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Abstract. Wilms’ tumor is one of the most frequent malignant solid tumors in childhood. Accurate segmentation
of tumor tissue is a key step during therapy and treatment planning. Since it is difficult to obtain a comprehensive
set of tumor data of children, there is no benchmark so far allowing evaluation of the quality of human or com-
puter-based segmentations. The contributions in our paper are threefold: (i) we present the first heterogeneous
Wilms’ tumor benchmark data set. It contains multisequence MRI data sets before and after chemotherapy,
along with ground truth annotation, approximated based on the consensus of five human experts. (ii) We analyze
human expert annotations and interrater variability, finding that the current clinical practice of determining tumor
volume is inaccurate and that manual annotations after chemotherapy may differ substantially. (iii) We evaluate
six computer-based segmentation methods, ranging from classical approaches to recent deep-learning tech-
niques. We show that the best ones offer a quality comparable to human expert annotations. © 2019 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.3.034001]
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1 Introduction

Wilms’ tumor, or nephroblastoma, accounts for 5% of all can-

cers in children and adolescents. It constitutes the most frequent

malignant kidney tumor in childhood.1 About 75% of all

patients are younger than 5 years—with a peak between 2

and 3 years.2,3 In Europe, diagnosis and therapy follow the

guidelines of the International Society of Pediatric Oncology

(SIOP).4,5 One of the most important characteristics of this

therapy protocol is a preoperative chemotherapy. Clinicians cat-

egorize patients as high-, intermediate-, or low-risk candidates

according to histology, local stage, and tumor volume after

chemotherapy. Postoperative treatment ranges from no chemo-

therapy (low risk stage I) up to chemotherapy with irradiation of

the tumor bed (high risk, stages II and III).

The most common histological subtypes of regressive and

mixed type actually belong to the intermediate-risk tumors.

However, if, after chemotherapy, these tumors have a volume

of more than 500 ml, they are highly malignant and the patients

are treated according to the high-risk group protocol.6 In order

to avoid exposing children to unnecessary medical burden on

the one hand and to maximize their chances of survival on the

other hand, an exact determination of the tumor volume is

indispensable.

Current practices of segmentation by human experts:

Radiologists traditionally model the tumor through a time-inten-

sive manual segmentation procedure involving the outlining

of the gross tumor volume on numerous two-dimensional

imaging “slices.” Alternatively, they estimate the tumor volume

by measuring three axes of tumor extension and assuming

the nephroblastoma to have an ellipsoid shape.6 Usually both

variants are conducted using either computed tomography or

magnetic resonance imaging (MRI) data. The reliability and

consistent reproducibility of expert delineations of Wilms’

tumors has not been investigated so far.

Computer-based segmentation algorithms: One obvious

step to avoid the reproducibility problem is to replace human

segmentations by automatic ones. Fully automatic segmentation

of Wilms’ tumors is a challenging task as these tumors do not

show a discriminative texture, might have intensities overlap-

ping with the surrounding tissue, and can be directly attached

to the remaining kidney. To the best of our knowledge, there

is no method available so far that does not need massive user

interaction. Moreover, the scientific literature on computer-

based segmentation algorithms for Wilms’ tumors is fairly

limited and shall be discussed next.

An initial idea for segmentation is to extend user-marked

seed points in the tumor by region growing based on intensity

thresholding.7 A refined approach is to initialize an active

contour inside the tumor and to expand the segmentation

according to image intensities and gradients.7 More recently,

a more advanced energy-based method for segmentation of

nephroblastoma has been proposed.8 User-set scribbles are

employed to approximate the gray value distributions of tumor

and surrounding tissues. The energy is then regularized by

an image metric induced by a state-of-the-art edge detection.

However, this method still needs user interaction.
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In spite of the fact that segmentation is an active research

field in image analysis for quite some decades, it is remarkable

that many well-established classes of algorithms have not

been evaluated in the context of Wilms’ tumor segmentation.

Moreover, a comparative evaluation of these algorithms is pre-

vented by the fact that there is no public benchmark available.

So far the few computer-based algorithms for Wilms’ tumor

segmentation have been tested on different data sets.

1.1 Our Contributions

The goal of our paper is to offer solutions to the before men-

tioned problems in a threefold way.

i. We establish the first publicly available heterogeneous
benchmark data set for Wilms’ tumors. (Currently,
the archives are password protected and can be
accessed at the website in Ref. 9, password: spie2018.
We have no information about who is accessing those
files.)

It allows clinicians to train their segmentation abil-

ities and computer scientists to evaluate their algorithms.

Our benchmark consists of multisequence MRI data

before and after chemotherapy. Ground truth segmenta-

tions are approximated by consensus truth of five human

experts.

ii. Based on this benchmark, we scrutinize the widely used
ellipsoid approximation to the tumor volume as well as
the interrater variability of manual delineations. Both
results will reveal substantial shortcomings of the cur-
rent standards.

iii. As a second benchmark application, we evaluate six
algorithms w.r.t. their usefulness for Wilms’ tumor
segmentation. Although most of these segmentation
algorithms are popular and time-proven methods in the
computer vision community, none of them has been
used for Wilms’ tumor segmentation yet. Our algorithms
include a fully automatic method based on Chan–Vese
active contours,10 a random forest classifier,11 a support
vector machine,12 a k-means clustering algorithm,13 and
a clustering of superpixels.14 Since the Wilms’ tumor
data are necessarily limited, most segmentation methods
based on deep learning cannot be applied due to an
insufficient amount of training data. One of the few
methods that can be used is the U-Net,15 which we are
also evaluating.

In computer vision, benchmarking and performance evalu-

ation have established themselves as important triggers for sci-

entific progress in key areas ranging from motion analysis16–18

over optimization algorithms19 to segmentation methods.20 Pure

benchmarking and performance evaluation have become equally

influential in medical image analysis,21,22 e.g., in registration23,24

and various segmentation problems.25–28 The authors of these

publications typically follow the clear scientific practice not

to mix benchmark data with own unpublished algorithms, since

this enables a fair comparison and avoids conflicts of interests.

We adhere to these standards and refrain from proposing algo-

rithms. We focus on evaluating the performance of popular

fully automatic segmentation methods when being applied to

Wilms’ tumor data.

1.2 Paper Organization

Section 2 introduces our new multisequence benchmark for

Wilms’ tumor segmentation. We analyze interoperator variabil-

ity and compare the determined volumes with volume approx-

imations used in clinical practice. The third section evaluates

human segmentations, and Sec. 4 is devoted to the evaluation

of computer-based segmentation algorithms. Our conclusions

are summarized in Sec. 5.

2 Benchmark Data

To describe our benchmark data set, we first present details on

the acquired MRI data and the chosen method for ground truth

approximation. Afterward, we introduce our error metrics and

evaluate the interoperator variability on the proposed data set.

In the end, we compare volume variability among human expert

raters, ground truth, and ellipsoid shapes.

2.1 Data Sets

Our image data set consists of 28 multisequence MR scans from

17 Wilms’ tumor patients (5 male and 12 female), out of which

15 have been acquired from intermediate risk tumor [histologi-

cal diagnosis: stromal predominant (2), mixed histology (6),

or regressive type (7)] and 2 from high risk tumor types (histo-

logical diagnosis: blastemal predominant). For 11 patients, we

have both data before and after chemotherapy. The remaining

ones are missing either data before or after chemotherapy.

Figure 1 shows the age distribution of the children. Only patients

with histologically confirmed Wilms’ tumors were eligible for

inclusion. The MRI sequences before and after chemotherapy

for one of these patients are shown in Fig. 2.

Since it is difficult to obtain a comprehensive and represen-

tative set of Wilms’ tumor data, the images have been acquired

at different centers over the course of several years, using MR

scanners from different manufacturers, varying field strength

(1.5T and 3T) and implementations of the imaging sequences.

The data sets used in our benchmark share the following three

MRI settings.

• T2: T2-weighted images, axial two-dimensional (2-D)

acquisition with 3.6 to 9.1 mm slice thickness and

inslice-sampling ranging from 0.3 to 1.4 mm.

• T1: T1-weighted images, native image, axial 2-D acquis-

ition with 2.5 to 9.1 mm slice thickness and inslice-

sampling ranging from 0.5 to 1.6 mm.
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Fig. 1 Age distribution of patients whose images are made available
anonymously.
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• T1c: T1-weighted and contrast enhanced (gadolinium)

images, axial 2-D acquisition with 1.8 to 7.7 mm slice

thickness and inslice-sampling ranging from 0.5 to 1.6 mm.

The different MRI sequences were spatially coregistered on

the T2 sequence using a rigid transformation. We balanced the

number of slices with tumor areas before and after chemo-

therapy; see Table 1. Subtypes are not balanced among the data

sets.

We deploy all images in NRRD-file format.29 NRRD stands

for “nearly raw raster data” and is a standard file format for

storing medical image data, fully anonymized and without

sensitive patient information.

2.2 Annotations by Human Experts

The images were manually annotated by five human expert

raters coauthoring this publication. Rater-1 and rater-4 are

experienced radiologists with several years of experience in

Wilms’ tumor analysis. Rater-2 is a physician familiar with

Wilms’ tumors. Rater-3 is an M.D. student previously trained in

MRI imaging with advanced experience in the field. Rater-5 is

an experienced oncologist with decades of practice in Wilms’

tumor exploration. Segmentations were performed using the

MITK software from Ref. 30, and experts outlined tumor struc-

tures in T2-sequences in every axial slice.

2.3 Ground Truth Generation

Since the generation of error-free ground truth information

for medical images is usually not possible, we rely on expert

votes to approximate the tumor area. Majority voting for each

voxel has been shown to be useful in several contexts.31,32

Unfortunately, this simple approach neither regards variability

in quality or performance among the human raters nor does

it provide guidance as to how many experts should agree before

Fig. 2 Example of Wilms’ tumor (training data) (a)–(c) before and (d)–(f) after chemotherapy with experts’

consensus truth. From left to right: T2, T1, and T1c.

Table 1 Image properties before and after chemotherapy. The values in brackets indicate the average occurrence.

Training set Test set

Slices Slices with tumor Slices Slices with tumor

Prechemotherapy 19 to 55 (31) 9 to 25 (15) 26 to 50 (35) 11 to 28 (18)

Postchemotherapy 19 to 44 (30) 6 to 26 (12) 29 to 70 (54) 6 to 23 (13)
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a voxel is labeled as tumor. Hence, we decide to use the

STAPLE framework33 to produce consensus segmentations.

The STAPLE algorithm uses expectation maximization. Let

Dx;j, j ¼ 1; : : : ; n be the expert decisions and Ĝ be the true con-

sensus segmentation. The performance of each expert is rated on

the basis of the sensitivity pj ¼ PrðDx;j ¼ 1jĜ ¼ 1Þ and the

specificity qj ¼ PrðDx;j ¼ 0jĜ ¼ 0Þ. It iterates between esti-

mating the conditional probability of Ĝ in relation to the expert

decisions and previous estimates of the performance parameters

and estimation of updated reliability parameters. Before chemo-

therapy, convergence is on average reached with less than 33

iterations. After chemotherapy, the algorithm converged on

average after 52 iterations. The estimated quality parameters

of each expert are shown in Table 2 and indicate high interrater

variability.

Figure 3 shows annotations from all five human experts and

the final ground truth approximation.

2.4 Error Metrics

We show results in terms of the metrics suggested in Ref. 28 and

compute precision and recall as

EQ-TARGET;temp:intralink-;e001;326;678P
Ĝ;G

≔
jĜ ∩ Gj

jGj
; R

Ĝ;G
≔

jĜ ∩ Gj

jĜj
; (1)

where Ĝ is the experts’ consensus truth, andG is the algorithmic

prediction. The harmonic mean of precision and recall is called

Dice score. It relates the area of a cluster to its voxelwise overlap

with the approximated ground truth. The average Dice score

determines the overall segmentation accuracy.

Another class of error measures evaluates the distance

between the segmentation boundaries, i.e., the surface distance.

The best known example of this is the Hausdorff distance.34

It calculates for a given volume the shortest distance to all points

on the surface of another volume and vice versa and finally

extracts the maximal distance. However, the return of the maxi-

mum over all surface distances makes the Hausdorff measure-

ment very susceptible to small remote subregions in either

ground truth or segmentation result. In the evaluation of the fully

automated methods, predictions with few false-positive areas,

which only marginally influence the overall quality of the seg-

mentation, can also dramatically influence Hausdorff’s overall

result. Therefore, we refrain from evaluating this error measure.

It is not conclusive in our scenario.

Table 2 Estimated quality parameters of each expert before and after
chemotherapy. Rater-1, radiologist; rater-2, physician; rater-3, M.D.
student; rater-4, radiologist; rater-5, oncologist.

Rater-1 Rater-2 Rater-3 Rater-4 Rater-5

Prechemotherapy

Sensitivity 0.76 0.71 0.80 0.65 0.58

Specificity 0.65 0.75 0.73 0.82 0.74

Postchemotherapy

Sensitivity 0.78 0.60 0.77 0.70 0.67

Specificity 0.72 0.57 0.75 0.85 0.82

Fig. 3 Example annotations by human expert raters. Rater-1, radiologist; rater-2, physician; rater-3, M.D.
student; rater-4, radiologist; rater-5, oncologist.

Journal of Medical Imaging 034001-4 Jul–Sep 2019 • Vol. 6(3)

Müller et al.: Benchmarking Wilms’ tumor in multisequence MRI data. . .



3 Evaluation of Human Expert Segmentations

3.1 Accuracy

3.1.1 Interoperator variability

We calculate the interoperator variability using all 28 data sets of

all 17 patients. In order to do so, we compute the disagreement

of the outlined volume marked by each physician with each

volume outline prepared by each of the other four clinicians for

the same data set. This process was repeated for each patient to

provide a data set comprising the average disagreement between

the five contours for each data set. We also divide the data sets

based on their acquisition time relative to chemotherapy, i.e.,

before and after chemotherapy. Table 3 shows the interoperator

variability in terms of Dice score before chemotherapy and after

chemotherapy, respectively.

Before chemotherapy, the average Dice score between

human experts shows their agreement on average with

0.87� 0.09 on tumor areas. After chemotherapy, when tumor

tissues are barely visible, the average Dice score between human

expert raters drops to 0.78� 0.24 indicating a high interrater

variability. Especially after chemotherapy, rater-2 seems to be

the bottleneck in agreement of the human experts. Therefore,

we also computed the average Dice scores excluding this anno-

tator. It turns out that average Dice score and standard deviation

between human expert raters before chemotherapy slightly

decreases to 0.87� 0.1. After chemotherapy, it improves to

0.83� 0.17, but still shows a high variability.

We also evaluated our expert annotations with McNemar’s

statistical test35

EQ-TARGET;temp:intralink-;e002;63;154χ2 ¼
jb − cj2

bþ c
: (2)

This χ2-test for paired nominal data, based on the contin-

gency matrix of these samples, provides information on whether

there is a statistically significant difference. We calculated the

corresponding matrix according to Table 4. Here, the first entry

per field refers to the first expert to be compared and the second

to the other. For example, field b means that the first of the two

has labeled a pixel as tumor and the other as nontumor region.

Furthermore, a significance level of α ¼ 0.05 corresponds

approximately to a fiducial level of χ2 ¼ 3.8415.
The results in Table 5 highlight the differences in expert

annotations analogous to our previous analyses: all results of

McNemar’s test reject the null hypothesis that the annotations

are similar with high values for all rater combinations.

Unfortunately, it is not possible to compare these test results

before and after chemotherapy: on the one hand, the tumor

shrinks during therapy, and on the other hand, the resolution of

the images is usually not the same. Both result in a different

number of pixels in the contingency matrix.

3.1.2 Deviation from ground truth

The average Dice score before chemotherapy of human experts

in comparison to ground truth is 0.93� 0.05. After chemo-

therapy, the contrast of tumor regions is usually lower and

the tumor outlines are more ambiguous. Consequently, human

experts agree less on tumor areas. The average Dice score

decreases to 0.85, and variability increases dramatically to 0.16.

3.2 Volume Variability

Tumor expansion after preoperative chemotherapy is an impor-

tant metric used to categorize patients as high-, intermediate-,

or low-risk candidates. High-risk patients receive an additional

postoperative chemotherapy aligned with an irradiation.

Table 3 Interoperator variability before and after chemotherapy in
terms of Dice score. Rater-1, radiologist; rater-2, physician; rater-3,
M.D. student; rater-4, radiologist; rater-5, oncologist.

Rater-1 Rater-2 Rater-3 Rater-4

Prechemotherapy

Rater-2 0.85� 0.13

Rater-3 0.89� 0.11 0.89� 0.08

Rater-4 0.85� 0.13 0.90� 0.05 0.88� 0.08

Rater-5 0.83� 0.13 0.89� 0.05 0.87� 0.07 0.89� 0.05

Postchemotherapy

Rater-2 0.63� 0.37

Rater-3 0.83� 0.24 0.65� 0.37

Rater-4 0.84� 0.10 0.65� 0.36 0.80� 0.24

Rater-5 0.84� 0.10 0.64� 0.35 0.80� 0.24 0.89� 0.05

Table 4 Confusion matrix for
McNemar’s statistical test.

a: no / no b: yes / no

c: no / yes d: yes / yes

Table 5 Interoperator variability before and after chemotherapy in
terms of McNemar’s test averaged on all data sets. Rater-1, radiolo-
gist; Rater-2, physician; Rater-3, M.D. student; Rater-4, radiologist;
rater-5, oncologist.

Rater-1 Rater-2 Rater-3 Rater-4

Prechemotherapy

Rater-2 11,169

Rater-3 7594 7158

Rater-4 15,840 4683 8636

Rater-5 19,106 7195 10,538 5916

Postchemotherapy

Rater-2 10,898

Rater-3 2423 10,152

Rater-4 11,668 11,765 9187

Rater-5 13,733 14,598 11,293 1502
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Therefore, an accurate determination of tumor volume is critical.

The clinical volume equals the volume information used in

therapy and treatment planning. It approximates the tumor by

an ellipsoid shape. It is computed as width × height ×

depth × 0.524,6 where width, height, and depth of

tumor denote the maximal expansion of tumor tissue on MR

images. Note that the volume of the largest ellipsoid that fits

in a cuboid is π∕6 ≈ 0.524 times the cuboid volume. Starting

with the assumption that the true tumor volume is found through

the consensus of our five human experts, we compare human

expert annotations and clinical volumes in terms of percental

volume differences in relation to the ground truth volume before

and after chemotherapy, respectively. It turns out that clinical

volumes differ before chemotherapy on average by 22.62�
16.12%, and after chemotherapy by 35.07� 41.01% from the

ground truth volumes. Before and after chemotherapy, clinical

volumes are on average smaller than the ground truth volume,

i.e., 85.71% before and 92.86% after chemotherapy. In contrast,

human experts differ before chemotherapy on average by

10.58� 5.90% and after chemotherapy by 25.98� 34.57%
from the ground truth volume.

This shows that assuming an ellipsoid shape for Wilms’

tumors is an erroneous oversimplification, and human expert

annotations are helpful to determine tumor volumes more

precisely.

4 Evaluation of Segmentation Algorithms

In the following, we conduct example evaluations on our new

benchmark data with six fully automatic methods:

• Chan–Vese active contours10 with two level sets.

• K-means clustering13 with intensities.

• Entropy rate superpixel segmentation.14

• Classification with a support vector machine12 with inten-

sities and HOG-features.36

• Random-forest classification,11 either with intensities or

HOG-features.36

• Segmentation with a U-Net.15

To guarantee a fair evaluation, we equally split the data sets

in training and test data, each containing seven data sets before

and after chemotherapy. For each segmentation approach, we

include information from all modalities. Since the sampling rate

in depth direction is substantially lower than in the other direc-

tions, we prefer to restrict ourselves to 2-D segmentations in the

present manuscript. Exploring three-dimensional segmentations

is reserved for future research. Let us now sketch each of the

evaluated segmentation approaches.

4.1 Chan–Vese Active Contours

We consider a cubic data domain Ω ⊂ R3 and a volumetric data

set f∶Ω → R
3. In our setting, the codomain describes the differ-

ent MRI modalities T2, T1, and T1c. Then a segmentation of f

by means of the Chan–Vese active contour model10 minimizes

the cost function

EQ-TARGET;temp:intralink-;e003;63;125

Eðu; CÞ ¼ λin

Z
Cin

kuin − fk2dx

þ λout

Z
Cout

kuout − fk2dxþ νlðCÞ; (3)

where the data domain Ω is split into two regions Cin and Cout.

The function f is approximated by a piecewise constant function

where uin and uout are the arithmetic means of f inside and

outside the segment boundaries C, respectively. The positive

weights λin and λout control the influence of each region to

the final partitioning, k:k denotes the Euclidean norm in R3, and

C are the segment boundaries with a (Hausdorff) length of

lðCÞ. This length is weighted with a parameter ν > 0.

4.2 K-means Clustering

K-means clustering13 is a vector quantization method that par-

titions n observations into k clusters. Data points are assigned to

cluster centers, prototypes of corresponding classes, with min-

imal Euclidean distance. In our application, we want to split

the observations into two classes, tumor, and nontumor points.

Given a set of data points f∶Ω → D with D ⊂ R3 and

Ω ⊂ R3, k-means minimizes

EQ-TARGET;temp:intralink-;e004;326;557

EðD1; D2Þ ¼

Z
D1

kξ − u1k
2dξþ

Z
D2

kξ − u2k
2dξ;

D ¼ D1 ∪ D2; D1 ∩ D2 ¼ ∅; (4)

where u1 and u2 are the arithmetic means of both classes. In this

case, k-means clustering is equivalent to Otsu’s method.37

4.3 Support Vector Machine

Support vector machines12 are based on the concept of hyper-

planes in a multidimensional space, separating between sets

of objects having different classes, e.g., tumor and nontumor

points. In our application, we use a fivefold cross validation

to find optimized hyperparameters. Training was performed

using MATLAB38 and the problem was solved via sequential

minimal optimization.39 Furthermore, we used Gaussian-like

kernels and the classification error, i.e., the weighted fraction

of misclassified observations, as loss function.

4.4 Random-Forest Classification

Ensemble methods employ a finite set of different learning algo-

rithms to get better predictive performance than using a single

learning algorithm. Random forests11 are ensemble approaches

for classification combining a group of decision trees. A single

tree is highly sensitive to noise, while the average of many

decorrelated trees is not. Training all decision trees of a random

forest on the same training data would result in strongly corre-

lated trees. Bagging (bootstrap aggregation) generates new

training sets K by sampling from the original training set Y uni-

formly and with replacement. In this way, decision trees are

decorrelated by using different training data. In addition,

random forests use feature bagging, i.e., features are randomly

sampled for each decision tree.40 To estimate how well the

results can be generalized, we use two-fold-cross validation,

i.e., we train two sets of models.

4.5 Entropy Rate Superpixel Segmentation

The method of Liu et al.14 formulates the superpixel segmenta-

tion problem as maximization of the entropy rate of cuts in the

graph. Optimizing this entropy rate encourages the clustering

of compact and homogeneous regions, which also favors the
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superpixels to overlap with only one single object on the per-

ceptual boundaries.

This technique starts with each pixel being considered as

a separate cluster. Clusters are then gradually merged into larger

superpixels. In this way, during segmentation, a hierarchy of

superpixels is created until finally only one superpixel, the

image itself, is left. In our case, we want to segment a tumor,

i.e., we use the hierarchy of superpixels to divide the image into

three groups: tumor, body, and background. Unfortunately, we

do not know in advance which superpixel contains which class.

This objective function is optimized with a greedy algorithm.

4.6 U-Net

In many areas of medical image processing, deep learning and

especially convolutional neural networks (CNN) have proven to

be very powerful tools. Within these, the U-net architecture15 is

one of the standard CNNs in the field of medical image segmen-

tation. It learns segmentation in an end-to-end setting and only

needs a few training examples. Since our benchmark consists of

real clinical data, they are available in different resolutions.

Some of them also contain other parts of the body, e.g., the arms.

Therefore, the amount of nontumor areas outweighs the tumor

areas substantially, such that it becomes necessary to balance the

classes. This is done in three steps: first we determine the con-

nected components, i.e., connected parts of the body and remove

everything except the largest one. Then we determine the maxi-

mum extent of the existing object and extract this part to a new,

smaller image; see Fig. 4. This is then rescaled to a size of

512 × 512 pixels. We use the implementation presented in

Ref. 41 to solve our segmentation problem and set up the net-

work with batch size 5 and 50 epochs.

4.7 Results

In Table 6, we present the mean precision, recall, and Dice score

over the 14 test data sets of the different segmentation algo-

rithms. Since the Chan–Vese method is region-based, it suffers

from the fact that the visual appearance of Wilms’ tumors can

be highly heterogeneous. Our experiments show that intensities

are an important feature to identify tumor areas, resulting in

high precision values for the pixel-based classifiers k-means

clustering and random forests. However, spatial information

is essential as intensities of a tumor can overlap with those

of the surrounding tissue. Accordingly, the pixel-based methods

suffer from low recall. Using HOG-features in addition to inten-

sities improves k-means clustering after chemotherapy, SVM

classification as well as random forests both before and after

chemotherapy.

The results of the superpixel-based method are unexpectedly

poor both before and after chemotherapy. The optimum number

of superpixels depends strongly on the image, and it is also

difficult to identify the respective segments. We could not find

Fig. 4 Exemplary preprocessing step for the U-Net. (a) Original image containing abdomen and extrem-
ities and (b) image after preprocessing.

Table 6 Results on the proposed benchmark data set (test data).
k -means, k -means clustering; CV, Chan–Vese active contours;
RF, random forest classification; SVM, support vector machine;
INT, intensity values; HOG, HOG-features; PP, postprocessing.
Best results are depicted in boldface.

Method Dice score Precision Recall

Prechemotherapy

CV10 0.57 0.48 0.69

k-means13 (INT) 0.53 0.76 0.41

Superpixel14 0.41 0.33 0.56

SVM12 (INT + HOG36) 0.71 0.71 0.72

RF11 (INT + HOG36) 0.92 0.92 0.91

U-net15 0.64 0.49 0.94

Postchemotherapy

CV10 0.41 0.32 0.58

k -means13 (INT) 0.35 0.50 0.27

Superpixel14 0.41 0.29 0.68

SVM12 (INT + HOG36) 0.68 0.69 0.67

RF11 (INT + HOG36) 0.81 0.73 0.92

U-net15 0.30 0.25 0.61
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a parameter set that worked on all data sets. Deep learning meth-

ods usually require a large amount of training data. The U-net

used here deviates from this paradigm and can also be trained

with smaller amounts of data. Table 6 shows that it gives a high

mean recall but a low mean precision. This indicates that

although the network can recognize the basic structure of the

nephroblastoma, it is not able to distinguish it from similar

tissue.

Overall, segmentation with random forests provides the best

results before chemotherapy but is also the leading approach

after chemotherapy, yielding the highest quality measures.

Therefore, we suggest random forests trained on HOG-features

as well as intensities as the baseline method for this benchmark

data set. Since the tumor volume after chemotherapy is decisive

for postoperative treatment planning, it is currently the optimal

method for this purpose. The segmentation quality lies within

the variability of human experts.

In order to ensure spatial consistency, we also apply Chan–

Vese active contours on the predicted probabilities of the ran-

dom forest. It turns out that predictions of this method lack too

much global information and the resulting segmentation loses

quality. These observations highlight the challenges in the data

set.

5 Conclusions

We have proposed the first multisequence benchmark for seg-

mentation of Wilms’ tumors. In spite of the fact that such a data

set involving tumors in children is necessarily limited in size,

its amount of information is rich: there are multisequence

MRT images for all patients, and for 11 patients both pre- and

postchemotherapy images. That is supplemented by manual

annotations by five independent human experts, as well as

histological diagnoses.

Our benchmark allows several important conclusions.

We have demonstrated that human expert annotations suffer

from a large interoperator variability especially after preopera-

tive chemotherapy. Furthermore, we have shown that the popu-

lar tumor volume determination based on ellipsoid shapes tends

to be highly erroneous.

Our data set also allowed evaluation of six computer-based

algorithms. At this time, all fully automatic segmentations apart

from random forests undersegment the tumor volume compared

to human expert raters. Thus, their precision is insufficient,

especially after chemotherapy. Our experiments indicate that

segmentation with random forests11 is the most appropriate tool

for Wilms’ tumors. Its results lie within the variability of the

contouring performed by human expert raters on the same data.

Moreover, it offers the advantage that it is much faster than a full

segmentation by human experts.

In our ongoing research, we plan to include more anatomical

knowledge into our segmentation strategies and to constantly

enlarge the number of available data sets. It is our hope that our

benchmark data set for segmentation of nephroblastoma will

stimulate a growing interest in this research field which is chal-

lenging both from a medical and a computer vision viewpoint.

Most importantly, we are confident that the resulting progress

will help to maximize the survival chances of the affected

children.

Disclosures

We do not have conflicts of interest.

Acknowledgments

This work was partially funded by the European Union’s

seventh framework program under the project Computational

Horizons in Cancer (Grant Agreement No. 600841). J.W. has

received funding from the European Research Council (ERC)

under the European Union’s Horizon 2020 research and

innovation programme (Grant Agreement No. 741215, ERC

Advanced Grant No. INCOVID).

References

1. G. Pastore et al., “Malignant renal tumours incidence and survival in

European children (1978–1997): report from the automated childhood

cancer information system project,” Eur. J. Cancer 42(13), 2103–2114

(2006).

2. A. M. Davidoff, “Wilms’ tumor,” Curr. Opin. Pediatr. 21(3), 357–364

(2009).

3. S. Kim and D. H. Chung, “Pediatric solid malignancies: neuroblastoma

and Wilms’ tumor,” Surg. Clin. N. Am. 86(2), 469–487 (2006).

4. N. Graf, M.-F. Tournade, and J. de Kraker, “The role of preoperative

chemotherapy in the management of Wilms’ tumor: the SIOP studies,”

Urol. Clin. N. Am. 27(3), 443–454 (2000).

5. S. C. Kaste et al., “Wilms tumour: prognostic factors, staging, therapy

and late effects,” Pediatr. Radiol. 38(1), 2–17 (2008).

6. N. Graf, H. Reinhard, and J. O. Semler, “SIOP 2001/GPOH

Therapieoptimierungsstudie zur Behandlung von Kindern und

Jugendlichen mit einem Nephroblastom,” http://www.kinderkrebsinfo

.de (2003).

7. R. David et al., “Clinical evaluation of DoctorEye platform in nephro-

blastoma,” in Proc. 5th Int. Adv. Res. Workshop In Silico Oncol. and

Cancer Invest., IEEE, pp. 1–4 (2012).

8. S. Müller et al., “Robust interactive multi-label segmentation with an

advanced edge detector,” Lect. Notes Comput. Sci. 9796, 117–128 (2016).

9. www.mia.uni-saarland.de/wilms-benchmark.

10. T. F. Chan, B. Y. Sandberg, and L. A. Vese, “Active contours without

edges for vector-valued images,” J. Visual Commun. Image Represent.

11(2), 130–141 (2000).

11. L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).

12. B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for

optimal margin classifiers,” in Proc. Fifth Annu. Workshop Comput.

Learn. Theory, ACM, New York, pp. 144–152 (1992).

13. S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory

28, 129–137 (1982).

14. M.-Y. Liu et al., “Entropy rate superpixel segmentation,” in Proc. IEEE

Conf. Comput. Vision and Pattern Recognit., IEEE, Providence, Rhode

Island, pp. 2097–2104 (2011).

15. O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional net-

works for biomedical image segmentation,” Lect. Notes Comput. Sci.

9351, 234–241 (2015).

16. J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical

flow techniques,” Int. J. Comput. Vision 12(1), 43–77 (1994).

17. S. Baker et al., “A database and evaluation methodology for optical

flow,” Int. J. Comput. Vision 92(1), 1–31 (2011).

18. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driv-

ing? The KITTI vision benchmark suite,” in Proc. IEEE Conf. Comput.

Vision and Pattern Recognit., IEEE, pp. 3354–3361 (2012).

19. J. Kappes et al., “A comparative study of modern inference techniques

for discrete energy minimization problems,” Int. J. Comput. Vision

115(2), 155–184 (2015).

20. D. Martin et al., “A database of human segmented natural images and its

application to evaluating segmentation algorithms and measuring eco-

logical statistics,” in Proc. Eighth IEEE Int. Conf. Comput. Vision,

IEEE, Vol. 2, pp. 416–423 (2001).

21. A. Hanbury, H. Müller, and G. Langs, Cloud-Based Benchmarking of

Medical Image Analysis, Springer, Cham (2017).

22. C.-W. Wang et al., “A benchmark for comparison of dental radiography

analysis algorithms,” Med. Image Anal. 31, 63–76 (2016).

23. K. Murphy et al., “Evaluation of registration methods on thoracic CT:

the EMPIRE10 challenge,” IEEE Trans. Med. Imaging 30, 1901–1920

(2011).

Journal of Medical Imaging 034001-8 Jul–Sep 2019 • Vol. 6(3)

Müller et al.: Benchmarking Wilms’ tumor in multisequence MRI data. . .

https://doi.org/10.1016/j.ejca.2006.05.010
https://doi.org/10.1097/MOP.0b013e32832b323a
https://doi.org/10.1016/j.suc.2005.12.008
https://doi.org/10.1016/S0094-0143(05)70092-6
https://doi.org/10.1007/s00247-007-0687-7
http://www.kinderkrebsinfo.de
http://www.kinderkrebsinfo.de
http://www.kinderkrebsinfo.de
https://doi.org/10.1007/978-3-319-45886-1
www.mia.uni-saarland.de/wilms-benchmark
www.mia.uni-saarland.de/wilms-benchmark
www.mia.uni-saarland.de/wilms-benchmark
www.mia.uni-saarland.de/wilms-benchmark
https://doi.org/10.1006/jvci.1999.0442
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/CVPR.2011.5995323
https://doi.org/10.1109/CVPR.2011.5995323
https://doi.org/10.1007/978-3-319-24574-4
https://doi.org/10.1007/BF01420984
https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1007/s11263-015-0809-x
https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1016/j.media.2016.02.004
https://doi.org/10.1109/TMI.2011.2158349


24. Z. Xu et al., “Evaluation of six registration methods for the human

abdomen on clinically acquired CT,” IEEE Trans. Biomed. Eng. 63,

1563–1572 (2016).

25. O. Bernard et al., “Standardized evaluation system for left ventricular

segmentation algorithms in 3D echocardiography,” IEEE Trans. Med.

Imaging 35(4), 967–977 (2016).

26. R. Karim et al., “Evaluation of state-of-the-art segmentation algorithms

for left ventricle infarct from late Gadolinium enhancement MR

images,” Med. Image Anal. 30, 95–107 (2016).

27. O. Maier et al., “ISLES 2015: a public evaluation benchmark for ische-

mic stroke lesion segmentation from multispectral MRI,” Med. Image

Anal. 35, 250–269 (2017).

28. B. H. Menze et al., “The multimodal brain tumor image segmentation

benchmark (BRATS),” IEEE Trans. Med. Imaging 34(10), 1993–2024

(2015).

29. “NRRD: nearly raw raster data,” http://teem.sourceforge.net/nrrd/index

.html (25 April 2019).

30. I. Wolf et al., “The medical imaging interaction toolkit (MITK): a toolkit

facilitating the creation of interactive software by extending VTK and

ITK,” Proc. SPIE 5367 (2004).

31. R. A. Heckemann et al., “Automatic anatomical brain MRI segmenta-

tion combining label propagation and decision fusion,” NeuroImage 33,

115–126 (2006).

32. V. C. Raykar et al., “Supervised learning from multiple experts: whom

to trust when everyone lies a bit,” in Proc. 26th Annu. Int. Conf. Mach.

Learn., ACM, New York, pp. 889–896 (2009).

33. S. K. Warfield, K. H. Zou, and W. M. Wells, “Simultaneous truth and

performance level estimation (STAPLE): an algorithm for the validation

of image segmentation,” IEEE Trans. Med. Imaging 23(7), 903–921

(2004).

34. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Vol. 317,

Springer Science & Business Media, Berlin (2009).

35. Q. McNemar, “Note on the sampling error of the difference between

correlated proportions or percentages,” Psychometrika 12(2), 153–157

(1947).

36. N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit.,

San Diego, California, pp. 886–893 (2005).

37. D. Liu and J. Yu, “OTSU method and K-means,” in Proc. IEEE Ninth

Int. Conf. Hybrid Intell. Syst., IEEE, Vol. 1, pp. 344–349 (2009).

38. MATLAB, version 9.4 (R2018a), The MathWorks Inc., Natick,

Massachusetts, www.mathworks.com/products/matlab (2018).

39. R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using

second order information for training support vector machines,”

J. Mach. Learn. Res. 6, 1889–1918 (2005).

40. T. K. Ho, “The random subspace method for constructing decision

forests,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844

(1998).

41. J. Akeret et al., “Radio frequency interference mitigation using deep

convolutional neural networks,” Astron. Comput. 18, 35–39 (2017).

Sabine Müller received her BSc degree in computer science from
Saarland University, Saarbrücken, Germany, in 2011, and her MSc
degree in visual computing in 2014. Currently, she is a PhD candidate
in the Mathematical Image Analysis Group at Saarland University
and research assistant at the Department of Pediatric Oncology
and Hematology, Saarland University Medical Center. Her research

interests are in the areas of medical image segmentation, computer
vision, and pattern recognition.

Iva Farag received her BSc degree in computer science from
Saarland University in 2015 and her master’s degree in computer
science with specialization in the field of exploratory data analysis in
2018. Her research interests include pattern recognition, data analy-
sis and summarization, and machine learning.

Joachim Weickert is a professor of mathematics and computer sci-
ence at Saarland University, Saarbrücken, Germany, where he heads
the Mathematical Image Analysis Group. He graduated and received
his PhD from the University of Kaiserslautern, Germany, in 1991 and
1996. He worked as a postdoctoral researcher at the University
Hospital of Utrecht and the University of Copenhagen, and as assis-
tant professor at the University of Mannheim. He is the editor-in-chief
of the Journal of Mathematical Imaging and Vision.

Yvonne Braun received her PhD from the University of Münster,
Germany, in 2005, where she carried out research on the topic of
telomerase as therapeutic target in pediatric tumors. Afterwards,
she worked as a clinical research associate in the field of oncology
and diabetes. Since 2011, she has worked as a research associate
in the Department of Pediatric Oncology and Hematology, Saarland
University Medical Center, Germany.

André Lollert graduated from medical school in Mainz, Germany, on
May 6, 2011. On July 5, 2011 he was certified as a medical doctor.
After internship and residency at the Department of Diagnostic and
Interventional Radiology (08/2011-09/2013 and 10/2014-01/2017),
and Section of Pediatric Radiology (10/2013-09/2014), Medical
Center of the Johannes Gutenberg University Mainz, he was certified
as a radiologist on January 25, 2017. Since then he has been working
as a radiologist at the Section of Pediatric Radiology.

Jonas Dobberstein received his general qualification for university
entrance (A-levels) in 2011 at Tilemannschule in Limburg, Germany.
He started his medical studies in 2011 at Saarland University,
Germany. Currently, he is a medical student at the Department of
Pediatric Oncology and Hematology at Saarland University Medical
Center, Germany.

Andreas Hötker graduated from medical school in 2009 and contin-
ued as a resident in the Department of Radiology of the University
Medical Center Mainz, where he was responsible for urogenital
imaging as an attending assistant, after becoming a board-certified
radiologist in 2016. He completed postdoctoral research fellowships
at Memorial Sloan Kettering Cancer Center, New York, from 2013 to
2014 and in 2016, and has published numerous original research
articles, particularly investigating functional MR techniques in urogeni-
tal oncology.

Norbert Graf is a professor of pediatrics and director of pediatric
oncology and hematology at Saarland University. He is the chairman
of the Renal Tumour Study Group of the International Society of
Paediatric Oncology, an associate member of the Children’s Oncology
Group of North America, an external reviewer for the Japan Science
and Technology Agency, a member of the board of the VPH-
Institute and has more than 25 years of experience in running
clinical trials.

Journal of Medical Imaging 034001-9 Jul–Sep 2019 • Vol. 6(3)

Müller et al.: Benchmarking Wilms’ tumor in multisequence MRI data. . .

https://doi.org/10.1109/TBME.2016.2574816
https://doi.org/10.1109/TMI.2015.2503890
https://doi.org/10.1109/TMI.2015.2503890
https://doi.org/10.1016/j.media.2016.01.004
https://doi.org/10.1016/j.media.2016.07.009
https://doi.org/10.1016/j.media.2016.07.009
https://doi.org/10.1109/TMI.2014.2377694
http://teem.sourceforge.net/nrrd/index.html
http://teem.sourceforge.net/nrrd/index.html
http://teem.sourceforge.net/nrrd/index.html
http://teem.sourceforge.net/nrrd/index.html
https://doi.org/10.1117/12.535112
https://doi.org/10.1016/j.neuroimage.2006.05.061
https://doi.org/10.1109/TMI.2004.828354
https://doi.org/10.1007/BF02295996
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/HIS.2009.74
https://doi.org/10.1109/HIS.2009.74
www.mathworks.com/products/matlab
www.mathworks.com/products/matlab
www.mathworks.com/products/matlab
https://doi.org/10.1109/34.709601
https://doi.org/10.1016/j.ascom.2017.01.002

