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Rationale 
 
 

 
Current practice of publishing research results in robotics makes it extremely 

difficult not only to compare results of different approaches, but also to asses the quality 
of the research presented by the authors. Though for pure theoretical articles this may 
not be the case, typically when researchers claim that their particular algorithm or 
system is capable of achieving some performance, those claims are intrinsically 
unverifiable, either because it is their unique system or just because a lack of 
experimental details, including working hypothesis. This is, of course, partly due to the 
very nature of robotics research: reported results are tested by solving a limited set of 
specific examples on different types of scenarios, using different underlying software 
libraries, incompatible problem representations, and implemented by different people 
using different hardware, including computers, sensors, arms, grippers... 
 

This state of affairs cannot be changed in the short term, but some steps can be 
taken in the right direction by studying the ways in which research results in robotics 
can be assessed and compared. In this context, the European Robotics Research 

Network EURON has as one of its major goals the definition and promotion of 
benchmarks for robotics research. A successful workshop on this topic was organized 
last March at Palermo in conjunction with EUROS'06, the First European Symposium 

on Robotics. The main purpose of this second workshop is to address these issues by 
providing an informal forum for participants to exchange their on-going work and ideas 
in this regard. It is intended as a forum for discussion, exchange of points of view, 
assessment of results and methods, and as a source of dissemination and promotion in 
the area of benchmarks in robotics research. 
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Why do We Need Benchmarks in Robotics Research? 
 

Angel P. del Pôbil 

Robotic Intelligence Laboratory 
Universitat Jaume I  

Castellón, Spain 
pobil@uji.es 

 

Abstract - This paper discusses the current state of 

affairs in measuring and comparing research results in 

robotics and describes current actions towards better 

benchmarking practice in the field. 

 

1 State of the art 

 It is a well-known fact that the current practice of 
publishing research results in robotics makes it extremely 
difficult not only to compare results of different 
approaches, but also to asses the quality of the research 
presented by the authors. Though for pure theoretical 
articles this may not be the case, typically when 
researchers claim that their particular algorithm or system 
is capable of achieving some performance, those claims 
are intrinsically unverifiable, either because it is their 
unique system or just because a lack of experimental 
details, including working hypothesis. Often papers 
published in robotics journals and generally considered as 
good would not meet the minimum requirements in 
domains in which good practice calls for the inclusion of 
a detailed section describing the materials and 
experimental methods that support the authors' claims. 

 Moreover, the problems claimed to be solved in this 
kind of papers become the state of the art, so that more 
solid papers supported by exhaustive experiments are 
rejected because the problem is considered to be already 

solved, typically referring to one of those papers. Even 
though this is partly due to the very nature of robotics 
research: reported results are tested by solving a limited 
set of specific examples on different types of scenarios, 
using different underlying software libraries, incompatible 
problem representations, and implemented by different 
people using different hardware, including computers, 
sensors, arms, grippers... this situation is impeding solid 
progress in the field and jeopardizing the credibility of 
robotics research. 

This state of affairs cannot be changed in the short 
term, but some steps can be taken in the right direction by 
studying the ways in which research results in robotics can 
be assessed and compared. In this context networks and 
societies, such as EURON or IEEE, can play an important 
role. The long-term benefits of systematic benchmarking 

practice are evident: not only will it foster the overall 
quality of research results but it will also improve 
publication opportunities for solid research, thereby 
increasing international visibility of such research and lead 
to rapid adoption of new research results by application 
developers and the robotics industry. 

 

1.1 Robot competitions 

Curiously enough, the above described situation is 
compatible with the fact that some of the most popular 
organized events in robotics are related to comparative 
research: the different successful robot competitions that 
exist today are a way of comparing the performance of the 
competing systems by means of very well-defined rules 
and metrics. The organization of these scientific 
competitions has proven a quick way to attract substantial 
research efforts and rapid to produce high-quality working 
solutions.  

 

1.2 Task Forces and Grand Challenges 

When considering the role of societies and 
networks in relation to these issues, trying to set up a task 
force to define a set of gold standards in robotics by itself 
does not seem a feasible approach. To mention just a 
recent example: DARPA and NSF funded a study about a 
very particular field in robotics, namely human robot 
interaction (HRI). Even for this reduced field over sixty 
representatives from academia, government and industry 
participated in the study, and one of the recommendations 
regarding actions for the next 5 years concluded that the 

HRI field is still too new to set milestones or benchmarks 
[1]. Even so, some grand challenges were proposed. 
Grand challenges are interesting as long-term goals, but 
they are usually vaguely described, resulting from a 
roadmap in the field, and not very useful for measuring 
progress or comparing results. Nevertheless, benchmarks 
could be conceived as a way of measuring process toward 
a grand challenge. 

 

2 Methodology 

Defining a benchmark —even a sound valid 
benchmark— could be an easy task, if it is just taken as an 
academic exercise. Defining a successful benchmark is 



something completely different. A benchmark can be 
considered as successful if the community extensively 
uses it in publications, conferences and reports as a way of 
measuring and comparing results. To put it in a few 
words: a benchmark is successful if and only if it is widely 
accepted by the community at which it is targeted. 

 
This kind of success is somehow difficult to 

predict, but some the following considerations may help: 
 

• its success is related to its quality, i.e. it really must 
serve its purpose 

• robotics is a too broad field and defining benchmarks 
for robotics in general does not seem to make sense, 
but rather benchmarks should focus on particular sub-
domains, such as visual servoing, grasping, motion 
planning, ... 

• it is easier that a benchmark is successful within a 
scientific (sub)community if it arises from the 
community itself instead of having it defined outside 
this community. 

 
Reaching consensus does take time: proposing good 

benchmarks for the community to accept, is a long process 
that requires the concourse of many people in many 
subcommunities within robotics. Consequently, the role of 
organizations in this context does not seem to be that of 
defining benchmarks, but rather to propose and encourage:  

 
• by convening the different sub-communities within 

robotics so that they become aware of the problem, 
and encourage them to make efforts to define these 
benchmarks, follow their work, help in disseminating 
their proposals so that they become publicly known.  

 

• by helping in providing the required information 
about other efforts in the field, organizing workshops 
and meetings, coordinating discussions, etc 

 
Since this work is being carried out in the 

framework of the European Robotics Research Network, 
we have been more concerned with non-industrial 
scenarios. This report builds on previous work developed 
in EURON I [2] in which benchmarks in industry were 
discussed. In general this seems to be a different situation, 
since industry can provide the resources to measure 
whatever features they desire in a robot. In this sense they 
can not only develop their own benchmarks, but also they 
have even organized competitions: a famous example is 
the one held in March 1996, when Ford U.S.A. organized 
a competition for an order of 400 welding robots with the 
result that the KUKA robots could solve the benchmark 
problems considerably faster and smoother than the robots 
of the main competitor. KUKA won this contract and 
since then all Ford European plants become equipped with 
KUKA robots exclusively [3]. 

 

3 Actions 

In order to attain the above-mentioned goals, 
namely successful robotics benchmarks in the medium 
term, the following actions were identified: 

 
a) Exhaustive survey: The first step is to make 

accessible to the community the state of the art in 
existing efforts in comparative research such as 
related initiatives in the U.S. and Japan, 
competitions, benchmarks, challenges, and 
conferences with relevant topics. Thus, 
information that was previously unavailable, or 
scattered in different sources and merged with 
irrelevant issues is make accessible to the 
community including a detailed description of the 
rules, metrics and procedures. 

 
b) Increase awareness by organizing and 

participating in workshops, meetings, and 
discussions; encourage experts in the different 
subfields to get involved in the process of 
benchmark definition, and follow these efforts 
suggesting further actions. 

 
c) Promote a set of benchmarking initiatives in 

some areas. Initially these sub-areas are selected 
by taking advantage of existing Special Interest 
Groups or technical committees, or when experts 
propose benchmarking initiatives. These 
benchmarks should be operational and described 
in sufficient detail, as well as their associated 
metrics, and an independent measurement 
procedure, keeping always in mind that the 
fundamental goal is that they are widely accepted 
in the community at large. 

 
More concretely, we planned a series of 

discussions and refinements in parallel actions, similar to 
the procedure described in [1] as a continuous process of 
convergence towards consensus in order to ensure 
community wide acceptance: 

 
- Identification of benchmarking initiatives in 

some areas 
- Establish working groups (WG) one per area 
- Discussion: on-line and physical 
- First EURON Workshop on benchmarks in 

robotics research (Palermo, March 2006) 
- Dissemination of on-going initiatives through a 

report and the web site. 
- Discussion phase: online and physical open to the 

community at large 
- Second Workshop on benchmarks in conjunction 

with an international event 
 



The up-to-date results of action (a) above are 
described in the form of an exhaustive, detailed survey 
and inventory of current existing efforts in comparative 
research: competitions, benchmarks, challenges, 
repositories, conferences, etc. This has been the result of a 
long process of information gathering, either obtained 
from different sources or kindly provided by a number of 
persons. Most of this information was previously 
unavailable, scattered in different sources and merged 
with irrelevant issues. After a process of selection and 
rewriting it is made available to the community in a web 
site, located at: 

 
http://www.robot.uji.es/benchmarks 
 

Technical material available in this website may have 
interest for future benchmark development, since they 
include detailed description of the rules, metrics and 
procedures for current robot competitions and 
benchmarks. 
 

Also actions (b) and (c) are being addressed with a 
number of meetings, workshops, and discussions —
physical or email-based. The main overall result so far is a 
considerable increase in the awareness of the importance 
of robotics benchmarking in Europe. This has resulted in a 
number of on-going initiatives in Europe towards defining 
benchmarking scenarios and evaluation data sets, the 
current results of which are included in the web site. The 
degree of accomplished tasks varies among the different 
initiatives, some have been already available to the 
community for months on end, whereas others are more 
embryonic. Some of them are based on simulations only, 
and data sets are made available defining objects, robots 
and scenarios in standard format descriptions. When 
moving ahead beyond simulations into real hardware in 
the real world, computer data sets are not enough and 
various solutions are put forward. Some of them are based 
on specific hardware that is shared by remote access, 
whereas others describe experimental protocols to be 
shared in the verification of diverse approaches to the 
same problem. 
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Abstract. In this paper, I argue for the use of robotic competitions as benchmarks 
for robotics research. By providing a common task to be solved at a specific place 
and a specific time, competitions avoid some of the difficulties arising when evalu-
ating robotics research in the own lab. Competitions also bring together multiple 
research groups working on the same problem. This fosters the exchange of ideas. 
I review two of the most popular robotics competitions, RoboCup and the DARPA 
Grand Challenge, and discuss some issues arising when designing robotics compe-
titions. 

 
1. Introduction 
 

Benchmarking robotics research is inherently difficult. Typically, results are reported only for a 
specific robotic system and a self-chosen set of tasks. The tasks are solved in the lab where the 
robot was developed. This makes it impossible to compare the results with other systems, develo-
ped in different labs and tested for different specific tasks. The commonly used "proof by video" 
technique has the same difficulties as the "proof by example" in other settings. That a robotic sys-
tem works once in a video does not mean that it works always or that it works under slightly less 
controlled conditions.  
 

One possible approach to overcome these shortcomings is to participate at robot competitions. 
Robot competitions bring together researchers, students, and enthusiasts in the pursuit of a tech-
nological challenge. Popular competitions include MicroMouse [1], where wheeled robots have 
to solve a maze, Robolympics [2], where robots compete in many disciplines, Robo-one [3], 
where remotely controlled humanoid robots engage in martial arts, and the AAAI Robot Compe-
tition [4], where robots have to solve different tasks in a conference environment. Among the 
most popular robot competitions are robotic soccer championships, like RoboCup [5] and FIRA 
[6], and competitions for unmanned ground and aerial vehicles, like the DARPA Grand Challen-
ge [7], the European Land-Robot Trial (ELROB) [8], and the International Aerial Robotics Com-
petition (IARC) [9]. Pobil compiled a survey of such competitions and other benchmarks for 
robotics [10]. Rainwater maintains a list of robot competitions [11]. 
 

Such robot competitions provide a standardized test bed for different robotic systems. All partici-
pating teams are forced to operate their robots outside their lab in a different environment at a 
scheduled time. This makes it possible to directly compare the different approaches for robot con-
struction and control. In the following, I will review two of the most popular robotic competi-
tions: RoboCup and the DARPA Grand Challenge.  
 
2. RoboCup 
 

RoboCup is an international joint project to promote AI, robotics, and related fields. The Robo-
Cup Federation organizes since 1997 international robotic soccer competitions. The long-term 
goal of the RoboCup Federation is to develop by the year 2050 a team of humanoid soccer robots 
that wins against the FIFA world champion [12]. The soccer game was selected for the 
competitions, because, as opposed to chess, multiple players of one team must cooperate in a dy-
namic environment. Sensory signals must be interpreted in real-time and must be transformed 
into appropriate actions. The soccer competitions do not test isolated components, but two sys-
tems compete with each other. The number of goals scored is an objective performance measure 
that allows comparing systems that implement a large variety of approaches to perception, beha-



vior control, and robot construction. The presence of opponent teams, which continuously impro-
ve their system, makes the problem harder every year.   
 

The RoboCup championships grew continuously over the years. In the last RoboCup, which took 
place in June 2006 in Bremen, Germany, 440 teams from 36 countries competed. The total num-
ber of participants was more than 2.600. In addition to the soccer competitions, since 2001, com-
petitions for the search of victims of natural disasters and the coordination of rescue forces are 
held (RoboCupRescue). In 2006, for the first time, competitions for robots in a living-room 
environment took place in the RoboCup@home league. Furthermore, there are competitions for 
young researchers (RoboCupJunior). 
The soccer competitions at RoboCup are held in five leagues. Since the beginning, there is a 
league for simulated agents, a league for small wheeled robots which are observed by cameras 
above the field (SmallSize), and a league for larger wheeled robots where external sensors are not 
permitted (MiddleSize). A league for the Sony Aibo dogs was added in 1999 (Four-legged) and a 
league for humanoid robots was established in 2002.  
 

Different research issues are addressed in the different leagues. In the simulation league, team 
play and learning are most advanced. In the wheeled robot leagues, the robot construction 
(omnidirectional drives, ball manipulation devices), the perception of the situation on the field 
(omnidirectional vision systems, distance sensors), and the implementation of basic soccer skills 
(approaching, controlling, dribbling, and passing the ball) are still in the center of the activities. 
Because the robot hardware is fixed in the Four-legged League, the participating teams focus on 
perception and behavior control. Here, the control of the 18 degrees of freedom (DOF) poses 
considerable challenges. 
 

As the performance of the robots increases, the competition rules are made more demanding by 
decreasing the deviations from the FIFA laws. This permanently increases the complexity of the 
problem. It can also be observed that solutions like team play, which have been developed in 
leagues abstracting from real-world problems, are adopted in hardware leagues, as the basic 
problems of robot construction, perception, locomotion, and ball manipulation are solved better.  
 
 

 
Fig. 1. Some of the robots, which participated in the RoboCup 2006 Humanoid League competitions. 

 
The Humanoid League is the most challenging RoboCupSoccer league. Its competition rules [13] 
require robots to have a human-like body plan. They consist of a trunk, two legs, two arms, and a 
head. The only allowed modes of locomotion are bipedal walking and running. The robots must 
be fully autonomous. No external power, computing power or remote control is allowed. After 
less demanding competitions, like walking around a pole and penalty kicks, at RoboCup 2005, 



the first 2 vs. 2 soccer games were played in the KidSize class (30-60cm robot height). Fig. 1 
shows some of the robots which participated in the RoboCup 2006 Humanoid League competi-
tions. 
 

Very different approaches for robot construction, perception, and behavior control were used. 
While some teams constructed their robots starting from commercially available kits, like Robotis 
Bioloid or Kondo KHR-1, many robots were designed from scratch by the teams. The largest and 
most expensive robot Arabot (Pal Technology, 30DOF, 140cm, 36kg) won the Footrace in the 
TeenSize class (65-130cm). Team NimbRo (Freiburg, Germany) constructed 20DOF, 60cm, 
2.9kg robots, which won the KidSize Penalty Kick and came in second in the overall Best Huma-
noid ranking, the same result as in 2005. Winner of the Technical Challenge, the 2 vs. 2 soccer 
games, and the TeenSize Penalty Kick was Team Osaka, which used self-constructed robots with 
omnidirectional vision systems. Team Osaka was Best Humanoid for the third time in a row. This 
result shows that despite the variance caused by the randomness of soccer games, the RoboCup 
competitions do provide an objective performance measure. 
 
3. DARPA Grand Challenge  
 

The DARPA Grand Challenge benchmarks performance of autonomous ground vehicles. It is or-
ganized by the U.S. government to foster research and development in the area of autonomous 
driving. The first two competitions took place in the Mojave Desert. The course included gravel 
roads, paths, switchbacks, open desert areas and dry lakebeds, mountain passes, and some paved 
roadways. The course was outlined by a GPS corridor, which consisted of several thousand way-
points, accompanied by allowable path width and speed limits. 
 

While following the GPS corridor, the vehicles had to recognize drivable surfaces by themselves 
and to make steering decisions in order to stay on the road and to avoid obstacles. Possible ob-
stacles included other vehicles, fences, utility poles, stones, trees and bushes, and ditches. As 
skilled drivers with standard SUVs would have no difficulties driving the curse, the challenge 
was information processing. Robustly perceiving the state of the environment and the vehicle, 
making driving decisions appropriate to the situation, and acting timely were key factors for 
success [14].  
 

The vehicles had to be completely autonomous: no remote control capabilities were allowed. 
They could carry any combination of onboard sensors, both for sensing the position of the vehicle 
and the surrounding environment. Teams could also use any available, non-classified map and 
terrain database. The only external signals allowed were the pause and emergency stop remote 
control signals for the organizers and publicly available navigation aids, such as GPS signals and 
commercial differential correction services available to all teams.  
 

The Grand Challenge events were divided into two segments: the qualification and the race. For 
qualification, the teams had to demonstrate the safety and reliability of their vehicles, including 
the emergency stop systems. They had to show autonomous motion capabilities on a test course 
which included narrow passages, obstacles, and a tunnel. 
 

The first DARPA Grand Challenge took place on March 13th, 2004, but none of the participating 
vehicles came very far. On October 8th, 2005, 23 finalists started the second race, which was 
213km long. This time, the participants were better prepared. The teams of Stanford University 
and Carnegie Mellon University (CMU), for example, drove prior to the race hundreds of km 
through similar terrain to calibrate and test their systems. Consequently, five autonomous vehicles 
finished the 2005 course. The $2 million price went to the fastest of them: Stanley [15] of 
Stanford Racing Team, which is shown in Fig. 2. It drove at an average speed of 30.7 km/h, with 
a top speed of 61km/h. The second and third fastest vehicles belonged to the Red Team of CMU. 



 
Fig. 2. Stanley of Stanford Racing Team, winner of the 2006 DARPA Grand Challenge. 

 
Major components of Stanley's software were based on machine learning, probabilistic reasoning, 
and real-time control. Probabilistic methods were necessary for robust perception in the presence 
of substantial measurement noise in the various sensors. Machine learning was applied prior to 
the race to tune system parameters and during the race to adapt to the terrain. Two important tech-
nical solutions developed for Stanley were adaptive road extraction from live camera images and 
speed adaptation. The idea for road extraction was that the road outside the range of the vehicles 
laser-scanners is likely to look similar to the surface classified as drivable in the laser range. This 
allowed planning the path further ahead than would have been possible with the laser range infor-
mation alone. Speed adaptation was based on the supplied speed limits and imitation of human 
driver reactions to road conditions, like roughness, slope, and curvature. 
 

While the vehicles in the 2005 challenge had to avoid static obstacles, they did not encounter mo-
ving obstacles, like other cars. The third competition, the DARPA Urban Challenge, is scheduled 
for November 3, 2007. It will take place in an urban environment with other traffic. The autono-
mous vehicles must not only find their way through a city, but they also must obey traffic laws. 
 
4. Discussion 
 

Robot competitions, as described above, proved to be a driving force of technological develop-
ment. They allow for direct comparison of different approaches to solving a task. Participating 
teams are forced to leave their lab and to operate their robots at the competition site at the schedu-
led time. The competitive aspect unleashes huge energies and the competitions foster the exchan-
ge of ideas.  
 

As the performance level of the robots rises, the competition rules must be developed to keep the 
challenges challenging. For competitions to be successful, it is important to ask for skills 
meaningful for many research groups. The skills to demonstrate must be challenging, but not too 
hard, as a hopeless challenge will not attract participants. Thus, there is a need for intensive ex-
change between organizers of the competition and the participants. 
 

Naturally, robot competitions evaluate entire systems. When observing a difference of perfor-
mance, it is frequently unclear, to which component of the systems the difference should be attri-
buted to. A robot might not perform well for many reasons. It could be, for example, that the 
perception system is disturbed or that the behavior control software made a wrong decision or 
simply that an actuator is not working as designed. Hence, it is desirable to include in the 
competitions specific tests for subsystems. 
 



Another issue is the availability of technical information about the winning systems. In order to 
advance the entire field, the teams should be required to release a detailed technical description 
after the competition. In some RoboCup leagues, where all teams share the same simulated or 
physical agents, it is even feasible to build on the software of the winning teams. To highlight 
technical advances, the competitions should be accompanied by technical conferences, where the 
underlying methods are discussed. 
 

In conclusion, it can be stated that robot competitions are popular for good reasons. If designed 
well, they can be drivers for their field and ideal benchmarks for robotics research. 
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Abstract— The absence of standard benchmarks is an ac-
knowledged problem in the field of robotics, and is doubly
harmful to it. First, it prevents recognition of scientific and
technical progress, thus discouraging research and development;
second, it prevents new actors (and particularly companies) from
entering the robotic sector, as heavy investments are needed
to compensate for that absence. The need for benchmarking
in advanced robotics embraces a wide range of topics, from,
e.g., dexterous manipulation to, e.g., emotional interfaces with
humans. The RAWSEEDS project will focus on sensor fusion,
localization, mapping and SLAM in autonomous mobile robotics.
The project will provide a comprehensive Benchmarking Toolkit,
including high-quality multisensorial data sets, well defined
Benchmarking Problems (BPs) based on the data sets, state-of-
the-art Benchmarking Solutions (BSs) in the form of algorithms,
software, methodologies and instruments for the assessment of
the BSs.

I. INTRODUCTION

Progress in the field of robotics requires that robots and

robotic systems gain the ability to operate with less and less

direct human control, without detriment to their performance

and, most importantly, to the safety of the people interacting

with them. We are convinced that when robots will be able

to safely navigate through environments designed for human

beings, and to effectively execute tasks in those environments,

beside and in collaboration with people, we will witness

the birth of a new phase in the industrial development of

the world. Just as the gradual transformation of computers

from laboratory equipment to everyday, ubiquitous appliances

created a gigantic market for Information Technology, when

robots will lose their status of costly, complex, unsafe and

“dumb” mechanisms, commercial applications for robotics

will face an explosive growth. This, in turn, will lead to an

enormous surge of interest - and financial resources - towards

scientific and applied research in the whole field of robotics.

A key factor for a rapid progress towards this “robotic

spread” is a substantial advancement in the performances of

robots associated to the concept of autonomy, i.e., the set of

abilities needed to perform the following activities without

human intervention:

1) perceive information about the environment;

2) extract from that information the elements needed to

execute an assigned task;

3) decide which actions are needed to proceed towards the

goal of the task;

4) correctly execute the selected actions;

5) manage the gap between the expected effect of the

actions on the environment and their real effect, also

taking into account the modifications of the environment

not associated to the actions of the robot.

Among these, we consider that moving through its envi-

ronment safely and without collision as well as being able to

reach a goal location, is the basic ability that a robot must

necessarily possess to autonomously operate. This requires,

in particular, that the robot is capable to localize itself in

the environment: this is usually done by constructing some

form of internal representation of the environment, i.e., a map,

and locating the position of the robot and its goal on the

map. Any mobile autonomous robot must have the abilities

needed to perform activities of mapping and self-localization,

or even SLAM (Simultaneous Localization And Mapping), a

well known problem in literature [7][8][9]. These abilities are

not sufficient to ensure that the robot is also able to execute a

task, but they can be thought of as necessary conditions for a

mobile robot to be capable of effective autonomous behavior.

Solving the problems of mapping and self-localization is,

unfortunately, not an easy task. One of the main problems is

the fact that data elaborated by the robot come from sensors

affected by imperfections, such as:

• limited spatial range and/or field-of-perception;

• noise;

• sensibility to spurious effects;



 

• low dynamic range;

• systematic errors or drift effects;

• failures.

These imperfections are very significant for any sensor,

even costly state-of-the-art ones, but they become increasingly

stringent as the cost of the sensors decrease, thus remarking the

need for sophisticated sensor systems in advanced robotics. In

the SLAM problem, for example, it is nowadays usual to use

Laser Range Finders (LRF) as the main sensing system, also

to recover 3D data from the environment (using a 3D LRF

[10] system); however, in many mobile robots applications

(outdoor navigation, indoor navigation with ramps in the en-

vironments, indoor cleaning, indoor navigation with obstacles

not perceivable at the LRF height, door opening with door

handle, semantic classification of places [11], etc.) an LRF

cannot be the main robot sensing system or could integrate

other perceiving devices. In many applications a vision-based

sensing system (e.g. a trinocular vision system [13] or a

correlation-based approach [14]), which could leverage on the

huge amount of computer vision algorithms, can be the only

complex sensing system of a mobile robot. This is also pushed

by economical constraints: ”extensive market analyses show

that a complex sensing system for a mobile robot cannot cost

more that 10US$, for a consumer-level robot” [1].
Very sophisticated algorithms are then needed to process

sensor output, elaborate it and extract the information needed

to solve the mapping and localization problems. These algo-

rithms become much more complex when multiple sensors

are used (as is usually done to partially compensate for the

intrinsic limitations of each sensor), because they need to

include a process of sensor fusion between data coming from

different sensors [5] [6]. Sensor fusion is mostly difficult when

different kinds of sensors are employed (e.g. cameras and

sonars), which is exactly what is generally done to explore

different aspects of the environment and to exploit the capa-

bilities of different sensor technologies [12]. Cheap sensors

(such as the ones that present and future mass-market robotic

applications are forced to employ for cost reasons) have

very low performance and so, paradoxically, need the most

sophisticated algorithms, as the data they generate must be

subject to complex elaboration and interpretation procedures.
The ability to use cheap sensors and nonetheless build high-

performance robotic products is absolutely necessary for the

diffusion of mass-market robotic applications. However, the

use of sophisticated algorithms does not necessarily have a

significant impact on the final cost of a robotic product, as

the main economic and conceptual effort is required for the

development and test phases of the algorithms, while the

implementation can be usually rely on inexpensive hardware.

As we will show in the following section, presently the tools

needed to design and develop such algorithms are not available

to the vast majority of the (actually or potentially) interested

groups: the objective of RAWSEEDS is to overcome this

obstacle by realizing and making freely available such tools.
RAWSEEDS is a project funded by the European Commis-

sion as part of the VI EU Framework Program. It will have

its official start on November 1st, 2006, and it will end on

April 30th, 2009. The authors of this paper are the project’s

proposers.

II. STATE OF THE ART

The study, design, engineering and marketing of au-

tonomous robotic systems and solutions relies on the fact that

the actors involved (mainly, research groups and companies)

possess or can easily acquire the tools to develop and test

sophisticated localization, mapping or SLAM algorithms. Such

tools can be subdivided into the following categories:

• sensor data sets for the testing of systems on real-world

environmental data;

• benchmarks and methodologies for the quantitative eval-

uation and comparison of algorithms performance;

• proven algorithms, having already demonstrated success-

ful performances, to be used as starting points to develop

new solutions and for comparison.

To be fully and readily useful, these elements would need to be

integrated into a coherent Benchmarking Toolkit. This in turn

requires: common and well-documented interfaces, immediate

interoperability, extensive documentation, and accompanying

support services.

Presently neither a toolkit of the kind described above nor its

constituents are available to the general potential users. Some

groups (essentially universities) have made the conspicuous

investments needed to create for themselves some of the

elements and shared their results with the community [2].

Even in these cases, the produced tools possess very limited

performance and/or versatility and the usefulness of the crafted

tools is strongly limited by the fact that they do not compare

their results with those of others, because these have been

obtained using different data sets or methodologies.

In fields not so distant from the topics of interest for

roboticists, like computer vision, it is a little bit more common

to refer to benchmarking toolkits, usually available on the web,

as the reference source of data for the experimental sections

of papers describing innovative scientific proposals. Example

of such websites are those related to performance evaluation

in traffic systems [3] and to 3D reconstruction [4].

Prospective actors (and especially companies), interested

in entering the robotics field, find a strong deterrent in the

difficulty and cost of acquiring the tools for the algorithm

design described above. Presently, the only practical means

to access to them (and to the know-how needed to develop

new applications) is to set up a heavily funded (and years

long) research program, without any possibility to evaluate

in advance its eventual economical revenue. If a toolkit for

the design, test and evaluation of sophisticated mapping,

localization and/or SLAM algorithms would be made available

at a low cost, this would in turn facilitate and speed up

the activities of present operators in the robotic field, and

encourage potential actors to join the drive towards new high-

technology robotic research and products. This would then

help to create the critical mass of knowledgeable operators

and successful applications that will lead, in a short time, to

the “robotic spread” that we have prefigured at the start of this

Section.

RAWSEEDS will participate to this process by creating

such a Benchmarking Toolkit, making it available for free and



 

disseminating it. Moreover RAWSEEDS (and particularly its

website, described in the following sections) will propose itself

as an instrument for the exchange of scientific results through

the whole robotics community.

III. THE RAWSEEDS BENCHMARKING TOOLKIT

Advancement in any scientific and technical discipline relies

on two basic mechanisms: competition between groups and

exchange and dissemination of results among the research

community. Both require that the results obtained by one

group can be quantitatively evaluated by the other, and that

the results obtained by the groups can be compared in order

to find the best solutions. In the context of RAWSEEDS,

the problem is essentially that of evaluating and comparing

algorithms, which requires: (i) that the algorithms are applied

to the same data and (ii) that an evaluation methodology exists.

As we already discussed, even the first of these two conditions

is presently very rarely fulfilled, but RAWSEEDS will offer

a solution to this problem by providing comprehensive and

validated multisensorial data sets. So the second condition,

i.e. the availability of tools for the quantitative evaluation of

algorithms, must be tackled: and this is what RAWSEEDS will

do by creating suitable benchmarks.

In the context of the development of algorithms and soft-

ware, a benchmark can be usually defined as a standard

problem to which any algorithm in the considered class

can be applied, together with a set of rules to evaluate the

output produced. RAWSEEDS will generate and publish the

data sets needed to define problems, and also two categories

of structured benchmarks: Benchmark Problems (BPs) and

Benchmark Solutions (BSs).

• A Benchmark Problem (BP) is defined as the union

of: (i) a detailed and unambiguous description of a

task; (ii) an extensive, detailed and validated collection

of multisensorial data, gathered through experimental

activity, to be used as the input for the execution of

the task; (iii) a rating methodology for the evaluation

of the results of the task execution. The application of

the given methodology to the output of an algorithm or

piece of software designed to solve a Benchmark Problem

produces a set of scores that can be used to assess the

performance of the algorithm or compare it with other

algorithms.

• A Benchmark Solution (BS) is defined as the union of:

(i) a BP; (ii) the detailed description of an algorithm

for the solution of the BP (possibly including the source

code of its implementation and/or executable code); (iii)

the complete output of the algorithm applied to the BP;

(iv) the set of scores of this output, obtained with the

methodology specified in the BP.

The complete set of BPs and BSs published by RAWSEEDS

is what we made reference to, in this document, as

“RAWSEEDS Benchmarking Toolkit”. For instance: a Bench-

mark Problem may be a precise description of the task of

extracting a map of an environment composed of line seg-

ments from the point-based representation of the environment

produced by a laser range scanner, plus the complete scanner

data recorded on location, plus the rating methodology to be

applied to the results. The union of this BP with an algorithm

solving the problem (and possibly a software implementation

of it), its results and their rating (obtained with by the given

methodology) may then be a BS.

The main use of a BP is to clearly test existing (or in the

course of development) algorithms. On the other hand, a BS

can be very useful in many ways, as it will be possible to:

• compare the rating of the results obtained by the al-

gorithm included in the BS with the rating obtained

by another algorithm applied to the same BP (please

remember that the rating methodology is defined by the

BP itself, and so can be applied to different BSs);

• use the output of the algorithm included in the BS to get

pre-processed input data for higher level algorithms to be

tested, such as planners;

• use the algorithm included in the BS as a “building

block” to design a complete multi-layer system for the

processing of sensor data;

• use the algorithm included in the BS (and, if available,

the source code of its implementation) as a source for the

design of new, more sophisticated algorithms.

It must be noted that different BSs can be constructed for a

single BP, so the number of BPs is not a limiting factor for the

number of BSs that can be defined. Additionally, it is important

to stress that the ratings of all the BSs based on the same

BP, including the ones uploaded by users of the RAWSEEDS

website, will be directly comparable. The BSs defined as part

of the RAWSEEDS Benchmarking Toolkit will use state-of-

the-art, well-proven algorithms that will constitute a corpus of

“standard solutions” for the BPs and for similar problems. As

we will see in Section 5, we foresee a conspicuous contribution

of new BSs (and possibly new BPs) from the users of the

RAWSEEDS website.

The sensory data (including vision data) contained in the

BPs will be raw, i.e. they will not be subject to the application

of any preliminary elaboration and/or compression procedure,

to avoid a priori choices about what has to be considered

“superfluous” or “redundant”. Data will be the result of

exploration of a few representative environments by mobile

test robots, capable of indoor and outdoor activity and fitted

with an extensive set of sensor equipment, both of high and

low quality, in order to accomodate the needs of both consumer

and high-grade developments. This equipment will be chosen

both to cover most of the common sensor schemata and

quality levels used in autonomous robotics and also to provide

the community with the most useful sets of high and low

resolution raw data, that may be successively elaborated to

extract higher-level environmental features and descriptions.

RAWSEEDS plans to mount on the test robots the following

sensor systems: 2 x 180 laser range scanners, trinocular and

stereoscopic B/W camera systems, omnidirectional catadiop-

tric camera, color cameras, sonars and GPS, in addition to

suitable proprioceptive sensors (e.g. odometric systems, gyro-

scopes, accelerometers). Data acquisition will be performed

by on-board PCs fitted with suitable data acquisition cards. If

the necessity emerges, other sensors will be added to this list



 

during the project.

For the construction of the BPs, typical instances of different

indoor and outdoor environments will be used, in both static

(i.e., excluding moving elements such as people) and dynamic

conditions. Each sensor data set will be collected moving the

test robot through the environment on a complex exploratory

path. The path will be covered with a succession of elementary

“steps”: at the end of each step the raw output of each

sensor or set of sensors (including cameras) will be recorded,

and all the motions performed by the robot through the step

(including accidental ones) will be logged. Each environment

will be covered by multiple data sets, generated by performing

exploration sessions on different paths with the same test

robot; in this way it will be possible to use multiple data

sets associated to the same environment to simulate a multi-

robot data set. In our view the inclusion of outdoor locations

is particularly significant, since many research groups do not

own robot platforms capable to navigate through unstructured

terrain and thus research results in this field are very scarce,

even if many possible scientific and commercial applications

can be envisaged.

Simply collecting high-resolution sensorial data is not suf-

ficient to guarantee their precision and consistency, i.e. the

fact that the data obtained from different sensor devices are

coherent with each other, with the (logged) actions performed

by the robot and with the physical environment explored.

Moreover, advanced robotics applications require time coher-

ence between different sensor data streams, which usually is

neither guaranteed nor verifiable. To overcome these problems

RAWSEEDS will include an extensive data validation phase,

with the aim of verifying and certifying the consistency of

the data produced by each sensor and their coherence with

the ground truth. Statistical analysis of the data against the

ground truth will be performed during the validation process,

and its results (e.g. noise levels and distribution) added to the

BPs.

IV. WWW.RAWSEEDS.ORG

A key part of the RAWSEEDS project is the construction

of a website (URL: http://www.rawseeds.org). Users of the

website (i.e. typically researchers and enterprises) will be able

to download the BPs and BSs, as well as all their accessory

information, such as: extensive description of all the hardware

used to collect the data sets and of its configuration, ground

truth, specifications of the data formats used, pictures of the

test locations, notes. The site will include an extensive FAQ

section, tutorials and instructions, and all the official docu-

ments of the RAWSEEDS project. It will also host a moderated

forum, where researchers could exchange opinions and results

as well as set up collaborations, and a “user section” where it

will be possible to upload new BSs associated to the original

BPs, or simply the set of results obtained by a novel algorithm

applied to one of the BPs (evaluated with the methodology

defined by the BP). The first option (upload a complete BS,

including the description of the algorithm used to solve the

chosen BP, and possibly the source code of the implementation

used and/or executable files) will be probably preferred by

research groups, willing to share their results and see them

acknowledged by the robotic community; the second option

(publication of the results obtained, evaluated with the criteria

defined by the BPs) is mainly dedicated to enterprises, which

would prefer not to share how they can obtain such results.

The possibility to upload new BPs will be left open, with

the restriction that the environmental data included in the new

BPs will have to certify their compliance to the same validation

standards used (and documented) for the original RAWSEEDS

BPs.

All that will be needed to become a user of the RAWSEEDS

website is a free registration. During the registration process

the user will be warned that any material submitted for

publication will, if approved, become publicly available. The

main goal of the RAWSEEDS website is to provide all the

spectrum of data, from raw sensor output to the high-level

representations obtained from that output by application of

suitable (and immediately available as BSs) algorithms. These

algorithms will be the ones provided by RAWSEEDS (a

selection of the current state of the art) together with the new

ones published by the users of the website. In this way, a

current or prospective actor in the robotics field will have

access not only to the data needed to immediately test its

own applications (whichever be their abstraction level) without

any need for a costly data-gathering programme, but also to

alternative algorithms and results obtained by other groups. For

example, a new application implementing symbolic models of

environmental features could be tested simply by using as its

input one of the maps produced by the published BSs.

As we will later show in more detail, RAWSEEDS will

make efforts to promote among its users a general attitude

towards the sharing of results; we believe, in fact, that it is

the most useful for the progress of robotics and, in general,

of science and technology.

A. Management of Intellectual Property Rights (IPR)

The upload section of the RAWSEEDS website will be

designed to expand the range of possible users as widely as

possible: for example, companies are usually very conservative

towards the sharing of results with others, and thus need

special attentions to be persuaded to do it. On the other side,

we will restrict publication to those contributions that are

really useful for the community, i.e. it will not be possible

to use the site to “advertise” a result without sharing it, at

least partially, with the other users. To reach this objective, a

carefully tailored IPR policy will be adopted.

The material that will be published by the site can be divided

into two broad categories:

• material produced by the RAWSEEDS project itself;

• material voluntarily submitted for publication by the users

of the website.

Both will be subject to the same IPR regime, RAWSEEDS will

require that any material published on the website complies

with the following three requisites:

• R1: its creator chose to make that material publicly

available;



 

• R2: the rights granted by the creator to the users of the

material are clearly and explicitly defined;

• R3: the material must qualify as useful and appropriate

for publication.

Requisite R1 is automatically satisfied by the fact that it is

the free choice of each user of RAWSEEDS if he/she wants

to publish any of his/her creations, and which ones.

To meet requisite R2, any contributor to www.rawseeds.org

will have to accompany the proposed material with a license

stating which rights he/she reserves to himself/herself and

which are instead granted to the public. So intellectual prop-

erty of any material published by RAWSEEDS will remain to

its creator, who (with the act of submitting the material for

publication) will choose to relinquish part of the rights on it

to the public. Which rights are actually given to the public

is defined by the chosen license. RAWSEEDS will leave the

choice of the license to the user, with the only constraint that

a copy of the chosen license is sent along with the material

submitted for publication.

To meet requisite R3 any contribution will have to be

previously examined and approved by the administrators of

www.rawseeds.org, prior to publication. They will decide

about the publication of each contribution, and their judgement

will be based upon the following definition:

Any publishable material is considered useful and appro-

priate for publication on the RAWSEEDS website if all of the

following are true:

1) it is related and can help pogress in the field of robotics,

expecially regarding Localization, Mapping and SLAM;

2) it is sufficiently detailed to be usable (e.g., the descrip-

tion of an algorithm must be complete enough to allow

a reader to implement - that algorithm into a piece of

software);

3) it is usable (e.g., executable code is usable only if it is

actually working and accompanied by all the information

needed to install and configure it);

4) it does not have commercial purposes only (e.g., a

company marketing robotic products could publish the

description of a product, but that description will need to

disclose enough data about the product to be considered

a worthwhile contribution to the field in itself rather than

a marketing operation).

B. Dissemination actions and feedback

As the results of RAWSEEDS have the objective of being

useful tools for all the actors involved into the development of

robotics, rather than scientific achievements per se, feedback

from the robotics community is explicitly sought. In particular,

the RAWSEEDS workplan includes an extensive preliminary

phase aimed to the precise definition of the Benchmarking

Toolkit that the project will later develop, in order to maximise

the usefulness of the toolkit: therefore any motivated sugges-

tion about this topic will be welcome, and (within the limits of

the project as defined by the contract between the EU and the

proposers) we will take due account of all such suggestions

during the benchmark definition phase. Any suggestion can be

already sent to suggestions@rawseeds.org.

To maximise the impact of RAWSEEDS, suitable dissemi-

nation activities have been expressly included in the workplan;

they will be publicized as soon as they are organized. For

the same reason RAWSEEDS is proposed by a consortium of

partners with an acknowledged expertise in the research fields

covered by the project, and coming from different countries.

V. CONCLUSION

RAWSEEDS is a project aimed at overcoming one of the

main limits to research and development in robotics, i.e.

the lack of comprehensive, validated and publicly available

benchmarks. It will reach its objective through the develop-

ment of a complete Benchmarking Toolkit and the setup of a

website (http://www.rawseeds.org). The website will publish

not only the RAWSEEDS Benchmarking Toolkit, but also any

useful extension of it coming from the scientific and technical

community, and all of this material will be freely available.

To help the sharing of results and the general progress of

the robotic field, the RAWSEEDS website will also act as

a point of aggregation and exchange of information, that will

be flanked by a suitable program of dissemination activities.
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Abstract— This paper presents the first steps towards the
evaluation of obstacle avoidance techniques for mobile robots.
The idea is to create a methodology to evaluate the performance
of the methods given a wide range of work conditions. The work
conditions usually include scenarios with very different nature
(dense, complex, cluttered, etc). The performance is measured in
terms of robotic parameters (robustness, optimality, safety, etc).
We describe in this paper the overall methodology that we intend
to apply and the first steps in the scenario characterization.

I. INTRODUCTION

The rationale of the workshop explains very well the

objective of this research:

Current practice of publishing research results in

robotics makes it extremely difficult not only to

compare results of different approaches, but also to

asses the quality of the research presented by the

authors. Though for pure theoretical articles this may

not be the case, typically when researchers claim

that their particular algorithm or system is capable

of achieving some performance, those claims are

intrinsically unverifiable, either because it is their

unique system or just because a lack of experimental

details, including working hypothesis. (...).

It is clear that to overcome this issue, we have to find

ways or processes to automatically evaluate the research with

methodologies accepted by the community. Research on this

topic forks into a top-down or bottom-up perspectives. On

the one hand, the top-down manner consists in evaluating the

complete robot performance when developing a given task (see

[5], [3] and the majority of the speakers in the First European

Workshop on Benchmarks in Robotics Research in 2006 Euron

meeting). The advantage of this strategy is that it results

straightforward to asses whether the robot has accomplished

a given task. However, the disadvantage is that this requires

a strong experimental validation with the real robots. Thus,

rigorous protocols of experimentation have to be developed to

deal with the repeatability problem of real experiments and to

guarantee the checking of all possible situations.

On the other hand, the bottom-up manner deals with the

evaluation of each single subtask individually. The aim is

to explain the robot performance developing a task as the

synergy of each particular performance in each of the involved

subtasks. This paper follows this direction and focusses on

the automatic evaluation of collision avoidance, which is a

particular subtask involved in many applications of mobile

robots.

This work is a part of a Spanish project. The objective is

the evaluation of robots for mobility aid (like electric walkers

or robotic wheelchairs). There are two main research axes: (i)
the evaluation of robot motion from a robotic perspective and

(ii) the evaluation of robot motion from a human-centered

point of view. This paper describe the first steps towards

the automatic evaluation of motion in the first axis, and the

complete overview of the methodology that we will try to use.

II. ROBOT OBSTACLE AVOIDANCE AND EVALUATION

PERSPECTIVE

This work focusses in one of the fundamental modules

of sensor-based motion schemes: reactive obstacle avoidance.

This module is the responsible of moving a vehicle to a

given goal location while avoiding collisions with the scenario.

Usually, it is the last responsible of the motion.

From a robotic perspective, there are many techniques

that have been designed to address autonomous collision-free

motion (sensor-based motion with obstacle avoidance). For ex-

ample [4], [1], [2], [12], [8] among many others. It is clear that

under the same conditions each technique generates a different

motion. Nevertheless, questions like: which is the most robust

one? or which of them behaves better in a determined context

or condition? cannot be answered neither from a scientific

nor technological point of view. In other words, once we

face a mobile robotics application, the selection of a motion

technique among all the existing ones is a matter of specialists

and not accessible to everybody. This is because there are

not objective comparisons of methods neither quantitative (in

terms robustness or action parameters of such as the time or

the total distance traveled) nor qualitative (in terms of security

of the motion). At present, there is only one experimental

comparison [6]. Nevertheless, this comparison is very old, and

thus, it does not include the advances in this subject in the last

15 years. Furthermore it is based on the observation and does

not present a rigorous and objective methodology to address

this objective.



III. OVERVIEW OF THE EVALUATION FRAMEWORK

An obstacle avoidance technique is a mechanism that given

an obstacle configuration and a initial and goal configurations

computes the best motion to drive the vehicle to the goal while

avoiding collisions with the obstacles. This process is repeated

until the goal is reached. The result is a trajectory that joins

the initial and the goal but generated online (since they work in

an iterative process). Thus, the inputs of the problem are: (i)
obstacle distribution and (ii) initial and goal configurations.

The output is success if a collision free trajectory that joins

the initial and goal has been computed. Failure: collision or the

goal is not reached (usually referred as local minima). Thus, an

evaluation of an obstacle avoidance mechanism should cover

all the possible inputs (obstacles and initial and goal locations)

and must be done on the basis of the quality of the output

(collision free trajectory).

The methodology that we propose is to build a system able

to generate random obstacle, initial and goal distributions and

to evaluate the output of the method (trajectory) as a function

of quantitative descriptors of the inputs and the outputs. The

framework has the following modules (Figure 1):

1) Scenario generation: random generator of obstacle dis-

tributions and initial and goal locations.

2) Scenario characterization: extraction of the quantitative

descriptors of the environment (e.g. density, clearness,

etc).

3) Collision Avoidance: this is the technique to evaluate

and is a “black-box” in the framework.

4) Robot Simulator: simulates the next state of the robot

given the motion computed by the collision avoidance

technique. To simplify the problem, in this work we

assume that the robot is circular (with radius R) and

holonomic without dynamic constraints. The sensor is

assumed to measure range.

5) Trajectory Evaluation: extraction of the quantitative de-

scriptors of the trajectory (e.g. optimality, safety, etc).

The final step is to describe the performance of the method

as a function of this quantitative parameters. Notice that the

evaluation measures how a given technique behaves for dif-

ferent environmental conditions. The environmental conditions

are expressed in terms of density, confinement, clearness, etc.

The behavior is described in terms of the success ratio, safety

and optimality, etc.

The validation is performed exploring as much as possi-

ble the variability of the scenario. This forces the proposed

validation methodology to work only on simulation, since the

cost of evaluation on real environments is prohibitive. Notice

that this process extrapolates for different methods giving an

adequate framework for comparison.

We next describe the modules in detail.

A. Scenario generator

The scenario generator module creates a random obstacle

distribution and goal and initial locations. These entities are

represented geometrically as follows.

Obstacle

Avoidance

Scenario
Characterize

Result

Tables

Scenarios

M
o

ti
o

n

Trajectory
Generation Generation

Scenario

Trajectory
Evaluation

Fig. 1. This figure shows the modules of the evaluation framework

The scenario is a unitary ball with Euclidean metric. The

obstacles are spheres within the unit ball. This is because

spheres are a base of R2 and many shapes can be constructed

with spheres (e.g. general polygons can be represented by

circles [11]). In other words, the selection of circular obstacles

is not a limitation. The number of obstacles is random.

Furthermore, for each obstacle the location of the center and

the radius are also random. Figure 2 shows two examples.

The initial and goal locations are also randomly generated

within the unit ball. If any of the locations is within an obsta-

cle, this location is recomputed. Furthermore, for any obstacle

distribution and initial and goal locations, it is important to

check the existence of a collision free path. Otherwise there

is no solution for the obstacle avoidance technique. This is

performed through a complete planner.

B. Scenario Characterization

This module extracts a quantitative evaluation of some

descriptors of the environment. The aim of the scenario

characterization is to extract numerical values that represent

qualitative scenario features with a quantitative intrinsic val-

ues. The descriptors must be both related to the common

Fig. 2. Two examples of random scenarios with six and seven obstacles.



intuition of the qualitative variables that they define, and their

values must be correlated with the performance of the obstacle

avoidance algorithms. Table I describe the parameters and the

human intuition qualitative descriptors.

Human Descriptor Mathematical Parameter

Density Density
Clearness Dispersion
Confinement Nearest Neighbor Metric
Uniformity Discrepancy
Clutterness Aleatory
Structure Convex Hull
Others... ...

TABLE I

DESCRIPTORS OF THE SCENARIO.

We define these descriptors next. Some of them have been

already developed while others need a deeper study.

a) Density: The density measures the amount of space

occupied by obstacles. This is an intrinsic and global property

of the environment, independent of the robot shape and

size. Let be Cu the unitary sphere and lets assume a given

distribution of spheres C = {Ci}. The density of occupied

space is:

ρ(C) =
A(

⋃

i Ci)

π
(1)

where Ci is the i-th circle, and function A(.) computes the

area of a set of circles. Notice that the density is ρ ∈ [0, 1]. In

other words is normalized. On one hand, when C = {∅} the

area is zero, hence the density is also zero. On the other hand,

if C = {Cu} the density of obstacles is one, which makes the

scenario completely occupied and leaves no free space for the

robot motion. Table II depicts some examples.

b) Clearness: The clearness is related to the maximum

open space among the obstacle distribution. This descriptor

depends on the size of the robot. One way of measuring open

areas in distributions is the dispersion [9], since it measures

the biggest obstacle free ball among the distribution. In other

words, the value is the radius of the largest circle on the

free space. Let be C̃ = C ⊕ CR

2

, where ⊕ is the Minkovski

sum of sets and CR

2

is the sphere with radius R
2 . This set is

the obstacle distribution enlarged the radius of the robot. The

dispersion of C is:

δ(C) = sup
p∈Cu

{

min
Ci∈C

{||p − C̃i||}
}

(2)

where ||.|| is the Euclidean distance from point p to the

sphere C̃i (C̃i = Ci ⊕ CR

2

). Notice that the dispersion

δ ∈ [0, 1]. When there are no obstacles the value of the dis-

persion is one. However, as the number of obstacles and their

radius increase the dispersion drops to zero. This characteristic

captures the notion of clearness (open space) since it represents

the maximum allowable distance for the robot to maneuver.

Table II depicts some examples.

c) Confinement: The notion of confinement is related

with the lack of space to manoeuvre (the distance between

obstacles). This notion depends on the robot size reason why

we use C̃. A measure is:

κ(C) = 1 −
1

n

n
∑

i=1

dsph(C̃i − NN(C̃i))

2
, n > 1 (3)

where dsph is the Euclidean distance between two spheres

and NN(Ci) is the closest sphere to Ci (nearest neighbor-

hood). Notice that the confinement is κ ∈ [0, 1). High values

of confinement explain obstacles which are very close among

them, while low values are due to far obstacles.

d) Uniformity: The uniformity in the obstacle distribu-

tion refers to the match with a uniformly distributed set of

obstacles. In fact this is measured by the discrepancy. Let be

Cr the set of balls with radius r in the unit circle Cu. The

discrepancy is:

η(C) = sup
r∈[0,1]

{
∣

∣

∣

∣

∣

A(C ∩ Cr)

A(C)
−

A(Cr)

π

∣

∣

∣

∣

∣

}

(4)

Notice that the discrepancy η ∈ [0, 1]. When there are no

obstacles both A(C) = 0 and A(C ∩ Cr) = 0 (discrepancy

is not defined). Low values of discrepancy represent well

distributed obstacle points. The discrepancy tends to one as

the obstacles are closed and not equally distributed distributed

in the space. Table II depicts some examples.

e) Cluttering: The cluttering refers to the order of the

distribution. The disorder on a obstacle distribution is related

with the randomness. We plan to use information theory to

measure the randomness of sequences by using the tests of

Martin-Lof [7] or Kolmogorov complexity of constructive

measurement. Other works use the entropy as a descriptor [5]

to measure the disorder. However, from our point of view

entropy is a local descriptor that needs to approximate a

probability distribution, which seems difficult to obtain from

an obstacle distribution.

f) Structure: The structure of the scenario measures the

the tendency of the scenario to approximate a polygonal world

(man-made scenarios). The measure is, for all clusters, the

normalized difference between a cluster of obstacles Cj (set

of connected spheres) and its convex hull. The measure of the

structure is

γ(C) = 1 −
1

N

N
∑

j=1

(A(Ĉj) − A(Cj)) (5)

where Ĉj the convex-hull of Cj and N the number of clusters.

Notice that γ ∈ [0, 1]. This measure gives an idea of the

structure underlying the cluster. For example the value is one

for a perfect line and zero for sparse non intersecting obstacles.

We have notice that there are still some issues to fix with this

measurement since it fails to represent well aligned non convex

polygons. We are trying to correct it by sub-clustering each

cluster with alignment criteria.



Environment

Density 0.0287 0.0287 0.0252
Clearness 0.840 0.381 0.307

Confinement ? ? ?

Uniformity 0.138 0.447 0.184
Cluttering ? ? ?

Structure ? ? ?

Environment

Density 0.086 0.107 0.166
Clearness 0.840 0.377 0.307

Confinement ? ? ?

Uniformity 0.137 0.139 0.244
Cluttering ? ? ?

Structure ? ? ?

Environment

Density 0.020 0.020 0.020
Clearness 0.757 0.552 0.431

Confinement ? ? ?

Uniformity 0.390 0.390 0.425
Cluttering ? ? ?

Structure ? ? ?

Environment

Density 0.251 0.189 0.210

Clearness 0.374 0.437 0.400

Confinement ? ? ?

Uniformity 0.461 0.379 0.444

Cluttering ? ? ?

Structure ? ? ?

TABLE II

CHARACTERIZATION OF SCENARIOS. THE SYMBOL ? MEANS THAT THE VALUE HAS NOT BEEN COMPUTED YET.



C. Robot Simulator

This module emulates the sensory and motion processes of

the motion:

1) Sensory process: given the obstacle distribution and

the current vehicle location, this module computes the

generalized visibility polygon as generic range sensory

measurement.

2) Motion process: given the motion computed by the

obstacle avoidance method, this module computes the

next robot state in a given period of time δt.

D. Trajectory Evaluation

This module extracts quantitative descriptors of quality of

the trajectory. The aim of this characterisation is to extract

numerical values that represent a qualitative measurement

of the trajectory. We denote the trajectory generated by the

method:

χ : [0, 1] 7→ Cu − C

φ 7→ χ(φ) = q

(6)

where χ(0) = qinit and χ(1) = qgoal. We describe next some

of the parameters.

a) Success: This is the most important parameter since

it describes the success of the task. Notice that the collision

avoidance techniques are local techniques, and thus they

could get trapped in local minima (not reaching the goal)

or even to have collisions. In both cases (χ(1) 6= qgoal or

∃φ such that χ(φ) ∈ C) the result is failure. Then the success

is η(C,qinit,qgoal) = [{0}, {1}]. If the obstacle avoidance

mechanism fails η = 0 otherwise η = 1. From now on the

rest of the parameters are defined when η = 1.

b) Optimality: This parameters measures how the trajec-

tory matches the optimal path. In order to compute the optimal

trajectory χopt we have adapted the visibility graph technique

[10] to work in spherical worlds1. Let be Φ an optimality

function defined over the space, such that at each q, Φ(q) is

the length of the path with minimum length that joins q and

the optimal trajectory χ (without lying in C). Then there are

some concepts that give the “difference” with the optimal path

like the difference of lengths of the trajectories, or how the

trajectory differs from the optimal by integrating Φ(χ(φ)). We

plan to implement both parameters.

Figure 3a,c show two different scenarios and the trajectories

computed by an obstacle avoidance method (potential field

method) and the optimal trajectory to the problem.

c) Safety: The safety measures how close the trajectory

matches the safest trajectory. Notice that usually safest is far

different from optimal (an optimal trajectory usually graze

the obstacles, which is the un-safest trajectory). In order to

compute the safest trajectory, we compute the Voronoi diagram

of the obstacle distribution. Then, we define a Voronoi function

1The path is a sequence of straight lines and circular arcs instead of straight
lines

(a) (b)

(c) (d)

Fig. 3. This figures display the optimality function and the Voronoi function,
and real trajectory generated with a PFM method on scenario from two
scenarios.

V or(q) that takes values in all the space. The function is the

length of the path with minimum length that joins q and the

Voronoi diagram (without lying in C).

Then there are some concepts that give the “difference”

with the safest path (the path on the Voronoi diagram) like the

difference of lengths of the trajectories, or how the trajectory

differs from the safest by integrating V or(χ(φ)). We plan to

implement both parameters.

Figure 3b,d show two different scenarios, the trajectory

computed by an obstacle avoidance method (potential field

method) and an approximation of the V or function.

d) Other Characteristics: Other parameters could be

defined to characterize the trajectories, but they need to be

matched against a ground truth. In general a good avoidance

algorithm must display a tradeoff over the above mentioned

characteristics, since for instance safety and path length op-

timality are usually a tradeoff. The characteristics have been

restricted to the cinematic domain, other parameters like time

optimality of a path are clearly dependent on the dynamics of

the robot, and cannot be directly expressed under the present

assumptions.

While the scenarios considered here are static, another

interesting characteristic to take into account for dynamic

environments is the speed of the response to an unexpected

change. The latency of the algorithm is indeed an important

issue in dynamic environments, which is related to the amount

of history information internally stored on the algorithm. A

purely reactive algorithm will show a better latency equal to



Density (ρ) VS [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]
Success

Success 95% 80% 68% 41%
Failure 5% 20% 32% 59%

TABLE III

METHOD 1: DENSITY VERSUS SUCCESS RATE.

Density (ρ) VS [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]
Success

Success 95% 95% 60% 20%
Failure 5% 5% 40% 80%

TABLE IV

METHOD 2: DENSITY VERSUS SUCCESS RATE.

the computation time. This delay in the response is also related

with a parameter that can be measured on the framework,

even it has not been yet mentioned, the execution time of the

avoidance cycle.

E. Final evaluation

The above mentioned process is repeated for a significant

number of scenarios (obstacle distributions, initial and goal

locations) for each of the methods Xi to evaluate. The final

results should express the working conditions of each method.

For each pair of descriptors (scenario / trajectory) the bench-

mark procedure produces a table.

We next describe some examples based on imaginary data.

Table III and Table IV represent the scenario density versus the

success ratio for methods X1 and X2. These tables describe

how the algorithms behave for a different range of scenario

density (as usual, the robustness of the method decreases as

the density increases). This is very useful for comparison

and selection. For example, if in the application the range

of density is low, Method 2 is more robust than Method 1.

However, if the density is larger, the Method 1 become more

robust. If the density of the scenario can be a priori estimated,

the selection is clear from these tables (even for non experts).

Table V represents the normalized optimality parameter

for different density ranges. This table describes how the

optimality in length of the paths generated change as a function

of the density of the scenario.

Notice that from this evaluation one can extract conclusions

about a given method and compare the performance of the

methods among them.

IV. CONCLUSIONS AND FURTHER WORK

This paper presents the first steps towards the evaluation

of obstacle avoidance algorithms for mobile robots. We un-

derstand that the benefits of this evaluation are twofold. On

the one hand, it is useful for researchers and developers to

have rigorous evaluation tools as a objective feedback of their

designs. On the other hand, for non technical experts, the

decision of what method is well suited for a given application

Density VS [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]
Optimality Param.

[0, 0.25) 65% 50% 40% 25%
[0.25, 0.5) 20% 25% 10% 10%
[0.5, 75) 10% 15% 5% 5%
[0.75, 1] 5% 10% 3% 1%

TABLE V

METHOD 1: DENSITY VERSUS OPTIMALITY.

is a matter of understanding the working conditions of the

application, but not the technical details of each technique.

The project that includes this work is currently starting,

hence only first steps results are presented. Even the overall

evaluation methodology has been depicted, only parts of the

scenario characterization has been actually obtained. We are

aware that more characteristics must be defined as this is an

actually ongoing project. However the defined characteristics

seem to properly catch intuitive concepts about environments,

which is a key element of obstacle avoidance evaluation.
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1 Introduction

Motion planning is one of the fundamental problems in robotics. The motion planning prob-
lem can be defined as finding a path between a start and goal placement of a robot in an
environment with obstacles. Over the past fifteen years, many different researchers have stud-
ied sampling-based motion planning techniques such as the Probabilistic Roadmap Method
(prm) [2]. This has led to many variants, each with its own merits. It is difficult to compare
the different techniques because they were tested on different types of environments, using
different underlying libraries, implemented by different people on different machines.

We have provided a comparative study and analysis of a number of these techniques,
all implemented in a single system and run on the same test environments and on the same
computer [1]. We encountered many difficulties and pitfalls during this study. We will identify
them and discuss our solutions based on our experimental research over the past four years.

2 Methods

General setup Our goal was to create a system that facilitated conducting experiments
easily and reducing making errors. We met this goal by creating a single motion planning
system called sample (System for Advanced Motion PLanning Experiments) which we im-
plemented in c++ using Visual Studio.net 2003 under Windows xp Professional.

In a motion planning experiment, many choices exist for the components that compose
a sampling-based motion planning algorithm. sample provides an easy api (Application
Programming Interface) to add techniques (such as a particular sampling or local planning
technique) to a component and to add its parameters. We created a gui to set up an experi-
ment easily (see Figure 1). We considered two types of experiments. The first type compares
different techniques while the second type examines the influence of a particular parameter
of a technique. An experiment can be saved to/loaded from disk to enable repeating the
experiment. We created a command line version of sample to run the actual experiments.
This program can run on a dedicated computer that has no processes running (such as a virus
scanner or an internet connection) which could influence the results. Initially, we collected
the experimental data manually. As this was quite a tedious job being sensitive to copy/paste
errors, we decided to automate this by automatically collecting and processing the data.

We implemented many techniques and added them to sample. Sometimes it was hard
to implement a technique in a way it was intended by the creator since not all details were
always present in the paper (which is often due to space limitations). In some cases, we found
these details in the source code which was available on the web.



Figure 1 Setting up an experiment in sample. In this example, the effect the parameter ‘max

distance’ of the ‘Forest’ neighbor selection strategy is studied. The parameter is varied between 5 and

40. For each different value, the experiment is carried out 100 times.



Representative problems The results of our comparative study indicated that some pre-
vious conclusions were too general which was probably caused by considering a set of examples
that was too limited. We have to admit that it can be difficult to choose an appropriate set.
In our study, we tried to employ environments and robots that resembled a wide range of con-
figuration spaces. That is, we used environments with cluttered obstacles, narrow passages,
many/few obstacles and scale differences. In addition, we used both small/large as well as
different types of robots.

Some existing papers present a new technique only using examples satisfying its intentional
goal. However, we think that also examples should be included that show its worst-case
behavior and its limitations. For example, in our research on creating small roadmaps [1],
we not only used an environment to show the potential of the algorithm, but also used an
environment to show that other algorithms can be faster.

Interchangeability In our research group, initially, every member had its own implemen-
tation of his techniques which made it difficult to compare them. In addition, much work was
wasted by creating components of software having comparable functionality. We decided to
create libraries taking care of common functionalities such as a collision checker, a visualizer,
and a graph library [5,6]. These libraries can be downloaded on the web. Also other libraries
have been made available such as the Nearest neighbor library [7]. Besides the libraries, we
encourage to make the source code of the complete system available such as done by [3,4].

Another important issue is the ability to exchange the geometry of environments and
robots, as well as problem descriptions. We resolved this issue by using vrml as language for
describing the geometry and xml as language for the descriptions.1 There are great advan-
tages of using existing languages: They are well-documented, parsers and type checkers are
available for all appropriate platforms and programs exist to create and edit these descriptions.
We think that the robotics community would benefit by supporting these languages.

3 Results

Evaluation of solution An issue each researcher has to deal with is how to evaluate the
results. A common way to evaluate the results is to compare the new technique with existing
techniques. In our comparative study, we initially compared techniques based on the time
required to solve one relevant witness query. This however did not guarantee that every
possible query could be solved by the roadmap that was constructed. We improved the study
by evaluating the techniques based on solving every possible query. That is, we provided an
analysis tool that indicated when the roadmap was dense enough to solve each query.

Another way to evaluate the results is to compare against the optimal solution. In some
cases, we created an experiment for which the optimal solution is known. Unfortunately,
such experiments can in general only be conducted for trivial cases. For more complicated
experiments (such as the ones used for measuring path quality [1]), we tried to approximate
the optimal solution by performing many runs. In addition, we used visual inspection to
evaluate the results. In future research, we will also incorporate user evaluation to make the
judgments.

1Many geometry files can be downloaded on http://www.give-lab.cs.uu.nl/movie/moviemodels.



Statistics Our comparative study showed that the variance in the running times was often
large. This phenomenon is undesirable because of two reasons. First, a large variation
complicates statistical analysis and can even make it unreliable. Second, it is undesirable
from a users point of view, e.g. it can be hard to give a user an indication of how long the
method will take to terminate. Hence, we had to be very careful analyzing the results. As the
running times could vary extensively, we performed a large number of runs (i.e. 100) for each
experiment. In this way we increased its statistical significance. In addition, we created box
plots to provide insight in the distribution of the running times. (Such a box plot displays the
middle 50% of the data, the average, the standard deviation and the minimum and maximum
value.)

It may seem that deterministic techniques do not have such a ‘variance problem’. Nonethe-
less, the study showed that a small change of the environment leads to a comparable amount
of variance. Hence, care must be taken when deterministic techniques are involved.

4 Conclusion

It is often difficult to compare and evaluate techniques experimentally, because they were
tested on different types of environments, using different underlying libraries, implemented
by different people on different machines. By creating a system that facilitates integrating the
techniques and automates conducting experiments, many errors can be avoided. To enable a
fair and easy implementation of techniques, source code and software components should be
made available. In addition, we encourage to use standard file formats (such as vrml and
xml) to exchange problems easily.

When techniques have been implemented, they have to be evaluated by considering a large
range of examples. Moreover, examples that show their limitations should also be included.
A common way to evaluate the results is to compare techniques with existing ones. While
such a comparison is often made based on running times, it may not always be convenient
to use such a criterion. We think that incorporating user evaluation and user studies may be
appropriate.
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Abstract— The field of visual servoing is now widely ac-
cepted as a modern, consolidated discipline for vision-based
real-time robot control. Since experimental setups have become
affordable, many results are published worldwide in conferences
and journals, yet comparison among them becomes difficult
due to the wide variety of systems and tasks. A need for
a common framework arise, which should allow to compare
control schemes, and provide a set of benchmarking tasks to
the research community. This paper presents an object-oriented,
cross-platform, network-ready environment for visual servoing
simulation tasks. With flexibility and extensibility as the main
design goals, tasks can be defined either for cameras attached to
moving Cartesian frames, or serial link manipulators. In order
to provide fast feedback to the user, it includes real-time 3D
rendering of the simulated scene. Task parameters and visual
features can be freely chosen, and new features can be easily
added to the framework. Output data is logged to disk files, which
can be analyzed by any popular mathematical package. The
simulator is built upon an agent-based framework, which makes
possible the distribution across multiple networked computers.
Moreover, it can be securely downloaded from a web server and
automatically installed in a computer, running either Windows,
Linux or Mac OS X operating systems, thus providing a set
of common tools for a wide range of users and enabling the
comparison and benchmarking or results. This simulator is now
in alpha version, yet it has been extensively used by the students
worldwide in an online course on visual servoing.

I. INTRODUCTION

Visual servoing is nowadays a mature yet still challenging

discipline [1], [2]. Current standards in computing power

along with affordable digital cameras make now possible to

set up a real-time vision processing equipment capable of

visually controlling a robot at frame rate. However, a lot

of issues need to be tuned (internal and external calibration

of the camera, feature tracking, delay in the loop, visibility

constraints, manipulator workspace), thus comparison between

separate works becomes increasingly difficult and the need for

tools suited for benchmarking of common tasks arise.

This paper presents an object-oriented, cross-platform,

network-ready environment for visual servoing simulations.

With flexibility and extensibility as the main design goals,

tasks can be defined either for cameras attached to moving

Cartesian frames, or serial link manipulators, featuring real-

time 3D visualization from the controlling camera and from

auxiliary external observer cameras.

Javiss1 (Java-based Visual Servo Simulator) departs from

other simulators in that it has been designed from the scratch

in a modular, distributed way. Not only the tasks are dis-

tributed among different modules (agents), but each module

can run on a different computer across the network. This

enables the development of distributed visual servoing tasks

[3] for cooperative robot teams. In addition, such a flexible

approach increases the performance of the task with distributed

computing power, and it may contribute to solve hardware

limitations with the real equipment.

The Javiss software is routinely used in our laboratory and

it has been extensively tested by students and teachers of a

pioneering online course on visual servoing [4].

Section II presents the related work on vision/robot software

tools. Next, the components and technologies used in Javiss

are sketched in section III. The architecture of the simulation

framework is thoroughly described in section IV, along with

sample results. Finally, section V outlines some conclusions

and future work.

II. RELATED WORK

While hundreds of software packages for vision exist, and

many other for simulated robotics are available, very few of

them have been designed for both domains, thus being suitable

for visual servoing tasks.

A major player since long, the Matlab Robotics Toolbox

by Peter Corke [5] provides many functions that are useful in

robotics such as kinematics, dynamics, and trajectory gener-

ation. It is useful for simulation as well as analyzing results

from experiments with real robots. This toolbox is based on

a very general method of representing the kinematics and

dynamics of serial-link manipulators and models are provided

for well known robots such as the Puma 560 and the Stanford

arm. The companion Machine Vision Toolbox [6] provides

many functions that are useful in machine vision and vision-

based control.

The Matlab/Simulink Visual Servoing Toolbox [7] aimed

to provide a set of functions and blocks for simulation of

vision-controlled systems. The project was started during 2002

EURON Summer School on Visual Servoing, and it was

developed under the supervision of the EURON Interest Group

1http://www.robot.uji.es/research/projects/javiss



on Visual Servoing. Although a working version is available,

its development stopped due to the limitations of Simulink for

object-oriented programming. Most of the functions needed

to be coded in Matlab, thus its performance was too low for

real-time simulations.

Another recent Matlab extension, the Epipolar Geometry

Toolbox [8] consists of a collection of functions for position

and design of camera/robot and scene objects, computation

of perspective/catadioptric projection and epipolar geometry

(perspective and panoramic), and epipolar geometry estima-

tion algorithms (from corresponding points) for pinhole and

calibrated panoramic cameras (central).

Finally, a very important platform is ViSP (Visual Servoing

Platform) [9], a modular framework that allows fast develop-

ment of visual servoing applications. It implements the control

of robot motions, the modeling of the visual features, and the

tracking of the visual measurements. ViSP features a wide

class of control skills as well as a library of real-time tracking

processes and a simulation toolkit. The platform is a library

implemented in C++, which is developed by the INRIA team

Lagadic at IRISA - INRIA Rennes.

III. UNDERLYING TECHNOLOGIES

Java [10] is both a programming language and a platform.

According to its designers, it is a simple, architecture neutral,

object oriented, portable, distributed, high performance, mul-

tithreaded, robust, dynamic and secure high-level language.

In the simulator, real-time visualization is provided by the

Java 3D API, a hierarchy of Java classes which serve as

the interface to a sophisticated three-dimensional graphics

and sound rendering system. Java 3D provides high-level

constructs to create and manipulate 3D geometry, and to build

the structures used to render that geometry. Using this API,

developers can efficiently create precise virtual universes in a

wide variety of sizes, from astronomical to subatomic.

Java Web Start is a deployment technology, which enables

users to launch the simulator with a single click of the mouse.

A version check at startup ensures that users are always up

to date with the latest version. If an update is available, Java

Web Start will automatically upgrade their installation.

Though a basic visual servoing setup can be made of a

single computer, with a camera and a robot, our aim was to

develop a framework which should be capable of managing

distributed visual tasks [3]. JADE (Java Agent DEvelopment

Framework) [11] is a software framework which simplifies the

implementation of multi-agent systems through a middle-ware

that complies with the FIPA specifications [12] and through a

set of graphical tools that supports the debugging and deploy-

ment phases. FIPA is an IEEE Computer Society standards

organization that promotes agent-based technology and the

interoperability of its standards with other technologies.

IV. THE ARCHITECTURE OF JAVISS

Javiss is not only a closed simulator, but a complete

developing framework for designing and implementing visual

servoing tasks. Besides the description of its intuitive user

interface, this section overviews the main internal software

keypoints (front-end applications, features, agents) as well as

a more detailed working description of the interaction among

the agents.

A. Graphical User Interface

Javiss main window and user interface is shown in Fig. 1,

consisting of:

• Task properties panel, for saving and loading the param-

eters which completely define the current task (features,

initial and desired positions, control parameters). They

are stored in a text file which can be manually edited.

• Task parameters panel, which selects the choice of fea-

tures, and several task parameters (gain, sampling time,

error and screw thresholds) as well as the interaction

matrix (at equilibrium or at current iteration). It includes

two buttons to start and stop the simulation.

• Output log panel, where the user defines the names of

the files where the simulation logs are stored in.

• Camera views. In the depicted front-end, the left view

is provided by the camera mounted on the end-effector

of the robot, while the right view is obtained from an

external camera.

• Element control panel, which allows to move any object

of the scene. The setup the user to select the arm

(joint motion), the target object or the observer camera

(Cartesian motions).

B. Design of a front-end

Modular design is a key issue in Javiss. Thus, it is not

a closed simulator application but a developing framework

for customizing simulations. In this way, there is a root

abstract class for the application named BasicApp from whom

the real front-ends are created. Two of them are shown as

examples: VServoCartesian and VServoPuma (Fig. 2). The

major part of their code is inherited from the root class, thus

these applications concentrate on the design issues of each

simulation task.

The code in BasicApp creates the window frame, allocates

the necessary 3D structures, and starts the agent platform. It

provides the children classes with methods for creating the

different GUI elements (e.g. pose controller, joint controller or

visual controller). When each of such elements is created, the

corresponding agent is launched for managing the events of the

GUI. In this way, the user applications are greatly simplified,

since only the elements of the front-end need to be specified,

with their current parameters.

Besides the GUI agents, an application consists of the

objects in the scene: camera(s), robot, and target. In addition to

those physical objects, virtual Cartesian frames can be defined

too, which control the positioning of the physical elements

attached to them.

Each object is managed by its own agent, which are created

by another root abstract class named BasicLauncher. Each

application inherits from that class the methods for creating

each element, thus the user needs only to specify which



Fig. 1. Javiss main window and user interface.

(a) Camera attached to a virtual Cartesian frame (b) Camera attached to a robot manipulator

Fig. 2. Observer view in two typical front-ends. The labels correspond to the agents that manage each element.

elements are going to be added to the scene. The role of the

different agents is described in next section.

C. Agent-oriented architecture

Most modern software is designed upon the object-oriented

paradigm, with emphasis on code reuse as a means of reducing

the complexity of the program, and consequently the number

of bugs. Agents represent a step ahead of the object model in

the sense that an agent is an object which executes its own

thread. Moreover, agents send and receive messages among

them, which can be considered as object methods.

From an implementation point of view, agents efficiently

run on distributed environments, either a network or a mul-

tiprocessor computer, thus increasing the performance of the

application through parallel execution, as long as communica-

tions are effective.

In the following, the main agents playing in Javiss are

briefly described. The interaction among them which leads

to the visual servoing loop will be thoroughly explained in

section IV-F.

1) Robot Agents: The robot class is an abstract class for

any serial link manipulator based on the Denavit-Hartenberg

notation. It needs only to be extended for any particular robot

by defining the actual values of its parameters, and its 3D

CAD model for visualization. The abstract class computes the

direct kinematics, and the Jacobian of the arm (based on the

code of the Robotics Toolbox [5]).

2) Pose Agent: Objects need to be attached to a Cartesian

frame. This agent manages all the operations regarding the

location and motion of that frame. Target objects and cameras

are attached to such agents.

3) Camera Agent: Besides the visualization of the scene,

this agent stores the intrinsic and extrinsic parameters of the

camera. It does not compute the projection of features, though.

Instead, it sends the parameters to the controller agent, as

described below.



Fig. 3. UML diagram for feature classes. Light blue boxes depict abstract
classes; light yellow boxes are derived example classes for point and seg-
ment features; orange boxes are top utility classes. Triangles define ”is-a”
(inheritance) relationships whereas plain arrows define ”has-a” relationships.

4) Target Agent: This agent consists of the task features,

and the 3D CAD model for displaying them. It also stores

which features have been currently selected for the task. Upon

request, it will compute the projection of those features on a

given camera frame, and send the resulting information to the

visual controller.

5) Position controller Agents: As explained before, objects

can be dynamically translated and rotated by the user through

the GUI. Those events are managed by these agents, which

send forward messages to the corresponding Cartesian or

Robot agents.

6) Visual controller Agents: This agent triggers the visual

servo task. When the user pushes the start button on the GUI,

the agent creates the log files, reads the task parameters, and

then it simply sends a subscription message to the camera

agent. This subscription will start the whole control loop as

explained in the following.

D. Design of the feature classes

A key aspect of the design of the visual servoing framework

is the treatment of features. It needs to be flexible and easy to

use. To this end, several classes have been defined as depicted

in the diagram of Fig. 3.

A target consists of a set of features. This set is a collection

of features, which may be individual ones, multiple or derived

features. For example, a point is considered an individual

feature, even if it consists of three scalar parameters. In

order to reuse code, a multiple feature is itself a feature,

which consists of a group of simpler features. In the same

example, a segment is a multiple feature consisting of two

points. There is no need to define the interaction matrix for a

multiple feature, since it is automatically built by stacking the

interaction matrices of its composing features.

Complex features can be parametrized in different ways. A

classic example is the segment, which can either be defined by

two points, or by a single point, its length and its orientation.

A derived feature is itself a feature again, but it references

another original feature. The interaction matrix is computed

for the original one, thus the only added computation is a

derivation step as proposed in [1].

This general approach may seem cumbersome but it ele-

gantly allows the definition of complex features based upon the

aggregation of simpler ones. It is extensible, and enforces the

Fig. 4. Dialog for feature selection. The target consists of five points; four of
them are grouped on two segments, which allows to choose either the points,
or a point, the length and the orientation.

reuse of code, thus speeding and simplifying the development

process.

E. Dynamic selection of features

A major issue in visual servoing is the selection of the object

features which will be tracked and processed in the control

law. The behavior of the task depends heavily on that choice,

thus the Javiss framework allows the user to easily change

her selection at runtime. A dialog (Fig. 4) displays all the

available features, which can be enabled or disabled on each

experiment.

The enabled features are automatically computed at each

iteration, and the interaction matrix is built accordingly by

stacking the rows which correspond to each feature. In this

case, the target consists of five points, which can either

be taken as single features, or grouped in segments (length

and orientation). This illustrates a classic problem in visual

servoing, when there is a high rotation around the Z axis of

the camera between the initial and desired position; depending

on the choice, if using point the camera will retreat (up to an

infinite distance for a rotation of 180 degrees) whereas if using

segment orientation it will move smoothly to the final position.

F. Visual servoing loop

There is no main control loop in the source of the simulator,

but each agent has its own message loop, where it listens for

incoming messages, processes them, and sends the correspond-

ing results. By means of this model, a complete visual servoing

control loop is created, as depicted in Fig. 5.

The loop involves the visual controller agent, the target

agent, the camera agent, and the robot (or Cartesian) agent

where the camera is attached to. When the user presses the

start button of the GUI, the visual controller agent sends a

subscription message to the camera agent. That means that

the camera will notify the subscriber with each change in its

pose.

The visual controller forwards the camera pose to the target

agent, which in turn computes the projection of the selected

features in the camera frame, and sends back this information

to the visual controller. Now, this agent is able to compute the

whole interaction matrix, and the task error vector, since the

feature vector at the desired position is available at the start.

If no termination condition is triggered, the computed

kinematic screw is sent back to the camera agent. This agent,

however, does not move itself, but it sends forward the screw



Fig. 5. Flow of messages among agents in the visual servoing loop. The visual control agent triggers the task by subscripting to the camera agent. Then,
the information flows through messages among the agents, as shown in the picture, until it is stopped either by the user, or by any termination condition.

(with the appropriate frame conversion) to the robot agent

where the camera is attached. This last agent will compute

the Jacobian matrix, and update the joint values accordingly.

Finally, the updated pose of the robot is sent to the camera,

then converted to the camera frame, and sent again to the

visual controller, and the loop starts a new iteration.

This is a very flexible framework, since the agents do not

need to run on the same platform, and it behaves similarly to

a distributed visual controller which has been implemented in

a real setup [3].

G. Output logs

Javiss does not include any plotting or displaying of the

resulting task data. Instead, all the information is stored in log

files, in ASCII format. The data can then be retrieved by any

popular plotting or mathematical package such as Matlab or

gnuplot for displaying, as seen in Fig.6 (sample scripts are

provided in the website for plotting each log file using the

free tool gnuplot).

Filenames can be changed dynamically prior to task execu-

tion, otherwise they will be overwritten. The application logs

the task error s− s
∗, the feature vector s, the kinematic screw

v and the position of the camera (as an homogeneous matrix).

H. Deployment, installation, and updating

Software packages are nowadays widely distributed via

Internet. The usual cycle consists of downloading, compiling,

and installing. The compiling process may be a pain if the

software has been designed with a particular operating system

and a set of libraries in mind, even for specific versions.

The Java platform offers the Web Start technology which

automatically downloads and installs the software from a

web page. It does not need to be compiled, since the Java

bytecode runs on every platform, and all the dependencies

are automatically loaded too. Moreover, if new versions are

available when the user executes the application, the system

automatically downloads and installs them in a transparent

way. Downloaded software may be digitally signed by trusted

certificates, thus ensuring that the software does not contain

any virus nor spyware.

The efficiency of such a deployment mechanism has been

demonstrated in the Online Course on Visual Servoing [4]:

teachers and students were able to install Javiss either on

Windows or Linux without significant difficulties. Most of

them had little or no previous experience with Java, nor

any special computer administration skills. They were able

to download and begin to execute Javiss in a couple of days,

and the main encountered problems dealt with the installation

of Java on the operating system.

V. CONCLUSION

A visual servo simulator has been presented, which enables

the easy experimentation of visual control tasks on a wide

variety of platforms and setups, thus becoming a powerful yet

easy to use benchmarking tool. Compared to similar available

software, Javiss sets apart in its distributed, object-oriented

design. Its agent-based philosophy makes it directly usable

in networked environments, as well as making full use of

distributed computers and multiple processors.

A great effort was put in the design of the feature classes,

to enable the user to easily derive new feature objects based

on existing ones.

Cross-platform languages and technologies enable a robust

and widespread use of the program, which is easily deployed

and installed via the World Wide Web.

While the software has been extensively tested by students

and teachers of an online visual servoing course [4], new

options and enhancements are on the way. More realistic



Fig. 6. Data plots in Matlab based on the Javiss log files. Left-up: task feature errors; left-down: task features as observed by the camera; right-up: kinematic
screw; right-down: 3D trajectory of the camera, where the retreat motion can be observed.

simulations can be achieved by incorporating the dynamics of

manipulators [5]. Stereo and multicameras could be managed

with the existing components, but a more general arbitration

scheme for the computation of the interaction matrix needs to

be worked.

Finally, we plan to combine simulation and real devices

(cameras and robots) in the way that the same code which runs

on the simulator can be tested on real equipment, by using the

native interface capabilities of the Java platform. Therefore,

benchmarks could be extended to real robotic systems, still a

challenge nowadays.
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1 Introduction

Since early 1990s there has been a growing interest in the computer vision com-
munity on discovering ways to compare the performance of different methods.
In this paper, the current state of benchmarking and performance comparison
in vision is reviewed, with the goal of discovering good benchmarking practices
that could be also introduced in the robotics community. In short, what can
researchers in robotics learn about benchmarking by taking a look at computer
vision benchmarking procedures?

An important common characteristic of both robotics and computer vision is
that both are highly hardware and application dependent, and therefore many
similar problems exist even though “pure” computer vision has still somewhat
less variation. In both fields the tasks to be achieved are complex, making ana-
lytical performance prediction impossible in many cases thus leaving empirical
study as the only available approach. For this reason, the test cases of the em-
pirical studies, as well as the analysis of the results of experiments, are the most
important considerations in benchmarking.

2 Benchmarking in Vision

The increased interest to benchmarking in computer vision during the last
decade can be easily seen in a number of projects concentrating on bench-
marking. For example, the EU funded PCCV (Performance Characterization in
Computer Vision) project produced tutorials and case-studies for benchmarking
vision algorithms [17].

2.1 Types of tools

Three main tools of performance evaluation in computer vision are a) com-
mon/benchmark data sets, b) workshops of performance evalution, and c) con-
tests. The goal of common data sets is usually to provide a base for comparing



different approaches, and nowadays such data sets are available for most of
the important application areas of computer vision. For example, FERET and
XM2VTS databases for face recognition [18, 14], COIL databases for object
recognition [16] and CURET database for textures [3]. A very important devel-
opment on the benchmark data is the introduction of standardized test policies
for the data sets. This inherently makes the results achieved by different re-
searchers comparable to each other. Common test policies have become impor-
tant especially in biometric person authentication. That is, there are now some
well known data sets and test policies which provide a baseline for comparison
of different methods. This means that a new approach has to be competitive at
least on the basic data to be considered seriously by the community.

Workshops in performance evaluation, such as the highly successful series of
PETS (Performance evaluation in tracking and surveillance) workshops, aim to
collect together researchers working on a particular problem to discuss both the
performance of individual methods and the performance evaluation criteria. For
example, in PETS workshops, a common data set is published before the work-
shop by the organizers, and each individual method presented must be tested
with the common data. The data provided is often divided to training and test
sets, but the whole data is usually available for method development. However,
no universal evaluation criteria is usually presented and no best method is se-
lected, in contrast to contests. Workshops contribute also by directing research
on challenging future topics.

Different kinds of contests have recently become popular in evaluation of
computer vision algorithms. The range of contests goes from academic, such as
the ICCV 2005 contest on location recognition, to industrial, such as the NIST
organized Face recognition vendor tests. In contests, the precise evaluation
criterion is almost always given in advance, with some training data. However,
the contest is usually performed using data not available to contestants before
the contest. One recognized problem of contests is that they can make a single
algorithm “the standard”, which might limit research on other approaches, even
if the algorithm is not “universally good”, that is, it has some pitfalls, known
or unknown.

A way to avoid the above problem is to base the evaluation on a strawman,
i.e., comparing to a well-known viable solution which does not need to be state-
of-art (e.g., Canny edge detector). Anything working better than the strawman
might warrant publication. This also eases the comparison between different
algorithms, as the strawman methods are usually generally available, while the
state-of-art approaches might not be.

2.2 Technology vs application evaluation

There is some debate over using real versus artificially generated data in per-
formance evaluation. This debate can be viewed by considering the differences
between technology evaluation and application evaluation. In technology eval-
uation, an algorithm’s response is evaluated with respect to factors such as its
tuning parameters or amount of particular type of noise in input data. In this
evaluation, simulated data is very useful as e.g. the noise amount can be con-
trolled. In application evaluation, the performance is evaluated in a particular
task, which means that real (application) data is needed. An important note
here is that having application knowledge and correct evaluation of technology



can be used to predict the application performance, but the unexpected appli-
cation phenomena can never be evaluated without real application data. This
two-fold division corresponds to the use of simulations versus real-life experi-
ments in robotics.

2.3 Levels of benchmark data

The level of standardization in common data sets can be divided into three
levels: a) common data without ground truth, b) data with ground truth, and
c) data with test policy. Sometimes having common data is useful even if there
is no associated ground truth. One reason for not having the ground truth
is that in several higher level problems, it is very difficult to determine an
unambiguous ground truth. This might be the case, for example, in surveillance
scenarios where the scene would need to be annotated by a human expert causing
ambiguities and limited resolution of the ground truth. Common data without
ground truth is not directly a tool for performance evaluation, while it can still
be useful to direct research on a certain topic.

Common data with ground truth but without a strict test policy is the most
common type of benchmark data. It allows some benchmarking, but a typical
problem is that the performance measures used are not strictly defined. Thus,
comparison of results requires often implementation of all methods compared
in order to ensure that the same performance measure is used. In computer
vision, many methods are based on learning based on examples. In this case it
is essential that the benchmark data is clearly divided into separate subsets for
learning and testing. Finally, it should be noted that defining the ground truth
is not always unambiguous, for example, in object category recognition where
the categories are determined by a human expert.

The most complete level of benchmark data includes the test procedures and
performance measures in addition to the actual data. This kind of benchmark-
ing is very useful because the results are directly comparable and replication of
other methods is not necessary. This approach has become very important in
biometrics, where the scenarios as well as the ground truth can be precisely de-
fined. However, in some other areas with multiple and less precise performance
measures, it is less useful. The use of common test policy is especially difficult
in active vision, where the vision system has some control over its input data,
and in this case is only possible through simulations.

2.4 Measuring performance

We will now briefly overview the types of performance metrics widely used in
computer vision. There are two basic types of performance measures, depending
on if the output of the method in question is discrete or continuous. If the
method output can be evaluated as either correct or incorrect, the performance
is typically evaluated using discrete error counting. However, in many cases
there are two different failure modes, false positives and false negatives, and
these two may have different effect in an application. For example, in person
authentication false positives might be more harmful than false negatives. In
this case, the output of a method typically depends on a threshold value, which
controls the ratio between false positives and false negatives. ROC (receiver
operating characteristic) is a graphical method of describing the performance



over all values of the threshold. It is also possible to compare two methods by
comparing their ROC curves.

For methods with continuous output, the typical approach is to determine
the MSE (mean square error) with respect to the ground truth. For cases where
the output errors are small and approximately normally distributed, this is a
good measure. However, if the method can sometimes even rarely break down
totally, its MSE is very high even if in most cases its error remains low. This is
due to the unseen assumption of normal distribution underlying the measure.
In addition to the MSE error, the distribution of errors should be described for
example by the variance of errors, which gives some outlook on the distribution.

The performance values should always be examined using standard statistical
techniques independent of the type of the performance metric. For example,
hypothesis testing can be used to determine if the difference in performance
between two methods is statistically significant, taking into account the sample
size available.

3 Benchmarking in Robotics

The area of robotics is very wide and includes a large range of research fields.
That this is the case is evident when studying the list of sessions or the top-
ics of interest mentioned in the CFP for one of the major robotics conferences
such as IROS and ICRA. An incomplete list of these areas include: manipula-
tion, obstacle avoidance, planning, humanoids, hardware design, SLAM, vision,
sensors, teleoperation, learning, . . . . Vision is thus just one of many topics in
robotics. Many of the areas also have subdomains just like vision has (object
recognition, tracking, . . . ) and some of the areas are intimately connected. To
speak of performance in robotics in general is therefore not possible. Thus, this
paper will take a look at some of the domains within robotics.

One aspect of some of the robotics problems which does not appear in main-
stream computer vision is the active control aspect. Active control of sensors
and actions does not allow for easy performance evaluation on data sets.

In some cases, but not all, simulation provides a way to at least repeat
experiments with exactly the same and well known environmental conditions.
The problem with simulation is that it is only as good as the simulation model
and typically never fully captures the complexity of the real world.

There have been a number of successful contests within robotics. Some like
the one at the AAAI conference has been running for a long time. Recently the
DARPA Grand Challenge generated a lot of media attention and the RoboCup
is also something that many outside of the community has heard about.

• The 12th annual AAAI Mobile Robot Competition will be held this year
and consists of three events related to mobile robots
http://robots.net/rcfaq.html

• RoboCup that has as a longterm goal to develop a robot soccer team that
will beat human world champions
http://www.robocup.org/

• DARPA Grand Challenge -
http://www.darpa.mil/grandchallenge/index.asp



• ELROB - 1st European Land-Robot Trial
http://www.elrob2006.org/

Workshops are also being organized on performance evaluation in robotics
such as the one in conjunction with the EUROS2006 conference.

As was already discussed in the context of vision, there is a need for available
baseline methods when evaluating new robot applications. It is quite common
that researcher only provides a comparison of the new results with his last
result and that of his group. Having a set of available methods to compare to
would advance the field. There is some code available but comparisons are made
difficult because the hardware is typically different as well.

3.1 SLAM

One key competence for a fully autonomous mobile system is the ability to build
a map of the environment from sensor data and use it to perform various tasks
such as navigation and localization. The field of Simultaneous Localization and
Mapping (SLAM) has matured significantly over the last years. Systems based
on laser scanners have shown impressive performance [20, 2, 6], especially in
indoor environments. Recently, much of the attention has shifted towards using
vision as the main sensor [4, 8, 19, 12] due to its low cost and power consumption,
richness of information and potential of retrieving 3D structure.

In terms of performance evaluation in SLAM, there are now a number of
sites on the web where data sets can be downloaded (see [5] for a list). This
is an important step to be able to compare results of different methods with
the same input. Some, like the Victoria Park data set from Eduardo Nebot at
the University of Sydney has become what the COIL data base was for object
recognition and appear in many SLAM publications. There are also some SLAM
software available online (see [5]).

In terms of performance evaluation execution time and computational com-
plexity have been the two most quantitative measures so far. The size of the
environment that a certain algorithm could handle and still remain consistent
has also been used but it is not until the same data sets has been used that this
has been a really useful measure. A problem with using the common data sets
is that the same set is typically used for parameter tuning and evaluation, that
is, the parameters of the algorithm are adapted to make the results as good as
possible on a certain data set as oppsoed to tuning for one and then runing on
another as would be the proper experimental evaluation procedure.

What is still missing is a generally accepted metric for evaluating the quality
the generated map on any of the many available data sets. To use an extreme
example, how does one compare the result of two SLAM algorithms if one
builds a metric map and the other a toplogical map? Evaluating the quality
would require having some kind of ground truth which in anything but a toy
environment or simulation is a staggering task.

One thing that would be possible to measure and compare to ground truth
would be the position estimate that a SLAM algorithm produces. There are
plenty of accurate localization systems reported in the literature which could be
used to gathe rthe ground truth position data.



3.2 Obstacle Avoidance

Obstacle avoiance is another key competence in a mobile robot system. The
robot must be able to move about without colliding with the environment. This
is an example of an area where active control is an integral part of the problem,
given sensor data how to control the robot so that it avoids the obstacles but
still reaches the goal.

In obstacle avoidance the algorithm cannot be evaluated in the real world
decoupled from the implementation. That is, the performance of the algorithm
will depend heavily on how well it is implemented. Execution time, control
frequency, delays, filtering of sensor noise are all examples of factors that have
to be dealt with but are typically not integral to the algorithm itself.

One way to make quantitative evalation, suggested by Javier Minguez dur-
ing a workshop on benchmarking at the EUROS 2006 conference, is to use a
simulator in which different methods can be evaluated with the same environ-
mental conditions for a large number of different obstacle configurations and
without many of the implementation issues. This would be an example of a
technology evaluation. As obstacle avoidance by nature is tightly coupled to a
real implementation an application evaluation is also needed as well.

Evaluations of new methods in obstacle avoidance literature consist, in some
cases, in comparing to one of a couple of standard methods. Such a comparison
is however typically not quantitative but rather qualitative and not on the same
test scenario but rather compared to experiments performed by others with
different hardware, software and environmental conditions. Some of the most
common methods to compare against are potential field methods [13], the Vec-
tor Field Histogram [1], the Dynamic Window Approach [7] and the Nearness
Diagram [15]. Even though obstacle avoidance and in particular the subprob-
lem of obstacle detection is not solved the research activity has slowed down
somewhat lately.

3.3 Visual Servoing

Visual servoing has been recognized as one of the core robotics subareas in
which it is possible to define different benchmarking procedure, [9]. Visual
servoing in general consists in specifying a control task as the regulation of a
position/pose of visual features/objects. One of the scientific questions that
is suitable for benchmarking is the design of the control strategy. In relation,
time to convergence, the steady state error and the distance traveled may be
three evaluation criteria used for benchmarking. The existence of visual servoing
simulation environments facilitate this in the near future [10, 11].

3.4 Path Planning

Path planning is a field that, at a first glance, seems to be perfectly suitable
for benchmarking. There is no robotics hardware involved but a computer
and no sensor information has to be processed. A path planning problem in
robotics consists of a world model, a model of the robot and a start and a goal
configuration. All a path planning algorithm has to do is to find a collision-
free path from start to goal. Thus, having a database of problems would clearly
enhance the comparability of work on path planning algorithms. Unfortunately,



such a database does not yet exist. Instead, research groups test their algorithms
on their own sets of benchmark problems. Even if many of these problems are
available on the internet, the path planning community has not yet agreed on
a common set.

Path planning problems come in a number of different shapes. Of course,
there are models of real robots acting in models of work cells or home environ-
ments. In addition, there are artificial problems that explicitly model specific
difficulties like variants of the narrow passage problem. The (multi) rigid body
problem is very common, where the robot is simply a free flying rigid body. For
example, the original piano-movers problem is of such kind. Robotics is only
one field of application for path planning methods. Other applications – and
thereby other natural problems – exist, for example, in computational biology
or assembly planning. Using the configuration space approach, the different ap-
pearances reduce to the problem of finding a path for a point-like agent in the
configuration space. Thus, all the different variations of path planning problems
can be solved by an algorithm capable of finding a path for this point-like agent.
The information about the geometry of a robot and the world surrounding it
is hidden in a binary collision checker. For a given configuration, this function
computes the image of the robot in the workspace and checks whether it collides
with an obstacle or not.

The most important measure on how well a path planning algorithm per-
forms is computation time. Obviously, comparing computation time is difficult
considering different software packages written in different programming lan-
guages running on computers with different configurations. A second measure
is the number of collision checks an algorithm needs to solve a path planning
query. Many sampling based methods like PRM or RRT spend the majority of
computation time on collision checking. But comparing the number of collision
checks can neither be an objective measure. It would favor methods like PCD
that spend a considerable amount of time on maintaining data structures to
intelligently choose configurations to be checked for collision. The quality of a
path is rarely an issue and, if so, mostly covered by a subsequent optimization
step. Optimality can be defined in a number of different ways. In robotics, the
length of the path is certainly relevant. But if the path is to be followed by a
real robot, the robustness of the path – in terms of keeping a safety distance to
obstacles – might be more important.

Computation time will most probably remain being the main measure in
path planning. Therefore, not only a common set of benchmark problems but
also a common planning environment seem to be the keys to obtain objective
benchmarks in path planning.

4 What can Robotics learn from Computer Vi-

sion

• Generating databases helps! But in addition to data, also performance
metrics and test procedures are needed.

• Solving hardware curse problem: Necessary? Complete solution to hw-
dependency is not likely to be possible. However, the available benchmark
data sets should contain real-world data instead of pure simulation. There



are still no good solutions to hw problem in active vision either. A good
way to evaluate performance on complex tasks is most likely to follow the
ideas of DARPA Grand Challenge, which leaves most of the options open
for the participants.

• Simulation environments: Needed? Definitely yes, because in many cases
they are the only objective way of comparing algorithms. Of course, they
only allow technology evaluation, which might nevertheless be valuable.

• Open source: Needed? At least freely available baseline methods should
be found, even if their source code would be closed.
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