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Abstract

The performance of the quantum approximate optimization algorithm is evaluated by

using three different measures: the probability of finding the ground state, the energy

expectation value, and a ratio closely related to the approximation ratio. The set of

problem instances studied consists of weighted MaxCut problems and 2-satisfiability

problems. The Ising model representations of the latter possess unique ground states

and highly degenerate first excited states. The quantum approximate optimization

algorithm is executed on quantum computer simulators and on the IBM Q Experi-

ence. Additionally, data obtained from the D-Wave 2000Q quantum annealer are used

for comparison, and it is found that the D-Wave machine outperforms the quantum

approximate optimization algorithm executed on a simulator. The overall performance

of the quantum approximate optimization algorithm is found to strongly depend on

the problem instance.

Keywords Quantum computation · Quantum annealing · Optimization problems ·
QAOA

1 Introduction

The quantum approximate optimization algorithm (QAOA) is a variational method for

solving combinatorial optimization problems on a gate-based quantum computer [1].

Generally speaking, combinatorial optimization is the task of finding, from a finite
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number of objects, that object which minimizes a cost function. Combinatorial opti-

mization finds application in real-world problems including reducing the cost of supply

chains, vehicle routing, job allocation, and so on. The QAOA is based on a reformu-

lation of the combinatorial optimization in terms of finding an approximation to the

ground state of a Hamiltonian by adopting a specific variational ansatz for the trial

wave function. This ansatz is specified in terms of a gate circuit and involves 2p param-

eters (see below) which have to be optimized by running a minimization algorithm on

a conventional computer.

Alternatively, the QAOA can be viewed as a form of quantum annealing (QA) using

discrete time steps. In the limit that these time steps become vanishingly small (i.e p →
∞), the adiabatic theorem [2] guarantees that quantum annealing yields the true ground

state, presuming that the adiabatic conditions are satisfied, thus providing at least one

example for which the QAOA yields the correct answer. In addition, there exists a

special class of models for which QAOA with p = 1 solves the optimization problem

exactly [3]. In general, for finite p, there is no guarantee that the QAOA solution

corresponds to the solution of the original combinatorial optimization problem.

Interest in the QAOA has increased dramatically in the past few years as it may,

in contrast to Shor’s factoring algorithm [4], lead to useful results even when used on

NISQ devices [5]. Experiments have already been performed [6,7]. Moreover, the field

of application, which is optimization, is much larger than, for example, factoring, ren-

dering the QAOA a possible valuable application for gate-based quantum computers in

general. It has also been proposed to use the QAOA for showing quantum supremacy

on near-term devices [8].

The aim of this paper is to present a critical assessment of the QAOA, based on

results obtained by simulation, running the QAOA on the IBM Q Experience, and a

comparison with data produced by the D-Wave 2000Q quantum annealer.

We benchmark the QAOA by applying it to a set of 2-SAT problems with up to 18

variables and weighted MaxCut problems with 16 variables. We measure performance

by means of the energy, a ratio related to the approximation ratio, and the success

probability. We find that the overall success of QAOA depends critically on the problem

instance.

The paper is structured as follows: In Sect. 2, we introduce the 2-SAT [9] and

MaxCut [9] problems which are used to benchmark the QAOA and review the basic

elements of the QAOA and QA. Section 3 discusses the procedures to assess the

performance of the QAOA and to compare it with QA. The results obtained by using

simulators, the IBM Q Experience, and the D-Wave 2000Q quantum annealer are

presented in Sect. 4. Section 5 contains our conclusions.

2 Theoretical background

2.1 The 2-SAT problem

Solving the 2-satisfiability (2-SAT) problem amounts to finding a true/false assignment

of N Boolean variables such that a given expression is satisfied [9]. Such an expression

consists of arbitrarily many conjunctions of clauses that consist of disjunctions of
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pairs of the Boolean variables (or their negations), respectively. Neglecting irrelevant

constants, problems of this type can be mapped onto the quantum spin Hamiltonian

HIsing =
∑

i

hiσ
z
i +

∑

i, j

Ji jσ
z
i σ z

j , (1)

where σ z
i denotes the Pauli z-matrix of spin i with eigenvalues zi ∈ {−1, 1}. In

the basis that diagonalizes all σ z
i (commonly referred to as the computational basis),

Hamiltonian Eq. (1) is a function of the variables zi . For the class of 2-SAT problems

that we consider, this cost function is integer valued. Minimizing this cost function

answers the question whether there exists an assignment of N Boolean variables that

solves the 2-SAT problem and provides this assignment.

In this paper, we consider a collection of 2-SAT problems that, in terms of Eq. (1),

possess a unique ground state and a highly degenerate first-excited state and, for the

purpose of solving such problems by means of the D-Wave quantum annealer, allow

for a direct mapping onto the Chimera graph [10–12].

2.2 TheMaxCut problem

Given an undirected graph G with vertices i ∈ V and edges (i, j) ∈ E , solving the

MaxCut problem yields two subsets S0 and S1 of V such that S0∪S1 = V , S0∩S1 = ∅,

and the number of edges (i, j) with i ∈ S0 and j ∈ S1 is as large as possible [9]. In

terms of a quantum spin model, the solution of the MaxCut problem corresponds to

the lowest energy eigenstate of the Hamiltonian

HMaxCut =
∑

(i, j)∈E

σ z
i σ z

j , (2)

where the eigenvalue zi = 1(−1) of the σ z
i operator indicates that vertex i belongs to

subset S0 (S1). Clearly, the eigenvalues of Eq. (2) are integer valued.

The weighted MaxCut problem is an extension for which the edges (i, j) of the

graph G are weighted by weights wi j . The corresponding Hamiltonian reads

HW =
∑

(i, j)∈E

wi jσ
z
i σ z

j . (3)

Obviously, Eq. (3) is a special case of Eq. (1).

2.3 Quantum annealing

Quantum annealing was proposed as a quantum version of simulated annealing [13,

14] and shortly thereafter, the related notion of adiabatic quantum computation has

been introduced [15,16]. The working principle is that an N -spin quantum system

is prepared in the state |+〉⊗N , which is the ground state of the initial Hamiltonian

Hinit = −H0, where
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H0 =

N
∑

i=1

σ x
i , (4)

and σ x
i is the Pauli x-matrix for spin i . The Hamiltonian of the system changes with

time according to

H(s) = A(s)Hinit + B(s)HC , s = t/ta, (5)

where ta is the total annealing time, A(s = 0) ≫ 1, B(s = 0) ≈ 0 and A(s = 1) ≈
0, B(s = 1) ≫ 1 (in appropriate units) and HC is the Hamiltonian corresponding to

the discrete optimization problem (e.g. the MaxCut or the 2-SAT problem considered

in this paper).

If |�(0)〉 is the ground state of H0, the adiabatic theorem says that the state |�(ta)〉
obtained from the solution of

i
∂

∂t
|�(t)〉 = [B(t/ta)HC − A(t/ta)H0] |�(t)〉, (6)

|�(0)〉 = |+〉⊗N , (7)

with 0 ≤ t ≤ ta , will approach the ground state (i.e., yield the minimum) of HC if

the variation of A(t/ta) and B(t/ta) is sufficiently smooth and the annealing time ta
becomes infinitely long [2]. Equation (6) is the time-dependent Schrödinger equation

with a time-dependent Hamiltonian B(t/ta)HC − A(t/ta)H0. The formal solution of

Eqs. (6) and (7) is given by the time-ordered product of matrix exponentials [17]

|�(ta)〉 = lim
p→∞

⎧

⎨

⎩

p
∏

j=1

e−iτ(p)[B( j/p)HC −A( j/p)H0]

⎫

⎬

⎭

|+〉⊗N

= lim
p→∞

⎧

⎨

⎩

p
∏

j=1

eiτ(p)A( j/p)H0 e−iτ(p)B( j/p)HC

⎫

⎬

⎭

|+〉⊗N , (8)

where t = jτ(p) and τ(p) = ta/p and we used Trotter’s formula [18] such that

exp(τ (HA + HB)) → exp(τ HA) exp(τ HB) for τ → 0 for two operators HA and HB .

According to the adiabatic theorem [2,19], limta→∞ |�(ta)〉 is the ground state of HC .

In practice, quantum annealing is performed with finite ta .

In this paper, we use the D-Wave 2000Q to perform the quantum annealing exper-

iments.

2.4 Quantum approximate optimization algorithm

In this section, we briefly review the basic elements of the QAOA [1].

Consider an optimization problem for which the objective function is given by

C(z) =
∑

j C j (z), where z = z1z2 . . . zN , zi ∈ {−1, 1}, and typically, each of the

C j (z) depends on a few of the zi only. If each C j (z) depends on not more than two
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of the zi , the mapping of C(z) onto the Ising Hamiltonian HC is straightforward. If

C j (z) depends on the products of three or more zi , C(z) may still be mapped onto

the Ising Hamiltonian, potentially at the expense of introducing additional auxiliary

variables [20]. The Ising Hamiltonian is diagonal in the σ z basis, and the ground state

energy, denoted by E
(0)
C , corresponds (up to an irrelevant constant) to the minimum

of C(z).

The QAOA works as follows. The quantum computer is prepared in the state |+〉⊗N ,

i.e. the uniform superposition of all computational basis states, which can be achieved

by applying the Hadamard gates H⊗N to |0〉⊗N .

The next step is to construct a variational ansatz for the wave function according to

| γ , β〉 = UB(βp)UC (γp) · · · UB(β1)UC (γ1)|+〉⊗N , (9)

where γ = (γ1, . . . , γp), β = (β1, . . . , βp) and

UC (γ ) = e−iγ HC , (10)

UB(β) = e−iβH0 = e−iβ
∑N

i=1 σ x
i . (11)

If the eigenvalues of HC (H0) are integer-valued, we may restrict the values of the γi

(βi ) to the interval [0, 2π ] ([0, π ]) [1]. In the case of the weighted MaxCut problem

(see Eq. 3), the γi cannot be restricted to the interval [0, 2π ], in general. The param-

eter p in Eq. (9) determines the number of independent parameters of the trial state.

Modifications of the QAOA also allow for different mixing operators than the one

given in Eq. (11) [21].

As for all variational methods, γ and β are determined by minimizing the cost

function. In the case at hand, we minimize the expectation value of the Hamiltonian

HC , that is

E p( γ , β) = 〈γ , β|HC | γ , β〉, (12)

as a function of ( γ , β) and denote

E p( γ ∗, β∗) = min′

γ , β
E p( γ , β), (13)

where min′ denotes a (local) minimum obtained numerically. In practice, this mini-

mization is carried out on a conventional digital computer.

The quantum computer is prepared in the state | γ , β〉 with the current values of

γ and β using the quantum circuit corresponding to Eq. (9). According to quantum

theory, each measurement of the state of the quantum computer in the computational

basis produces a sample z with probability P(z) = |〈z| γ , β〉|2. This procedure is

repeated until a sufficiently large number of samples z is collected. If we want to

search for the optimal ( γ , β) by minimizing E p( γ , β), we can estimate E p( γ , β)

through
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E p( γ , β) =
∑

z

P(z)C(z), (14)

where the sum is over all collected samples z and the probability P(z) is approximated

by the relative frequency with which a particular sample z occurs. When using the

quantum computer simulator, the state vector | γ , β〉 is known and can be used to

compute the matrix element Eq. (12) directly, i.e., it is not necessary to produce

samples with the simulator. Obviously, for a complex minimization problem such as

Eq. (12), it may be difficult to ascertain that the minimum found is the global minimum.

Once γ ∗ and β∗ have been determined, repeated measurement in the computational

basis of the state | γ ∗, β∗〉 of the quantum computer yields a sample of z’s. In the ideal

but exceptional case that | γ ∗, β∗〉 is the ground state of HC , the measured z is a

representation of that ground state. In the other case, there is still a chance that the

sample contains the ground state. Moreover, one is often not only interested in the

ground state but also in solutions that are close. The QAOA produces such solutions

because even if | γ ∗, β∗〉 is not the ground state, it is likely that z’s for which C(z) ≤
E p( γ ∗, β∗) are generated.

The QAOA can also be viewed as a finite-p approximation of Eq. (8), where in

addition the constraint that the coefficients of H0 and HC derive from the functions

A( j/p) and B( j/p) is relaxed. Instead of |�(ta)〉, we now have

| γ , β〉 =

⎧

⎨

⎩

p
∏

j=1

e−iβ j H0 e−iγ j HC

⎫

⎬

⎭

|+〉⊗N , (15)

where the γ j ’s and β j ’s are to be regarded as parameters that can be chosen freely.

In Appendix A, we show that if γ and β are chosen according to the linear annealing

schedule, we recover the finite-p description of the quantum annealing process. The

underlying idea of the QAOA is that even for small p, Eq. (15) can be used as a trial

wave function in the variational sense. For finite p, the QAOA only differs from other

variational methods of estimating ground state properties [22–26] by the restriction to

wave functions of the form of Eq. (15).

2.5 Performancemeasures

We consider three measures for the quality of the solution, namely (M1) the probability

of finding the ground state (called success probability in what follows) which should

be as large as possible, (M2) the value of E p( γ ∗, β∗) which should be as small as

possible, and (M3) the ratio defined by

r =
E p( γ ∗, β∗) − Emax

Emin − Emax
, (16)

which should be as close to one as possible and indicates how close the expectation

value E p( γ ∗, β∗) is to the optimum. For the set of problems treated in this paper,

the eigenvalues of the problem Hamiltonian can take negative and positive values.
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We denote the smallest and largest eigenvalues by Emin and Emax, respectively. As

a consequence, the ratio E p( γ ∗, β∗)/Emin can have negative and positive values. By

subtracting the largest eigenvalue Emax, we shift the spectrum to be nonpositive and

the ratio r is thus nonnegative with 0 ≤ r ≤ 1. In computer science, a ρ-approximation

algorithm is a polynomial-time algorithm which returns for all possible instances of

an optimization problem, a solution with cost value V such that

V

V ′
≥ ρ, (17)

where V ′ is the cost of the optimal solution [27]. For randomized algorithms, the

expected cost of the solution has to be at least ρ times the optimal solution [28].

The constant ρ is called performance guarantee or approximation ratio. The ratio

r corresponds to the left-hand side of the definition of the approximation ratio ρ

(Eq. (17)). Since we cannot investigate all possible problem instances, we use r only

as a measure for the subset of instances that we have selected.

We do not consider the run time or the time-to-solution as performance measures

since the timing results obtained from the simulator may not be representative for

QAOA performed on a real device. Obtaining a single sample (for p = 1) on the IBM

Q 16 Melbourne processor takes about 3 µs. However, we used the IBM Q Experience

for a grid search only. Usually, the waiting time in the queue is much longer than the

run time and we did not perform QAOA with the optimization step on the real device.

However, we also performed quantum annealing on the D-Wave 2000Q quantum

annealer with an annealing time of ta = 3 µs.

As measures (M1) and (M3) require knowledge of the ground state of HC , they

are only useful in a benchmark setting. In a real-life setting, only measure (M2) is of

practical use. For the simplest case p = 1 and a triangle-free (connectivity) graph, the

expectation value of the Hamiltonian

HC =
∑

i

hiσ
z
i +

∑

(i, j)∈E

Ji jσ
z
i σ z

j , (18)

can be calculated analytically. The result is given by

E(γ, β) =
∑

i

hi sin(2β) sin(2γ hi )
∏

j :(i, j)∈E

cos(2γ Ji j )

+
∑

(i, j)∈E

Ji j

(

sin2(2β) sin(2γ hi ) sin(2γ h j )

×
∏

k �= j :(i,k)∈E

cos(2γ Jik)
∏

l �=i :( j,l)∈E

cos(2γ J jl)
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Fig. 1 Sketch of the workflow

for executing the QAOA with

p > 1

+
1

2
sin(4β) sin(2γ Ji j )

(

cos(2γ hi )
∏

k �= j :(i,k)∈E

cos(2γ Jik)

+ cos(2γ h j )
∏

l �=i :( j,l)∈E

cos(2γ J jl)

))

, (19)

where the products are over those vertices that share an edge with the indicated vertex.

For hi = 0 and Ji j = 1/2, Eq. (19) is the same as Eq. (15) in Ref. [29], up to an

irrelevant constant contribution. We use Eq. (19) as an independent check for our

numerical results.

3 Practical aspects

We adopt two different procedures for testing the QAOA. For p = 1, we evaluate

E p(γ, β) for points (γ, β) on a regular 2D grid. We create the corresponding gate

circuit using Qiskit [30] and execute it on the IBM simulator and the IBM Q Experi-

ence [31]. Instances which are executed on the IBM Q Experience natively fit, meaning

that they directly map onto the architecture such that no additional SWAP-gates are

needed.

For the QAOA with p > 1, we perform the procedure shown in Fig. 1.

Given p and values of the parameters β and γ , a computer program defines the

gate circuit in the Jülich universal quantum computer simulator (JUQCS) [32] format.

JUQCS executes the circuit and returns the expectation value of the Hamiltonian HC

in the state | γ , β〉 (or the success probability). This expectation value (or this success

probability) in turn is passed to a Nelder–Mead minimizer [33,34] which proposes

new values for β and γ . This procedure is repeated until E p( γ , β) (or the success

probability) reaches a stationary value. Obviously, this stationary value does not need

to be the global minimum of E p( γ , β) (or the success probability). In particular, if

E p( γ , β) (or the success probability as a function of γ and β) has many local minima,

the algorithm is likely to return a local minimum. This, however, is a problem with

minimization in general and is not specific to the QAOA. In practice, we can only

repeat the procedure with different initial values of ( γ , β) and retain the solution that

yields the smallest E p( γ , β) (or the highest success probability). For the 18-variable
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problems, the execution time of a single cycle, as depicted in Fig. 1, is less than a

second for small p and even for p ≈ 40−50, the execution of a cycle takes about one

second. The execution time of the complete optimization then depends on how many

cycles are needed for convergence.

For the QAOA, many (hundreds of) evaluations Nev of E p( γ , β) are necessary for

optimizing the parameters γ and β. A point that should be noted is that we obtain the

success probability for the QAOA from the state vector and that with little effort, we

can calculate E p( γ , β) in that state when using the simulator. In contrast, when using

a real quantum device, in practice E p( γ , β) is estimated from a (small) sample of NS

values of 〈z|HC |z〉. Therefore, using the QAOA on a real device only makes sense if

the product NS · Nev is much smaller than the dimension of the Hilbert space of 2N .

Otherwise, the amount of work is comparable to exhaustive search over the 2N basis

states of the Hilbert space.

For the quantum annealing experiments on the D-Wave quantum annealer, we dis-

tribute several copies of the problem instance (that is the Ising Hamiltonian Eq. (18))

on the Chimera graph and repeat the annealing procedure to collect statistics about

the success probability and the ratio r . Since we do not need a minor embedding

for the problem instances considered, we can directly put 244 (116, 52) copies of the

eight-variable (12-variable, 18-variable, respectively) instances simultaneously on the

D-Wave 2000Q quantum annealer and we only need 250 (500, 1000, respectively)

repetitions for proper statistics to infer the success probability. If we are not interested

in estimating the success probability but only need the ground state to be contained in

the sample, much less repetitions are necessary.

4 Results

4.1 QAOAwith p = 1

Figures 2 and 3 show the success probability and the expectation value E1(γ, β), i.e.,

after applying the QAOA for p = 1, as a function of γ and β for a 2-SAT problem

with eight spins and for a 16-variable weighted MaxCut problem, respectively, as

obtained by using the IBM Q simulator. The specifications of the problem instances

are given in Appendix B. With the simulator, the largest success probability that has

been obtained for the eight-variable 2-SAT problem is about 10% and about 2% for

the 16-variable weighted MaxCut problem. We find that regions with high success

probability correspond to small energy expectation values, as expected (see Figs. 2

and 3). However, the values of (γ, β) for which the success probability is the largest

and E1(γ, β) is the smallest differ slightly.

As mentioned earlier, if the Hamiltonian Eq. (18) does not have integer eigenvalues,

which is the case for the weighted MaxCut problem that we consider (see Eq. (3)),

the periodicity of E1(γ, β) with respect to γ is lost. Therefore, the search space for γ

increases severely. Moreover, the landscape of the expectation value E1(γ, β) exhibits

many local minima. Fortunately, for the case at hand, it turns out that the largest success

probability can still be found for γ ∈ [0, 2π ]. Plots with a finer γ grid around the
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Fig. 2 (Color online) Simulation results for the eight-variable 2-SAT problem instance (A) (see Table 3 in

Appendix B) as a function of γ and β for p = 1. a Success probability, b E1(γ, β)
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Fig. 3 (Color online) Same as Fig. 2 except that instead of the eight-variable 2-SAT problem instance (A),

we solve a 16-variable MaxCut problem given in Table 2 in Appendix B

largest success probability and the smallest value of E1(γ, β) are shown in Figs. 4a

and 4b, respectively. Clearly, using a simulator and for p = 1, it is not difficult to find

the largest success probability or the smallest E1(γ, β), as long as the number of spins

is within the range that the simulator can handle.

The results for the same eight-variable 2-SAT problem instance shown in Fig. 2,

but obtained by using the quantum processor IBM Q 16 Melbourne [31], are shown in

Fig. 5. To obtain an estimate of the success probability, for each pair of β and γ , we

performed seven runs of 8192 samples each. Note that in this case, the total number

of samples per grid point (57,344) is much larger than the number of states 28 = 256.

Thus, we can infer the success probability with very good statistical accuracy. However,

such an estimation is feasible for small system sizes only. By comparing Figs. 2 and

5, we conclude that the IBM Q Experience results for the success probability do

not bear much resemblance to those obtained by the simulator. However, the IBM

Q Experience results for E1(γ, β) show some resemblance to those obtained by the
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Fig. 4 (Color online) The same as Fig. 3 except that the part containing the maximum success probability

is shown on a finer grid
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Fig. 5 (Color online) Same as Fig. 2 except that instead of using the IBM Q simulator, the results have been

obtained by using the quantum processor IBM Q 16 Melbourne of the IBM Q Experience

simulator. It seems that at this stage of hardware development, real quantum computer

devices have serious problems producing data that are in qualitative agreement with

the p = 1 solution Eq. (19).

Figures 6 and 7 show the distributions of 〈z|HC |z〉 where the states z are samples

generated with probability |〈z|γ, β〉|2 for the values of γ and β that maximize the

p = 1 success probability (black, “QAOA - G”) and minimize E1(γ, β) (blue, “QAOA

- E”) for the eight-variable 2-SAT problem and the 16-variable weighted MaxCut

problem, respectively. For comparison, we also show the corresponding distributions

obtained by random sampling (green). Although for p = 1, the QAOA enhances

the success probability compared to random sampling, for the 16-variable MaxCut

problem, the probability of finding the ground state is less than 2%, as shown in

Fig. 7.

From these results, we conclude that as the number of variables increases, the largest

success probability that can be achieved with the QAOA for p = 1 is rather small.

Moreover, the p = 1 results obtained on a real gate-based quantum device are of very
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Fig. 6 (Color online) Frequencies of sampled energies 〈z|HC |z〉 for the eight-variable 2-SAT problem

instance (A), obtained by simulation of the QAOA with p = 1. Black (striped): (γ, β) maximize the

success probability; blue (squared): (γ, β) minimize E1(γ, β); green (solid): γ = β = 0 corresponding to

random sampling

Fig. 7 (Color online) Same as Fig. 6 except that instead of the 8-variable 2-SAT problem instance (A), we

solve a 16-variable MaxCut problem

poor quality, suggesting that the prospects of performing p > 1 on such devices are,

for the time being, rather dim. However, we can still use JUQCS to benchmark the

performance of the QAOA for p > 1 on an ideal quantum computer by adopting the

procedure sketched in Fig. 1. Simulations of the QAOA on noisy quantum devices are

studied in Ref. [35].

4.2 QAOA for p > 1

Figure 8 shows results produced by combining JUQCS and the Nelder–Mead algo-

rithm [33,34] which demonstrate that for p = 10 and the 18-variable 2-SAT problem

instance (A) (see Appendix B), there exist γ and β which produce a success proba-

bility of roughly 40%. The minimization of the success probability starts with values

for ( γ , β) which are chosen such that γ1 = γ ′
1 and β1 = β ′

1, where γ ′
1 and β ′

1 denote

the optimal values for the success probability extracted from the p = 1 QAOA sim-
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(a) (b)

(c) (d)

Fig. 8 (Color online) Simulation results of the p = 10 QAOA applied to the 18-variable 2-SAT problem

instance (A) (see Appendix B). Shown are a the success probability, b the energy E10 = E10( γ , β) as

a function of the iteration steps of the Nelder–Mead algorithm, during the minimization of the success

probability, c the values βi and d the values γi for i = 1, . . . , 10 as obtained after 14,000 Nelder–Mead

iterations. The initial values of ( γ , β) are chosen such that β1 = β∗
1 and γ1 = γ ∗

1 , where β∗
1 and γ ∗

1 are

the optimal values extracted from the p = 1 QAOA minimization of the success probability, and all other

βi and γi are random. For this 2-SAT problem, the actual ground state energy is E
(0)
C

= −19

ulation data, and all other γi and βi are random. From Fig. 8a, we conclude that the

Nelder–Mead algorithm is effective in finding a minimum of the success probability

(the spikes in the curves correspond to restarts of the search procedure). As can be

seen in Fig. 8b, the energy expectation E p=10 also converges to a stationary value as

the number of Nelder–Mead iterations increases. The values of βi and γi at the end of

the minimization process are shown in Fig. 8c, d.

Note that the use of the success probability as the cost function to be minimized

requires the knowledge of the ground state, i.e. of the solution of the optimization

problem. Obviously, for any problem of practical value, this knowledge is not available

but for the purpose of this paper, that is, for benchmarking purposes, we consider

problems for which this knowledge is available.

When the function to be optimized has many local optima, the choice of the initial

values can have a strong influence on the output of the optimization algorithm. We find

that the initialization of the γi ’s and βi ’s seems to be crucial for the success probability

that can be obtained, suggesting that there are many local minima or stationary points.

This is illustrated in Fig. 9 where we show the results of minimizing the success

123



197 Page 14 of 24 M. Willsch et al.

(a) (b)

(c) (d)

Fig. 9 (Color online) Same as Fig. 8 except that the initial values are chosen according to a linear annealing

scheme with step size τ = 0.558 (dashed (blue) line). Values after optimization are marked by (green)

crosses

probability starting from γi ’s and βi ’s taken from a linear annealing scheme (see

Appendix A), for the same problem as the one used to produce the data shown in

Fig. 8. Looking at Fig. 8a, b, we see that the final success probability is 38.6% and

E p=10 ≈ −14.22, whereas from Fig. 9a, b, we deduce that the final success probability

is only 8.5% and E p=10 ≈ −12.16. For comparison, the actual ground state energy

is E
(0)
C = −19. Comparing also Figs. 8c, d and 9c, d clearly shows the impact of the

initial values of the γi ’s and βi ’s on the results of the values after minimization.

For this particular 18-variable 2-SAT problem, minimizing the energy expectation

E p=10 instead of the success probability did not lead to a higher success probability.

In fact, the success probability only reached 0.1% and E p=10 ≈ −14.97 (data not

shown). Although this energy expectation value and the initial value for the case

shown in Fig. 9 (E p=10 ≈ −14.36) are better than the final expectation value in the

case presented in Fig. 8, the success probabilities are much worse. From these results,

we conclude that the optimization of γ and β with respect to the energy expectation

value may in general result in different (local) optima than would be obtained by an

optimization with respect to the success probability. Possible reasons for this might

be that the energy landscape has (many) more local minima than the landscape of the

success probability has local maxima or that the positions of the (local) minima in the

energy landscape are not aligned with (local) maxima of the landscape of the success

probability.
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(a) (b)

(c) (d)

Fig. 10 (Color online) Same as Fig. 8 except that (i) the results are for the 16-variable weighted MaxCut

problem instance, (ii) the initial values are chosen according to a linear annealing scheme with step size

τ = 1 (dashed (blue) line), and (iii) the energy expectation value E p=10 is taken as the cost function for

the Nelder–Mead minimization procedure. The actual ground state energy is E
(0)
C

= −17.7. Values after

optimization are marked by (green) crosses

Figure 10 shows results for a 16-variable weighted MaxCut problem for which min-

imizing E p=10 improves the success probability. The initialization is done according to

the linear annealing scheme (see Appendix A). This is a clear indication that for finite p,

the QAOA can be viewed as a tool for producing optimized annealing schemes [36,37].

For this problem, the success probability after 6000 Nelder–Mead iterations is quite

large (≈ 85.6%). At the end of the minimization procedure, the γi ’s and βi ’s deviate

from their initial values (see Fig. 10c, d) but, as a function of the QAOA step i , show

the same trends, as in Fig. 9. This suggests that the QAOA may yield γi ’s and βi ’s that

deviate less and less from their values of the linear annealing scheme as p increases.

This observation is confirmed by the results shown in Fig. 11 for an eight-variable

2-SAT problem instance. We set p = 50 and use the linear annealing scheme to

initialize the γi ’s and βi ’s (see Appendix A) which yields a success probability of

about 82.7%. Although we are using E p=50 as the function to be minimized, Fig. 11b

shows that the success probability at the end of the minimization process is close to

one. Further optimization of the γi ’s and βi ’s in the spirit of the QAOA shows that

small deviations of γi ’s and βi ’s from the linear annealing scheme increase the success

probability to almost one. Not surprisingly, this indicates that if the initial γi ’s and βi ’s
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(a) (b)

(c) (d)

Fig. 11 (color online) Same as Fig. 8 except that (i) the results are for the eight-variable 2-SAT problem

instance (A), (ii) the initial values are chosen according to a linear annealing scheme with step size τ = 1

(dashed (blue) line), and (iii) the energy expectation value E p=50 is taken as the cost function for the

Nelder–Mead minimization procedure. The actual ground state energy is E
(0)
C

= −9

define a trial wave function which yields a good approximation to the ground state,

the variational approach works well [26].

All in all, we conclude that the success of the QAOA strongly depends on the

problem instance. While the investigated eight-variable 2-SAT problem and the 16-

variable MaxCut problem work well, the success of the (also for quantum annealing

hard) 2-SAT problem with 18 variables is rather limited.

4.3 Quantum annealing on a D-Wavemachine

Since the QAOA results produced by a real quantum device are of rather poor quality,

for comparing the QAOA to quantum annealing on the D-Wave quantum annealer, we

eliminate all device errors of the former by using simulators to perform the necessary

quantum gate operations.

Table 1 summarizes the simulation results of the QAOA for p = 1 and p = 5 in

comparison with the data obtained from the D-Wave 2000Q for 2-SAT problems with

eight, 12 and 18 variables. Both the success probability and the ratio r are shown. We

present data for annealing times of 3 µs (approximately the time that it takes the IBM
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Table 1 Results produced by the D-Wave 2000Q (DW_2000Q_2_1 chip) in comparison with the QAOA

for various 2-SAT problem instances

Variables (problem label) Success probability (%) Ratio r

D-Wave QAOA D-Wave QAOA

3 µs 30 µs p = 1 p = 5 3 µs 30 µs p = 1 p = 5

8 (A) 99.75 99.92 8.84 42.39 1.00 1.00 0.71 0.84

8 (B) 99.76 99.92 8.84 42.39 1.00 1.00 0.71 0.84

8 (C) 99.76 99.92 8.84 42.39 1.00 1.00 0.71 0.84

8 (D) 99.88 99.95 7.50 46.73 1.00 1.00 0.70 0.85

12 (A) 27.90 61.11 1.87 4.08 0.91 0.95 0.81 0.87

12 (B) 75.86 92.48 2.15 7.10 0.97 0.99 0.76 0.86

12 (C) 88.12 95.79 2.18 10.30 0.98 0.99 0.77 0.87

12 (D) 52.68 77.69 2.00 5.44 0.93 0.97 0.77 0.86

18 (A) 1.22 4.82 0.22 0.87 0.91 0.91 0.79 0.87

18 (B) 10.85 36.12 0.33 1.82 0.91 0.94 0.77 0.88

18 (C) 0.88 3.37 0.25 0.22 0.91 0.91 0.80 0.90

18 (D) 89.38 97.01 0.34 9.03 0.99 1.00 0.76 0.89

18 (E) 51.20 78.32 0.34 4.15 0.95 0.98 0.76 0.88

18 (F) 4.84 16.03 0.31 0.83 0.90 0.92 0.78 0.89

Performance measures are the success probability and the ratio r . For the QAOA, parameter optimization

uses the energy expectation value E p as the function to be minimized, as if the QAOA was executed on a

real device. The γi ’s and βi ’s (i = 1, . . . , p − 1) are initialized with the optimal values obtained from the

minimization for p − 1 steps and γp = βp = 0

Q Experience to return one sample for the p = 1 QAOA quantum gate circuit) and

30 µs. Postprocessing on the D-Wave 2000Q quantum annealer has been turned off.

The results for the QAOA with p = 2, 3, 4, 5 steps are obtained by initializing the γi ’s

and βi ’s (i = 1, . . . , p − 1) with the optimal values obtained from the minimization

for p − 1 steps and setting γp = βp = 0.

From Table 1, we conclude that using the D-Wave, the probability of sampling the

ground state (i.e., the unique solution of the 2-SAT problem) is much larger than the

one obtained from running the QAOA on a simulator. Accordingly, the ratio r is also

higher. However, the ratios r obtained from the D-Wave data show stronger variation

with the particular problem instance (for 12 and 18 spins) than the ratios obtained from

the QAOA which seem to systematically increase with the problem size for p = 5.

The increase in the ratio r from the QAOA for p = 1 to the QAOA for p = 5 is much

larger than the increase in the ratio r for the D-Wave 2000Q when using a ten times

longer annealing time. On the other hand, the ratio r obtained from the D-Wave data is,

in most cases, significantly larger than the one obtained from the QAOA. The D-Wave

results and the QAOA results for p = 5 exhibit similar trends: For many of the 12-

and 18-spin problem instances, the success probabilities of the QAOA are roughly

one-tenth of the probabilities obtained from the D-Wave machine for annealing times

of 3 µs, indicating that problem instances which are hard for the D-Wave machine are

also hard for the QAOA with a small number of steps.
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5 Conclusion

We have studied the performance of the quantum approximate optimization algorithm

by applying it to a set of instances of 2-SAT problems with up to 18 variables and a

unique solution, and weighted MaxCut problems with 16 variables.

For benchmarking purposes, we only consider problems for which the solution, i.e.

the true ground state of the problem Hamiltonian is known. In this case, the success

probability, i.e. the probability to sample the true ground state, can be used as the

function to be minimized. This is the ideal setting for scrutinizing the performance of

the QAOA. In a practically relevant setting, the true ground state is not known and one

has to resort to minimizing the expectation value of the problem Hamiltonian. Fur-

thermore, on a real device, this expectation value needs to be estimated from a (small)

sample. Using a simulator, one can dispense of the sampling aspect. Our simulation

data show that the success of the QAOA based on minimizing the expectation value

of the problem Hamiltonian strongly depends on the problem instance.

For a small number of QAOA steps p = 1, . . . , 50, the QAOA may be viewed as a

method to determine the 2p parameters in a particular variational ansatz for the wave

function. For our whole problem collection, we find that the effect of optimizing the

p = 1 wave function on the success probability is rather modest, even when we run

the QAOA on the simulator. In the case of a nontrivial eight-variable 2-SAT problem,

for which the p = 1 QAOA on a simulator yields good results, the IBM Q Experience

produced rather poor results.

There exist 2-SAT problems for which the p = 5 QAOA performs satisfactorily

(meaning that the success probability is much larger than 1%), also if we perform the

simulation in the practically relevant setting, that is we minimize the expectation of

the problem Hamiltonian, not the success probability. We also observed that (local)

maxima of the success probability and (local) minima of the energy expectation value

seem not always to be sufficiently aligned.

Quantum annealing can be viewed as a particular realization of the QAOA with

p → ∞. This suggests that we may use, for instance, a linear annealing scheme to

initialize the 2p parameters. For small values of p, after minimizing these parameters,

depending on the problem instance, they may or may not resemble the annealing

scheme. For the case with p = 50 studied in this paper, they are close to their values

of the linear annealing scheme, yielding a success probability that is close to one.

Summarizing, the performance of the QAOA varies considerably with the problem

instance, the number of parameters 2p, and their initialization. This variation also

makes it difficult to develop a general strategy for optimizing the 2p parameters.

For the set of problem instances considered, taking the success probability as a

measure, the QAOA cannot compete with quantum annealing when no minor embed-

ding is necessary (as in the case of the instances studied). We also find a correlation

between instances that are hard for quantum annealing and instances that are hard

for the QAOA. The ratio r , which also requires knowledge of the true ground state,

is a less sensitive measure for the algorithm performance. Therefore, it shows less

variation from one problem instance to another. But the ratios r obtained from the

QAOA (using a simulator) are, with a few exceptions, still significantly smaller than

those obtained by quantum annealing on a real device.
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Appendix A: Relation between QAOA and quantum annealing

In this appendix, we give a mapping between a Hamiltonian describing a quantum

annealing scheme and the QAOA for a given number of steps. The annealing Hamil-

tonian reads

H(s) = A(s)(−H0) + B(s)HC , s = t/ta ∈ [0, 1], (A1)

where (we have to add an additional minus sign to H0 such that the state |+〉⊗N

we start from is the ground state of H(s) and the convention still conforms with the

formulation of the QAOA)

H0 =
∑

i

σ x
i , (A2)

HC =
∑

i

hiσ
z
i +

∑

i j

Ji jσ
z
i σ z

j . (A3)

We discretize the time-evolution operator of the annealing process into N time steps

of size τ = ta/N . Approximating each time step to second order in τ yields [17,38]

U = e+iτ A(sN )H0/2e−iτ B(sN )HC

× e+iτ(A(sN )+A(sN−1))H0/2 · · ·

× e−iτ B(s2)HC e+iτ(A(s2)+A(s1))H0/2

× e−iτ B(s1)HC e+iτ A(s1)H0/2, (A4)

where sn = (n − 1/2)/N , and n = 1, . . . , N .

To map Eq. (A4) to the QAOA evolution

V = e−iβp H0 e−iγp HC · · · e−iβ1 H0 e−iγ1 HC , (A5)
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we can neglect e+iτ A(s1)H0/2 because its action on |+〉⊗N yields only a global phase

factor and we can choose

γn = τ B(sn), n = 1, . . . , N (A6)

βn = −τ (A(sn+1) + A(sn)) /2, n = 1, . . . , N − 1 (A7)

βN = −τ A(sN )/2. (A8)

So N time steps for the second-order-accurate annealing scheme correspond to p = N

steps for the QAOA.

As an example, we take

A(s) = 1 − s, B(s) = s. (A9)

Using Eqs. (A6)–(A8), we obtain

γn =
τ(n − 1/2)

N
(A10)

βn = −τ

(

1 −
n

N

)

(A11)

βN = −
τ

4N
. (A12)

Appendix B: Problem instances

The problem instance of the 16-variable weighted MaxCut problem is listed in Table 2.

Our 2-SAT problems have been selected such that they possess a unique ground

state and a highly degenerate first-excited state, making them (very) hard to solve

by simulated annealing. In this paper, we have taken instances from this collection

that (1) present different degrees of difficulty for quantum annealing and (2) can be

Table 2 Sixteen-variable

weighted MaxCut problem

instance

i j Ji j i j Ji j i j Ji j

0 4 0.4 3 4 0.3 9 12 0.3

0 5 0.8 3 5 0.7 9 13 0.5

0 6 0.2 3 6 0.6 9 14 0.1

1 4 0.7 3 7 0.4 9 15 0.7

1 5 0.5 4 12 0.1 10 12 0.5

1 6 0.6 6 14 0.2 10 13 0.7

1 7 0.8 7 15 1.0 10 14 0.3

2 4 0.4 8 12 0.1 10 15 0.6

2 5 1.0 8 13 0.9 11 12 0.2

2 6 0.3 8 14 1.0 11 13 0.8

2 7 0.7 8 15 0.8 11 14 0.5
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Table 3 Eight-variable 2-SAT problem instances with nine clauses

(A) (B) (C) (D)

i j Ji j hi i j Ji j hi i j Ji j hi i j Ji j hi

0 6 1 0 0 7 − 1 − 1 0 3 − 1 − 1 0 2 − 1 0

1 3 − 1 0 1 3 − 1 1 0 7 − 1 − 1 0 7 1 0

2 0 − 1 1 2 5 1 0 1 2 1 0 1 6 1 0

3 4 1 0 2 6 − 1 0 2 3 1 0 1 7 − 1 0

5 6 − 1 − 1 4 6 − 1 − 1 4 0 1 − 1 2 3 1 0

6 4 − 1 1 5 7 1 0 5 1 1 − 1 3 4 1 − 1

7 1 − 1 1 6 3 1 1 6 7 − 1 1 3 6 − 1 − 1

4 5 1 0

6 5 1 1

Table 4 Twelve-variable 2-SAT problem instances with 13 clauses

(A) (B) (C) (D)

i j Ji j hi i j Ji j hi i j Ji j hi i j Ji j hi

0 9 1 − 1 0 7 1 − 1 0 6 1 0 0 10 − 1 1

1 9 − 1 1 0 8 1 − 1 1 5 1 − 1 1 9 − 1 0

2 6 1 1 1 10 1 − 1 2 0 − 1 − 1 2 10 − 1 1

3 11 1 1 2 4 − 1 − 2 3 10 − 1 0 3 6 − 1 − 1

5 11 1 1 2 8 1 − 2 4 11 − 1 − 1 4 3 − 1 1

6 10 − 1 1 3 0 1 − 1 5 3 − 1 − 1 5 10 − 1 1

7 6 − 1 − 1 5 4 1 − 1 6 7 1 − 1 6 9 − 1 0

8 10 − 1 − 1 6 2 − 1 1 7 10 1 0 7 1 1 − 1

9 4 1 − 2 7 11 1 0 8 5 − 1 1 8 3 − 1 − 1

10 4 − 1 1 9 2 − 1 1 9 11 1 1 10 8 − 1 − 2

11 9 1 1 10 11 − 1 0 11 6 1 1 11 8 1 − 1

mapped directly onto the architecture of the IBM Q Melbourne chip and the Chimera

graph architecture of the D-Wave 2000Q quantum annealer. We require (2) because

otherwise, we would need to perform additional swap gates on the IBM Q Experience

and use a minor embedding on the D-Wave 2000Q quantum annealer. This would

make a direct comparison complicated and require including the particular graph

structure in the benchmark, rendering it device-dependent and thus losing generality.

The simulator, on the other hand, does not impose any constraints on the connectivity.

Tables 3, 4, and 5 contain the instances of the eight-, 12- and 18-variable 2-SAT

problems, respectively. Entries for which both Ji j and hi are zero have been omitted.
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