taylor expanding the expo-
nential functions, one obtains

〈̂O〉(η) =
∞
∑

n=0

(ig)n
∫ η

−∞
dη1

∫ η1

−∞
dη2 · · ·

∫ ηn−1

−∞
dηn〈�0| (2.30)

× [˜Hint(ηn),
[

˜Hint(ηn−1), · · ·
[

˜Hint(η1), ˜O(η)
] · · · ]]

∣

∣

∣�0
〉

.

Using that 〈̂O〉(η) = Tr[˜O(η)ρ̃(η)], together with
Tr[˜O(η)[˜Hint(ηi ), |�0〉〈�0|]] = −〈�0|[˜Hint(ηi ), ˜O(η)]|�0〉, this is indeed
consistent with Eq. (2.28).
6 Let us stress that since the TCL expansion is organised differently
from the one of SPT, it does not admit a straightforward diagrammatic
representation. In this sense it is more comparable to the Dynamical
Renormalisation Group (DRG) resummation [56–58] where diagrams
are partially resummed.
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for which a(η) ≡ −1/(Hη), where H is the constant Hubble
parameter and η varies between −∞ and 0. We consider the
case where the fields are minimally coupled to gravity and
where their self-interaction is quadratic, so the action is of
the form

S = −
∫

d4x
√− det g

[(

1

2
gμν∂μϕ∂νϕ + 1

2
m2ϕ2

)

+
(

1

2
gμν∂μχ∂νχ + 1

2
M2χ2

)

+ λ2ϕχ

]

. (3.2)

In this expression, m and M are the masses of the two fields
and we assume that they satisfy m < 3H/2 < M . So ϕ and
χ can be respectively considered as light and heavy, in the
cosmological sense. Having in mind possible applications
to cosmological perturbations, where the adiabatic degree of
freedom is light, in what follows they will respectively play
the role of the system and of the environment. The parameter
λ, which also has dimension of a mass, controls their interac-
tion. If those fields were to describe cosmological perturba-
tions, higher-order interaction terms would be parametrically
suppressed, and this setting would correspond to the leading
order in cosmological perturbation theory. This model, refer-
eed to as the curved-space Caldeira–Leggett model [53,60–
62], is therefore of physical interest, and as we shall now see
it has the advantage to be exactly solvable.

The quantum state of the fields ϕ and χ was studied in
details in Refs. [52,63], where it was shown that each Fourier
sector is placed in a four-mode squeezed state. On super-
Hubble scales, the dynamical background leads to the cre-
ation of pairs of particles with opposite wave-momenta in
each field, and the interaction then entangles these particles,
leading to correlations between the two fields. Four-mode
squeezed states are Gaussian states, and since the action (3.2)
is quadratic Gaussianity is indeed preserved throughout the
evolution. Such states are fully described by their covariance
matrix (i.e. their quantum two-point expectation values). This
is why our goal is now to compute the covariance matrix of
the system.

3.1 Exact description

The action (3.2) being quadratric, different Fourier modes
decouple on a homogeneous background, which makes it
useful to introduce

vϕ(η, k) ≡ a(η)

∫

R3

d3x
(2π)3/2 ϕ(x)e−ik.x and

vχ (η, k) ≡ a(η)

∫

R3

d3x
(2π)3/2 χ(x)e−ik.x . (3.3)

An additional prefactor a is introduced in these expres-
sions for later convenience. The conjugate momenta can be
obtained from Eq. (3.2) and read

pϕ = v′
ϕ − a′

a
vϕ and pχ = v′

χ − a′

a
vχ , (3.4)

where hereafter a prime denotes derivation with respect to the
conformal time η. A Legendre transform gives the Hamilto-
nian

H =
∫

R3+
d3kz†H(η)z, (3.5)

where the phase-space variables have been arranged into the
vector z ≡ (vϕ, pϕ, vχ , pχ )T, and where H is a four-by-four
matrix given by

H(η) =
(

H(ϕ) V
V H(χ)

)

, (3.6)

with

H(ϕ)(η) =
(

k2 + m2a2 a′
a

a′
a 1

)

,

H(χ)(η) =
(

k2 + M2a2 a′
a

a′
a 1

)

,

V (η) ≡
(

λ2a2 0
0 0

)

. (3.7)

Note that, since ϕ and χ are real fields, one has z∗(η, k) =
z(η,−k). This explains why, in order to avoid double count-
ing, the integral in Eq. (3.5) is performed over R

3+ ≡
R

2 × R
+.

Following the canonical quantisation prescription, field
variables are promoted to quantum operators. In order to
work with hermitian operators, we split the fields into real
and imaginary components, that is

ẑ = 1√
2

(

ẑR + i ẑI
)

, (3.8)

such that ẑs is Hermitian for s = R, I. These variables are
canonical since [̂vsi (k), p̂s′j (q)] = iδ3(k − q)δi, jδs,s′ where
i, j = ϕ, χ . In this basis, the Hamiltonian takes the same
form as in Eq. (3.5), i.e.

̂H = 1

2

∑

s=R,I

∫

R3+
d3k

(

ẑs
)T H(η)̂zs . (3.9)

Being separable, there is no mode coupling nor interactions
between the R and I sectors and the state is factorisable in
this decomposition. Hence, from now on, we focus on a given
wavenumber k and a given s-sector, and to make notations
lighter we leave the k and s dependence implicit.
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A further factorisation can be performed under the field-
space rotation

ẑ =

⎛

⎜

⎜

⎝

cos θ 0 − sin θ 0
0 cos θ 0 − sin θ

sin θ 0 cos θ 0
0 sin θ 0 cos θ

⎞

⎟

⎟

⎠

︸ ︷︷ ︸

P

ẑ−h, where

θ = 1

2
arctan

(

2λ2

m2 − M2

)

,

(3.10)

where  and h stand for “light” and “heavy” respectively. In
this basis the two fields decouple, and their masses are given
by

m2
 = 1

2

⎡

⎣m2 + M2 −
(

M2 − m2
)

√

1 +
(

2λ2

M2 − m2

)2
⎤

⎦ ,

(3.11)

m2
h = 1

2

⎡

⎣m2 + M2 +
(

M2 − m2
)

√

1 +
(

2λ2

M2 − m2

)2
⎤

⎦ .

(3.12)

These expressions imply that m2
 < m2 < M2 < m2

h so after
the field-space rotation it remains true that m2

 < 9H2/4 <

m2
h, hence the notation.
In this basis, the problem reduces to the dynamics of two

uncoupled free fields evolving in a de-Sitter background. In
the Heisenberg picture, this can be cast in terms of the mode-
function decomposition

v̂i (η) = vi (η)̂ai + v∗
i (η)̂a†

i (3.13)

for i = , h and where âi and â†
i are the creation and annihila-

tion operators of the uncoupled fields. Heisenberg’s equation
yield the classical equation of motion for the mode functions,
i.e.

v′′
 +

(

k2 − ν2
 − 1

4

η2

)

v = 0 and

v′′
h +

(

k2 − ν2
h − 1

4

η2

)

vh = 0. (3.14)

In these expressions, ν = 3
2

√

1 −
(

2m

3H

)2
and νh =

3
2

√

1 −
(

2mh
3H

)2 ≡ iμh. By normalising the mode functions

to the Bunch–Davies vacuum [64] in the asymptotic, sub-
Hubble past, one obtains7

v(η) = 1

2

√

π z

k
e
i π

2

(

ν+ 1
2

)

H (1)
ν

(z) and

vh(η) = 1

2

√

π z

k
e− π

2 μh+i π
4 H (1)

iμh
(z). (3.15)

In these expressions, z ≡ −kη and H (1)
ν is the Hankel func-

tion of the first kind and of order ν. The mode functions of
the momenta operators can be obtained by using Eq. (3.4),
which still applies in the  − h basis, and one finds

p(η) = −1

2

√

kπ

z
e
i π

2

(

ν+ 1
2

)

×
[(

ν + 3

2

)

H (1)
ν

(z) − zH (1)
ν+1(z)

]

, (3.16)

ph(η) = −1

2

√

kπ

z
e− π

2 μh+i π
4

×
[(

iμh + 3

2

)

H (1)
iμh

(z) − zH (1)
iμh+1(z)

]

. (3.17)

As mentioned above, the state being Gaussian, it is fully
characterised by the covariance matrix

�(η) = 1

2
Tr
[{

ẑ(η), ẑT
(η)
}

ρ̂0

]

, (3.18)

where ρ̂0 is the Schrödinger state at initial time, ρ̂0 = ρ̂(η0).
In the uncoupled basis, this leads to a block-diagonal covari-
ance matrix of the form

�−h(η) =
(

�(η) 0
0 �h(η)

)

where

�i (η) =
( |vi (η)|2 �e

[

vi (η)p∗
i (η)

]

�e
[

vi (η)p∗
i (η)

] |pi (η)|2
) (3.19)

for i = , h. In the ϕ −χ basis, the covariance matrix can be
readily obtained by performing the rotation

�(η) = P · �−h(η) · PT ≡
(

�ϕϕ(η) �ϕχ (η)

�ϕχ (η) �χχ (η)

)

,

(3.20)

with

�ϕϕ(η) = cos2(θ)�(η) + sin2(θ)�h(η), (3.21)

�ϕχ (η) = cos(θ) sin(θ) [�(η) − �h(η)] , (3.22)

�χχ (η) = cos2(θ)�h(η) + sin2(θ)�(η). (3.23)

Finally, the reduced state of the system ϕ is obtained by
tracing out the χ field, see Eq. (2.2). It is still a Gaussian

7 Note that, since all mass parameters (including λ) are negligible com-
pared to k/a in the asymptotic past, the Bunch–Davies vacuum can be
set both in the ϕ − χ and in the  − h basis [65]. The vacuum state
being invariant under rotations (see Ref. [52]), those two prescriptions
are identical.
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state, with covariance matrix given by �ϕϕ [52]. We have
thus found an exact solution to the problem at hand (namely
compute the reduced state of the system), to which we will
now compare effective methods in order to test their robust-
ness.

As explained in Sect. 1, one of the main physical effects
driven by the interaction with an environment is decoherence,
namely the transition from a pure quantum state into a statisti-
cal mixture. The loss of quantum coherence can be measured
with the so-called purity parameter γ (η) ≡ Tr

(

ρ̂2
red

)

which
measures the amount of quantum entanglement between the
system and the environment. Pure states correspond toγ = 1,
and mixed states have γ < 1 (with γ = 0 corresponding to a
maximally mixed state). The amount by which χ decoheres
ϕ is given by

γ (η) = 1

4
det
[

�ϕϕ(η)
]−1

, (3.24)

the expression being valid for any Gaussian state [52]. In the
absence of interactions between the system and the environ-
ment, det �ϕϕ = 1/4 so γ = 1. Otherwise, the system is
said to have decohered when γ � 1.

3.2 Effective description: the TCL2 master equation

We now turn our attention to the TCL2 master equa-
tion (2.23). We remind that it is formulated in the interaction
picture, where the interaction Hamiltonian reads ˜Hint(η) =
a2(η)̃vϕ(η)̃vχ (η). The TCL2 master equation (2.19) thus
takes the form

dρ̃red

dη
= −λ4a2(η)

∫ η

η0

dη′a2(η′)
{

�e
[

K>(η, η′)
]

× [ṽϕ(η),
[

ṽϕ(η′), ρ̃red(η)
]]

× +i	m
[

K>(η, η′)
] [

ṽϕ(η),
{

ṽϕ(η′), ρ̃red(η)
}]

}

,

(3.25)

where the memory kernel is given by

K>(η, η′) ≡ TrE
[

v̂χ (η)̂vχ (η′)ρ̂E
]

(3.26)

and we recall that ρ̂E corresponds to the state of the environ-
ment in the absence of interactions with the system [a deriva-
tion of Eq. (3.25) following microphysical considerations is
also presented in Appendix A]. Since v̂χ (η)̂vχ (η′) is not her-
mitian for η �= η′, the kernel K>(η, η′) is complex and can
be evaluated as follows. In the interaction picture, operators
evolve with the free Hamiltonian, so one can use the results
obtained in Sect. 3.1 in the uncoupled basis. More precisely,
a similar mode-function decomposition as in Eq. (3.13) can
be introduced,

ṽi (η) = vi (η)̂ai + v∗
i (η)̂a†

i (3.27)

where i = ϕ, χ , and an analogous expression for p̃i (η). The
mode functions are still given by Eqs. (3.15)–(3.17), where
m and mh are simply replaced with m and M . This leads to

K>(η, η′) = vχ(η)v∗
χ (η′). (3.28)

Interpretating the master equation

While the above form (3.25) of the cosmological master
equation is compact, it makes the connection with quantum
Brownian motion [62,66–69] less apparent. A form that is
easier to interpret can be obtained by expressing all operators
at the same time. This can be achieved by inverting the mode-
function expansion to yield âϕ and â†

ϕ in terms of ṽϕ(η) and
p̃ϕ(η). Inserting those expressions in Eq. (3.27) evaluated at
time η′ leads to

ṽϕ(η′) = −2	m
[

pϕ(η)v∗
ϕ(η′)

]

ṽϕ(η)

+ 2	m
[

vϕ(η)v∗
ϕ(η′)

]

p̃ϕ(η).
(3.29)

Here we have used that 	m
[

vϕ(η)p∗
ϕ(η)

] = −1/2,
which comes from the canonical commutation relation
[̃vϕ(η), p̃ϕ(η)] = 1. Plugging Eq. (3.29) into Eq. (3.25), one
finds

dρ̃red

dη
= −i

[

˜H (LS)(η)
︷ ︸︸ ︷

1

2
z̃i (η)�i j (η)̃z j (η), ρ̃red(η)

]

− 1

2

∑

i, j

Di j (η)
[

z̃i (η),
[

z̃ j (η), ρ̃red(η)
]]

− i

2
�12(η)

∑

i, j

ωi j
[

z̃i (η),
{

z̃ j (η), ρ̃red(η)
}]

,

(3.30)

which defines the “Lamb-shift” Hamiltonian ˜H (LS) (see

below), where ω =
(

0 1
−1 0

)

, and where we have used

the canonical commutation relation again. In this expression,
z̃(η) ≡ (ṽϕ(η), p̃ϕ(η)

)T and the two-by-two matrices D and
� are given by

D11(η) = −4λ4a2(η)

∫ η

η0

dη′a2(η′)

× 	m
[

pϕ(η)v∗
ϕ(η′)

]�e
[

vχ(η)v∗
χ (η′)

]

, (3.31)

D12(η) = D21(η)

= 2λ4a2(η)

∫ η

η0

dη′a2(η′)

× 	m
[

vϕ(η)v∗
ϕ(η′)

]�e
[

vχ(η)v∗
χ (η′)

]

, (3.32)

D22(η) = 0, (3.33)
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and

�11(η) = −4λ4a2(η)

∫ η

η0

dη′a2(η′)

× 	m
[

pϕ(η)v∗
ϕ(η′)

]	m
[

vχ(η)v∗
χ (η′)

]

, (3.34)

�12(η) = �21(η)

= 2λ4a2(η)

∫ η

η0

dη′a2(η′)

× 	m
[

vϕ(η)v∗
ϕ(η′)

]	m
[

vχ (η)v∗
χ (η′)

]

, (3.35)

�22(η) = 0. (3.36)

The corresponding equation in the Schrödinger picture can
be obtained using the fact that operators are mapped between
the two pictures with the free Hamiltonian of the system, see
Eq. (2.3), and one finds8

dρ̂red

dη
= −i

[

̂H (ϕ)(η) + ̂H (LS)(η), ρ̂red(η)
]

+
∑

i, j

Di j (η)

[

ẑi ρ̂red(η)̂z j − 1

2

{

ẑ j ẑi , ρ̂red(η)
}

]

.

(3.38)

In this expression, the dissipator matrix is defined as

D(η) ≡ D(η) − i�12(η)ω

=
(

D11(η) D12(η) − i�12(η)

D12(η) + i�12(η) 0

)

.

(3.39)

One can see that Eq. (3.38) has the same form as the Lindblad
equation (2.25), with the crucial difference that the dissipator
matrixD(η) is not positive semi-definite in the present case.9

It is also worth stressing that Eq. (3.30) has the same form as
the master equation obtained by Hu, Paz and Zhang in their
seminal paper [67] and that describes quantum Brownian

8 Here we use that since D is symmetric, ω is anti-symmetric given
the canonical commutation relations between phase-space variables
[̂zi , ẑ j ] = wi j , one has

Di j
[

ẑi ,
[

ẑ j , ρ̂red
]] = Di j

(−2̂zi ρ̂red ẑ j + { ẑ j ẑi , ρ̂red
})

, (3.37)

ωi j
[

ẑi ,
{

ẑ j , ρ̂red
}] = ωi j

(

2̂zi ρ̂red ẑ j − { ẑ j ẑi , ρ̂red
})

.

9 If the dynamical map generated by Eq. (3.38) were Markovian in the
sense introduced in footnote 3, i.e. if it described a semi-group evolution,
then according to Lindblad theorem [54] the fact that its dissipator is
not semi-definite positive would imply that it is not Completely Positive
and Trace Preserving (CPTP). However, Eq. (3.38) belongs to the class
of so-called “Gaussian master equations”, which were shown to be
CPTP in Refs. [70,71] (and thus map a quantum state to another proper
quantum state). The contrapositive of Lindblad’s theorem thus imposes
that our master equation is non-Markovian [32,41,72–78].

motion. The first term in the right-hand side of Eq. (3.30) pro-
vides a unitary contribution, which renormalises the energy
levels of the system due to the interaction with the environ-
ment [41,79,80]. This is why it is often referred to as the
Lamb–shift Hamiltonian. In our case, it reads

̂H (ϕ)(η) + ̂H (LS)(η)

= 1

2

[

p̂ϕ p̂ϕ +
(

k2 + m2a2 + �11

)

v̂ϕ v̂ϕ

+
(

a′

a
+ �12

)

{

v̂ϕ, p̂ϕ

}

]

. (3.40)

One can thus see that �11 renormalises the mass of the field
ϕ, while �12 renormalises the comoving Hubble parameter.
Note that, in the context of effective-field theoretic calcula-
tions, these contributions are usually re-absorbed in an effec-
tive speed of sound c2

S
[27,81,82]. The second and the third

terms in Eq. (3.30) are of a different nature, since they capture
the non-unitary evolution of the system and thus cannot be
described by an effectively local Lagrangian. This is due to
dissipation and decoherence, which respectively correspond
to the imaginary and the real part of the dissipator matrix in
Eq. (3.38).10

Finally, in phase space, the TCL2 master equation takes
the form of a Fokker–Planck equation for the reduced Wigner
function Wred. The latter is defined by the Wigner–Weyl
transform of the reduced density matrix [96], and provides
a quantum analogue of a phase-space quasi probability dis-
tribution. In Appendix B, we derive general results on the
phase-space representation of the TCL2 master equation. In
particular, we find that performing the Wigner-Weyl trans-
form of Eq. (3.30) leads to

dWred

dη
=
{

˜H (ϕ) + ˜H (LS),Wred

}

+ �12

∑

i

∂

∂ zi
(ziWred)

− 1

2

∑

i, j

[ωDω]i j
∂2Wred

∂ zi∂ z j
, (3.41)

where brackets correspond to Poisson brackets (not to be
confused with the anti-commutator). Only the term involv-
ing ˜H (ϕ) + ˜H (LS) is unitary, as mentioned above. The second
term, proportional to �12, is dissipative: it is a drift (or fric-
tion) term that accounts for the energy transfer from the sys-
tem into the environment [22]. Finally, the term proportional

10 The fact that the real and the imaginary part of the memory kernel
lead to distinct physical effects is also encountered in the influence-
functional approach [45,66,83–92] , of which the master equation is
the dynamical generator [93,94]. Indeed, in the influence functional
description, 	m

[

K>(η, η′)
]

is related to the retarded and advanced
Green’s function of the environment and can be interpreted as a dissi-
pation kernel, while �e

[

K>(η, η′)
]

is related to the Keldysh–Green’s
function [42,95] and can be interpreted as a noise kernel [51].
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to ωDω corresponds to diffusion and leads to decoherence.
One can show that this equation admits Gaussian solutions,
hence the reduced state of the system is still Gaussian in TCL.

3.3 Transport equations

As mentioned above, the state being Gaussian, it is fully char-
acterised by its covariance matrix. Since the initial covariance
matrix is the same in all approaches (TCL2, exact, SPT) a first
strategy to benchmark the cosmological master equation con-
sists in comparing the equation of motion for the covariance
of the system, usually refereed to as the transport equations.

TCL2 transport equation

In the TCL approach, the transport equations can be obtained
by differentiating Eq. (3.18) with respect to time in the
Schrödinger picture, and using Eq. (3.38) to evaluate dρ̂red/dη.
This gives

d�TCL

dη
= ω

(

H(ϕ) + �
)

�TCL − �TCL

(

H(ϕ) + �
)

ω

− ωDω − 2�12�TCL, (3.42)

where D and � were introduced in Eqs. (3.31)–(3.36). The
first two terms correspond to the unitary evolution, which
as stressed above receives an additional contribution from
the Lamb-shift Hamiltonian. The last two terms respectively
correspond to the diffusion (a source term proportional to D)
and the dissipation (a damping term proportional to �12).

Exact transport equation

In the exact approach presented in Sect. 3.1, the transport
equations for the full system-plus-environment setup can be
obtained by differentiating Eq. (3.18) with respect to time in
the Heisenberg picture, and using the Heisenberg equations
to evaluate d̂z/dη. The Hamiltonian (3.9) being quadratic,
one finds

d�

dη
= �H� − �H�, (3.43)

where H was defined in Eq. (3.6) and � is a four-by-four
block-diagonal matrix where each 2×2 block on the diagonal
is ω.

Using blockwise multiplication we can split the above into
a set of coupled differential equations for the covariance of
the system (�ϕϕ), of the environment (�χχ ), and for their
cross-covariance (�ϕχ ). Using Eq. (3.7), it reads

d�ϕϕ

dη
= ωH(ϕ)�ϕϕ − �ϕϕH(ϕ)ω

+ ωV�T
ϕχ − �ϕχVω, (3.44)

d�χχ

dη
= ωH(χ)�χχ − �χχ H(χ)ω

+ ωVT�ϕχ − �T
ϕχVω, (3.45)

d�ϕχ

dη
= ωH(ϕ)�ϕχ − �ϕχ H(χ)ω

+ ωV�χχ − �ϕϕVω. (3.46)

Note that these transport equations can also be obtained in the
phase-space representation (i.e. using Wigner functions), as
explained in Appendix B. In the present case, a first integral
of the above system can be easily constructed, since we know
that, in spite of having three covariance matrices (�ϕϕ , �χχ

and �ϕχ ), only two combinations are independent (namely
� and �h). More precisely, from Eq. (3.21) one can show
that �ϕχ = �T

ϕχ = tan(2θ)(�ϕϕ − �χχ )/2. Focusing on
the dynamics of the reduced system, Eq. (3.44) can thus be
written as

d�ϕϕ

dη
= ω

(

H(ϕ) + �ex

)

�ϕϕ

− �ϕϕ

(

H (ϕ) + �ex

)

ω − ωDexω, (3.47)

where

�ex ≡ − λ2

M2 − m2 V and

Dex ≡ − λ2

M2 − m2

(

ω�χχV − V�χχω
)

. (3.48)

The reason why we write the exact transport equation in this
form is to allow for an easy comparison with its TCL2 coun-
terpart (3.42). This suggests to interpret �ex as a Lamb-shift
contribution in the exact approach, and Dex as a diffusion
matrix. From Eq. (3.48), the only non-vanishing entries of
those matrices are given by

�ex,11 = − λ4a2

M2 − m2 , (3.49)

Dex,11 = −2
λ4a2

M2 − m2 �χχ,12,

Dex,12 = λ4a2

M2 − m2 �χχ,11. (3.50)

Note that, in the asymptotic past, when a → 0, the
above coefficients vanish, which confirms that the two fields
become effectively uncoupled and that Bunch–Davies initial
conditions can be safely set, see footnote 7.

SPT transport equation

In the perturbative approach introduced in Sect. 2.4, at lead-
ing order, the transport equation is simply given by the exact
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transport equation, Eq. (3.47), where the right-hand side is
truncated at order λ4:

d�SPT

dη
= ωH(ϕ)�SPT − �SPTH (ϕ)ω

+ ω�ex�
free
ϕϕ − �free

ϕϕ �exω

− ωDSPTω. (3.51)

Here, �free
ϕϕ corresponds to �ϕϕ evaluated in the free theory

and is given by the second part of Eq. (3.19) with the mode
functions vϕ and pϕ . Similarly, DSPT is given by Eq. (3.50)
where �χχ is replaced with �free

χχ , which is given by the
second part of Eq. (3.19) with the mode functions vχ and
pχ . Note that �ex does not need to be expanded since it is
already of order λ4, see Eq. (3.49).

Even though the covariance matrix in SPT can be obtained
by integrating the above transport equation, in the present
situation an exact solution to the full theory is known, so it
can also be obtained by expanding Eq. (3.21) in λ. Here, not
only θ2 = λ4/(m2 − M2)2 + O

(

λ8
)

needs to be expanded,
see Eq. (3.10), but also m2

 = m2 − λ4/(M2 −m2) +O
(

λ8
)

and m2
h = M2 + λ4/(M2 −m2) +O

(

λ8
)

in �h and �, see
Eqs. (3.11) and (3.12). On the numerical results presented
below, we have checked that these two approaches coincide.

3.4 Spurious terms

The TCL2 coefficients are expressed as integrals between η0

and η, see Eqs. (3.31)–(3.36), where η0 → −∞ if Bunch–
Davies initial conditions are chosen. Formally, they can be
written as

D11 = FD11 (η, η) − FD11 (η, η0) , (3.52)

where FD11(η, ·) is the primitive of the integrand appearing
in Eq. (3.31), which itself depends on η, and with similar
notations for the other TCL2 coefficients. The F functions
are derived explicitly in Appendix C, where it is shown that
the integrals (3.31)–(3.36) can be performed analytically and
involve products of four Hankel functions. The second term
in Eq. (3.52), the one of the form F(η, η0), features several
properties that we now describe and that will lead us to dub
it “spurious”.

First, the spurious terms involve the initial time η0, which
implies that they carry explicit dependence on the initial con-
ditions. If the environment memory kernel (3.26) is suffi-
ciently peaked around η′ = η, that is if the integrands in
Eqs. (3.31)–(3.36) are much smaller around η′ = η0 than
around η′ = η, then this contribution should be suppressed
compared to the non-spurious one. This is similar to the Lind-
bladian limit discussed in Sect. 2.3. Whether or not this is the
case can be verified explicitly in the super-Hubble regime
(i.e. at late time, −kη � 1) where the F functions take

simple forms. The expansion in the limit −kη � 1 is per-
formed in Appendix C.3, where it is shown that the spu-
rious terms dominate for all coefficients. More precisely,
FD11(η, η) ∝ (−kη)−2 while FD11(η, η0) ∝ (−kη)−7/2,
FD12(η, η) ∝ (−kη)−1 while FD11(η, η0) ∝ (−kη)−5/2,
F�11(η, η) ∝ (−kη)−2 while F�11(η, η0) ∝ (−kη)−7/2, and
F�12(η, η) vanishes while F�12(η, η0) ∝ (−kη)−5/2. Let us
stress that the late-time domination of the spurious terms is
strongly related to having a dynamical background. This is
the first indication we encounter that applying the master-
equation program to cosmology may not be as straightfor-
ward as in other situations.

Second, in Appendix C.1, we notice that, using various
identities satisfied by the Hankel functions, the expressions
for the non-spurious contributions can be vastly simplified.
More precisely, after a lengthy though straightforward cal-
culation we find that

FD11(η, η) =DSPT,11(η),

FD12(η, η) =DSPT,12(η),

F�11(η, η) =�ex,11(η),

F�12(η, η) =0.

(3.53)

Let us now recall the result obtained in Sect. 2.4, namely the
fact that the perturbative version of TCL is strictly equivalent
to SPT. This implies that �TCL = �SPT + O

(

λ8
)

, where
�SPT only contains terms of order λ0 (namely �free

ϕϕ ) and
λ4. As a consequence, the right-hand sides of Eqs. (3.42)
and (3.51) coincide at order λ4. The terms of order λ0 are
trivially identical, and for the terms of order λ4 one obtains
(recalling that both D and � are of order λ4)

ω��free
ϕϕ − �free

ϕϕ �ω − ωDω − 2�12�SPT

=ω�ex�
free
ϕϕ − �free

ϕϕ �exω − ωDSPTω.
(3.54)

Each term in the left-hand side can be decomposed into a non-
spurious part and a spurious part, see Eq. (3.52). An impor-
tant remark is that, thanks to Eq. (3.53), the non-spurious part
exactly coincides with the right-hand side, hence the spuri-
ous contributions cancel out. We have therefore proven that
the spurious terms are absent from the perturbative limit of
TCL and only arise at higher order. This is obviously con-
sistent with the fact that, at leading order, TCL coincides
with the exact theory, which is not plagued by any spurious
contribution.

Third, we have checked that if one includes the spuri-
ous terms when solving the TCL transport equation (3.42),
then the result quickly blows up. This is due to the late-time
divergences of the spurious contributions mentioned above.
On the contrary, as we will see below, if one removes them,
then the result is remarkably well-behaved.

To summarise, spurious terms cancel out at leading order
in the interaction strength, and at higher order, the fact that
they carry an explicit dependence on the initial time, com-
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bined with their late-time divergent behaviour, indicates that
they cannot be resummed. This leads us to conclude that,
for the simple model we have considered here, resummation
cannot be efficiently performed with the standard master-
equation program.

However, this may be due to the over-simplicity of that
particular model, which contains a single degree of free-
dom in the environment. As we further argue in Sect. 5, if
“larger” environment are considered, initial-time dependent
terms may be parametrically suppressed. In order to gain
insight on such situations, in what follows we analyse the
consequences of removing the spurious terms “by hand”.

If spurious contributions are removed, Eq. (3.53) indi-
cates that D = DSPT and that � = �ex. The � matrix is
perfectly captured by TCL since �ex only contains contribu-
tions proportional to λ4, see Eq. (3.48). In particular, there is
no damping term, i.e. �12 = 0 (note however that this is due
to the specifics of the interaction we consider, which is such
that V 12 = 0). The diffusive part, i.e. the one driven by D,
is however only partly contained in TCL, where D = DSPT,
whereas Dex contains terms of higher-order in λ. We there-
fore expect spurious-free TCL to lie somewhere between SPT
and the exact theory, which we now further investigate.

4 Non-perturbative resummation

In Sect. 2.4, we have shown that the TCL master equation
reduces to standard perturbation theory when solved at lead-
ing order in the interaction strength. In Appendix D this
equivalence is shown explicitly for the toy model introduced
in Sect. 3. However, the TCL master equation can also be
treated as a bona fide dynamical map for the quantum state
of the system, and solved as it is. In that case, its ability to
resum secular effects has been investigated in various con-
texts [22,43,44,46,59], and we now want to study how late-
time resummation proceeds in the (spurious-free) cosmolog-
ical Caldeira–Leggett model.

4.1 Power spectra

As mentioned above, both in the exact and TCL descrip-
tions, the state of the system remains Gaussian, hence it is
fully characterised by its covariance matrix, i.e. by its power
spectra. This is why we first compare these setups at the
level of their power spectra. If the cosmological Caldeira–
Leggett model were to describe cosmological perturbations,
note that the configuration–configuration power spectrum
would be directly related to cosmological observables, such
as the CMB temperature anisotropies.

The power spectra in the exact theory are given by
Eq. (3.21), and as explained above, by expanding these for-
mulas at first order in λ4 one obtains their SPT counterpart. In

the TCL setup, the power spectra can be obtained by solving
the transport equation (3.42). In the model under consider-
ation, there is no damping term, �12 = 0, but in general it
can be absorbed by introducing

σTCL ≡e�(η,η0)�TCL with

�(η, η0) ≡ 2
∫ η

η0

dη′�12(η
′), (4.1)

which is solution of a damping-free transport equation,
namely

dσTCL

dη
= ω

(

H (ϕ) + �
)

σTCL

− σTCL

(

H(ϕ) + �
)

ω − e�(η,η0)ωDω. (4.2)

This equation can be seen as a homogeneous part, describ-
ing unitary evolution, and a source term, describing diffu-
sion. The homogeneous part is generated by the Hamiltonian
H (ϕ) + H (LS), and by denoting gLS(η, η0) the associated
Green’s matrix, the solution of Eq. (4.2) reads

σTCL(η) = gLS(η, η0)σTCL(η0)gT
LS(η, η0)

−
∫ η

η0

dη′e�(η′,η0)gLS(η, η′)

× [ωD(η′)ω
]

gT
LS(η, η′). (4.3)

Note that gLS is obtained from the Lamb-shift corrected
mode functions

gLS(η, η′)

= 2

(	m
[

vLS(η)p∗
LS(η′)

] −	m
[

vLS(η)v∗
LS(η′)

]

	m
[

pLS(η)p∗
LS(η′)

] −	m
[

pLS(η)v∗
LS(η′)

]

)

,

(4.4)

where vLS is the solution of v′′
LS +ω2

LSvLS = 0 where ω2
LS =

k2+m2a2+�11−�′
12+�2

12−2�12a′/a, see Eq. (3.40), with
Bunch–Davies initial conditions, and pLS = v′

LS−(a′/a)vLS

as in Eq. (3.4).11 This leads to

�TCL(η) = e−�(η,η0)gLS(η, η0)�TCL(η0)gT
LS(η, η0)

−
∫ η

η0

dη′e−�(η,η′)gLS(η, η′)

× [ωD(η′)ω
]

gT
LS(η, η′). (4.5)

11 In the present case, since �12 = 0 and �11 = �ex,11, where �ex,11
is given in Eq. (3.49), one has ω2

LS = k2+[m2−λ4/(M2−m2)]a2. This
implies that vLS and pLS can be expressed in terms of Hankel functions

as in Eqs. (3.15) and (3.16), with ν replaced by νLS = 3
2

√

1 −
(

2mLS
3H

)2

where m2
LS = m2 − λ4/(M2 − m2). This is consistent with effective-

field theoretic approaches where the masses of light scalar fields are
renormalised by heavy fields with contributions O(λ4/M2) [97].
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In practice, this integral is computed numerically from a large
negative value ofη0 (sufficiently large that we check the result
does not depend on η0).

Growth rate

First we compare in Fig. 1 the growth rate of the configuration–
configuration power spectrum, d ln �11/d ln a. The result is
given in the free theory (i.e. setting λ = 0, grey line), in
the exact theory (black line), in TCL (blue line) and in SPT
(orange line). The difference between these different setups
becomes more pronounced at late time, on which the inset
zooms in. One can see that TCL provides an excellent approx-
imation, better than SPT, which itself is closer to the exact
result than the free theory.

The behaviour of the TCL covariance matrix can be fur-
ther understood by investigating the super-Hubble (i.e. late
time, −kη � 1) limit of the transport equation (3.42). In
this regime, an expansion of the coefficients can be found in
Appendix C.3. By inserting power-law ansatz for the entries
of the covariance matrix, one finds that the diffusion term
becomes negligible at large scales, and that

�TCL,11 ∝ a2νLS−1, �TCL,12 ∝ a2νLS ,

�TCL,22 ∝ a2νLS+1,
(4.6)

where νLS was introduced in footnote 11. The corresponding
growth rate, 2νLS − 1, is displayed in Fig. 1 with the dotted
blue line, and one can check that it asymptotes the TCL result
at late time indeed.

In the exact theory, the term involving � dominates over
the one involving �h in Eq. (3.21), so the growth rate is

Fig. 1 Growth rate of the configuration–configuration power spectrum
as a function of time, labeled with the scale factor (a∗ = k/H cor-
responds to the time of Hubble exit, i.e. when η∗ = −1/k). The
result is displayed in the free (grey), exact (black), TCL2 (blue) and
SPT (orange) theories. The blue dotted line corresponds to the super-
Hubble expansion for TCL, see Eq. (4.6), which leads to the growth
rate d ln �TCL,11/d ln a = 2νLS − 1. The parameters are set to λ = H ,
m = H/10 and M = √

10H

Fig. 2 Relative error in the configuration–configuration power spec-
trum in TCL2 (|�TCL,11 − �ϕϕ,11|/�ϕϕ,11, blue lines) and SPT
(|�SPT,11 − �ϕϕ,11|/�ϕϕ,11, orange lines). The result is displayed as
a function of time, labeled with the scale factor, and for M2 = 10H2

(solid lines) and M2 = 100H2 (dashed lines). The dotted lines corre-
spond to the super-Hubble formula (4.6), which indeed provide a good
fit at late time. The parameters are taken asm2 = 10−4H2 and λ2 = H2.
The grey-shaded area is where the error is larger than 100%

given by 2ν − 1, where ν is given below Eq. (3.14). It
is worth stressing that by expanding ν at leading order in
λ4, one recovers νLS [namely m2

 = m2
LS + O

(

λ8
)

]. As a
consequence, TCL correctly reproduces the growth rate at
first order in λ4.

Although this may seem as a perturbative result, let us
stress that the resummed non-perturbative feature lies in
Eq. (4.6). Indeed, in SPT, expanding �ϕϕ at leading order
in λ4 leads to

�SPT,11 ∝ a2νϕ−1

[

1 + λ4

H2νϕ

(

M2 − m2
) ln a

]

(4.7)

at late time, where νϕ = 3
2

√

1 − ( 2m
3H

)2
. This matches

Eq. (4.6) at leading order in λ4, but Eq. (4.6) contains all
higher-order terms in λ4 that allow the logs to be resumed. In
particular, Eq. (4.7) implies that at late time, the growth rate
in SPT approaches the one of the free theory, 2νϕ − 1, while
as stated above the growth rate of TCL incorporates the first
correction in λ4.

Relative deviation to the exact result

The performance reached by TCL or SPT is given by the
relative deviation of their covariance matrices to the exact
result. This is displayed in Fig. 2 form2 = 10−4H2 and λ2 =
H2, which purposely corresponds to a large coupling. One
can check that TCL is always more accurate than SPT, and
that the difference in accuracy becomes more pronounced at
larger M . This can be understood as follows. In the super-
Hubble regime, TCL behaves according to Eq. (4.6), which
is super-imposed in Fig. 2 and indeed provides a good fit. It
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Fig. 3 Relative error in all entries of the covariance matrix of the
system. The blue lines correspond to the TCL2 result |�TCL,i j −
�ϕϕ,i j |/|�ϕϕ,i j |, while the orange lines correspond to standard per-

turbation theory (SPT) |�(2)
ϕϕ,i j −�ϕϕ,i j |/|�ϕϕ,i j |. Different line styles

correspond to different entries of the covariance matrix, and the param-
eters of the model are chosen as m2 = 10−4H2, M2 = 102H2 and
a/a∗ = e5. The grey-shaded area is where the error is larger than
100%. The peaky features correspond to where the exact power spec-
trum �ϕϕ,12 vanishes and �ϕϕ,22 goes through a local minimum

leads to
∣

∣�TCL,11 − �ϕϕ,11
∣

∣

�ϕϕ,11
� a2(νLS−ν) − 1

= λ8 ln(a)

νϕH2
(

M2 − m2
)3 + O

(

λ12
)

.

(4.8)

The last result is expanded at leading order in λ (hence in
ln a), which provides a good approximation as long as the
relative error is much smaller than one, as in Fig. 2. In SPT,
Eq. (4.7) gives rise to
∣

∣�SPT,11 − �ϕϕ,11
∣

∣

�ϕϕ,11
� λ8 ln2(a)

2
(

M2 − m2
)2

H4ν2
ϕ

+ O
(

λ12
)

(4.9)

at late time. There are two main differences between
Eqs. (4.8) and (4.9). First, when the environment is heavy,
M � H , the relative error in TCL decays as λ8/M6 while
it is suppressed by λ8/M4 in SPT. This explains why, when
going from M2 = 10H2 to M2 = 100H2 in Fig. 2, the rel-
ative error decreases by a factor 103 in TCL and by a factor
102 in SPT. This indicates that, although both results become
more accurate as the environment is heavier, the gain in accu-
racy is much stronger for TCL. Second, the relative error in
SPT increases as ln2(a) at late time, while it only increases
as ln(a) in TCL. This is why in Fig. 2, the difference in accu-
racy between these two approaches becomes even larger as
time proceeds.

Finally, in Fig. 3 we display the relative error for all power
spectra (i.e. all entries of the covariance matrix), as a func-
tion of the interaction strength λ. When λ is small, the relative

Fig. 4 Purity parameter (3.24) in the free (grey), exact (black), TCL2
(blue), and SPT (orange) approaches as a function of time. The dotted
line corresponds to the super-Hubble expansion of the TCL result, see
Eq. (4.11). The lower panel shows the error of TCL2 and SPT relative
to the exact result. The parameters are set to m2 = 10−4H2 and M2 =
102H2 with λ2 = 10−1H2. The perturbative result rapidly diverges,
while TCL2 accurately predicts the amount of decoherence even in the
fully decohered regime

error scales as λ8 for both SPT and TCL, in agreement with
the fact that both methods match the exact result at order
λ4 [see Sect. 2.4, see also Eqs. (4.8) and (4.9)]. One can
also see that both in TCL and in SPT, the reconstruction
of the configuration–configuration power spectrum is bet-
ter than for the configuration–momentum power spectrum,
which is itself better than the momentum-momentum power
spectrum. In TCL, all power spectra are accurately computed
up to large values of λ. For instance, even when λ/H = 1,
the relative error is smaller than 10−4 for all power spectra. In
SPT however, the momentum–momentum power spectrum is
already out of control for such values of λ. Indeed, the corre-
lators involving the momentum are given with less precision
in SPT, and the perturbative expansion breaks down for the
momentum–momentum power spectrum much sooner than
for the configuration–configuration power spectrum. This
will be of prime importance below, since those correlators
play an essential role in the process of decoherence.

4.2 Decoherence

We turn our attention to decoherence that we measure using
the purity whose expression for Gaussian states is given by
Eq. (3.24). The result is displayed in Fig. 4. As time pro-
ceeds, the system entangles with its environment, decoher-
ence occurs (i.e. γ decreases away from 1), and the system
becomes maximally mixed soon after Hubble-crossing for
the parameters used in the figure.

The lower panel displays the error relative to the exact
result. One can see that, when time proceeds, the SPT result
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quickly diverges. So perturbation theory is only able to
describe quasi pure states, for which 1 − γ � 1, and breaks
down when decoherence proceeds. The reason for the weak
performance of SPT is that the purity parameter is driven by
the so-called cosmological decaying mode, which is encoded
in the power spectra involving the momentum. Around Fig. 3
we saw that those are precisely the correlators that SPT pre-
dicts with the least accuracy. On the contrary, TCL2 remark-
ably describes the full decoherence process, and is able to
approximate the full quantum state even in the strongly deco-
hered regime. The relative error freezes to a tiny value at large
scales (here of the order 10−6), which is a manifestation of
the resummation occurring in TCL.

The simplest way to access the late-time behaviour of the
purity is to derive an equation of motion for det(�TCL) from
the transport equation (3.42), namely

d det(�TCL)

dη
= D11�TCL,11 + 2D12�TCL,12

− 4�12 det(�TCL).

(4.10)

All unitary contributions (i.e. those involving H(ϕ) and �11)
have cancelled out (indeed, only non-unitary contributions
can change the purity). This implies that diffusion, controlled
by D, is crucial in the process of decoherence (since �12 = 0
in the present case). It contrasts with Sect. 4.1 where we had
found that D gives negligible corrections to the power spectra
on large scales – those negligible corrections are precisely
the ones driving decoherence. The results of Appendix C.3
together with Eq. (4.6) indicate that the two first terms of
Eq. (4.10) are of the same order a2νLS−1 at late time. In this
limit Eq. (4.10) can be integrated, and one obtains

det(�TCL) � 1

4
+ 22νLS−3

π
�2 (νLS)

(

λ

H

)4 ( H

M

)3 ( a

a∗

)2νLS

,

(4.11)

where the prefactors in Eq. (4.6) have been set by neglect-
ing diffusion (alternatively, they can be set by asymptotic
matching at Hubble crossing and this gives a very similar
result) and we have neglected contributions exponentially
suppressed by M/H to reach a concise expression (they be
easily kept but do not bring any particular insight). The purity
γTCL = 1/(4 det �TCL) obtained from this expression is dis-
played in Fig. 4 with the dotted line. One can check that it
provides an excellent approximation to the full TCL result,
hence to the exact result too.

The above formula (4.11) also allows us to study under
which conditions decoherence occurs for the model at hand.
It is non perturbative in λ since one should recall that νLS

depends on λ, see footnote 11, although the rate of decoher-
ence is mostly proportional to (λ/H)4. Similarly, although
νLS depends on M , decoherence occurs at a rate mostly pro-
portional to (H/M)3, so it is slower for heavier environ-

ments. Finally, it is very efficient on super-Hubble scales,
since it scales as a2νLS ∼ a3, so roughly as the spatial vol-
ume, as often encountered [14,17]. For instance, for scales
of astrophysical interest today that are such that a/a∗ ∼ e50

at the end of inflation, for M/H = 100 and m/H = 10−2,
one finds that decoherence proceeds during inflation as soon
as λ/H > 10−15, a very small value indeed.

5 Conclusion

Let us now summarise our main results and open up a few
prospects. In this work, we have investigated how the master-
equation program can be implemented in cosmology. To this
end, we have used a toy model where two scalar fields are
linearly coupled and evolve on a de-Sitter background. It
has the advantage of being exactly solvable, an “integrable
system”, in which the performance of effective methods can
be assessed and compared with more traditional, perturbative
techniques.

We have derived the second-order Time-ConvolutionLess
(TCL) equation in this setup, which is a master equation for
the reduced density matrix of the system (here the lighter
field), and which features the memory kernel of the envi-
ronment (here the heavier field). It possesses three contri-
butions: a unitary “Lamb-shift” term (renormalisation of the
bare Hamiltonian), a dissipation term (energy exchange with
the environment) and a diffusive term (driving the quantum
decoherence process). They can all be expressed in terms of
integrals ranging from the initial time to the time at which
the master equation is written.

Usually, the memory kernel is sufficiently peaked around
the coincident configuration that these integrals are dom-
inated by their upper bound, hence they carry negligible
dependence on the initial time. This is the case if the relax-
ation time of the environment around its stationary configu-
ration is small compared to the time scale over which the evo-
lution of the system is tracked. This is the so-called Marko-
vian, or Lindbladian limit. In the present case however, due
to the presence of a dynamical background, there is no such
thing as a stationary configuration for the environment, which
strongly departs from being a thermal bath. In practice we
find that these integrals carry a non-negligible dependence on
the initial time, through a set of terms that we have dubbed
“spurious”.

We have then shown that these spurious terms cancel out
when the TCL equation is solved perturbatively in the cou-
pling constant, i.e. they are absent from the perturbative ver-
sion of the theory. This is consistent with the fact that the
perturbative solution to the TCL equation is strictly equiv-
alent to standard perturbation theory (such as the in-in for-
malism for instance). When solving the TCL equation non-
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perturbatively however, they lead to unphysical diverging
behaviours, which clearly signals their problematic nature.

However, if one removes them “by hand” (which does not
necessarily makes the dynamics Markovian, see footnote 9),
one finds that the TCL equation provides an excellent approx-
imation to the full theory: it successfully reproduces all power
spectra up to large values of the interaction strength, and it
tracks the amount of decoherence very accurately, including
at late time when the system is in a strongly mixed state.
This is due to an explicit resummation of logarithmic terms
(i.e. of powers of ln a, where a is the scale factor of the uni-
verse), and in Appendix E we show that this resummation
is more efficient than the late-time resummation technique
proposed in Ref. [44]. The incorporation of these late-time
secular effects makes TCL vastly superior to perturbative
methods. Although we have found that it does not require
particularly heavy environment, the advantage of TCL com-
pared to perturbative methods is even more pronounced when
the mass M of the environmental field is larger than the Hub-
ble scale H , since the relative error of the former scales as
(H/M)6 while it scales as (H/M)4 for the latter.

To summarise, we have found that the master-equation
program can be successfully applied in cosmological back-
grounds, provided spurious terms are suppressed.

The presence of the spurious terms may be related to the
simplicity of our toy model, where only one field is con-
tained in the environment, which can therefore not be con-
sidered as a proper reservoir. If multiple fields were present
indeed, all with different masses, thus oscillating at different
frequencies, the memory kernel would be suppressed away
from the coincident limit through the accumulation of ran-
dom phases [41,73] (technically, the memory kernel would
involve some Fourier transform of the mass distribution of the
environmental fields, which may be peaked if that distribu-
tion is sufficiently broad). This mechanism was studied e.g.
in the context of black-hole physics in Ref. [98]. Another pos-
sibility would be to consider non-linear interactions between
the two fields, which would imply that one Fourier mode
in the system couples to all Fourier modes in the environ-
ment, hence making the number of environmental degrees
of freedom to which the system couples infinite. One could
also consider situations in which non-linearities only arise
within the environmental sector,12 as in quasi-single field
models [28,99]. The same mechanism of random phase addi-
tion would presumably occur in those cases, which would
also lead to a suppression of the spurious terms. Whether or
not that suppression is enough should be the subject of further
investigations. Another, maybe more adventurous question,
is whether or not one can design an improved master equa-

12 Let us note that the presence of non-linearities, even if confined to
the environmental sector, would leave an imprint on the non-Gaussian
statistics of the system [28,30].

tion, where the removal of spurious contributions is auto-
matically taken care of. Indeed, our results show that master
equations free from spurious terms are extremely powerful
at deriving reliable predictions for cosmology, and perform
much better than perturbative methods. We plan to address
these issues in future works.
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Appendix A: Microphysical derivation of the TCL2 mas-
ter equation

In this appendix, we present an alternative derivation of the
TCL2 master equation (3.25) in the curved-space Caldeira–
Leggett model, which does not rely on the cumulant expan-
sion of the Nakajima–Zwanzig equation. We start from
the Liouville–Von-Neumann equation in the interaction pic-
ture (2.5), namely

dρ̃

dη
= −iλ2 [

˜Hint(η), ρ̃(η)
]

. (A.1)

As noted in Eq. (2.27), it can be solved formally as

ρ̃(η) = ρ̃(η0) − iλ2
∫ η

η0

dη′ [
˜Hint(η

′), ρ̃(η′)
]

. (A.2)

Inserting this expression into Eq. (A.1), one obtains

dρ̃

dη
= −iλ2 [

˜Hint(η), ρ̃(η0)
]

− λ4
∫ η

η0

dη′ [
˜Hint(η),

[

˜Hint(η
′), ρ̃(η′)

]]+ O(λ6).

(A.3)
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This procedure could be iterated to obtain higher-order nested
commutators, controlled by higher powers of the interaction
strength. If the coupling constant λ is small (Born approxima-
tion), one may stop at orderO(λ4) where the first non-unitary
effects appear.

Our next task is to turn Eq. (A.3) into an ordinary differ-
ential equation that is local in time for the reduced density
matrix ρ̃red(η). By tracing Eq. (A.3) over the environmental
degrees of freedom, one finds

dρ̃red

dη
� −iλ2TrE

[

˜Hint(η), ρ̃(η0)
]

− λ4
∫ η

η0

dη′TrE
[

˜Hint(η),
[

˜Hint(η
′), ρ̃(η′)

]]

.

(A.4)

In the interaction picture, the deviation of ρ̃ from its ini-
tial configuration is necessarily controlled by some positive
power p of the interaction strength,

ρ̃(η) = ρ̃red(η0) ⊗ ρ̃E(η0) + λpρ̃correl(η) (A.5)

where TrE(ρ̃correl) = TrS(ρ̃correl) = 0. Consequently,

dρ̃red

dη
= − iλ2TrE

[

˜Hint(η), ρ̃red(η0) ⊗ ρ̃E(η0)
]

− iλp+2TrE
[

˜Hint(η), ρ̃correl(η0)
]

− λ4
∫ η

η0

dη′TrE
[

˜Hint(η),

[

˜Hint(η
′), ρ̃red(η

′) ⊗ ρ̃E(η′)
]]

− λp+4
∫ η

η0

dη′TrE
[

˜Hint(η),

[

˜Hint(η
′), ρ̃correl(η

′)
]]

.

(A.6)

Which term dominates depends on the value of p, which can
be determined as follows. Let us first recall that ˜Hint(η) was
given above Eq. (3.25) and reads

˜Hint(η) = a2(η)̃vϕ(η)̃vχ (η), (A.7)

which leads to

TrE
[

˜Hint(η), ρ̃red(η0) ⊗ ρ̃E(η0)
]

= a2(η)
[

ṽϕ(η), ρ̃red(η0)
]

TrE
[

ṽχ (η)ρ̃E(η0)
]

. (A.8)

Note that

TrE
[

ṽχ (η)ρ̃E(η0)
] =

〈

ṽχ (η − η0)
〉

(A.9)

which is the mean value of the environment field operator.
Such a mean value can always be absorbed in a redefinition
of the field, such that the first term in the right-hand side
of Eq. (A.6) vanishes. From Eq. (A.5), dρ̃red/dη necessarily

contains a term of orderO (λp), so the only possibility is that
p = 4. As a consequence, the terms of order O

(

λp+2
)

and
O
(

λp+4
)

can be neglected, and one finds

dρ̃red

dη
= −λ4

∫ η

η0

dη′TrE
[

˜Hint(η),

× [

˜Hint(η
′), ρ̃red(η

′) ⊗ ρ̃E(η′)
]]

. (A.10)

At leading order in λ, one can safely replace ρ̃red(η
′) by

ρ̃red(η) and ρ̃E(η′) by ρ̂E in Eq. (A.10). This leads to a man-
ifestly time-local equation, namely

dρ̃red

dη
= −λ4

∫ η

η0

dη′TrE
[

˜Hint(η),
[

˜Hint(η
′), ρ̃red(η) ⊗ ρ̂E

]]

(A.11)

which is consistent with Eq. (2.19). Replacing Hint by
Eq. (A.7) and expanding the commutators yields the result

dρ̃red

dη
= −λ4a2(η)

∫ η

η0

dη′a2(η′)

×
{

[

ṽϕ(η)̃vϕ(η′)ρ̃red(η) − ṽϕ(η′)ρ̃red(η)̃vϕ(η)
]

K>(η, η′)

− [ṽϕ(η)ρ̃red(η)̃vϕ(η′) − ρ̃red(η)̃vϕ(η′ )̃vϕ(η)
]

K<(η, η′)
}

,

(A.12)

where the memory kernels are defined as in Eq. (3.26),
namely

K>(η, η′) ≡ TrE
[

v̂χ (η)̂vχ (η′)ρ̂E
]

, (A.13)

K<(η, η′) ≡ TrE
[

v̂χ (η′)̂vχ (η)ρ̂E
]

. (A.14)

As in Eq. (3.28), they can be expressed in terms of the mode
functions

K>(η, η′) = vχ(η)v∗
χ (η′) (A.15)

K<(η, η′) = v∗
χ (η)vχ (η′) = K>∗(η, η′), (A.16)

and the master equation reads

dρ̃red

dη

= −λ4a2(η)

∫ η

η0

dη′a2(η′)

×
{

[

ṽϕ(η)̃vϕ(η′)ρ̃red(η) − ṽϕ(η′)ρ̃red(η)̃vϕ(η)
]K>(η, η′)

− [ṽϕ(η)ρ̃red(η)̃vϕ(η′) − ρ̃red(η)̃vϕ(η′)̃vϕ(η)
]K>∗(η, η′)

}

.

(A.17)

Expanding K> into its real and imaginary part, one recovers
Eq. (3.25).

123



Eur. Phys. J. C (2022) 82 :1085 Page 19 of 32 1085

Appendix B: Phase-space representation of the TCL2

master equation

An alternative representation of the quantum state is given in
the phase-space by the Wigner function (see Ref. [96] for a
brief introduction). For Gaussian states, the Wigner function
takes the simple form of a multivariate Gaussian [100], which
makes it particularly convenient to work with.

The Wigner function is defined as the inverse Weyl trans-
form of the density matrix. For a generic quantum operator
̂O , the inverse Wigner–Weyl transform reads

W
̂O(vϕ, pϕ) = 2

∫ ∞

−∞
dye−2i pϕ y〈vϕ + y|̂O|vϕ − y〉 (B.1)

and is a function of the phase-space variables vϕ and pϕ . The
above formula is written in the configuration representation,
it can also be written in the momentum representation,

W
̂O(vϕ, pϕ) = 2

∫ ∞

−∞
dke2ikvϕ 〈pϕ + k|̂O|pϕ − k〉. (B.2)

In this way, commutators of quantum operators are mapped
to the Poisson brackets of their phase-space representations.
Indeed, using the above formulas, one finds

W[v̂ϕ ,̂O
] = i

∂

∂pϕ

WO and

W[ p̂ϕ,̂O
] = −i

∂

∂vϕ

WO , (B.3)

W{̂vϕ,̂O} = 2vϕWO and

W{ p̂ϕ,̂O} = 2pϕWO . (B.4)

This leads to

iωi jW[ ẑ j ,̂O
] = ∂WO

∂ zi
, (B.5)

1

2
W{̂zi ,̂O} = ziWO , (B.6)

where we have introduced the phase-space vector z =
(

vϕ, pϕ

)T.
These relations can be used to compute the inverse Weyl

transform of the TCL2 master equation (3.30). Using that ω

is antisymmetric, one finds

dWred

dη
=
{

˜H0 + ˜H (LS),Wred

}

+ �12

∑

i

∂

∂ zi
(ziWred)

− 1

2

∑

i, j

[ωDω]i j
∂2Wred

∂ zi∂ z j
, (B.7)

where Wred = Wρ̂red is the reduced Wigner function, i.e. the
inverse Wigner-Weyl transform of the reduced density matrix
ρ̂red. The curly brackets now represent Poisson’s brackets,
not to be confused with the anticommutators for quantum
operators. This coincides with Eq. (3.41).

The first term in Eq. (B.7) corresponds to the free evo-
lution dressed by the Lamb-shift Hamiltonian. This part of
the equation only captures unitary/time-reversible evolution.
The second term is a damping term reading as a total deriva-
tive and the last term is a diffusion term. These last two terms
can be combined into a single second-order differential oper-
ator involving the dissipator matrix defined in Eq. (3.39), and
they induce a non-unitary evolution.

Let us finally mention that the TCL2 transport equation
can be simply obtained from Eq. (B.7) using the Gaussianity
of the state. Indeed, the state being Gaussian, the reduced
Wigner function is given by

Wred =
√

1

4π2 det �TCL

× exp

⎡

⎣−1

2

∑

i, j

zi (�TCL)−1
i j z j

⎤

⎦ ,

(B.8)

where �TCL is the covariance of the reduced system. Upon
inserting Eq. (B.8) into Eq. (B.7), one obtains

d�TCL

dη
= ω

(

H(ϕ) + �
)

�TCL

− �TCL

(

H(ϕ) + �
)

ω − ωDω

− 2�12�TCL, (B.9)

which indeed coincides with Eq. (3.42).

Appendix C: Coefficients of the transport equation for
TCL2

In this appendix, we work out the coefficients of the transport
equation for TCL2, defined in Eqs. (3.31), (3.32), (3.34) and
(3.35). They involve the scale factor, which in a de-Sitter uni-
verse is given by a = k/(Hz), as well as the mode functions

vϕ(η) = 1

2

√

π z

k
e
i π

2

(

νϕ+ 1
2

)

H (1)
νϕ

(z), (C.1)

pϕ(η) = −1

2

√

kπ

z
e
i π

2

(

νϕ+ 1
2

)

×
[(

νϕ + 3

2

)

H (1)
νϕ

(z) − zH (1)
νϕ+1(z)

]

, (C.2)

vχ(η) = 1

2

√

π z

k
e− π

2 μχ+i π
4 H (1)

iμχ
(z), (C.3)
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pχ (η) = −1

2

√

kπ

z
e− π

2 μχ+i π
4

×
[(

iμχ + 3

2

)

H (1)
iμχ

(z) − zH (1)
iμχ+1(z)

]

. (C.4)

Here, we recall that z = −kη, H (1)
ν is the Hankel function of

the first kind and of order ν and

νϕ = 3

2

√

1 −
(

2m

3H

)2

and μχ = 3

2

√

(

2M

3H

)2

− 1.

(C.5)

C.1 Exact results

In order to perform the integrals involved in Eqs. (3.31)–
(3.35), we will make use of the formula

∫

Cν1(Az)Dν2(Az)
dz

z
= Cν1(Az)Dν2(Az)

ν1 + ν2

+ Az

ν1
2 − ν2

2

[

Cν1(Az)Dν2+1(Az)

−Cν1+1(Az)Dν2(Az)
]

,

(C.6)

see Eq. (10.22.6) of Ref. [101], where Cν1 and Dν2 are any
of the Bessel functions, and A is a fixed arbitrary parameter.
Anticipating the computation, let us finally define

Fν,μ(z) ≡ H (2)
ν (z)H (1)

iμ (z)

ν + iμ
+ z

ν2 + μ2

×
[

H (2)
ν (z)H (1)

iμ+1(z) − H (2)
ν+1(z)H

(1)
iμ (z)

]

,

(C.7)

Gν,μ(z) ≡ H (2)
ν (z)H (2)

−iμ(z)

ν − iμ
+ z

ν2 + μ2

×
[

H (2)
ν (z)H (2)

−iμ+1(z) − H (2)
ν+1(z)H

(2)
−iμ(z)

]

,

(C.8)

in terms of which it will be convenient to express our results.

D11 coefficient

We start with D11 defined in Eq. (3.31), namely

D11(η) = −4λ4a2(η)

∫ η

η0

dη′a2(η′)

× 	m
[

pϕ(η)v∗
ϕ(η′)

]�e
[

vχ(η)v∗
χ (η′)

]

.

(C.9)

Expanding the real and the imaginary parts, and replacing
a = k/(Hz), it is given by

D11(z) = i
k3

z2

λ4

H4

∫ z0

z

dz′

(z′)2

[

pϕ(z)v∗
ϕ(z′) − p∗

ϕ(z)vϕ(z′)
]

×
[

vχ (z)v∗
χ (z′) + v∗

χ (z)vχ (z′)
]

.

(C.10)

We thus have four terms,

D11(z) = i
k3

z2

λ4

H4 pϕ(z)vχ (z)
∫ z0

z

dz′

(z′)2 v∗
ϕ(z′)v∗

χ (z′)

+ i
k3

z2

λ4

H4 pϕ(z)v∗
χ (z)

∫ z0

z

dz′

(z′)2 v∗
ϕ(z′)vχ (z′)

− i
k3

z2

λ4

H4 p
∗
ϕ(z)vχ (z)

∫ z0

z

dz′

(z′)2 vϕ(z′)v∗
χ (z′)

− i
k3

z2

λ4

H4 p
∗
ϕ(z)v∗

χ (z)
∫ z0

z

dz′

(z′)2 vϕ(z′)vχ (z′),

(C.11)

which can be re-organised as

D11(z) = 2
k3

z2

λ4

H4 	m

[

pϕ(z)vχ (z)
∫ z

z0

dz′

(z′)2 v∗
ϕ(z′)v∗

χ (z′)

+pϕ(z)v∗
χ (z)

∫ z

z0

dz′

(z′)2 v∗
ϕ(z′)vχ (z′)

]

.

(C.12)

Therefore, we have two integrals to compute. Making use of
Eq. (C.6), they are given by
∫ z

z0

dz′

(z′)2 v∗
ϕ(z′)v∗

χ (z′) = −i
π

4k
e− π

2 μχ−i π
2 νϕ

× [Gνϕ,μχ (z) − Gνϕ,μχ (z0)
]

,
∫ z

z0

dz′

(z′)2 v∗
ϕ(z′)vχ (z′) = π

4k
e− π

2 μχ−i π
2 νϕ

× [Fνϕ,μχ (z) − Fνϕ,μχ (z0)
]

.

(C.13)

We conclude that D11 can be written as

D11(z) = FD11 (z, z) − FD11 (z, z0) , (C.14)

where

FD11 (z1, z2) = π

2

k2

z2

λ4

H4 e
− π

2 μχ

× 	m

[

− i pϕ(z1)vχ (z1)Gνϕ,μχ (z2)e
−i π

2 νϕ

+ pϕ(z1)v
∗
χ (z1)Fνϕ,μχ (z2)e

−i π
2 νϕ

]

. (C.15)

It is worth noting that in the case where z1 = z2, this func-
tion can be further simplified by making repeated use of the
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Wronskian identity (see Eq. (10.5.5) of Ref. [101]), namely

H (1)
ν+1(z)H

(2)
ν (z) − H (1)

ν (z)H (2)
ν+1(z) = − 4i

π z
. (C.16)

Recalling that [H (1)
ν (z)]∗ = H (2)

ν∗ (z) and [H (2)
ν (z)]∗ =

H (1)
ν∗ (z), after a tedious but straightforward calculation it

leads to

FD11 (z, z) = − 2

ν2
ϕ + μ2

χ

(

k

z

)

×
(

λ

H

)4

�e
[

vχ(z)p∗
χ (z)

]

.

(C.17)

Given that Eq. (C.5) leads to ν2
ϕ +μ2

χ = (M2 −m2)/H2, and

since �free
χχ,12(z) = �e [vχ(z)p∗

χ (z)], this can be rewritten as

FD11 (z, z) = −2
λ4a2

M2 − m2 �free
χχ,12(z), (C.18)

where we have also used that a = −k/(Hz) in a de-Sitter
universe. This corresponds to D11 in the exact theory when
evaluated at leading order in the interaction strength, see
Eq. (3.50). In other words, we have shown that

FD11 (z, z) = DSPT,11(z). (C.19)

D12 coefficient

The other coefficients can be computed similarly. For D12

defined in Eqs. (3.32), one has

D12(η) = 2λ4a2(η)

∫ η

η0

dη′a2(η′)	m
[

vϕ(η)v∗
ϕ(η′)

]

× �e
[

vχ(η)v∗
χ (η′)

]

= i

2

k3

z2

λ4

H4

∫ z

z0

dz′

(z′)2

[

vϕ(z)v∗
ϕ(z′) − v∗

ϕ(z)vϕ(z′)
]

×
[

vχ(z)v∗
χ (z′) + v∗

χ (z)vχ (z′)
]

.

(C.20)

This leads to

D12(z) = FD12 (z, z) − FD12 (z, z0) , (C.21)

where

FD12 (z1, z2) = −π

4

k2

z2

λ4

H4 e
− π

2 μχ

× 	m

[

− ivϕ(z1)vχ (z1)Gνϕ,μχ (z2)e
−i π

2 νϕ

+ vϕ(z1)v
∗
χ (z1)Fνϕ,μχ (z2)e

−i π
2 νϕ

]

. (C.22)

As for FD11 , this expression can be simplified in the coinci-
dent configuration z1 = z2 by repeatedly using the Wron-
skian identity (C.16), and one finds

FD12 (z, z) =
(

k

z

)2 (
λ

H

)4
∣

∣vχ(z)
∣

∣

2

μ2
χ + ν2

ϕ

. (C.23)

Using again that ν2
ϕ + μ2

χ = (M2 − m2)/H2, this can be
written as

FD12 (z, z) = λ4a2

M2 − m2 �free
χχ,11(z) = DSPT,12(z), (C.24)

where we recognise the leading-order contribution in Dex,12,
see Eq. (3.50).

�11 coefficient

For �11 defined in Eqs. (3.34), one has

�11(η) = −4λ4a2(η)

∫ η

η0

dη′a2(η′)

× 	m
[

pϕ(η)v∗
ϕ(η′)

]	m
[

vχ(η)v∗
χ (η′)

]

= −k3

z2

λ4

H4

∫ z

z0

dz′

(z′)2

[

pϕ(z)v∗
ϕ(z′) − p∗

ϕ(z)vϕ(z′)
]

×
[

vχ(z)v∗
χ (z′) − v∗

χ (z)vχ (z′)
]

.

(C.25)

This leads to

�11(z) = F�11 (z, z) − F�11 (z, z0) , (C.26)

where

F�11 (z1, z2) = −π

2

k2

z2

λ4

H4 e
− π

2 μχ

× �e

[

− i pϕ(z1)vχ (z1)Gνϕ,μχ (z2)e
−i π

2 νϕ

− pϕ(z1)v
∗
χ (z1)Fνϕ,μχ (z2)e

−i π
2 νϕ

]

. (C.27)

This expression can be simplified when z1 = z2 using the
Wronskian identity (C.16), if one further uses two additional
properties of the Hankel functions. The first one is the recur-
rence relation (see Eq. (10.6.1) of Ref. [101])

H (2)
ν−1(z) + H (2)

ν+1(z) = 2ν

z
H (2)

ν , (C.28)

and the second one is the inversion formula

H (1)
−ν (z) = eiπνH (1)

ν (z),

H (2)
−ν (z) = e−iπνH (2)

ν (z).
(C.29)
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After a tedious but straightforward calculation, this leads to

F�11 (z, z) = −
(

k

z

)2 (
λ

H

)4 1

ν2
ϕ + μ2

χ

= �ex,11,

(C.30)

where we have recognised �ex,11, see Eq. (3.49), using again
that ν2

ϕ + μ2
χ = (M2 − m2)/H2. Note that, here, the agree-

ment between F�11(z, z) and �ex,11 is valid at all orders,
given that �ex,11 only contains terms of order λ4.

�12 coefficient

Finally, for �12 defined in Eqs. (3.35), one has

�12(η) = 2λ4a2(η)

∫ η

η0

dη′a2(η′)	m
[

vϕ(η)v∗
ϕ(η′)

]

× 	m
[

vχ(η)v∗
χ (η′)

]

= 1

2

k3

z2

λ4

H4

∫ z

z0

dz′

(z′)2

[

vϕ(z)v∗
ϕ(z′) − v∗

ϕ(z)vϕ(z′)
]

×
[

vχ(z)v∗
χ (z′) − v∗

χ (z)vχ (z′)
]

,

(C.31)

and this leads to

�12(z) = F�12 (z, z) − F�12 (z, z0) , (C.32)

where

F�12 (z1, z2) = π

4

k2

z2

λ4

H4 e
− π

2 μχ

× �e

[

− ivϕ(z1)vχ (z1)Gνϕ,μχ (z2)e
−i π

2 νϕ

− vϕ(z1)v
∗
χ (z1)Fνϕ,μχ (z2)e

−i π
2 νϕ

]

. (C.33)

This expression can be simplified when z1 = z2 using the
Wronskian identity (C.16), and we find that it vanishes,

F�12 (z, z) = 0. (C.34)

In particular, it implies that F�12(z, z) = �ex,12(z) and that,
as for F�11(z, z), this is valid at all orders in λ4 given that
both quantities identically vanish.

C.2 Sub-Hubble limit

In order to gain analytic insight, let us expand the coefficients
derived above in the sub-Hubble (z � 1) and super-Hubble
(z � 1) limits. In the sub-Hubble limit, one can use the
asymptotic expansion

H (1)
ν (z) =

√

2

π z
e−i z−i π

2 ν−i π
4

∞
∑

k=0

ak(ν)

(

i

z

)k

, (C.35)

H (2)
ν (z) =

√

2

π z
eiz+i π

2 ν+i π
4

∞
∑

k=0

ak(ν)

(−i

z

)k

, (C.36)

see Eq. (10.17.5) of Ref. [101], with

ak(ν) =
( 1

2 − ν
)

k

( 1
2 + ν

)

k

(−2)kk! (C.37)

where the parenthesis with lower index indicate the Pochham-
mer’s symbol, i.e. (x)k = �(x + k)/�(x). Inserting these
formulas into Eqs. (C.7) and (C.8), one obtains

Fν,μ(z) = − e
π
2 (μ+iν)

π

(

4i

ν2 + μ2 + 2

z
− i

ν2 + μ2

2z2

)

+ O(z−3), (C.38)

Gν,μ(z) = − e
π
2 (μ+iν)

π

e−2i z

z2 + O(z−3). (C.39)

Note that Fν,μ(z) is non vanishing in the sub-Hubble regime.
Let us now expand Eqs. (C.15), (C.22), (C.27) and (C.33) in
the limit z1, z2 � 1. At leading order, one obtains

FD11 (z1, z2) � k2λ4

2H4z3
1

(

2

ν2
ϕ + μ2

χ

− 1 + z1

z2

)

, (C.40)

FD12 (z1, z2) � kλ4

2H4
(

ν2
ϕ + μ2

χ

)

z2
1

, (C.41)

F�11 (z1, z2) � − k2λ4

H4
(

ν2
ϕ + μ2

χ

)

z2
1

, (C.42)

F�12 (z1, z2) � kλ4(z1 − z2)

4H4z3
1z2

. (C.43)

C.3 Super-Hubble limit

To organise the super-Hubble expansion, we introduce the
quantities

αν(z) ≡ 1 + i cot πν

�(1 + ν)

( z

2

)ν− 3
2
,

βν(z) ≡ −i

sin πν

1

�(1 − ν)

( z

2

) 3
2 −ν

, (C.44)

γμ(z) ≡ 1 + coth πμ

�(1 + iμ)

( z

2

)iμ
,

δμ(z) ≡ −1

sinh πμ

1

�(1 − iμ)

( z

2

)−iμ
, (C.45)

together with the function

fx (z) ≡
∞
∑

k=0

(−1)k
( z

2

)2k

k! (x + 1)k
(C.46)
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= 1 −
( z

2

)2

x + 1

+
( z

2

)4

2(x + 1)(x + 2)
+ O(z6) (C.47)

such that

H (1)
ν (z) = αν(z) fν(z)

( z

2

) 3
2

+ βν(z) f−ν(z)
( z

2

)− 3
2
, (C.48)

H (1)
iμ (z) = γμ(z) fiμ(z) + δμ(z) f−iμ(z), (C.49)

and

H (1)
ν+1(z) = αν(z)

ν + 1
fν+1(z)

( z

2

) 5
2

+ νβν(z) f−ν−1(z)
( z

2

)− 5
2
, (C.50)

H (1)
iμ+1(z) = γμ(z)

iμ + 1
fiμ+1(z)

z

2

+ iμδμ(z) f−iμ−1(z)
( z

2

)−1
, (C.51)

see Eqs. (10.2.2), (10.4.7) and (10.4.8) of Ref. [101]. This
allows one to expand Eqs. (C.7) and (C.8), and one finds

Fν,μ(z)

= −2
√

2z−3/2β∗
ν

[

(ν + iμ)γμ + (ν − iμ)δμ

ν2 + μ2

]

+ z1/2

√
2

β∗
ν

[

(1 − iμ)γμ + (1 + iμ)δμ
(

1 + μ2
)

(ν − 1)

]

+ z3/2

2
√

2
α∗

ν

[

(ν − iμ)γμ + (ν + iμ)δμ

ν2 + μ2

]

+ O(z5/2).

(C.52)

and

Gν,μ(z)

= −2
√

2z−3/2β∗
ν

[

(ν − iμ)γ ∗
μ + (ν + iμ)δ∗

μ

ν2 + μ2

]

+ z1/2

√
2

β∗
ν

[

(1 + iμ)γ ∗
μ + (1 − iμ)δ∗

μ
(

1 + μ2
)

(ν − 1)

]

+ z3/2

2
√

2
α∗

ν

[

(ν + iμ)γ ∗
μ + (ν − iμ)δ∗

μ

ν2 + μ2

]

+ O(z5/2).

(C.53)

Hereafter, to lighten the notation, we have dropped the
explicit z-dependence of αν , βν , γμ and δμ. This is because,

since νϕ is close to 3/2 in practice, see Eq. (C.5), this does not
affect the power counting in z, see Eqs. (C.44) and (C.45).

It is worth noting that the terms of orders z−3/2 and z1/2

cancel out in F∗
ν,μ(z) + Gν,μ(z) since βν is pure imaginary,

see Eq. (C.45). One indeed has

F∗
ν,μ(z) + Gν,μ(z)

= 1

ν2 + μ2

z3/2

√
2

�e (αν)

× [(ν + iμ)γ ∗
μ + (ν − iμ)δ∗

μ

]+ O(z5/2).

(C.54)

Let us now expand the coefficients of the transport equation
in the super-Hubble limit, i.e. when z � 1 (but keeping z0

arbitrary).

D11 coefficient

For D11, one finds

D11 = z−7/2S(−7/2)
D11

(z, z0) + π

2

e−πμχ

ν2
ϕ + μ2

χ

λ4

H4

×
[

3

2

∣

∣γμχ + δμχ

∣

∣

2 + 2μχ	m
(

γ ∗
μχ

δμχ

)

]

k2

z2

× +z−3/2S(−3/2)
D11

(z, z0),

(C.55)

where

S(−7/2)
D11

(z, z0) = −π2k2

2
√

2

(

νϕ − 3

2

)

λ4

H4

× 	m

{

βνϕ

[

F∗
νϕ,μχ

(z0) + Gνϕ,μχ (z0)
]

× (γμχ + δμχ

)

}

e−πμχ (C.56)

and

S(−3/2)
D11

(z, z0)

= − π2

16
√

2

1

(1 + μ2
χ )(νϕ − 1)

λ4

H4 k
2

× 	m

[

βνϕ

[

F∗
νϕ,μχ

(z0) + Gνϕ,μχ (z0)
]

×
(

γμχ (μχ + i)
{

μχ(−7 + 2νϕ)

+i
[

10 + νϕ(−7 + 2νϕ)
]}

+ δμχ (μχ − i)
{

μχ(−7 + 2νϕ)

−i
[

10 + νϕ(−7 + 2νϕ)
]}

)]

e−πμχ
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+ π2

16
√

2

(

3

2
+ νϕ

)

λ4

H4

k2

z1/2

× 	m

{

[

−α∗
νϕ
F∗

νϕ,μχ
(z0) + ανϕGνϕ,μχ (z0)

]

(

γμχ + δμχ

)

}

e−πμχ + O(z1/2) (C.57)

are spurious contributions, i.e. they arise from the term
FD11(z, z0) in Eq. (C.14).

D12 coefficient

One finds

D12 =z−5/2S(−5/2)
D12

(z, z0)

+ π

4

∣

∣γμχ + δμχ

∣

∣

2

ν2
ϕ + μ2

χ

× λ4

H4 e
−πμχ

k

z
+ z−1/2S(−1/2)

D12
(z, z0),

(C.58)

where

S(−5/2)
D12

(z, z0) = π2

4
√

2

λ4

H4 k	m
{

βνϕ

[

F∗
νϕ,μχ

(z0)

+Gνϕ,μχ (z0)
] (

γμχ + δμχ

)}

e−πμχ

(C.59)

and

S(−1/2)
D12

(z, z0) = π2k

16
√

2

e−πμχ

(1 + μ2
χ )(νϕ − 1)

λ4

H4

× 	m

{

βνϕ

[

F∗
νϕ,μχ

(z0) + Gνϕ,μχ (z0)
]

×
[

(1 + μ2
χ )
(

γμχ + δμχ

)+ (1 − iμχ)

(1 − νϕ)γμχ + (1 + iμχ)(1 − νϕ)δμχ

]

}

(C.60)

are again spurious contributions.

�11 coefficient

For �11, we have

�11 =z−7/2S(−7/2)

�11
(z, z0)

− π

2

μχe−πμχ

ν2
ϕ + μ2

χ

λ4

H4

(

∣

∣γμχ

∣

∣

2 − ∣∣δμχ

∣

∣

2
) k2

z2

+ z−3/2S(−3/2)

�11
(z, z0),

(C.61)

where

S(−7/2)

�11
(z, z0) = π2k2

2
√

2

(

νϕ − 3

2

)

λ4

H4

× �e
{

βνϕ

[

F∗
νϕ,μχ

(z0) + Gνϕ,μχ (z0)
]

(

γμχ + δμχ

)}

e−πμχ (C.62)

and

S(−3/2)

�11
(z, z0)

= π2k2

16
√

2

1

(1 + μ2
χ )(νϕ − 1)

λ4

H4

× �e

[

βνϕ

[

F∗
νϕ,μχ

(z0) + Gνϕ,μχ (z0)
]

×
(

γμχ (μχ + i)
{

μχ(−7 + 2νϕ)

+i
[

10 + νϕ(−7 + 2νϕ)
]}

+ δμχ (μχ − i)
{

μχ(−7 + 2νϕ)

−i
[

10 + νϕ(−7 + 2νϕ)
]}

)]

e−πμχ

− π2

16
√

2

(

3

2
+ νϕ

)

λ4

H4

k2

z1/2

× �e

{

[

−α∗
νϕ
F∗

νϕ,μχ
(z0) + ανϕGνϕ,μχ (z0)

]

× (γμχ + δμχ

)

}

e−πμχ

(C.63)

are spurious contributions. It is also worth noting that, in
Eq. (C.61), one can simplify

∣

∣γμχ

∣

∣

2 − ∣∣δμχ

∣

∣

2 = 2
eπμ

πμ
. (C.64)

�12 coefficient

Finally, for �12, one obtains

�12(z) =z−5/2S(−5/2)

�12
(z, z0)

+ z−1/2S(−1/2)

�12
(z, z0)

(C.65)

which only contains spurious terms as shown in Eq. (C.34),
given by

S(−5/2)

�12
(z, z0) = − π2k

4
√

2

λ4

H4 �e
{

βνϕ

[

F∗
νϕ,μχ

(z0)

+Gνϕ,μχ (z0)
] (

γμχ + δμχ

)}

e−πμχ (C.66)

123



Eur. Phys. J. C (2022) 82 :1085 Page 25 of 32 1085

and

S(−1/2)

�12
(z, z0)

= − π2k

16
√

2

e−πμχ

(1 + μ2
χ )(νϕ − 1)

λ4

H4

× �e
{

βνϕ

[

F∗
νϕ,μχ

(z0) + Gνϕ,μχ (z0)
]

×
[

(1 + μ2
χ )
(

γμχ + δμχ

)+ (1 − iμχ)(1 − νϕ)γμχ

+(1 + iμχ)(1 − νϕ)δμχ

]

}

.

(C.67)

Appendix D: Comparison between TCL and perturba-
tion theory in the curved-space Caldeira–Leggett model

In this appendix, we compare Standard Perturbation Theory
(SPT) to the perturbative solutions of the TCL master equa-
tion, in the context of the curved-space Caldeira–Leggett
model introduced in Sect. 3. This will allow us to exhibit
a concrete manifestation of the generic statement proven in
Sect. 2.4, that TCLn solved perturbatively at order n coin-
cides with SPTn .

D.1 Perturbation theory

The two-field system detailed in Sect. 3.1 being linear, the
field operators admit a decomposition of the form

v̂ϕ(η) = vϕϕ(η)̂aϕ + v∗
ϕϕ(η)̂a†

ϕ

+ vϕχ (η)̂aχ + v∗
ϕχ (η)̂a†

χ , (D.1)

v̂χ (η) = vχϕ(η)̂aϕ + v∗
χϕ(η)̂a†

ϕ

+ vχχ (η)̂aχ + v∗
χχ (η)̂a†

χ , (D.2)

where (̂aϕ; â†
ϕ) and (̂aχ ; â†

χ ) are the creation and annihilation
operators of the ϕ and χ quanta respectively. This generalises
the decomposition (3.13) to the case where fields interact and
exchange quanta. A similar decomposition can be introduced
for the momenta operators p̂ϕ and p̂χ , where the Hamilto-
nian (3.6) and (3.7) gives the mode functions

pi j (η) = v′
i j (η) − a′

a
vi j (η) (D.3)

for i, j ∈ {ϕ, χ}. Using Heisenberg’s equations, one finds
that the mode functions evolve according to

v′′
i j + ω2

i (η)vi j = −λ2a2(η)vī j , (D.4)

where we have introduced ω2
ϕ(η) ≡ k2 + m2a2(η) − a′′/a

and ω2
χ (η) ≡ k2 + M2a2(η) − a′′/a, and where ī = χ

when i = ϕ and ī = ϕ when i = χ . This constitutes a
set of coupled differential equations, where the coupling is
mediated by λ2. It can thus be solved perturbatively in λ.

• Zeroth order: The right-hand side of Eq. (D.4) vanishes,
hence the uncoupled dynamics is recovered, namely
v

(0)
i i (η) = vi (η) and v

(0)

i ī
(η) = 0, where vϕ and vχ are the

free-field mode functions [i.e. they are given by Eq. (3.15)
if one replaces ν by νϕ and μh by μχ ]. One also has

p(0)
i i (η) = pi (η) and p(0)

i ī
(η) = 0.

• First order: At first order, the right-hand side of Eq. (D.4)
needs to be replaced with the zeroth-order solution.
This does not change the diagonal mode functions
v

(1)
i i (η) = v

(0)
i i (η) and p(1)

i i (η) = p(0)
i i (η), while the

cross mode functions now obey v
(1)′′
i ī

+ω2
i v

(1)

i ī
= λ2a2vī .

Using the Green’s functions of the homogeneous (hence
uncoupled) system of differential equation, gi (η, η′) =
2	m

[

vi (η)v∗
i (η

′)
]

, this gives rise to

v
(1)

i ī
(η) = −2λ2

∫ η

η0

dη1a
2(η1)

× 	m
[

vi (η)v∗
i (η1)

]

vī (η1). (D.5)

Using Eq. (D.3), this leads to

p(1)

i ī
(η) = −2λ2

∫ η

η0

dη1a
2(η1)

× 	m
[

pi (η)v∗
i (η1)

]

vī (η1).

(D.6)

• Second order: At second order, Eq. (D.4) is sourced by
the first-order solution, so the diagonal mode functions
obey v

(2)′′
i i +ω2

i v
(2)
i i = −λ2a2v

(1)

ī i
. Using again the homo-

geneous Green functions, together with Eq. (D.5), this
gives rise to

v
(2)
i i (η) =vi (η) + 4λ4

∫ η

η0

dη1a
2(η1)

×
∫ η1

η0

dη2a
2(η2)	m

[

vi (η)v∗
i (η1)

]

× 	m
[

vī (η1)v
∗̄
i
(η2)

]

vi (η2). (D.7)

Using Eq. (D.3), this leads to

p(2)
i i (η) =pi (η) + 4λ4

∫ η

η0

dη1a
2(η1)

×
∫ η1

η0

dη2a
2(η2)	m

[

pi (η)v∗
i (η1)

]

× 	m
[

vī (η1)v
∗̄
i
(η2)

]

vi (η2).

(D.8)

One may also compute the cross mode functions, and
carry on the expansion, but that would lead to subdomi-
nant corrections to the power spectra.

The covariance matrix can be computed using Eq. (3.18), and
onefinds
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�ϕϕ(η) =
⎛

⎝

∣

∣vϕϕ(η)
∣

∣

2 + ∣∣vϕχ (η)
∣

∣

2 �e
[

vϕϕ(η)p∗
ϕϕ(η)

]+ �e
[

vϕχ (η)p∗
ϕχ (η)

]

�e
[

vϕϕ(η)p∗
ϕϕ(η)

]+ �e
[

vϕχ (η)p∗
ϕχ (η)

]

∣

∣pϕϕ(η)
∣

∣

2 + ∣∣pϕχ (η)
∣

∣

2

⎞

⎠ , (D.9)

�χχ (η) =
⎛

⎝

∣

∣vχχ (η)
∣

∣

2 + ∣∣vχϕ(η)
∣

∣

2 �e
[

vχχ (η)p∗
χχ (η)

]

+ �e
[

vχϕ(η)p∗
χϕ(η)

]

�e
[

vχχ (η)p∗
χχ (η)

]

+ �e
[

vχϕ(η)p∗
χϕ(η)

]

∣

∣pχχ (η)
∣

∣

2 + ∣∣pχϕ(η)
∣

∣

2

⎞

⎠ , (D.10)

�ϕχ (η) =
⎛

⎝

�e
[

vϕϕ(η)v∗
χϕ(η)

]

+ �e
[

vχχ (η)v∗
ϕχ (η)

]

�e
[

vϕϕ(η)p∗
χϕ(η)

]

+ �e
[

pχχ (η)v∗
ϕχ (η)

]

�e
[

pϕϕ(η)v∗
χϕ(η)

]

+ �e
[

vχχ (η)p∗
ϕχ (η)

]

�e
[

pϕϕ(η)p∗
χϕ(η)

]

+ �e
[

pχχ (η)p∗
ϕχ (η)

]

⎞

⎠ . (D.11)

By inserting the mode functions obtained above into these
expressions, one obtains the first perturbative corrections to
the power spectra. For the configuration–configuration power
spectrum of the ϕ field, one finds

�
(2)
ϕϕ,11(η) =

∣

∣

∣v
(0)
ϕϕ (η)

∣

∣

∣

2 +
∣

∣

∣v
(1)
ϕχ (η)

∣

∣

∣

2

+ 2�e
[

v(2−0)
ϕϕ (η)v(0)∗

ϕϕ (η)
]

, (D.12)

where we have introduced the short-hand notationv
(2−0)
ϕϕ (η) =

v
(2)
ϕϕ (η) − v

(0)
ϕϕ (η), which selects the terms of order λ2 in

v
(2)
ϕϕ (η). This gives rise to

�
(2)
ϕϕ,11(η)

= ∣∣vϕ(η)
∣

∣

2

+ 4λ4
∣

∣

∣

∣

∫ η

η0

dη1a
2(η1)	m

[

vϕ(η)v∗
ϕ(η1)

]

vχ(η1)

∣

∣

∣

∣

2

+ 8λ4�e

{

vϕ(η)

∫ η

η0

dη1a
2(η1)

×
∫ η1

η0

dη2a
2(η2)	m

[

vϕ(η)v∗
ϕ(η1)

]

× 	m
[

vχ (η1)v
∗
χ (η2)

]

v∗
ϕ(η2)

}

.

(D.13)

For the configuration–momentum power spectrum, one
obtains

�
(2)
ϕϕ,12(η) =�e

[

v(0)
ϕϕ (η)p(0)∗

ϕϕ (η)
]

+ �e
[

v(1)
ϕχ (η)p(1)∗

ϕχ (η)
]

+ �e
[

v(0)
ϕϕ (η)p(2−0)∗

ϕϕ (η)

+v(2−0)
ϕϕ (η)p(0)∗

ϕϕ (η)
]

,

(D.14)

namely

�
(2)
ϕϕ,12(η) = �e

[

vϕ(η)p∗
ϕ(η)

]

+ 4λ4
∫ η

η0

dη′a2(η′)	m
[

vϕ(η)v∗
ϕ(η′)

]

vχ(η′)

×
∫ η

η0

dη′′a2(η′′)	m
[

pϕ(η)v∗
ϕ(η′′)

]

vχ (η′′)

+ 4λ4�e

{

vϕ(η)

∫ η

η0

dη1a
2(η1)

∫ η1

η0

dη2a
2(η2)

×	m
[

pϕ(η)v∗
ϕ(η1)

]	m
[

vχ(η1)v
∗
χ (η2)

]

v∗
ϕ(η2)

}

+ 4λ4�e

{

pϕ(η)

∫ η

η0

dη1a
2(η1)

∫ η1

η0

dη2a
2(η2)

×	m
[

vϕ(η)v∗
ϕ(η1)

]	m
[

vχ(η1)v
∗
χ (η2)

]

v∗
ϕ(η2)

}

.

(D.15)

Finally, for the momentum–momentum power spectrum, one
has

�
(2)
ϕϕ,22(η) =

∣

∣

∣p(0)
ϕϕ (η)

∣

∣

∣

2 +
∣

∣

∣p(1)
ϕχ (η)

∣

∣

∣

2

+ 2�e
[

p(2−0)
ϕϕ (η)p(0)∗

ϕϕ (η)
]

,

(D.16)

which leads to

�
(2)
ϕϕ,22(η) =
∣

∣pϕ(η)
∣

∣

2 + 4λ4
∣

∣

∣

∣

∫ η

η0

dη1a
2(η1)	m

[

pϕ(η)v∗
ϕ(η1)

]

vχ (η1)

∣

∣

∣

∣

2

+ 8λ4�e

{

pϕ(η)

∫ η

η0

dη1a
2(η1)

∫ η1

η0

dη2a
2(η2)

×	m
[

pϕ(η)v∗
ϕ(η1)

]	m
[

vχ (η1)v
∗
χ (η2)

]

v∗
ϕ(η2)

}

.

(D.17)
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D.2 Perturbative solution of TCL

Let us start with the TCL2 master equation written in the
form

dρ̃red

dη
= −λ4a2(η)

∫ η

η0

dη′a2(η′)

×
{

[

ṽϕ(η)̃vϕ(η′)ρ̃red(η)

−ṽϕ(η′)ρ̃red(η)̃vϕ(η)
]

K>(η, η′)
− [ṽϕ(η)ρ̃red(η)̃vϕ(η′)

−ρ̃red(η)̃vϕ(η′)̃vϕ(η)
]

K>∗(η, η′)
}

. (D.18)

This equation was obtained in Eq. (A.17) from microphysical
considerations and is just a convenient rewriting of Eq. (3.25).
We want to solve it at order λ4, i.e. drop all contributions of
higher order. Since the right-hand side is already proportional
to λ4, this implies that it can be evaluated in the free theory,
where ρ̃red(η) � ρ̃red(η0). One can thus integrate Eq. (D.18),
which leads to

ρ̃
(2)
red(η) =ρ̃red(η0) − λ4

∫ η

η0

dη′a2(η′)
∫ η′

η0

dη′′a2(η′′)

×
{

[

ṽϕ(η′)̃vϕ(η′′)ρ̃red(η0)

−ṽϕ(η′′)ρ̃red(η0)̃vϕ(η′)
]

vχ(η′)v∗
χ (η′′)

− [ṽϕ(η′)ρ̃red(η0)̃vϕ(η′′)

−ρ̃red(η0)̃vϕ(η′′)̃vϕ(η′)
]

v∗
χ (η′)vχ (η′′)

}

, (D.19)

where we have used that the memory kernels are related to
the free mode functions via Eq. (A.15).

Let us now compute the entries of the covariance matrix
using this expression for ρ̃(2)

red . The configuration–configuration
power spectrum reads

�
(2)
TCL,11(η) = Tr

[

ṽϕ(η)̃vϕ(η)ρ̃
(2)
red(η)

]

, (D.20)

that is

�
(2)
TCL,11(η)

= Tr
[

ṽϕ(η)̃vϕ(η)ρ̃red(η0)
]

− λ4
∫ η

η0

dη′a2(η′)vχ (η′)
∫ η′

η0

dη′′a2(η′′)v∗
χ (η′′)

× {Tr
[

ṽϕ(η)̃vϕ(η)̃vϕ(η′)̃vϕ(η′′)ρ̃red(η0)
]

−Tr
[

ṽϕ(η)̃vϕ(η)̃vϕ(η′′)ρ̃red(η0)̃vϕ(η′)
]}

+ λ4
∫ η

η0

dη′a2(η′)v∗
χ (η′)

∫ η′

η0

dη′′a2(η′′)vχ (η′′)

× {Tr
[

ṽϕ(η)̃vϕ(η)̃vϕ(η′)ρ̃red(η0)̃vϕ(η′′)
]

−Tr
[

ṽϕ(η)̃vϕ(η)ρ̃red(η0)̃vϕ(η′′)̃vϕ(η′)
]}

.

(D.21)

Since the initial state is the Bunch–Davies vacuum, ρ̃red(η0) =
|�0〉〈�0|, using the mode-function decomposition (3.27) one
obtains

�
(2)
TCL,11(η) = ∣∣vϕ(η)

∣

∣

2

− 4λ4�e

[

v2
ϕ(η)

∫ η

η0

dη′a2(η′)v∗
ϕ(η′)vχ (η′)

×
∫ η′

η0

dη′′a2(η′′)v∗
ϕ(η′′)v∗

χ (η′′)

− ∣∣vϕ(η)
∣

∣

2
∫ η

η0

dη′a2(η′)vϕ(η′)vχ (η′)

×
∫ η′

η0

dη′′a2(η′′)v∗
ϕ(η′′)v∗

χ (η′′)
]

.

(D.22)

This expression matches Eq. (D.13), as can be shown by
expanding the real and imaginary parts and relabeling the
integration domain. Following the same method, one finds

�
(2)
TCL,12(η)

= �e
[

vϕ(η)p∗
ϕ(η)

]

− 4λ4�e

{

vϕ(η)pϕ(η)

∫ η

η0

dη′a2(η′)v∗
ϕ(η′)vχ (η′)

×
∫ η′

η0

dη′′a2(η′′)v∗
ϕ(η′′)v∗

χ

(

η′′)

− �e
[

vϕ(η)p∗
ϕ(η)

]

∫ η

η0

dη′a2(η′)vϕ(η′)vχ (η′)

×
∫ η′

η0

dη′′a2(η′′)v∗
ϕ(η′′)v∗

χ (η′′)
}

,

(D.23)

which can be shown to match Eq. (D.15), and

�
(2)
TCL,22(η)

= ∣∣pϕ(η)
∣

∣

2

− 4λ4�e

[

p2
ϕ(η)

∫ η

η0

dη′a2(η′)v∗
ϕ(η′)vχ (η′)

×
∫ η′

η0

dη′′a2(η′′)v∗
ϕ(η′′)v∗

χ (η′′)

− ∣∣pϕ(η)
∣

∣

2
∫ η

η0

dη′a2(η′)vϕ(η′)vχ (η′)

×
∫ η′

η0

dη′′a2(η′′)v∗
ϕ(η′′)v∗

χ (η′′)
]

,

(D.24)

which can be shown to match Eq. (D.17).
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Appendix E: Comparison with other late-time resumma-
tion techniques

In this section, we compare TCL with the late-time resum-
mation technique proposed in Ref. [44] and also studied in
Ref. [59]. The idea is to keep track of the growing mode
only, in order to simplify the analysis in the late-time limit.
As we will make clear, the method also implicitly performs an
additional layer of approximation compared to TCL, which
makes it less efficient.

The starting point is to rewrite the free mode function

vϕ(z) = 1

2

√

π z

k
e
i π

2

(

νϕ+ 1
2

)

H (1)
νϕ

(z), (E.1)

where we recall that z = −kη, as (see Eq. (10.4.3) of
Ref. [101])

vϕ(z) = e
i π

2

(

νϕ+ 1
2

)

v−(z) + iv+(z)√
2

(E.2)

where

v+(z) =
√

π z
2k Yνϕ (z) and

v−(z) =
√

π z
2k Jνϕ (z) (E.3)

are real functions. Here, Jν and Yν are the Bessel functions
of the first and second kind respectively, and of order ν. The
reason why this decomposition is convenient is that v− cor-
responds to the cosmological “decaying mode” [i.e. v−(η)

decreases on super-Hubble scales], while v+ stands for the
growing mode. Let us recall that the heavy-field mode func-
tion cannot be divided into a growing mode and a decaying
mode, since both modes oscillate with similar amplitude on
super-Hubble scales.

In the interaction picture, where operators evolve as in the
free theory, the mode-function expansion (3.27) of the field
operators can then be written as

ṽϕ(η) = vϕ(η)̂aϕ + v∗
ϕ(η)̂a†

ϕ (E.4)

= v−(η)̂Pϕ + v+(η)̂Qϕ, (E.5)

where

̂Pϕ = 1√
2

[

e
i π

2

(

νϕ+ 1
2

)

âϕ + e
−i π

2

(

νϕ+ 1
2

)

â†
ϕ

]

, (E.6)

̂Qϕ = i√
2

[

e
i π

2

(

νϕ+ 1
2

)

âϕ − e
−i π

2

(

νϕ+ 1
2

)

â†
ϕ

]

. (E.7)

One can check that they constitute a set of canonical variables
since

[

̂Qϕ, ̂Pϕ

] = i .
The idea proposed in Refs. [44,59] is to insert the decom-

position (E.5) into the TCL2 master equation (3.25) in order

to identify the leading late-time contribution. One finds

dρ̃IR
red

dη
= −λ4a2(η)

{

v−(η)X∗−(η)vχ (η)

×
[

̂P2
ϕ ρ̃red(η) − ̂Pϕρ̃red(η)̂Pϕ

]

+ v−(η)X−(η)v∗
χ (η)

×
[

ρ̃red(η)̂P2
ϕ − ̂Pϕρ̃red(η)̂Pϕ

]

+ v+(η)X∗−(η)vχ (η)

× [̂Qϕ
̂Pϕρ̃red(η) − ̂Pϕρ̃red(η)̂Qϕ

]

+ v+(η)X−(η)v∗
χ (η)

× [ρ̃red(η)̂Pϕ
̂Qϕ − ̂Qϕρ̃red(η)̂Pϕ

]

+ v−(η)X∗+(η)vχ (η)

× [̂Pϕ
̂Qϕρ̃red(η) − ̂Qϕρ̃red(η)̂Pϕ

]

+ v−(η)X+(η)v∗
χ (η)

× [ρ̃red(η)̂Qϕ
̂Pϕ − ̂Pϕρ̃red(η)̂Qϕ

]

+ v+(η)X∗+(η)vχ (η)

×
[

̂Q2
ϕρ̃red(η) − ̂Qϕρ̃red(η)̂Qϕ

]

+ v+(η)X+(η)v∗
χ (η)

×
[

ρ̃red(η)̂Q2
ϕ − ̂Qϕρ̃red(η)̂Qϕ

]

}

,

(E.8)

where

X+(η) ≡
∫ η

η0

dη′a2(η′)v+(η′)vχ (η′), (E.9)

X−(η) ≡
∫ η

η0

dη′a2(η′)v−(η′)vχ (η′). (E.10)

The authors of Refs. [44,59] argue that dropping the
decaying-mode contributions constitutes a valid approxima-
tion in the infrared (IR) limit, and for this reason hereafter
we label the quantities computed in this scheme with the
superscript “IR”.

In the interaction picture, the configuration–configuration
power spectrum reads

〈

ṽϕ(η)̃vϕ(η)
〉 = v−(η)v−(η)

〈

̂P2
ϕ

〉

+ v−(η)v+(η)
〈

̂Qϕ
̂Pϕ + ̂Pϕ

̂Qϕ

〉

+ v+(η)v+(η)
〈

̂Q2
ϕ

〉

� v+(η)v+(η)
〈

̂Q2
ϕ

〉

,

(E.11)

where in the second line we have neglected the decaying
mode contribution. The next step is to compute

〈

̂Q2
ϕ

〉

(η) =
Tr
[

̂Q2
ϕρ̃red(η)

]

with the IR master equation (E.8). Upon dif-
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ferentiating this expression with respect to time, one obtains

d
〈

̂Q2
ϕ

〉

dη
= �(η)

〈

̂Q2
ϕ

〉

(E.12)

where

�(η) = 4λ4a2(η)v−(η)	m
[

vχ (η)X∗+(η)
]

, (E.13)

which gives rise to

〈

̂Q2
ϕ

〉

(η) = e
∫ η
η∗ dη′�(η′)

〈

̂Q2
ϕ

〉

(η∗). (E.14)

Since we are interested in the late-time behaviour of the
power spectra, we can assume −kη � 1 and let η∗ denote
the Hubble crossing time, η∗ ≡ −1/k, if the above integral is
dominated by its upper bound (hence does not depend much
on the choice of the lower bound). If the effect of the inter-
action with the environment is small in sub-Hubble scales,
as argued in Ref. [44] one can evaluate 〈̂Q2

ϕ〉(η∗) in the free
theory, which simply yields

〈

̂Q2
ϕ

〉

(η∗) � 1. (E.15)

In the super-Hubble limit, using the results derived in
Appendix C.3, one can also approximate

X∗+(z) � π

H2

(−1)3/4

ν2
ϕ + μ2

χ

× z−νϕ

sin(πνϕ)�(1 − νϕ)

×
[

νϕ

(

γ ∗
μχ

+ δ∗
μχ

)

− iμχ

(

γ ∗
μχ

− δμ∗
χ

)]

e−πμχ ,

(E.16)

where γμ and δμ were defined in Eq. (C.45). This leads to

�(z) = π

2νϕ

1

ν2
ϕ + μ2

χ

λ4

H4

k

z
μχ

×
(

∣

∣γμχ

∣

∣

2 − ∣∣δμχ

∣

∣

2
)

e−πμχ , (E.17)

where |γμχ |2 − |δμχ |2 = 2eπμχ /(πμχ). One thus has

∫ η

η∗
dη′�(η′) � − 1

νϕ

1

ν2
ϕ + μ2

χ

λ4

H4 ln(−kη), (E.18)

which one can check does not depend on the detailed choice
of η∗ as announced above. Combining the above results, one
obtains

�IR,11(η) = e
− 1

νϕ
1

ν2
ϕ+μ2

χ

λ4

H4 ln(−kη)

Fig. 5 Relative error in the three power spectra for TCL2 (blue curves)
and the IR resummation method presented in Appendix E (green
curves). The parameters are taken as m2 = 10−4H2, M2 = 103H2

and λ2 = 10−3H2

× |vϕ(η)|2. (E.19)

The configuration–momentum and momentum–momentum
power spectra can be computed along similar lines. Starting
from

p̃ϕ(η) = p+(η)̂Qϕ + p−(η)̂Pϕ (E.20)

and using the fact that p+ = v′+ − (a′/a)v+ and p− =
v′− − (a′/a)v− are still growing and decaying respectively,
one has

〈

ṽϕ(η) p̃ϕ(η)
〉 � v+(η)p+(η)

〈

̂Q2
ϕ

〉

, (E.21)

〈

p̃ϕ(η) p̃ϕ(η)
〉 � p+(η)p+(η)

〈

̂Q2
ϕ

〉

. (E.22)

This implies that the same correction is obtained for all power
spectra, i.e.

�IR,11(η) = e
− 1

νϕ
1

ν2
ϕ+μ2

χ

λ4

H4 ln(−kη)|vϕ(η)|2, (E.23)

�IR,12(η) = e
− 1

νϕ
1

ν2
ϕ+μ2

χ

λ4

H4 ln(−kη) × �e
[

vϕ(η)p∗
ϕ(η)

]

,

(E.24)

�IR,22(η) = e
− 1

νϕ
1

ν2
ϕ+μ2

χ

λ4

H4 ln(−kη)|pϕ(η)|2. (E.25)

These expressions feature manifest resummations over
powers of ln(a), which we now compare with the resum-
mation performed by the TCL2 master equation. The rel-
ative difference between the three power spectra and their
exact counterpart is displayed in Fig. 5, both for TCL2 (blue
curves)13 and IR (green curves).

13 Let us note that at late time, the relative error in TCL asymptotes
a constant in Fig. 5, hence it is not described by Eq. (4.8). The reason
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Let us first note that the growth rate of the power spectra is
correctly captured in the IR approach, even at strong coupling
where the perturbative result usually breaks down. This can
be further understood by noting that Eqs. (E.23)–(E.25) take
the same form as Eq. (4.6) with

νIR = 1

2νϕ

1

ν2
ϕ + μ2

χ

(

λ

H

)4

+ νϕ , (E.26)

while according to footnote 11, in TCL2 one has

νLS = 3

2

√

1 −
(

2mLS

3H

)2

where

m2
LS = m2 − λ4

M2 − m2

(E.27)

and we recall that in the exact theory

ν = 3

2

√

1 −
(

2m

3H

)2

where

m2
 = 1

2

[

m2 + M2 −
(

M2 − m2
)

×
√

1 +
(

2λ2

M2 − m2

)2
⎤

⎦ .

(E.28)

Since Eqs. (E.26), (E.27) and (E.28) coincide when expanded
at first order in λ4, one concludes that, at the level of the
growth rate, the Lamb-shift renormalisation of the mass is
correctly accounted for in the IR approach [44] as for TCL,
at least at leading order in the coupling constant. This is simi-
lar to the dynamical renormalisation group (DRG) treatment
of late-time secular divergences in de Sitter performed in
Refs. [56–58], as pointed out in Refs. [44,46,59].

The IR approach however fails to reproduce the overall
amplitude of the power spectra beyond the perturbative level,
which explains why it does not perform as well as TCL. Let
us also note that another disadvantage of the IR method is
that it does not allow one to track decoherence, which as
explained in Sect. 4.2 is not driven by the growing modes.
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