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Abstract 

Background: Benchmarking the performance of complex analytical pipelines is 

an essential part of developing Lab Developed Tests (LDT). Reference samples and 

benchmark calls published by Genome in a Bottle (GIAB) consortium have enabled 

the evaluation of analytical methods. The performance of such methods is not uniform 

across the different genomic regions of interest and variant types. Several benchmark-

ing methods such as hap.py, vcfeval, and vcflib are available to assess the analytical 

performance characteristics of variant calling algorithms. However, assessing the per-

formance characteristics of an overall LDT assay still requires stringing together several 

such methods and experienced bioinformaticians to interpret the results. In addition, 

these methods are dependent on the hardware, operating system and other software 

libraries, making it impossible to reliably repeat the analytical assessment, when any 

of the underlying dependencies change in the assay. Here we present a scalable and 

reproducible, cloud-based benchmarking workflow that is independent of the labora-

tory and the technician executing the workflow, or the underlying compute hardware 

used to rapidly and continually assess the performance of LDT assays, across their 

regions of interest and reportable range, using a broad set of benchmarking samples.

Results: The benchmarking workflow was used to evaluate the performance charac-

teristics for secondary analysis pipelines commonly used by Clinical Genomics labo-

ratories in their LDT assays such as the GATK HaplotypeCaller v3.7 and the SpeedSeq 

workflow based on FreeBayes v0.9.10. Five reference sample truth sets generated by 

Genome in a Bottle (GIAB) consortium, six samples from the Personal Genome Project 

(PGP) and several samples with validated clinically relevant variants from the Cent-

ers for Disease Control were used in this work. The performance characteristics were 

evaluated and compared for multiple reportable ranges, such as whole exome and the 

clinical exome.

Conclusions: We have implemented a benchmarking workflow for clinical diagnos-

tic laboratories that generates metrics such as specificity, precision and sensitivity for 

germline SNPs and InDels within a reportable range using whole exome or genome 

sequencing data. Combining these benchmarking results with validation using known 
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variants of clinical significance in publicly available cell lines, we were able to establish 

the performance of variant calling pipelines in a clinical setting.

Keywords: Benchmarking, Workflow, GIAB reference genomes, Precision, Recall, Truth 

set, Docker, Germline variants, Lab developed tests

Background

Next Generation Sequencing (NGS) and analytical methods developed to detect vari-

ous forms of disease-causing polymorphisms are now routinely being used by clini-

cal laboratories to determine the molecular etiology of complex diseases or disorders 

and in many cases to make critical treatment course decisions. In the past two dec-

ades, many polymorphisms in the human genome have been identified and validated 

that serve as predictive, diagnostic, and prognostic markers for complex inherited 

diseases. �ese genomic disease markers can be of different forms, such as Single 

Nucleotide Variants (SNVs), small INsertions and DELetions (InDels), large deletions 

and duplications, and Copy Number Variations (CNVs), and can vary in size from a 

single base change to several Mega Bases (MB) in length and even whole chromo-

somal polysomies. Clinically relevant polymorphisms occur in the different regions 

of the genome, including exonic, splice-sites, and deep-intronic regions. �ese poly-

morphisms also happen in various forms, including single base changes within high 

entropic regions, copy number changes to homopolymer repeats and copy num-

ber changes to Short Tandem Repeat (STR) regions. NGS platforms with disparate 

sequencing chemistries and signal processing methods used to detect these polymor-

phisms also operate under various error modes; hence, they have very different ana-

lytical performances across regions of the genome. Consequently, analytical methods 

specific to various NGS platforms such as Illumina, Ion Torrent, Pacific Biosciences, 

and Oxford Nanopore have been developed to both account for and correct the 

errors particular to these sequencing platforms. A dizzying array of combinations of 

sequencing platforms and analytical methods are now available to a clinical diagnos-

tic laboratory to develop their LDT assays. �erefore, this presents a challenge to the 

laboratory staff to determine which combination is the optimal.

To meet this challenge, methods of benchmarking systems and pipelines are used to 

accurately assess the performance of sequencing platform and analytical method com-

binations before they are incorporated into a clinical diagnostic assay. Benchmark-

ing starts with a set of data for which the relationship between the input and output 

is known, so that the sequencing system can be tested to see if, given the same input, 

it produces the same output, or at least something acceptably close. �e Genome In A 

Bottle (GIAB) consortium hosted by NIST has provided that data for a pilot genome 

(NA12878/HG001) [1] and for six samples from the Personal Genome Project (PGP) [2]. 

�e established, ground-truth calls for SNVs and small InDels (1–20 base pairs) from 

these reference samples can be used for optimization, performance estimation, and ana-

lytical validation of LDT assays using complex analytical pipelines with multiple meth-

ods to detect polymorphisms in the genome. To assist with assessing benchmarking 

runs, the Global Alliance for Genomics and Health (GA4GH) benchmarking team has 

developed standardized tools [3] to evaluate the performance metrics of germline vari-

ant callers used primarily in research applications.



Page 3 of 17Krishnan et al. BMC Bioinformatics           (2021) 22:85  

Results from these types of benchmarking techniques allow a laboratory to demon-

strate that its practices meet the exacting standards which certify laboratories for the use 

of their NGS results in the care of clinical patients. �e Clinical Laboratory Improve-

ment Amendments (CLIA) program requires that all laboratories using LDT must 

establish the test’s performance specifications, such as analytical sensitivity, specificity, 

reportable range, and reference range [4]. �e College of American Pathologists (CAP) 

laboratory standards for NGS based clinical diagnostics [5] not only require the labora-

tories to assess and document the performance characteristics of all variants within the 

entire reportable range of LDTs but also obtain the performance characteristics for every 

type and size of variants that are reported by the assay. Laboratories are also required to 

assess the performance characteristics for clinically relevant variants, such as �F508 and 

IVS8-5T [6] mutations in a CFTR assay. �e CAP guidelines also require laboratories to 

periodically (determined by the laboratory) assess and document the analytical perfor-

mance characteristics to ensure that the LDT is continuing to perform as expected over 

time.

Benchmarking workflows that are highly scalable, reproducible and capable of 

reporting the performance characteristics using many reference and clinical samples 

are needed. In addition, evaluation within multiple highly stratified regions of interest 

are essential for clinical laboratories to optimize and routinely assess the performance 

of their LDT assays. Jeremy Leipzig in his comprehensive review of bioinformatics 

workflows for NGS applications [7] defines a bioinformatics workflow as a structured 

sequence of methods or scripts that are executed either in sequence or parallel to 

achieve a complex set of analytical goals that are not feasible by any single program. �e 

individual steps within the workflow help achieve a specific goal by accepting a set of 

inputs and transforming them to a desired set of outputs, which in-turn serve as inputs 

to other steps later in the workflow. Benchmarking workflows for NGS based clinical 

assays typically start with variant calls in form of VCF files as inputs to generate desired 

assay performance characteristics used during the assay development and validation. In 

order to accomplish this overall objective, workflows deploy widely-used variant com-

parison programs, such as vcfeval [8], hap.py [9], SURVIVOR [10], SURVIVOR_ant [11] 

and svclassify [12], which are capable of variant allele normalization, genotype matching, 

variant classification and breakpoint matching for structural variants. However, due to 

ambiguity in allelic representations (especially in cases of adjacent SNPs and InDels) and 

differing normalization methods employed by each of these programs, the computed 

performance characteristics can vary depending on the program used in the benchmark-

ing workflows. To overcome this challenge, benchmarking workflows can deploy mul-

tiple methods in parallel and either report a consensus-based assessment or report all 

the performance characteristics that are estimated by the individual methods. �us, the 

overall value of a benchmarking workflow is not just in the methods that are included 

but also in the specific way that they are deployed within the workflow and the reliability 

of the assay’s overall performance characteristics reported by the workflow.

In addition, benchmarking workflows deployed in evaluation of clinical-diagnostic 

assays should meet minimum precision guidelines for both repeatability and reproduc-

ibility [13]. CLIA guidelines have adopted the International Organization for Standardi-

zation definitions of reproducibility and repeatability for clinical assays. Repeatability 
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(within-run) is the measure of precision involving assays carried out under the same 

experimental conditions, such as reagent lots, instrument, laboratory and operator. 

Reproducibility (intra-run) is the measure of precision involving assays carried out under 

different conditions, such as reagent, operator, laboratory, etc. In terms of benchmarking 

workflows, repeatability is defined as the ability of the workflow to reliably generate the 

same set of performance metrics given the same set of input variant call files. �ough 

achieving high levels of precision for repeatability might seem trivial for software pro-

grams, in-practice, it requires a high degree of engineering to achieve. �e workflows 

should be able to track and detect changes to input files (using MD5 checksums), soft-

ware libraries, underlying operating systems and even hardware architecture. Also, 

benchmarking workflows, even individual methods used within these workflows, are 

often not reproducible as they are often custom developed for a laboratory setting, such 

as hardware configuration, software versions, and in some cases even the method of exe-

cution. �e level of effort needed to port these pipelines successfully to another labora-

tory with different operating conditions is often insurmountable, resulting in a plethora 

of non-standard workflows with no discernable way to compare the results.

�us, there is a critical need for benchmarking workflows that can meet the high pre-

cision requirements for both reproducibility and repeatability of a clinical assay. �ese 

workflows should also be highly scalable to meet the growing adoption of NGS based 

assays in the clinical diagnostic setting.

Results

Our goal was to develop a benchmarking workflow that any clinical laboratory could use 

to quickly evaluate and compare the performance characteristics of all suitable second-

ary analysis pipelines such as those employing variant callers. A benchmarking workflow 

should further help optimize the analytical workflow based on well-defined performance 

metrics and finally produce a thorough analytical validation report to justify the use of 

the analytical workflow in their diagnostic assay to regulatory authorities such as CLIA 

and CAP.

To test the abilities of our benchmarking workflow, we used it to compare two analyti-

cal workflows commonly used for germline variant calling: (1) workflow based on Broad 

Institute’s best practices guidelines using the GATK HaplotypeCaller v3.7 [14] and (2) 

the SpeedSeq workflow [15] based on FreeBayes v0.9.10 [16] as the primary variant call-

ing engine. �e GATK HaplotypeCaller based workflow was chosen over the FreeBayes 

based workflow as it out-performed in the detection of small-InDels (1–20 base pairs). 

For reference, the benchmarking results for both the above workflows are available for 

two GIAB samples (NA24143 and NA24149) in the Additional files 1, 2, 3, 4: Tables 

S1–S4. In addition, the comparison between the InDel size distribution numbers for the 

GATK HaplotypeCaller and SpeedSeq workflows for one GIAB sample (NA24631) is 

presented in the Additional file 5: Table S5.

�e performance characteristics of the analytical workflow using GATK v3.7 was fur-

ther optimized using benchmarking metrics generated from the five GIAB reference 

samples and four GeT-RM samples (see “Methods” section) with known pathogenic var-

iants. Also, it is critical for the clinical laboratories developing NGS based LDT assays 

to accurately determine the reportable range to avoid misdiagnosis which would lead 
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to wrong treatment decisions. To this end, we evaluated the performance metrics using 

the benchmarking workflow in three distinct genomic regions of interest (see “Methods” 

section for details).

Although we have the benchmarking results for the region including coding exons in 

all the RefSeq genes, we have omitted those findings in this section and focus only on the 

clinically relevant regions.

Tables 1 and 2 show the benchmarking metrics for SNPs in all 5 GIAB samples within 

the clinically relevant genes and whole exome regions, respectively. �e precision, recall, 

and negative percent agreement (NPA) metrics for SNPs are uniform across all the refer-

ence samples, and there is no sample bias in results for some of the better-characterized 

samples such as NA24385 and NA12878. Performance metrics for SNPs within the clin-

ically relevant gene region are significantly better than those within the whole exome 

region. It is notable that recall metrics are a percentage point better in the clinically 

pertinent gene region, across all reference samples. �is phenomenon is attributable to 

the fact that many genes have isoforms, resulting in higher alignment errors, and some 

genes have either very high or very low GC content, resulting in higher than average 

sequencing errors within these regions of the genome. �is finding is of great clinical 

significance, since the reportable region of most inherited disease or disorder-diagnostic 

based LDT assays are limited to the clinically relevant genes. �ereby, the overall per-

formance characteristics of the assay is better than that estimated over either the whole 

genome or whole exome regions.

Tables  3 and 4 provide the InDel benchmarking metrics for sample NA24385 

in the clinically relevant and whole exome regions, respectively. As expected, the 

benchmarking workflow reveals that the performance metrics for InDels are lower 

Table 1 Benchmarking metrics for  SNPs within  coding exons of ~ 7000 clinically relevant 

genes (as speci�ed in “Methods” section)

GIAB 
genome/
NIST ID

Number of bases Truth total TP FP FN TN NPA Precision Recall

NA12878 13,728,555 7803 7781 4 22 13,720,748 100 99.95 99.72

NA24143 12,549,224 7470 7460 14 10 12,541,740 100 99.81 99.87

NA24149 12,538,042 7495 7485 19 9 12,530,529 100 99.75 99.88

NA24385 12,626,866 7452 7436 0 16 12,619,414 100 100 99.79

NA24631 12,808,688 7591 7581 6 10 12,801,091 100 99.92 99.87

Table 2 Benchmarking metrics for  SNPs in  whole exome regions, including  non-coding 

exons, splice sites (± 20 bp) and clinically relevant deep intronic regions

GIAB 
genome/
NIST ID

Number of bases Truth total TP FP FN TN NPA Precision Recall

NA12878 71,152,019 57,822 57,024 491 776 71,093,728 100 99.15 98.66

NA24143 65,657,646 55,975 55,340 669 611 65,601,026 100 98.81 98.91

NA24149 65,597,266 55,518 54,827 669 669 65,541,101 100 98.79 98.79

NA24385 65,948,744 56,068 55,329 389 705 65,892,321 100 99.30 98.74

NA24631 66,988,987 56,948 56,303 394 643 66,931,647 100 99.31 98.87
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than those for SNPs. However, the stratification by InDel size, helped us determine 

the reference range for InDels (1–20 base pairs). The recall metric for InDels larger 

than 20 base pairs is significantly lower than the recall for InDels 1–20 base pairs. 

As in the case of SNPs, performance metrics for InDel detection within the clinically 

relevant genes of interest is better than the whole exome region.

The benchmarking results of the other GIAB reference samples in the clinically 

relevant and whole exome regions can be obtained in the Additional files 6, 7, 8, 

9: Tables S6–S9 and Additional files 10, 11, 12, 13:  Tables S10–S13, respectively. 

The histograms for the InDel size distribution in the NA24385 reference sam-

ple for the clinically relevant and whole exome regions respectively are in Addi-

tional file 17: Fig. S1. The histograms of InDel size distributions for GIAB samples 

in both the whole exome and clinically relevant regions are available in the github 

repository—StanfordBioinformatics/stanford-benchmarking-workflows.

Finally, the benchmarking workflow was able to confirm that the variant calling 

pipeline can detect all the clinical variants in GeT-RM samples listed in Table 5.

To obtain all the metrics produced by hap.py and other output files including 

InDel size distribution plots from our benchmarking workflow for each reference 

sample, please refer to our GitHub repository.

Additionally, we generated benchmarking metrics and ROC curves for NA24143 

using a tool provided by Real Time Genomics (RTG) [8]. The results for benchmark-

ing in the clinically relevant regions and details on the metrics for the other two 

regions of interest can be found in Additional files 14, 15, 16: Tables S14–S16. Simi-

larly, Additional files 18, 19, 20: Figs. S2–S4.

Table 3 Benchmarking metrics for  InDels of  di�erent size ranges in  NA24385 (truth set 

NIST v3.3.2, total bases = 12,626,866) for  the  regions within ~ 7000 clinically relevant 

genes (as speci�ed in “Methods” section)

Size of InDels 
in NA24385

Truth total TP FP FN TN NPA Precision Recall

1–10 145 136 12 9 12,626,709 100 91.89 93.79

11–20 9 9 0 0 12,626,857 100 100 100

21–50 3 3 0 0 12,626,863 100 100 100

All Indels 157 148 12 9 12,626,697 100 92.50 94.27

Table 4 Benchmarking metrics on  the  number of  InDels of  di�erent size ranges 

in  NA24385 (truth set NIST v3.3, total bases = 65,948,744) for  the  whole exome regions 

including  non-coding exons, splice sites (± 20  bp) and  clinically relevant deep intronic 

regions

Size of InDels 
in NA24385

Truth total TP FP FN TN NPA Precision Recall

1–10 5169 4727 872 442 65,942,703 100 84.43 91.45

11–20 203 188 10 15 65,948,531 100 94.95 92.61

21–50 67 56 3 11 65,948,674 100 94.92 83.58

All Indels 5362 4920 885 468 65,942,471 100 84.75 91.27
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Discussion

�e GIAB consortium has helped develop standards for genomic data to evaluate the 

performance of NGS sequencing platforms and analytical methods used for align-

ment and variant calling. �e precisionFDA platform [17] has enabled the genom-

ics community to develop and deploy benchmarking methods that can evaluate the 

performance of analytical methods against the gold standard datasets, such as ones 

made available by GIAB. �ese benchmarking tools, along with accuracy challenges, 

have led to the development of highly accurate variant calling methods. However, the 

requirements of a clinical diagnostic laboratory go beyond the simple evaluation of 

performance characteristics of an analytical pipeline against one or more reference 

samples. Our purpose was to build a benchmarking workflow to meet the assay opti-

mization and validation needs of a clinical laboratory. �e primary benefit of our 

benchmarking workflow is that it allows for the assay performance to be evaluated 

using a broad set of both reference samples with a large number of gold-standard var-

iant calls and clinical samples with a small number of clinical variants that are specific 

to the diagnostic assay being evaluated. �e benchmarking workflow enables the clin-

ical laboratories to establish the reporting range of the diagnostic assay by estimating 

the performance within multiple regions of interest.

�e precisionFDA platform has enabled a benchmarking pipeline (vcf comparison 

framework) which accepts input and truth set variant call files and regions of inter-

est files in BED format to calculate the assay performance metrics across the entire 

region of interest. �e vcf comparison pipeline is only capable of comparing variant 

calls one sample at a time. �e Association for Clinical Genomic Science [18] has 

published a cloud-based benchmarking pipeline similar to the precisionFDA pipe-

line. However, this pipeline is more restrictive than the precisionFDA pipeline in that 

it is capable of evaluating the performance using only one (NA12878) of the several 

benchmarking samples published by GA4GH. �e Seven Bridges platform recently 

published another cloud-based benchmarking pipeline [19] capable of evaluating the 

performance characteristics using several GA4GH benchmarking samples and multi-

ple regions of interest at the same time. All the cloud-based benchmarking workflows 

require the clinical laboratories to upload their sensitive assay results, which in some 

cases include germline variant calls from WGS assays, to a public cloud platform 

which may not be HIPAA compliant.

Table 5 Validation of the presence of the truth variants in the GeT-RM samples with their 

locations speci�ed as GRCh37 coordinates used in our variant calling work�ow

GeT-RM sample ID Chromosome: position Truth variant Truth 
variant 
detected

NA04408 15: 91,310,152 TATC → T Yes

15: 91,310,156 T → TA Yes

15: 91,310,158 A → ATTC Yes

NA14090 17:41,276,044 ACT → A Yes

NA14170 13:32,914,437 GT → G Yes

NA16658 10:43,609,103 G → T Yes
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Unlike these web-based benchmarking apps such as those provided by the precision-

FDA platform or GA4GH, our benchmarking framework can be seamlessly integrated 

with any variant calling pipeline in the user’s software environment. �us, our bench-

marking workflow enables ease of use and avoids the transfer of sensitive data to differ-

ent locations.

�e emphasis on repeatability and reproducibility by building containerized solutions 

in clinical settings are starting to emerge in other fields, such as medical imaging and 

neurosciences [20, 21]. Similarly, the benchmarking workflow is able to achieve high 

precision for both repeatability and reproducibility by being agnostic to the hardware 

infrastructure used to execute it. �e individual software modules within the workflow 

are deployed as Docker [22, 23] containers which are self-contained with all the prereq-

uisite software libraries and other dependencies. �e Docker images of individual soft-

ware modules have been published to a public container repository, Docker Hub [24].

�e benchmarking workflow is distributed using human-readable YAML [25] format, 

and it can be ported to existing WDL based workflows, which are executed using work-

flow managers like Cromwell, published by the Broad Institute [26, 27]. Similarly, the 

workflow YAML files can be ported to the Common Workflow Language (CWL) format 

[28, 29] to use pipeline execution engines published by the GA4GH [30]. �e workflow 

can be readily deployed by the clinical laboratories either within their on-premises com-

puter infrastructure, private-cloud or any of the available public-cloud platforms, such 

as the Google Cloud Platform, Amazon Web Services and Microsoft Azure.

Our benchmarking modules integrated with deployment tools, such as Jenkins [31] 

or CircleCI [32], that work on the principle of continuous integration and continuous 

delivery/deployment (CI/CD) can provide a fool proof way of examining consistency in 

results. In this era where workflows generating reproducible results are gaining atten-

tion, easy incorporation of workflows with CI/CD tools is a nice feature to have.

Conclusions

Benchmarking variants is a critical part of implementing variant calling pipelines for 

research or clinical purposes. Here, we have successfully implemented a benchmarking 

workflow that generates metrics, such as specificity, precision and sensitivity for ger-

mline SNPs, and InDels in whole exome sequencing data. Also, InDel size distributions 

even in the form of histograms are also provided. Moreover, the parameters within each 

tool and predefined InDel size bins can be easily modified in the benchmarking work-

flow to suit a laboratory’s requirements. Combining these benchmarking results with 

validation using known variants of clinical significance in publicly available cell lines, we 

were able to establish our variant calling pipelines in a clinical setting. Our benchmark-

ing workflow can serve as a plug-in to any existing variant calling pipeline to work as an 

integrated unit or be used as a separate module as well.

Furthermore, future extensions to the existing benchmarking workflow can be made 

to accommodate automatic generation of benchmarking metrics and ROC curves from 

other tools such as RTG for which we have the public Docker image readily available.

A benchmarking workflow similar to the one built in this work for benchmarking 

short variants can be constructed to perform benchmarking of structural variants (SVs).
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Methods

Benchmarking work�ow

�e benchmarking workflow, as illustrated in Fig. 1, is a sequence of steps required to 

perform a rapid and comprehensive analytical validation of a clinical diagnostic assay 

based on germline variants. �e benchmarking workflow can be easily integrated with 

any secondary-analysis pipeline used in a diagnostic assay to call germline variants, and 

the workflow accepts germline variants (SNVs and small InDels) in Variant Call Format 

VCF v4.1 [33] or higher. �e workflow takes one or more stratification files specifying 

the regions of interest in BED [34] format and generates a comprehensive analytical vali-

dation report detailing the performance characteristics of the assay within each of the 

specified regions of interest. �e benchmark variant calls that are considered as ground 

truths for each of the reference samples used to evaluate the analytical performance can 

also be specified in VCF format.

�e basic structure of the benchmarking workflow listing all the initial inputs and out-

puts expected from all the steps before the individual steps are defined is shown in Fig. 2. 

�e name of the workflow is specified first followed by the entire list of variable input 

files required for the workflow. Next, we listed inputs that are fixed, which can be files 

or strings required in any step in the workflow. �ese “fixed_inputs” are those that do 

not change often even when the workflow is run multiple times, such as the reference 

fasta file and its corresponding index file in this case. For each “fixed_input”, the sub-field 

“data” has “contents” which is assigned a value based on “type” provided. Depending on 

the “type” specified for a certain input, the “contents” value is interpreted differently. For 

a “string” type, “contents” contains a text value. For a “file” type, “contents” contains a 

unique identifier such as “[filename]$ [MD5]”. Please note that “fixed_inputs” is just a 

Fig. 1 Schematic diagram of the benchmarking framework used in this study. The benchmarking workflow 

written in YAML format consists of four main steps in which the software tool employed in each step is 

dockerized and indicated within parentheses. The details of the Docker images for these software tools, 

which are available in Docker Hub, are specified in the “Methods” section. This benchmarking workflow 

was executed using Loom, an in-house workflow engine. The inputs to the benchmarking workflow are 

depicted on the left and the outputs are on the right with the red arrows from the outputs to workflow steps 

indicating the dependency of the output of that step with another step. The steps in the benchmarking 

workflow are repeated for each stratified region of interest provided
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term we adopted in order to segregate infrequently changed inputs from variable inputs, 

such as different regions of interest or ground-truth VCF files. �e user can modify or 

remove the files or strings in the fixed input category as required, and it does not affect 

the functionality or mode of execution of the workflow. Subsequently, we listed the 

entire list of output files generated by all the steps in the workflow including intermedi-

ate files. In this YAML structure of workflow, the “type” of input or output is specified 

for example as a string or file. A “channel” refers to a designed name (similar to a variable 

name in a script) for a particular input or output that the workflow manager uses during 

execution.

Fig. 2 Snippet of the benchmarking.yaml depicting the structure of the beginning of the benchmarking 

workflow before the steps are defined
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A typical structure of a step in a workflow is presented in Fig. 3, where the “steps” tag 

denotes the beginning of all the steps listed in that workflow. A step begins with the 

name of the step followed by the “inputs” and “outputs” pertaining only to that step. 

Here, aside from “type” and “channel”, an output has a “source” tag specified in the form 

of a “key:value” pair where the key is “filename”. �e value for “filename” is a string that 

can be a “channel” from “fixed_inputs” or an aggregation of different “channels” listed in 

the “fixed_inputs”, which can be optionally concatenated with a user defined string. �e 

“command” tag specifies the command line consisting of the software tool, parameters, 

and the inputs and outputs to be executed inside the docker container. �e “environ-

ment” tag contains a “key:value” pair in the form of “docker_image” as the key and the 

value as the Docker image name required for that step. �e Docker image can be pulled 

from Docker Hub or the Docker container registry in the user’s computing platform. 

�e compute resources to be utilized for a workflow step is provided via the “resources” 

tag containing two “key:value” pairs where “memory” and “cores” are the keys whose val-

ues are strings denoting memory in GB and number of cores respectively.

�e first step in the benchmarking process as seen in Fig. 3 involves the comparison 

of input variants generated by the analytical pipeline with the benchmark variant calls 

within each region of interest. �e variant calls are compared using hap.py, which is 

capable of haplotype construction from individual genotype calls and is recommended 

by GIAB consortium and GA4GH. �e variant comparison step is performed for each 

stratification or region of interest file specified as input, and hap.py generates a single 

output VCF file classifying the variant calls defined in the input and truth VCF files as 

either True Positive (TP), False Positive (FP) or False Negative (FN).

Step two in the benchmarking workflow splits the variant calls annotated using hap.py 

by variant type (SNPs and small InDels) and by variant classification (TP or FP or FN). 

Fig. 3 Snippet of the benchmarking.yaml showing the first step (vcf comparison using hap.py) of the 

benchmarking workflow
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�is step is executed within the workflow for each of the stratification or region of inter-

est files specified. �e VCF files are split by variant type using bcftools [35], and a bash 

script is used to further split the variant calls by the variant classification. �is allows the 

workflow to generate the performance metrics for each of the variant types reported by 

the diagnostic assay.

Steps three and four of the benchmarking workflow (see Fig. 1) were used to gener-

ate a histogram of small InDels by size. �e bins used for InDel size histograms were (a) 

1–10 base pairs, (b) 11–20 base pairs, (c) 21–50 base pairs, and (d) Greater than 50 base 

pairs. �e R script—indelSizeDistribution_Detailed.R (code in Additional file 21: File 1) 

then calculates the performance metrics of the assay for each of the InDel size bins. �e 

Python script—benchmarking_truth_set.py (Additional file  22: File 2) consolidates the 

benchmarking metrics previously obtained and calculates the NPA related metrics com-

bining some of the bin size ranges (user preferred) for all reference samples provided. 

�e details on the usage of the above script are in the associated README file available 

in our public repository.

In addition to benchmarking truth sets for well-characterized reference samples pub-

lished by the GIAB consortium, the benchmarking workflow allows clinical laboratories 

to specify additional samples with clinically relevant variants as ground-truths to esti-

mate the analytical performance of the assay for specific variant types, such as �F508 

and IVS8-5 T in CFTR panels. �e Python script—verify_variants.py (Additional file 23: 

File 3) accepts the ground-truth variant call sets to confirm the presence or absence of 

these variants in the VCF files generated by the variant calling pipeline.

Finally, the benchmarking workflow generates a comprehensive analytical validation 

report using all the provided benchmarking ground-truth call sets—Final_benchmark-

ing_metrics.txt (Additional file 24: File 4).

Scalability and reproducibility of benchmarking work�ow

�e benchmarking workflow is designed to be repeatable and reproducible by using 

Docker containers for all software and bioinformatics components used within the 

workflow (see Table 6). �e workflow is distributed in a human-readable data serializa-

tion format YAML v1.2, and the workflow can be readily executed using the workflow 

execution manager—Loom (0.5.3-prerelease-rc10) [36]. �e workflow definition file—

Benchmarking.yaml (see our GitHub repository) can also be easily ported to Common 

Workflow Language (CWL) or Workflow Definition Language (WDL) formats and exe-

cuted using workflow execution managers, such as Toil [37, 38] and Cromwell.

Golden/ground-truth call sets

�e golden/ground-truth sets for five reference and PGP genomes are currently avail-

able—NA12878 (CEPH family’s daughter), NA24143 (AJ mother), NA24149 (AJ father), 

NA24385 (AJ son) and NA24631 (Chinese son), and these reference call sets were used 

in this benchmarking study. GIAB provides a high confidence regions file and a high 

confidence VCF file, and as recommended by GIAB, only the high confidence calls were 

used in the evaluation of the assay’s performance characteristics. �e NIST versions and 

their corresponding FTP site locations used for the above samples in this study can be 

found in the Additional file 25.
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In addition to the GIAB reference samples, samples with known pathogenic germline 

variants (see Table 5) for various inherited diseases or disorders were chosen from the 

Genetic Testing Reference Materials Coordination Program (GeT-RM) [39–43].

Strati�cation or regions of interest (ROI) BED �les.

�ree stratification files were used to evaluate the performance characteristics of an 

inherited Whole Exome Sequencing (WES) assay.

1. Coding Exons for all known transcripts in RefSeq genes: RefSeq gene names, tran-

scripts, and coordinates of all coding exons were obtained from the UCSC genome 

browser [44–46].

2. Clinically relevant regions of the human genome: Clinically relevant regions were 

determined by intersecting coordinates of all known pathogenic variants reported in 

OMIM [47], ClinVar [48] and DECIPHER v9.28 [49] with all the exon regions (cod-

ing and non-coding) file for RefSeq genes obtained from the UCSC genome browser. 

�e exonic coordinates were later extended by 20 base pairs on either end to include 

canonical and non-canonical splice sites. Deep-intronic regions with pathogenic var-

iants were added to the exonic regions to generate the final clinically relevant regions 

(BED) file.

3. Whole Exome regions file for RefSeq genes: Whole Exome regions file was obtained 

from the UCSC genome browser. �e exon regions were extended by 20 base pairs 

on either end to include splice sites.

Table 6 List of  software components utilized in  the  benchmarking work�ow with  their 

software dependencies, settings and Docker image names (as available in the Docker Hub 

repository) if applicable

Software component Docker image Other software dependencies and settings 
included

hap.py v0.2.10 sowmiu/happy Ubuntu 14.04

Python 2.7.6, python2.7-dev, python-software-
properties, cython, numpy, pandas, setuptools, 
pybedtools, pysam, bx-python, nose, pip, 
numpy, Distribute

Cmake > 2.8, gcc/g++4.8 + zlib1g-dev, 
libncurses5-dev, bzip2, wget, libbz2-dev, build-
essential, libatlas-base-dev, pkg-config, boost 
1.55 + , software-properties-common

git, samtools 0.1.19, bcftools 0.1.19, gfortran

bcftools vandhanak/bcftools:1.3.1 Ubuntu 14.04

Make, g++, gcc, zlib1g-dev, libgsl0ldbl, gsl-bin, 
libgsl0-dev, libatlas-base-dev git, htslib 1.3.2

IndelSizeDistribution_Detailed.R vandhanak/rbase:3.3.2 Ubuntu 14.04

libcurl4-openssl-dev, libxml2-dev, locale setting: 
en_US.UTF-8

Set access to these repositories: trusty-backports, 
CRAN

Benchmarking_truth_set.py – Python 2.7

Verify_variants.py – Python 2.7
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Benchmarking metrics

Precision and recall are benchmarking metrics provided as output by hap.py. �e true 

positives (TP), false positives (FP), and false negatives (FN) are counted as described 

by the developers of hap.py. Again, as explained by the authors of hap.py, precision and 

recall are calculated using the below formulae:

Other metrics reported by hap.py, such as variants outside the high confidence truth 

set regions and transition or transversion SNP type, can be found in the extended.csv files 

included in the vcfComparison directories for each GIAB sample in our GitHub repository..

�e total number of bases per sample in a particular region of interest as specified by 

the corresponding bed file was computed using a bash command provided in the Addi-

tional file 25.

True negatives (TN) and Total Negatives are computed using the following:

�e Negative Percentage Agreement (NPA) or specificity as recommended by the 

FDA [50] is calculated using the following:

Generation of ROC curves outside of benchmarking work�ow

�ere is an option for the user to generate benchmarking metrics and corresponding 

ROC curves using another popular vcf comparison tool called vcfeval in RTG-core’s 

suite of tools [51]. However, this option is currently not available as part of the validated 

benchmarking workflow. �e ROC plots were obtained using the dockerized version of 

RTG-core, available in Docker Hub as vandhanak/rtg-core:3.11. �e input sample VCF 

used contained variants called by the germline variant caller GATK HaplotypeCaller 

v3.7. �e default value, genotype quality (GQ), for the parameter vcf-score-field was 

used. Further, the parameter evaluation-regions was set to the truth bed file correspond-

ing to the region of interest for the GIAB sample. ROC plots were generated using the 

rocplot tool within RTG. In order to demonstrate this functionality, one GIAB sample, 

NA24143 was used for the benchmarking on the three stratified regions of interest uti-

lizing the corresponding ground-truth sets.

Supplementary Information
The online version contains supplementary material available at https ://doi.org/10.1186/s1285 9-020-03934 -3.

Additional �le 1: Table S1. Benchmarking metrics on SNPs and multiple nucleotide polymorphisms (MNPs) in 

NA24149 (truth set NIST v3.3) for the RefSeq coding exons regions generated for both the GATK and SpeedSeq 

pipelines that were executed using workflows run by Loom (in-house workflow engine).

Additional �le 2: Table S2. Benchmarking metrics on InDels in NA24149 (truth set NIST v3.3) for the RefSeq coding 

exons regions generated for both the GATK and SpeedSeq pipelines that were executed using workflows run by 

Loom (in-house workflow engine).

Precision = True Positives/(True Positives + False Positives)

Recall = True Positives/
(

True Positives + False Negatives
)

TN = Total number of bases in the region of interest

−
(

True Positives + False Positives + False Negatives
)

Total Negatives = True Negatives + False Positives

NPA = True Negatives/Total Negatives.

https://doi.org/10.1186/s12859-020-03934-3
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Additional �le 3: Table S3. Benchmarking metrics on SNPs and multiple nucleotide polymorphisms (MNPs) in 

NA24143 (truth set NIST v3.3) for the RefSeq coding exons regions generated for both the GATK and SpeedSeq 

pipelines that were executed using workflows run by Loom (in-house workflow engine).

Additional �le 4: Table S4. Benchmarking metrics on InDels in NA24143 (truth set NIST v3.3) for the RefSeq coding 

exons regions generated for both the GATK and SpeedSeq pipelines that were executed using workflows run by 

Loom (in-house workflow engine).

Additional �le 5: Table S5. Benchmarking metrics on InDel size distribution in NA24631 (truth set NIST v3.3.2) 

for whole exome regions, including non-coding exons, splice sites (+/- 2 bp) and clinically relevant deep intronic 

regions intersected with clinical exome to assess performance of GATK and SpeedSeq pipelines.

Additional �le 6: Table S6. Benchmarking metrics for InDels of different size ranges in NA12878 (truth set NIST v3.3, 

total bases = 13728555) for the regions within ~7000 clinically relevant genes (as specified in Methods).

Additional �le 7: Table S7. Benchmarking metrics for InDels of different size ranges in NA24143 (truth set NIST v3.3, 

total bases = 12549224) for the regions within ~7000 clinically relevant genes (as specified in Methods).

Additional �le 8: Table S8. Benchmarking metrics for InDels of different size ranges in NA24149 (truth set NIST v3.3, 

total bases = 12538042) for the regions within ~7000 clinically relevant genes (as specified in Methods).

Additional �le 9: Table S9. Benchmarking metrics for InDels of different size ranges in NA24631 (truth set NIST v3.3, 

total bases = 12808688) for the regions within ~7000 clinically relevant genes (as specified in Methods).

Additional �le 10: Table S10. Benchmarking metrics on the number of InDels of different size ranges in NA12878 

(truth set NIST v3.3, total bases = 71152019) for the whole exome regions including non–coding exons, splice sites 

(+/- 20 bp) and clinically relevant deep intronic regions.

Additional �le 11: Table S11. Benchmarking metrics on the number of InDels of different size ranges in NA24143 

(truth set NIST v3.3, total bases = 65657646) for the whole exome regions including non-coding exons, splice sites 

(+/- 20 bp) and clinically relevant deep intronic regions.

Additional �le 12: Table S12. Benchmarking metrics on the number of InDels of different size ranges in NA24149 

(truth set NIST v3.3, total bases = 65597266) for the whole exome regions including non-coding exons, splice sites 

(+/- 20 bp) and clinically relevant deep intronic regions.

Additional �le 13: Table S13. Benchmarking metrics on the number of InDels of different size ranges in NA24631 

(truth set NIST v3.3, total bases = 65657646) for the whole exome regions including non-coding exons, splice sites 

(+/- 20 bp) and clinically relevant deep intronic regions.

Additional �le 14: Table S14. Benchmarking metrics for NA24143 (SNPs and InDels, truth set NIST v3.3) within cod-

ing exons of ~7000 clinically relevant genes (as specified in Methods) using RTG vcfeval.

Additional �le 15: Table S15. Benchmarking metrics for NA24143 (SNPs and InDels, truth set NIST v3.3) in whole 

exome regions, including non-coding exons, splice sites (+/- 20 bp) and clinically relevant deep intronic regions 

using RTG vcfeval.

Additional �le 16: Table S16. Benchmarking metrics for NA24143 (SNPs and InDels, truth set NIST v3.3) in the 

RefSeq coding exon regions using RTG vcfeval.

Additional �le 17: Fig S1. InDel size distribution histograms for NA24385 as generated by the benchmarking work-

flow for the coding exons of ~7000 clinically relevant genes and whole exome regions (as specified in Methods).

Additional �le 18: Fig S2. ROC curves for NA24143 within coding exons of ~7000 clinically relevant genes using 

RTG rocplot with metrics obtained from RTG vcfeval.

Additional �le 19: Fig S3. ROC curves for NA24143 in the whole exome regions (as specified in Methods) using RTG 

rocplot with metrics obtained from RTG vcfeval.

Additional �le 20: Fig S4. ROC curves for NA24143 in the coding exon regions (as specified in Methods) using RTG 

rocplot with metrics obtained from RTG vcfeval.

Additional �le 21: File 1. indelSizeDistribution_Detailed.R.

Additional �le 22: File 2. benchmarking_truth_set.py.

 Additional �le 23: File 3. verify_variants.py.

Additional �le 24: File 4. Final_benchmarking_metrics.txt.

Additional �le 25. Supplementary information.
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