
Benchmarking traversal operations over graph
databases

Marek Ciglan #, Alex Averbuch ∗, Ladialav Hluchy #

#Institute of Informatics, Slovak Academy of Sciences
Bratislava, Slovakia

∗Swedish Institute of Computer Science
Stockholm, Sweden

{marek.ciglan, hluchy.ui }@savba.sk
averbuch@sics.se

Abstract— A significant number of graph database systems has
emerged in the past few years. Most aim at the management
of the property graph data structure: where graph elements
can be assigned with properties. In this paper, we address the
need to compare the performance of different graph databases,
and discuss the challenges of developing fair benchmarking
methodologies. We believe that, compared to other database
systems, the ability to efficiently traverse over the graph topology
is unique to graph databases. As such, we focus our attention
on the benchmarking of traversal operations. We describe the
design of the graph traversal benchmark and present its results.
The benchmark provides the means to compare the performance
of different data management systems and gives us insight into
the abilities and limitations of modern graph databases.

I. INTRODUCTION

In recent years, a large number of systems for managing
the graph or network data have been developed. There are
numerous reasons for this, the most significant being the
increased availability and importance of graph data in the form
of: social, information, biological, and other types of networks.
The graph data structure is a natural fit for modeling various
real world phenomena, it is thus an attractive abstraction for
certain data management solutions. The graph data manage-
ment systems introduced in recent years can be classified
in two categories – graph databases and distributed graph
processing frameworks. Although the problems addressed are
similar, existing systems are clearly divided and focus on one
or the other. Distributed graph processing frameworks, largely
inspired by Google’s Pregel [1], aim to provide solutions for
batch processing and mining of massive graphs that are im-
possible to process on a single machine, due to resource con-
straints. These solutions usually process the graph in memory,
but different parts of graph are managed by distinct, distributed
nodes. On the other hand, graph databases aim at persistent
management of graph data, allowing to store and access
graph data on a persistent medium. Graph database systems
usually implement the property graph data model [2], where
elements of a graph structure can have user defined attributes.
As the graph database space is still relatively young, the
different systems within it are realized using greatly varying
technologies. With the increasing number of available graph
database systems, it is becoming increasingly challenging for

adopters to choose an appropriate solution. In this paper,
we address the problem of comparing the graph database
systems from the performance point of view of performing
traversal operations [3] over the graph structure. We believe
that the ability to traverse over the relations defined by the
graph topology is the unique functionality provided by graph
databases and is therefore our primary interest. There are two
main contributions of the paper. First, we extend the discussion
on the design of graph database benchmarks, focusing on
traversal operations in a memory constrained environment,
where the whole graph can not be loaded and processed in
memory. Second, we present the complete design of a graph
database benchmark. The paper is structured as follows: in
Section II, we discuss the related work, we state the problem
in Section III, we describe in more detail the design of the
graph traversal benchmark in Section IV and we present the
preliminary benchmark results before concluding.

II. RELATED WORK

The lack of standards in the domain of graph databases
makes it difficult to compare systems. An attempt to bring
a standardized interface to the diverse landscape of graph
databases emerged from the open-source community and is
entitled Blueprints1. The Blueprints project builds on the
common features of graph data management systems and
seeks to provide a uniform API for different systems. There is
already a growing number of graph databases that, in addition
to their own interface, implement the Blueprints interface as
an alternative way of working with data. Concerning bench-
marking, established benchmarking frameworks already exist,
some partially related to graph databases, including those for:
object databases, XML databases, and triple stores. However,
few works specifically address the benchmarking of graph
databases. An HPC benchmark for graph data processing2 has
been adopted for several graph databases by Dominguez-Sal et
al. in [4]. In their subsequent work [5], authors discuss in depth
the design of a benchmark suitable for graph database systems.
We build on ideas proposed in their work and extend the
discussion, focusing primarily on graph traversal operations.

1https://github.com/tinkerpop/blueprints/wiki
2http://www.graphanalysis.org/benchmark/index.html

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first formalize the property graph data
model, then discuss the requirements for the graph traversal
benchmark in the rest of the section.

A. Property Graph Data Model

Informally, the property graph data model is a multigraph
data structure in which graph elements (vertices and edges) can
have properties/attributes. We can define the property graph as
a tuple:

G = (V,A, P,D,L, η, ε)

where V is a set of vertices, A is a multiset of directed edges
(ordered pairs of vertices), P is a domain of properties, D
is the domain of allowed property values for vertices, L is a
domain of allowed property values for edges, η : V × P →
P(D) is the function that maps vertices properties to their
values (P(D) being the power set of D, meaning that a
property can be associated with multiple items from D), and
ε : A × P → L is the function that maps edge properties to
their values.

B. Requirements for the graph traversal benchmark

Edges, defined between pairs of vertices in a graph, form the
graph topology. For storing the properties of graph elements,
a simple key-value store would suffice. Compared with other
database options, the unique property of graph databases is
the information encoded in the graph topology.

Thus, we assume a graph database should be effective at
exploiting the topological information, it should provide a
fast and efficient way to traverse graphs. When dealing with
graph traversal problems, the usual approach is to load the
graph data into the main memory and perform the traversal
operation(s) while keeping the whole structure in the memory.
There is a good reason for such a practice; graph traversals are
characterized by their random memory access pattern and data
driven computation. Although this approach poses a limit on
the graph size, solutions for traversing the graph on persistent
media are not common, because the cost of random accesses
to a persistent medium is problematic. This is a big challenge
for graph databases, where a user expects data persistence and
support for fast traversal operations simultaneously – this is
the main feature distinguishing graph databases from other
data management systems.

We believe that a traversal benchmark should test the ability
of a graph database to a) perform local traversals, starting from
one or several vertices, exploring their k-hop neighbourhood
and b) perform traversals of the whole graph, to support high
level graph algorithms (e.g. community detection, or centrality
measures). Moreover, the benchmark should test cases when
the whole graph can not be cached in the main memory.

IV. GRAPH TRAVERSAL BENCHMARK DESIGN

This section describes the benchmark design. We begin
by discussing the design decisions related to the traversal
operations, the rest of the section details general benchmark

features, e.g. how do we guarantee fairness and what are the
properties of the data sets used.

As previously argued, efficient support for traversal opera-
tions is an important aspect of graph databases. Our intension
is to measure the capabilities of graph databases to perform
a) query-like traversals, where one searches for topologically
related vertices for a given vertex (e.g. a breath-first traversal)
b) graph analysis operations that require one or multiple
traversals of the whole graph (e.g. computation of connected
components, centrality measures, and community detection).
We aim at studying how graph databases perform in memory
constrained environments, using data sets of varying sizes. The
goal of such an exercise is to test the ability of a database to
deal with graphs too large to be cached in the memory.

In addition, when performing analysis algorithms, such as
centrality computation, intermediate state information must be
kept. We consider two cases in our benchmark. In the first
case, we store the intermediate state variables in memory
(this requires memory large enough to store the required state
information for a given algorithm, e.g. for the HITS algorithm
one keeps intermediate values for each vertex in the graph). In
the second case, the state information is stored within graph
elements, using the property mechanism provided by the graph
database. In theory, in the latter case a user should not be
worried about memory constraints as all state is managed
directly by the graph database. We aim to investigate whether
such an approach is feasible on currently available systems.

The primary concern of any benchmarking solution is
fairness – the methodology must avoid biases. To address this
problem, we have decided to adopt Blueprints as the interface
to all graph databases. Our reasoning is that implementing the
operations against only one interface eliminates one source of
bias. Blueprints makes it possible to implement a benchmark-
ing operation once, and for that operation to be run against
different graph databases. Another concern on the fairness
aspect is how to ensure the execution of exactly the same
sequence of operations on the same data. For example, random
generators can be used for certain operations, e.g. retrieval of
k random vertices. In order to provide a fair comparison, it
is necessary to use the same sequence of operations with the
same input parameters on all the systems evaluated by the
benchmark. In the proposed benchmark solution, we adopt the
approach where we log operations and their parameters in the
first run over the defined data. The logs are used it subsequent
runs, where operations and their input parameters are read
from the log. This allows to compare different systems fairly,
as all the runs use exactly the same sequence of operations and
input parameters. In addition, the logs are persistent, allowing
benchmarks to be rerun on different versions of a product, and
the change in performance can thus be measured.

The data used for benchmarking is also of importance.
There is a difference in processing graphs with different
properties; processing of a fully connected graph is more
demanding than executing the same operations on a sparse
graph of the same size. We believe benchmarks should be
performed on data sets with properties similar to those of

real world data sets. Many network data sets (e.g. those
representing social networks, the Internet, traffic networks,
biological networks, and term co-occurrence networks) have
small world properties. A realistic synthetic graph data set
should have similar properties: power law degree distribution,
small diameter, high clustering coefficient. Our aim is to
use network generators with such realistic properties. We use
the LFR-Benchmark generator[6], proposed by Lancichinetti
and Fortunato. The generator of synthetic networks was de-
signed primarily for testing community detection algorithms.
It produces networks with power-law degree distribution and
implanted communities within the network.

V. IMPLEMENTATION

This section discusses a few important points regarding the
implementation of the benchmarking suit3. We have imple-
mented it and tested on five graph databases, namely Neo4J4,
DEX5 [7], OrientDB6, Native RDF repository (NativeSail)7

and a research prototype SGDB8 [8].
As different systems take different approaches to solving the

graph data management problem, their behaviors vary also.
Even when using a common interface, we must deal with
the small differences in underlying systems. For example,
triple stores, designed primarily to handle RDF data, pose
syntactic constraints on the naming of element identifiers. In
addition, being edge oriented storage systems, triple stores do
not provide iterators over vertices, nor support the concept
of vertex properties. Furthermore, some of the benchmarked
systems use the vertex identifiers provided by the user, while
others generate identifiers internally. These differences have to
be taken into account when implementing benchmarks.

Finally, not all of the benchmarked databases support trans-
actions. As transaction handling requires additional processing
time, systems supporting transactions are at a performance
disadvantage. To limit the impact of transactions, we only
commit transactions after updating 100000 graph elements.

VI. BENCHMARK RUNS

In this section we describe the setting and preliminary re-
sults of three traversal benchmarks developed in the proposed
benchmarking suit. We present the results as we obtained
them using the benchmarked systems in the state they were
provided at the time Blueprints interface version 1.0 was
released. No system specific optimizations or configurations
were considered. The work on the benchmarking suite is
still a work in progress. We stress that the results should be
interpreted as preliminary and they might not reflect the state
of the systems at a later stage.

As the loading procedure (insertion of edges into large
graphs) is a time consuming process, We have decided to use

3http://ups.savba.sk/∼marek/gbench.html
4http://neo4j.org/
5http://www.sparsity-technologies.com/dex
6http://www.orientechnologies.com/orient-db.htm
7http://www.openrdf.org
8http://ups.savba.sk/∼marek/sgdb.html

a general time constraint that interrupts the loading process if
it takes too long: if a block of 10000 edges takes more than
sixty seconds to load. With such a slow loading procedure, it
would be difficult to load large graphs.

The benchmark is designed to test the capabilities of
graph databases in a memory constrained environment. The
experiments where done on a low end machine with two-
core 2.4GHz Intel processor and 2 gigabytes of RAM. The
maximum heap size for the Java virtual machine executing
the benchmarking procedure was set to 1.5 gigabytes.

The first benchmark test is aimed at the local traversal
operations. The goal is to test the ability of a graph database
to perform breadth-first traversals from a single vertex in a
graph. The operations defined for this procedure were: a)
loading of the graph definition as generated by the LFR-
benchmark generator; b) for ten thousand randomly chosen
vertices perform computation of local clustering coefficient (a
measure expressing how clique-like is a neighbourhood of a
vertex, this requires breadth first traversal two hops from the
given vertex) and c) breadth first traversal for three hops from
a given vertex for ten thousand randomly chosen vertices. We
have performed experiments with data sets of 1000, 10000,
40000, 50000 and 100000 vertices (with mean vertex degree
of 16), and with larger data sets of 200, 400, 800 thousands
and 1 million vertices.

All the values are averaged over ten runs of the bench-
marking procedure. The loading times are depicted in Figure
1 and the values represent the time needed to perform k
edge insertions. The data is incomplete for two systems. The
first one is a commercial product and we have used only the
evaluation version that has a built-in limit on the number
of elements that can be loaded to the system. The loading
speed for the second one was too slow on the network of 100
thousand vertices (1.6 million edges) and bigger (the edge
insertion procedure was slower than the defined constraint). It
should be mentioned, that some of the systems have (system
specific) procedures for batch loading. The batch loading
procedures might be much faster than loading via standard
edge insertions, but we have not used the system specific batch
loading procedures for the sake of generality. Figure 2 depicts
the performance of the breath-first search operations (3 hops
from the given vertex) for a set of 10 thousand vertices. We
can conclude that most of the benchmarked systems had stable
performance for this operation even with increasing size of the
network. The very same characteristic was found for the local
clustering coefficient computation (we omit the figure from
this paper).

The same experiments were performed for larger networks,
however in our benchmark setting most systems were not able
to load graphs with more than 400000 vertices because of the
load time constraint. Nevertheless, the observation from the
partial results was similar as in the case of smaller networks.
The compute time of local traversal operations was increasing,
but it was increasing sub-linearly to the network size.

The next benchmark targets global traversals with the inter-
mediate results kept in memory. The goal is to test traversal of

 0

 50000

 100000

 150000

 200000

 250000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

m
s

inserted edges / 10
6

sgdb
neo4j

sail
orient db

dex

Fig. 1. Load times for the small datasets, x-axis denotes the number of edges
divided by 106, y-axis denotes the time in milliseconds required to insert the
structure.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1K10K 40K50K 100K

m
s

network size

sgdb
neo4j

sail
orient db

dex

Fig. 2. Computation of breath-firest search 3 hops from a vertex for 10000
randomly chosen vertices.

the whole graph. For this purpose we have used the detection
of connected components, using expansion following outgoing
edges in one case and incoming edges in the second case. We
have done the tests on smaller networks, in order to avoid
loading problems noted in previous benchmark. The results
are depicted in Figure 3 and represent the average of 10 runs
of the benchmark where three systems were compared. In
general, the runtime increases significantly with the increasing
complexity of the network. An interesting observation is that
the runtime using outgoing edges was significantly higher for
two of the tested systems than the same procedure only using
incoming edges.

We also tested computing connected components with in-
termediate data stored in the processed graph as properties.
The runtime for the tested systems were an order of magnitude
higher than in the case of storing intermediate data in memory,
thus we do not consider this approach to be a viable option
for the processing.

VII. CONCLUSION

We discussed the problem of benchmarking graph database
systems, focusing in particular on graph traversal operations.
We have proposed to study the ability of graph databases to
execute traversal operations in a memory constrained environ-
ment and we have presented the design of a fair graph traversal
benchmark. The work is still a work in progress; we have
reported preliminary results of benchmark runs. An important

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1K10K 40K50K 100K

m
s

network size

out: sgdb
out: neo4j

out: dex
in: sgdb
in: neo4j

in: dex

Fig. 3. Computation of connected components using in- and out-going edges.

observation is that procedures requiring the traversal of the
whole graph are feasible when the structure can be cashed
in memory. The operations aiming at local traversals in the
vicinity of a given vertex are responsive and, even though the
runtime increases with increased network size, the increase is
sub-linear. The conclusion of the preliminary results is that the
use cases with operations requiring local traversals in a large
network are more suitable for the tested systems than those
requiring traversals of the whole graph structure.

VIII. ACKNOWLEDGEMENTS

Although he was not directly involved in this work, we
would like to thank Martin Neumann for the many contribu-
tions he made to parts of the software in our benchmarking
suite. This work is supported by projects SMART II ITMS:
26240120029, VEGA 2/0184/10, VEGA No. 2/0054/12.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 international conference on Management of
data, ser. SIGMOD ’10. New York, NY, USA: ACM, 2010, pp. 135–146.
[Online]. Available: http://doi.acm.org/10.1145/1807167.1807184

[2] M. A. Rodriguez and P. Neubauer, “Constructions from dots and lines,”
Bulletin of the American Society for Information Science and Technology,
vol. 36, no. 6, pp. 35–41, August 2010.

[3] ——, “The Graph Traversal Pattern,” Graph Data Management: Tech-
niques and Applications, August 2011.

[4] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó, S. Gómez-
Villamor, N. Martı́nez-Bazán, and J. L. Larriba-Pey, “Survey of
graph database performance on the hpc scalable graph analysis
benchmark,” in Proceedings of the 2010 international conference
on Web-age information management, ser. WAIM’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 37–48. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1927585.1927590

[5] D. Dominguez-Sal, N. Martinez-Bazan, V. Muntes-Mulero, P. Baleta,
and J. L. Larriba-Pay, “A discussion on the design of graph database
benchmarks,” in Proceedings of the Second TPC technology conference
on Performance evaluation, measurement and characterization of complex
systems, ser. TPCTC’10. Berlin, Heidelberg: Springer-Verlag, 2011.

[6] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities,” Phys. Rev. E, vol. 80, Jul 2009.

[7] N. Martı́nez-Bazan, S. Gómez-Villamor, and F. Escale-Claveras, “DEX:
A high-performance graph database management system,” in GDM 2011,
ICDE Workshops, 2011.

[8] M. Ciglan and K. Nørvåg, “SGDB - Simple Graph Database Optimized
for Activation Spreading Computation,” in GDM 2010, DASFAA Work-
shops, 2010.

