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This paper describes an exact algorithm capable of solving large-scale instances of an important hub location
problem called the Uncapacitated Hub Location Problem with Multiple Assignments. The algorithm applies
Benders decomposition to a strong path-based formulation of the problem. The standard decomposition
algorithm is enhanced through the inclusion of several features such as the use of a multicut reformulation,
the generation of strong optimality cuts, the integration of reduction tests, and the execution of a heuristic
procedure. Extensive computational experiments were performed to evaluate the efficiency and robustness
of the algorithm. Computational results obtained on classical benchmark instances (with up to 200 nodes
and 40,000 commodities) and on a new and more difficult set of instances (with up to 500 nodes and 250,000
commodities) confirm the efficiency of the algorithm.
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1. Introduction

Transportation, telecommunications and computer networks frequently employ hub-and-spoke
architectures to efficiently route demand between many origins and destinations. Their key feature
lies in the use of consolidation, switching, or transshipment points, called hub facilities, to connect
a large number of origin/destination (O/D) pairs by using a small number of links. This helps
reduce setup costs, centralize commodity handling and sorting operations, and achieve economies
of scale on routing costs through the consolidation of flows.

Hub Location Problems (HLPs) constitute a challenging class of NP-hard combinatorial opti-
mization problems combining location and network design decisions. Their main difficulty stems
from the inherent interrelation between two levels of the decision process. The first level considers
the selection of a set of nodes to locate hub facilities, whereas the second level deals with the design
of the hub network, usually determined by the allocation pattern of nodes to hub facilities.

The field of hub location is rooted in the work of O’Kelly (1986) and has since evolved into
a rich research area. We refer the reader to some of the main survey articles on this topic. The
early reviews dealing with HLPs, by O’Kelly and Miller (1994) and Campbell (1994), contain
classification schemes for the existing models and for the topological structures applicable to hub
networks. Klincewicz (1998) later presented a survey on the design of hub networks in the context
of telecommunication networks, and Bryan and O’Kelly (1999) concentrated on air transportation
networks. Campbell et al. (2002) wrote a comprehensive survey on network hub location problems
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in which the location of hubs is the key decision. A more recent paper, by Alumur and Kara (2008),
provides an updated and extensive review of the growing literature on network hub location models.

Despite the considerable efforts already made by many researchers, the optimal solution of HLPs
remains challenging, particularly when considering more realistic, large-scale instances. To give
an idea of the inherent difficulty of HLPs, instances with more than 50 nodes cannot be solved
optimally for the vast majority of the variants considered in the literature, and it is only very
recently that for some limited classes of HLPs, instances with up to 200 nodes have been solved
optimally (see Camargo et al. 2008, Contreras et al. 2010).

In this paper we present an exact algorithm capable of solving large-scale instances for one of the
most classical and general problems in the hub location literature, the Uncapacitated Hub Location
Problem with Multiple Assignments (UHLPMA). In this problem, the capacity on the incoming
and outgoing flows at the hub facilities and the amount of flow routed through each link of the
hub network are unbounded. The number of hubs to locate is not known a priori, but a fixed
set-up cost for each hub is considered. The objective is to minimize the sum of hub fixed costs
and of demand transportation costs over the network. We consider the most general version of
hub location in which multiple allocations are allowed, i.e., each O/D point may send and receive
demand through several hubs. Note that a multiple assignment pattern is crucial when minimizing
the total transportation cost, and includes the single assignment as a particular case (see e.g.,
Campbell 1996).

There exist several papers on the UHLPMA. The first mathematical programming model was
introduced by Campbell (1994) but was not computationally tested. Since then, several efforts
have been made to produce better and tighter mixed integer programming (MIP) formulations.
Boland et al. (2004) have developed a multicommodity flow-based formulation capable of producing
optimal solutions for instances with up to 50 nodes by using a general purpose solver. Later,
Hamacher et al. (2004) and Maŕın et al. (2005) presented path-based formulations yielding much
tighter LP bounds. However, due to their size, these formulations were only able to optimally solve
instances with up to 25 nodes using general purpose solvers. The first exact algorithms, put forward
by Klincewicz (1996) and by Mayer and Wagner (2002), were branch-and-bound (BB) methods
based on dual ascent and dual adjustments techniques. In particular, the HubLocator algorithm
(Mayer and Wagner 2002) was able to obtain optimal solutions for instances with up to 40 nodes.
Maŕın (2005) proposed a relax-and-cut algorithm that could solve to optimality instances with up
to 50 nodes. Later, Cánovas et al. (2007) introduced a new BB method, also based on a dual ascent
strategy. This method was able to solve to optimality instances with up to 120 nodes. Recently,
Camargo et al. (2008) presented an exact Benders decomposition algorithm that was applied to
instances involving up to 200 nodes. To the best of our knowledge, these instances are the largest
ones ever solved exactly for any type of uncapacitated hub location problem.

The main contribution of this paper is to propose an exact algorithm applicable to large-scale
instances of the UHLPMA involving up to 500 nodes and 250,000 commodities. It is a Benders
decomposition algorithm based on the path-based formulation of Hamacher et al. (2004). The basic
implementation of the algorithm is enhanced through several algorithmic features that make it
more robust and efficient. These include: i) the use of a stronger multicut Benders reformulation,
ii) the generation of stronger, almost undominated cuts, iii) the inclusion of reduction tests during
the inner iterations of the Benders decomposition algorithm and, iv) the use of a heuristic for the
a priori generation of optimality cuts. In order to evaluate and assess the robustness, efficiency
and limitations of our proposed algorithm, extensive computational experiments were performed
on the classical Australian Post data set and on a new challenging set of instances.

The remainder of the paper is organized as follows. Section 2 formally defines the problem,
and presents an MIP formulation as well as properties of optimal solutions. The basic Benders
reformulation, the Benders decomposition algorithm and some aspects of the dual problem are
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then presented in Section 3. Section 4 introduces several features that improve the convergence and
efficiency of the algorithm. Section 5 presents the results of extensive computational experiments
performed on a wide variety of instances. Conclusions follow in Section 6.

2. Problem Definition

Let G= (N,A) be a complete digraph, where N is the set of nodes and A is the set of arcs. Let
also H ⊆N represent the set of potential hub locations, and K represent the set of commodities
whose origin and destination points belong to N . For each commodity k ∈K, define Wk as the
amount of commodity k to be routed from the origin o(k) ∈N to the destination d(k) ∈N . For
each node i∈H, fi is the fixed set-up cost for locating a hub. The distance, or transportation cost
dij between nodes i and j is assumed to satisfy the triangle inequality. The UHLPMA consists in
locating a set of hubs and in determining the routing of commodity flows through the network,
with the objective of minimizing the total set-up and transportation cost.

Given that hub nodes are fully interconnected and distances satisfy the triangle inequality, every
path between an origin and a destination node will contain at least one and at most two hubs.
For this reason, paths between two nodes are of the form (o(k), i, j, d(k)), where (i, j) ∈ H ×H
is the ordered pair of hubs to which o(k) and d(k) are allocated, respectively. Therefore, the
transportation cost of routing commodity k along the path (o(k), i, j, d(k)) is given by F̂ijk =
Wk

(
χdo(k)i + τdij + δdjd(k)

)
, where χ, τ , and δ represent the collection, transfer and distribution

costs along the path. To reflect economies of scale between hub nodes, we assume that τ < χ and
τ < δ. We define binary location variables zi, i ∈H, equal to 1 if and only if a hub is located at
node i. We also introduce binary routing variables xijk, k ∈K and (i, j)∈H×H, equal to 1 if and
only if commodity k transits via hub arc (i, j). Following Hamacher et al. (2004), the UHLPMA
can be stated as follows:

minimize
∑
i∈H

fizi +
∑
i∈H

∑
j∈H

∑
k∈K

F̂ijkxijk

subject to
∑
i∈H

∑
j∈H

xijk = 1 ∀ k ∈K (1)∑
j∈H

xijk +
∑

j∈H\{i}

xjik ≤ zi ∀ i∈H,∀ k ∈K (2)

xijk ≥ 0 ∀ i, j ∈H,∀ k ∈K (3)
zi ∈ {0,1} ∀ i∈H. (4)

The first term of the objective function represents the total set-up cost of the hub facilities and
the second term is the total transportation cost. Constraints (1) guarantee that there is a single
path connecting the origin and destination nodes of every commodity. Constraints (2) prohibit
commodities from being routed via a non-hub node. Finally, constraints (3) and (4) are the standard
non-negativity and integrality constraints.

2.1. Properties of Optimal Solutions and Preprocessing

Several properties and characteristics of optimal UHLPMA solutions are known and can be used
to perform preprocessing. In this section, we unify and summarize the most relevant results and
present them in the context of the path-based formulation. Unless otherwise stated, the following
properties are a consequence of the assumption of unlimited capacity at the hub nodes.

In any optimal UHLPMA solution, every path uses at most one direction of a hub edge e =
(e1, e2)∈H×H, the one with lowest transportation cost (Hamacher et al. 2004). We can therefore
eliminate approximately half of the xijk variables associated to non-optimal directions by simply



Contreras, Cordeau, and Laporte: Benders Decomposition for Large-Scale Uncapacitated Hub Location
4 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

using an undirected transportation cost for every hub edge. Let E = {L⊆H : 1≤ |L| ≤ 2} be the
set of subsets of H containing one or two hubs. The undirected transportation cost Fek for each
e∈E and k ∈K is defined as Fek = min{F̂ijk, F̂jik}.

Moreover, it can be shown that in any optimal UHLPMA solution, no commodity k will be routed
through a hub edge e containing two different hubs whenever it is cheaper to route it through only
one of them (Boland et al. 2004, Maŕın et al. 2005).

Property 1. For every k ∈K and e∈E, e1 6= e2, such that Fek >min
{
F(e1,e1)k,F(e2,e2)k

}
, xek = 0

in any optimal UHLPMA solution.

We now consider the particular case of commodities k having the same origin and destination
points, that is o(k) = d(k). One can observe that such commodities will never be routed through
two hubs. Indeed, they will always be collected and distributed by their closest open hub facility
(Boland et al. 2004).

Property 2. For every e ∈E, such that e1 6= e2 and k ∈K such that o(k) = d(k), xek = 0 in any
optimal UHLPMA solution.

The above properties lead to a more compact formulation with fewer variables, but with the
same number of constraints. We define a set of candidate hub edges for each commodity k ∈K as

Ek =
{
{(i, i)|i∈H}

⋃{
e : e∈E, (e1 6= e2) and

(
Fek <min

{
F(e1,e1)k,F(e2,e2)k

})}
, if o(k) 6= d(k),

{(i, i)|i∈H} , otherwise.

The UHLPMA can thus be restated as

minimize
∑
i∈H

fizi +
∑
k∈K

∑
e∈Ek

Fekxek (5)

subject to
∑
e∈Ek

xek = 1 ∀ k ∈K (6)∑
e∈Ek:i∈e

xek ≤ zi ∀ i∈H,∀ k ∈K (7)

xek ≥ 0 ∀ k ∈K,∀ e∈Ek (8)
zi ∈ {0,1} ∀ i∈H. (9)

Finally, we consider the special case of symmetric transportation costs. Transportation costs
are symmetric when the cost of path (i, k,m, j) is equal to the cost of path (j,m,k, i). That is,
Fek1 = Fek2 for each e ∈ E and each pair of commodities (k1, k2) such that o(k1) = d(k2) and
d(k1) = o(k2). The only condition for having symmetric transportation costs is that collection and
distribution costs should be equal.

Property 3. If χ= δ, then transportation costs Fek are symmetric for each k ∈K and each e∈E.

Whenever transportation costs are symmetric, we can further reduce the number of xek variables
and constraints by considering as one commodity the sum of the two commodities having the exact
same opposite O/D pairs.

3. Benders Decomposition

Benders decomposition is a well-known partitioning method applicable to mixed integer programs
(Benders 1962). It separates the original problem into two simpler ones: an integer master problem
and a linear subproblem. In this section, we introduce a Benders reformulation of the UHLPMA
based on the compact formulation (5)–(8). We then describe a basic Benders decomposition algo-
rithm to solve the reformulation. Because of degeneracy in the primal subproblem, there may exist
multiple solutions in the dual. We thus present an efficient procedure to select, among the set of
optimal dual solutions, an appropriate solution capable of generating a strong cut for the master
problem.
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3.1. Benders Reformulation

Let Z = B|H| denote the set of binary vectors associated with the zi variables. For any fixed vector
ẑ ∈Z, the primal subproblem (PS) in the space of the xek variables is

v(ẑ) = minimize
∑
e∈E

∑
k∈K

Fekxek

subject to (6), (8)∑
e∈E:i∈e

xek ≤ ẑi ∀ i∈H,∀ k ∈K. (10)

Let αk and uik be the dual variables associated with constraints (6) and (10), respectively. The
dual subproblem (DS), which is the dual of PS, can be stated as follows:

maximize
∑
k∈K

αk−
∑
i∈H

∑
k∈K

ẑiuik (11)

subject to αk−ue1k−ue2k ≤ Fek ∀k ∈K,∀e∈E, |e|= 2 (12)
αk−ue1k ≤ Fek ∀k ∈K,∀e∈E, |e|= 1 (13)
uik ≥ 0 ∀ i∈H,∀ k ∈K. (14)

Let D denote the set of feasible solutions of DS and let PD denote the set of extreme points of D.
Observe that D is not modified when changing ẑ and, because Fek ≥ 0 for each e∈Ek and k ∈K,
the null vector 0 is always a solution to DS. Hence, because of strong duality, either the primal
subproblem is feasible and bounded, or it is infeasible. We are thus interested in ẑ vectors that
give rise to primal subproblems of the former case. The following result establishes under which
condition such vectors exist.

Proposition 1. For any vector z ∈Z such that
∑

i∈H zi ≥ 1, the primal and dual subproblems are
feasible and bounded.

Proof. For any vector z such that
∑

i∈H zi ≥ 1, there exists at least one possible path xek for
every commodity k ∈K and thus, the primal problem is feasible. Moreover, since the transportation
costs Fek are finite and because of constraints (6) and (10), any feasible solution of PS must be
bounded. By strong duality, the dual subproblem is also feasible and bounded. �

It follows that the dual objective function value is equal to

max
(α,u)∈PD

∑
k∈K

αk−
∑
i∈H

∑
k∈K

ẑiuik. (15)

Introducing an extra variable η for the overall transportation cost, we can formulate the Benders
master problem (MP) as follows:

minimize
∑
i∈H

fizi + η

subject to η≥
∑
k∈K

αk−
∑
i∈H

∑
k∈K

uikzi ∀(α,u)∈ PD (16)∑
i∈H

zi ≥ 1 (17)

zi ∈ {0,1} ∀ i∈H. (18)

Observe that Benders feasibility cuts associated with the extreme rays of D are not necessary in the
Benders reformulation because the feasibility of PS is ensured by constraints (17). We have thus
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transformed problem (5)–(8) into an equivalent MIP problem with |H| binary variables and one
continuous variable. Nevertheless, the above Benders reformulation contains an exponential number
of constraints and must be tackled by an adequate cutting plane approach. Thus, we iteratively
solve relaxed master problems containing a small subset of the constraints (16) associated with the
extreme points of PD, and we keep adding these as needed by solving dual subproblems until an
optimal solution to the original problem is obtained.

3.2. Basic Benders Decomposition Algorithm

Let ub denote an upper bound on the optimal solution value and let t represent the current iteration
number. Let P t

D denote the restricted set of extreme points of D at iteration t, MP(P t
D) the relaxed

master problem obtained by replacing PD by P t
D in MP, and v(MP (P t

D)) its optimal solution value.
Also, let zt be an optimal solution vector of MP(P t

D), DS(zt) the dual subproblem for zt, and
v(DS(zt)) its optimal solution value. A pseudo-code of the basic Benders decomposition algorithm
is provided in Algorithm 1.

Algorithm 1: Benders decomposition
ub←∞, t← 0
P t
D← 0
terminate← false
while (terminate= false) do

Solve MP(P t
D) to obtain zt

if (v(MP (P t
D)) = ub) then

terminate← true
else

Solve DS(zt) to obtain (α,u)∈ PD
P t+1
D ← P t

D ∪{(α,u)}
if (v(DS(zt)) +

∑
i∈H fiẑi <ub) then

ub← v(DS(zt)) +
∑

i∈H fiẑi
end if

end if
t← t+ 1

end while

Whenever the problem defined by (5)–(9) is feasible, Algorithm 1 will yield an optimal solution.
The computational efficiency of the above Benders decomposition algorithm depends mainly on:
i) the computational effort needed to solve MP(P t

D), ii) the computational effort needed to solve
DS(zt), and iii) the number of iterations required to obtain an optimal solution. Next, we present
a methodology for efficiently solving DS(zt) by exploiting the structure of the primal subproblem.
In Section 4, we will present some techniques focusing on ii) and iii).

3.3. Solving the Subproblem

At any iteration t of Algorithm 1, we obtain an optimal solution vector zt of MP(P t
D). Let Ht

1 =
{i : zti = 1} be the set of open hubs and Ht

0 = {i : zti = 0} be the set of closed hubs. Given that zt ∈Z,
we can exploit the structure of the primal subproblem to obtain a vector of optimal dual variables
(αt, ut) more efficiently than by using an LP solver for the explicit solution of DS. In particular,
observe that PS can be reduced to the equivalent problem:

minimize
∑
e∈E

∑
k∈K

Fekxek
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subject to
∑

e∈Ek∩(Ht1×Ht1)
xek = 1 ∀ k ∈K, (19)

xek ≥ 0 ∀ e∈E,∀ k ∈K. (20)

This problem can be separated into |K| independent subproblems PStk, one for each commodity
k ∈K. Each PStk is a semi-assignment problem which can be easily solved by choosing the minimum
transportation cost route among those that use open hubs. For a given k, a primal optimal solution
of PStk, denoted by xt, can be expressed as

xte(k)k = 1, for e(k) = arg min
{
Fek : e∈Ek ∩ (Ht

1×Ht
1)
}

(21)
xtek = 0, for e∈Ek \ {e(k)} . (22)

The optimal solution value of PS at zt, denoted as v(zt), can thus be expressed as

v(zt) =
∑
k∈K

Fe(k)k =
∑
k∈K

min
e∈E

{
Fek : e∈Ek ∩ (Ht

1×Ht
1)
}
. (23)

In order to obtain an associated optimality cut, we still need to produce an optimal dual solution
(αt, ut). We can use duality theory to recover a dual solution (αt, ut) from the primal optimal
solution xt. In particular, the complementary slackness conditions are

utik

( ∑
e∈Ek:i∈e

xtek− zti

)
= 0, ∀i∈H,k ∈K, (24)

xtek
(
αtk−ute1k−u

t
e2k
−Fek

)
= 0, ∀k ∈K, e∈Ek, |e|= 2, (25)

xtek (αtk−utek−Fek) = 0, ∀k ∈K, e∈Ek, |e|= 1. (26)

First, conditions (24) imply that

utik = 0, ∀i∈Ht
1 \ {e1(k), e2(k)} ,∀k ∈K. (27)

Next, conditions (25) and (26) imply that dual slack variables, associated to optimal primal vari-
ables xtek set to one, must be equal to zero. For each k ∈K, this condition is

αtk−ute1(k)k−ute2(k)k = Fe(k)k, if |e(k)|= 2, (28)
αtk−ute1(k)k = Fe(k)k, if |e(k)|= 1. (29)

This implies that every feasible solution (α,u)∈D satisfying (27)–(29) is indeed an optimal solution
of DS. We thus have characterized the set of optimal solutions of the dual subproblem associated
to the optimal primal solution xt.

Proposition 2. Let xt be an optimal solution of PStk. The set of optimal dual solutions of DSt

associated to xt can be characterized as

DOt = {(α,u)∈D : (27)–(29) hold} .

The above result implies that we can construct optimal dual solutions (αt, ut) from the optimal
primal solution xt in two steps. First, we fix each αtk, ute1(k)k and ute2(k)k, for each k ∈ K, to a
particular feasible value, with respect to constraints (12)–(13) and conditions (28)–(29), and we fix
each utik, such that i∈Ht

1 \{e1(k), e2(k)}, to zero. Second, we solve a reduced system of inequalities
by fixing the variables from the first step in constraints (12) and (13), to obtain an optimal value
of the remaining uik such that i∈Ht

0, for each k ∈K.
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In the remainder of this section, we focus on computing an optimal solution (αt, ut) from a subset
of DOt associated to solutions in which αtk = Fe(k)k, ute1(k)k = 0 and ute2(k)k = 0, for each k ∈K. By
doing so, we avoid checking the feasibility of these variables with respect to constraints (12)–(13).
In Section 4 we present some theoretical insights that help us select particular values of the αtk,
ute1(k)k and ute2(k)k variables associated with optimal dual solutions that could produce stronger
optimality cuts.

Observe that some constraints (12) can now be dropped from the model once αtk, ute1(k)k

and ute2(k)k are set to a particular value for each k ∈ K. Because of constraints (14), we
know that constraints (12) having a non-positive right-hand side λek = αtk − Fek are always
satisfied. Hence, we only need to consider constraints (12) such that λek > 0. Let E+

k =
{e : λek > 0, e∈Ek ∩ (Ht

0×Ht
0)} denote this subset of constraints. Moreover, because utik = 0 for

each i ∈ Ht
1, constraints (12) associated with edges incident to a node i ∈ Ht

1 can be implicitly
considered as lower bounds for the remaining uik variables. In particular, for each node i ∈Ht

0,
let µie1 = max{λek : e∈Ek ∩ (Ht

0×Ht
1) , e1 = i} denote the maximum λek value of constraints (12)

associated with edges having i as first node and any second node e2 ∈Ht
1. Similarly, for each node

i∈Ht
0, let µie2 = max{λek : e∈Ek ∩ (Ht

1×Ht
0) , e2 = i} denote the maximum λek value of constraints

(12) having i as second node and any first node e1 ∈Ht
1. Using µie1 , µie2 and constraints (13), we

set the lower bound of uik variable as lik = max
{

0, λ(i,i)k, µ
i
e1
, µie2

}
for each node i ∈Ht

0. From
these results, we obtain the reduced system

ue1k +ue2k ≥ λek ∀e∈E+
k (30)

uik ≥ lik ∀ i∈Ht
0. (31)

Nevertheless, not all feasible solutions of (30)–(31) are candidates to generate useful optimality
cuts. Given the non-positive coefficients of the zi variables in (15), optimal dual vectors (αt, ut)
having large elements in ut are likely to produce weak optimality cuts. We are therefore interested
in (αt, ut) vectors for which ut is as small as possible in order to obtain the largest possible lower
bound on MP(P t+1

D ).
Algorithm 2 describes a simple procedure for the computation of an optimal solution (αt, ut)

having small ut elements. It constructs a solution by directly ensuring feasibility of the system
(30)–(31) row by row, while keeping the value of each uik variable as small as possible. Let ψ and
γ be two non-negative parameters such that ψ+ γ = 1.

Algorithm 2: Computing (αt, ut)
forall (k ∈K) do
αtk←min{Fek : e∈Ek ∩ (Ht

1×Ht
1)}

forall (i∈Ht
1) do

uik← 0
end do
forall (i∈Ht

0) do
uik← lik

end do
forall (e∈E+

k ) do
∆← ue1k +ue2k−λek
if (∆< 0) then
ue1k← ue1k−ψ∆
ue2k← ue2k− γ∆

end if
end do

end do
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The above algorithm has an O(
∑

k∈K |E
+
k |) time complexity. Note that this procedure does not

necessarily produce an extreme point of (30)–(31) as in the case of the simplex method. We could
instead obtain a point lying on a face of the polyhedron defined by (12)–(14). However, this does
not cause any problem because we are still producing a valid Benders cut which will separate the
optimal solution of the current master problem MPt, thus ensuring convergence.

4. Algorithmic Refinements

We now analyze several ways of improving the convergence and stability of the Benders decom-
position algorithm presented in the previous section. We first present a multicut version of the
Benders reformulation, which exploits the decomposability of the subproblem. Theoretical aspects
concerning stronger, non-dominated optimality cuts are then introduced and used to develop an
algorithm capable of efficiently generating stronger cuts that those presented in Section 3. Later,
we show how to incorporate some reduction tests into the Benders decomposition algorithm in
order to reduce the size of both the master problem and the subproblem, and thus accelerate its
convergence. Finally, we present a simple heuristic procedure that can be used to generate an initial
set of optimality cuts for the master problem to accelerate the convergence of the algorithm and
to improve the efficiency of the reduction tests.

4.1. Multicut Benders Reformulation

It is known that the number of cuts required to obtain an optimal solution of the Benders refor-
mulation will be, in the worst case, equal to the number of extreme points in D. However, this
number can be reduced given that the subproblem is decomposable into |K| independent subprob-
lems (see, e.g. Birge and Louveaux 1988). We could in principle generate optimality cuts associated
to extreme points of each dual polyhedron of the |K| subproblems, but Camargo et al. (2008) show
that when adding |K| cuts per iteration, the reduction in the number of iterations is not justified
by the increased computational effort required for the solution of the relaxed master problems,
even for small size instances.

Instead of adding in a disaggregated way all |K| cuts at each iteration, we can aggregate the
information obtained to generate a set of optimality cuts associated with subsets of commodities.
In particular, for each node j ∈H, let Kj ⊂K be the subset of commodities whose origin node is
j. We can separate the subproblem into |H| independent subproblems, one for each node. Hence,
we consider the dual polyhedra of these |H| subproblems and generate cuts from them. Let PD
be the set of extreme points of the dual polyhedron PDj associated with subproblem i. We thus
obtain the following Benders reformulation:

minimize
∑
i∈H

fizi +
∑
i∈H

ηi

subject to (17), (18)

ηj ≥
∑
k∈Kj

αtk−
∑
i∈H

∑
k∈Kj

utikzi ∀j ∈H, ∀(α,u)∈ PDj . (32)

Using this reformulation, only |H| potential optimality cuts will be generated when solving the
subproblem, instead of |K| cuts as is the case when considering the complete separability into |K|
dual subproblems.

4.2. Pareto-optimal Cuts

One way to improve the convergence of the Benders algorithm is to construct stronger, undominated
cuts, known as Pareto-optimal cuts (Magnanti and Wong 1981). We say that the cut generated
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from the dual solution (αa, ua) dominates the cut generated from the dual solution (αb, ub) if and
only if ∑

k∈K

αak−
∑
i∈H

∑
k∈K

uaikzi ≥
∑
k∈K

αbk−
∑
i∈H

∑
k∈K

ubikzi

for all z ∈ Z with strict inequality for at least one point. A cut is Pareto-optimal if no other cut
dominates it. Let Q be the polyhedron defined by (17) and 0≤ zi ≤ 1 for all i ∈H, and let ri(Q)
denote the relative interior of Q. To identify a Pareto-optimal cut at iteration t, we must solve the
following Pareto-optimal subproblem (POt):

maximize
∑
k∈K

αk−
∑
i∈H

∑
k∈K

z0
i uik (33)

subject to (12)− (13),

αk−
∑
i∈H

ztiuik = Fe(k)k ∀k ∈K, (34)

where z0 ∈ ri(Q) and, as before, Fe(k)k is the optimal solution value of subproblem k. Constraints
(34) ensure that the optimal solution of POt is chosen from the set of optimal solutions of DSt.
Note that POt can also be separated into |K| independent subproblems (POt

k), one for each k ∈K.
We thus obtain

maximize αk−
∑
i∈H

z0
i uik (35)

subject to αk−
∑
i∈H

ztiuik = Fe(k)k (36)

αk−ue1k−ue2k ≤ Fek ∀e∈Ek, |e|= 2 (37)
αk−ue1k ≤ Fek ∀e∈Ek, |e|= 1 (38)
uik ≥ 0 ∀ i∈H. (39)

Because of constraint (36) and of the fractional coefficients z0
i , the primal structure of (35)–(39)

cannot be exploited to efficiently obtain an optimal dual solution, as is the case for the DS. This
means that we need to solve |K| linear programs, one for each k ∈K, to obtain a Pareto-optimal
cut. Computational experiments indicate that the generation of Pareto-optimal cuts considerably
reduces the number of required iterations to converge. However, the time needed to solve the |K|
linear programs is not compensated by the improved convergence of the Benders algorithm, even
on small-size instances. Given that our goal is to solve large-scale instances, we have developed an
efficient procedure capable of producing good approximations of the optimal solution of POt

k, and
thus of generating stronger optimality cuts, without requiring the explicit solution of (35)–(39).

Here we present an approximate procedure capable of efficiently producing stronger optimality
cuts, which are not necessarily Pareto-optimal, by exploiting the fact that POt

k can be expressed as
the maximization of a piecewise linear and concave function of αk. In particular, if we fix the value
of the αk variable in (35)–(39), we can write the resulting subproblem as the following implicit
function:

L(αk) = maximize −
∑
i∈H

z0
i uik

subject to
∑
i∈H

ztiuik = αk−Fe(k)k (40)

ue1k +ue2k ≥ αk−Fek ∀e∈Ek, |e|= 2 (41)
ue1k ≥ αk−Fek ∀e∈Ek, |e|= 1 (42)
uik ≥ 0 ∀ i∈H. (43)
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We now can state POt
k as

max
αk

G(αk), (44)

where G(αk) = αk−L(αk).

Proposition 3. G(αk) is a piecewise linear and concave function of αk.

Proof. Rewriting the right-hand side vector of constraints (40)–(43) as b + αkb̂, where b =
(−Fe(k)k,−F1k, . . . ,−F|Ek|k) and b̂= (1,1, . . . ,1), the problem can be viewed as a linear program in
which the right-hand side vector is perturbed along the identity vector. From linear programming
theory, we know that parametric analysis on the right-hand side vector in a maximization problem
always produces a piecewise linear and concave function (Bazaraa et al. 1990). Therefore, L(αk) is
a piecewise linear and concave function of αk. �

By applying parametric analysis over L(αk), we can determine the ranges of the linear segments
and, thus, the break points at which changes of optimal bases (with respect to αk) take place in
G(αk). Moreover, the slope of each linear segment can be computed using the information of its
associated optimal basis. We can therefore obtain an optimal solution of POt

k as follows. First, set
αk to some initial feasible value and evaluate L(αk) to obtain an optimal basis associated to a linear
segment. Then perform as many dual simplex iterations as break points exist before reaching a
point at which the slope of G(αk) is equal to zero. Even though this procedure is more efficient than
solving POt

k directly by an LP solver, it still requires the solution of an LP problem to generate
an initial optimal basis and its update at each break point.

Instead of optimally solving POt
k to produce a Pareto-optimal cut, we solve POt

k only approxi-
mately and still produce strong, but not necessarily undominated optimality cuts. Our procedure
is based on the estimation of the function G(αk) by using an adaptation of Algorithm 2 pre-
sented in Section 3. Using this estimation, we successively evaluate G(αk) within a given interval
Lk ≤ αk ≤ Uk and increase αk until the estimation of G(αk) stops increasing, or until αk = Uk. In
what follows, we present the details on how to efficiently evaluate G(αk) and how to construct an
interval in which the optimal value of αk is contained. Then, we summarize the overall procedure.

4.2.1. Evaluating G(αk). Optimal solutions of PStk affect the structure of POt
k and we must

therefore distinguish between two possible cases when evaluating G(αk): either the optimal edge
e(k) has a single hub node (|e(k)| = 1) or it has two different hub nodes (|e(k)| = 2). Thus, we
need to define two functions G1(αk) and G2(αk) and two intervals L1

k ≤ αk ≤U 1
k and L2

k ≤ αk ≤U 2
k ,

respectively. Using constraint (36), the objective function (35) can be expressed as

maximize Fe(k)k +
∑
i∈H

(zti − z0
i )uik. (45)

For any i∈Ht
1, we have zti = 1 and the coefficient δi = zti − z0

i is strictly positive. If i∈H0, we have
zti = 0 and the coefficient δi is strictly negative. Therefore, we would like to increase as much as
possible the value of the uik variables such that i ∈Ht

1, and keep as low as possible the value of
the uik variables such that i∈Ht

0.
For a given αk, the value of uik variables such that i ∈ Ht

1 can be already determined using
constraints (36)–(39). If |e(k)|= 2, given that constraint (36) can be read as αk−Fe(k)k =

∑
i∈Ht1

uik,
and since ue1(k)k +ue2(k)k ≥ αk−Fe(k)k and uik ≥ 0 for each i∈Ht

1, we have

ue1(k)k +ue2(k)k = αk−Fe(k)k, (46)
uik = 0, ∀i∈Ht

1 \ {e1(k), e2(k)} . (47)
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If |e(k)|= 1, by using similar arguments we obtain

ue1(k)k = αk−Fe(k)k, (48)
uik = 0, ∀i∈Ht

1 \ {e1(k)} . (49)

Hence, for a fixed αk, the optimal solution for the remaining uik variables can be determined
by solving a reduced subproblem. As in the case of the dual subproblem DS, once αk is fixed
some constraints (37) can be eliminated from the model. In particular, we only need to con-
sider constraints (37) whose right-hand side λek(αk) = αk −Fek is strictly positive. Let E+

k (αk) =
{e : λek(αk)> 0, e∈Ek ∩ (Ht

0×Ht
0)} denote this set of constraints. Furthermore, because of con-

straints (47) and (49), constraints associated with edges incident to a node i ∈Ht
1 \ {e1(k), e2(k)}

can be seen as lower bounds for the remaining uik variables. For every i∈Ht
0, let

µie1(αk) = max
{
λek(αk) : e∈Ek ∩ (Ht

0×Ht
1) , e1 = i, e2 6= e1(k) and e2 6= e2(k)

}
denote the maximum λek(αk) value associated to hub edges having i as first node and any second
node e2 ∈Ht

1 \ {e1(k), e2(k)}. Similarly, for every i∈Ht
0, let

µie2(αk) = max
{
λek(αk) : e∈Ek ∩ (Ht

1×Ht
0) , e2 = i, e1 6= e1(k) and e1 6= e2(k)

}
denote the maximum λek(αk) value associated to hub edges having i as second node and any first
node e2 ∈Ht

1 \ {e1(k), e2(k)}. Using µie1(αk), µie2(αk) and constraint (38), we set the lower bound
of uik variable, for i∈Ht

0, as

lik(αk) = max
{

0, λ(i,i)k(αk), µie1(αk), µie2(αk)
}
.

If |e(k)|= 2, the exact value of ue1(k)k and ue2(k)k must also be determined by the reduced problem.
This also implies that we have to include some additional constraints in the problem. In particular,
let

EX+
k (αk) =

{
e : λek(αk)> 0, e∈Ek ∩ (Ht

1×Ht
0) , e1 = e1(k) and e1 = e2(k)

}
denote the subset of constraints (38) associated with hub edges containing either e1(k) or e2(k) as
first node and any second node e2 ∈Ht

0. Similarly, let

EY +
k (αk) =

{
e : λek(αk)> 0, e∈Ek ∩ (Ht

0×Ht
1) , e2 = e2(k) and e2 = e1(k)

}
denote the subset of constraints (38) associated to hub edges containing any first node e1 ∈Ht

0 and
either e1(k) or e2(k) as second node. Combining the previous results, we can state G(αk) as

G1(αk) = Fe(k)k + δe1(k)

(
αk−Fe(k)k

)
+ f1

k (αk), (50)

where

f1
k (αk) = maximize

∑
i∈H0

δiuik (51)

subject to ue1k +ue2k ≥ λek(αk) ∀e∈E+
k (αk) (52)

uik ≥ lik(αk) ∀ i∈Ht
0, (53)

if |e(k)|= 1 and as

G2(αk) = Fe(k)k + f2
k (αk), (54)
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where

f2
k (αk) = maximize

∑
i∈Ht0

δiuik + δe1(k)ue1(k)k + δe2(k)ue2(k)k (55)

subject to (46), (52), (53)

ue1k +ue2k ≥ λek(αk) ∀e∈EX+
k (αk)∪EY +

k (αk), (56)

if |e(k)|= 2.
Given that constraints (52)–(53) and (56) are very similar to the reduced system (30)–(31) of

DStk, we can adapt Algorithm 2 to produce feasible solutions to both f1
k (αk) and f2

k (αk). Using
these solutions, we are able to efficiently provide a good estimation of the value of G(αk) for any
feasible αk value. The main difference with respect to Algorithm 2 is that we now have to consider
that ue1(k)k and ue2(k)k may take a strictly positive value. If |e(k)| = 1, the value of ue1(k)k for a
given αk is uniquely given by (48). If |e(k)|= 2, variables ue1(k)k and ue2(k)k can take an infinite
number of possible values with respect to (46). However, we have to consider constraints (37)–(38)
to ensure the feasibility of the solution vector. Therefore, we need to construct upper bounds on the
maximum feasible value that variables ue1(k)k and ue2(k)k may take. In particular, constraints (37)
having edges e such that e1(k) /∈ e and e2(k)∈ e, provide an upper bound for ue1(k)k. Substituting
ue2(k)k = αk−Fe(k)k−ue1(k)k in these constraints we obtain

ue1(k)k ≤ Fek−Fe(k)k, e∈EU1, (57)

where

EU1 =
{
e : e∈Ek ∩ (Ht

1×Ht
1) , (e2 = e2(k) and e1 6= e1(k)) or (e2 = e1(k) and e1 6= e2(k))

}
.

From constraints (57) we can set an upper bound for ue1(k)k as he1k = min
{
Fek−Fe(k)k : e∈EU1

}
.

In a similar way, constraints (37) having edges e such that e1(k)∈ e and e2(k) /∈ e, provide an upper
bound for ue2(k)k. Substituting ue1(k)k = αk−Fe(k)k−ue2(k)k in these constraints we obtain,

ue2(k)k ≤ Fek−Fe(k)k, e∈EU2 (58)

where,

EU2 =
{
e : e∈Ek ∩ (Ht

1×Ht
1) , (e1 = e1(k) and e2 6= e2(k)) or (e1 = e2(k) and e2 6= e1(k))

}
.

From constraints (58) we can set an upper bound for ue2(k)k as he2k = min
{
Fek−Fe(k)k : e∈EU2

}
.

Observe that the feasibility of variables ue1(k)k and ue2(k)k can be ensured by fixing them to

ue1(k)k =
he1k × (αk−Fe(k)k)

he1k +he2k
, (59)

and

ue2(k)k =
he2k × (αk−Fe(k)k)

he1k +he2k
, (60)

respectively. Finally, Algorithm 3 summarizes the proposed procedure to obtain an estimation of
the value G(αk) at point αk.
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Algorithm 3: Approximate evaluation of G(αk)
if (|e(k)|= 1) then
ue1(k)k← αk−Fe(k)k
E←E+

k (αk)
else
ue1(k)k← he1k × (αk−Fe(k)k)/(he1k +he2k )
ue2(k)k← he2k × (αk−Fe(k)k)/(he1k +he2k )
E←E+

k (αk)∪EX+
k (αk)∪EY +

k (αk)
end if
forall (i∈Ht

1 \ {e1(k), e2(k)}) do
uik← 0

end do
forall (i∈Ht

0) do
uik← lik(αk)

end do
forall (e∈E) do

∆← ue1k +ue2k−λek
if (∆< 0) then
ue1k← ue1k−ψ∆
ue2k← ue2k− γ∆

end if
end do
if (|e(k)|= 1) then
G(αk)← Fe(k)k + δe1(k)

(
αk−Fe(k)k

)
+
∑
i∈H0

δiuik

else
G(αk)← Fe(k)k + δe1(k)ue1(k)k + δe2(k)ue2(k)k +

∑
i∈H0

δiuik

end if

4.2.2. Constructing an Interval Lk ≤αk ≤Uk. Similar to G(αk), we need to define two
intervals, one for |e(k)|= 1 and another for |e(k)|= 2. Let L1

k ≤ αk ≤U 1
k and L2

k ≤ αk ≤U 2
k , denote

these intervals. We can compute the lower bound for both intervals by observing that, regardless
of the structure of e(k), constraints (36) can be stated as αk = Fe(k)k +

∑
i∈Ht1

uik and, given that
uik ≥ 0 for each i ∈Ht

1, we know that αk ≥ Fe(k)k. We thus can set the lower bounds L1
k and L2

k

equal to L1
k = L2

k = Fe(k)k. However, the upper bounds U 1
k and U 2

k can be different. For |e(k)|= 1,
given that uik = 0 for each i ∈Ht

1 \ {e1(k)}, the minimum coefficient Fek associated to constraints
(37) having hub edges containing only open nodes different from e1(k) is a upper bound of αk.
Therefore, we can set upper bound U 1

k = min{Fek : e∈Ek ∩ (Ht
1×Ht

1) , e1 6= e1(k) and e2 6= e1(k)} .
Using similar arguments, we can derive an upper bound when |e(k)|= 2. In particular, since uik =

0 for each i∈Ht
1 \{e1(k), e2(k)}, the minimum coefficient Fek associated with constraints (37) hav-

ing edges that contain only open nodes different from e1(k) and e2(k) defines an upper bound of αk.
Let h1

k = min{Fek : e∈Ek ∩ (Ht
1×Ht

1) , (e1 6= e1(k) and e2 6= e2(k)) or (e1 6= e2(k) and e2 6= e1(k))}
denote such an upper bound. Also, we obtain a second upper bound of αk from the upper bounds
he1k and he2k for the ue1(k)k and ue2(k)k variables, respectively. We thus can set upper bound U 2

k to
U 2
k = min{h1

k, h
e1
k + he2k } .

4.2.3. Approximate Solution of POt. Instead of computing an optimal solution to POt

when generating a Pareto-optimal cut, which can be computationally prohibitive, we focus on
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efficiently generating good solutions that could lead to stronger optimality cuts than those obtained
with Algorithm 2, even though they may not necessarily be Pareto-optimal.

We construct promising solutions of POt by discretizing the G(αk) function over the previously
constructed interval Lk ≤ αk ≤ Uk. In particular, we divide the interval into κ equal size smaller
intervals and focus the search on the extreme points of these intervals. At each point αk, the value
of G(αk) is estimated by using Algorithm 3. The proposed procedure to approximately solve POt

is given in Algorithm 4.

Algorithm 4: Approximate solution of POt

forall (k ∈K) do
Lk←min{Fek : e∈Ek ∩ (Ht

1×Ht
1)}

if (|e(k)|= 1) then
Uk←min{Fek : e∈Ek ∩ (Ht

1×Ht
1) , e1 6= e1(k) and e2 6= e1(k)}

else
Uk←min{h1

k, h
e1
k + he2k }

end if
∆← (Uk−Lk)/κ
Gmax← 0
αk←Lk
terminate← false
while (terminate= false) do

estimate G(αk)
if (G(αk)<Gmax and αk =Uk) then
terminate← true

else
Gmax←G(αk)
αk← αk + ∆

end if
end while

end do

4.3. Elimination Tests

The efficiency of the Benders decomposition algorithm can be improved by reducing the size of
the original model. By doing so, both the master problem and the subproblem can be solved more
efficiently. Moreover, the convergence of the algorithm can also benefit from the solution space
reduction. In Section 2 we have presented several optimal UHLPMA properties that can help
reduce the size of the model prior to the solution process. Nevertheless, the number of variables
and constraints remains very large in large-scale instances.

The size of the model can be further reduced by exploiting the information obtained during the
inner iterations of the Benders algorithm. In this section, we develop two different reduction tests
capable of eliminating variables which are known not to appear in an optimal solution. Reduction
tests have been successfully applied for other HLPs in the context of Lagrangean relaxation (Con-
treras et al. 2009, Contreras et al. 2010). To the best of our knowledge, the idea of using reduction
tests within a Benders decomposition algorithm is new.

The first reduction test uses lower and upper bounds on the optimal solution value to check
whether a node may appear in an optimal solution. It exploits the primal information generated
during the inner iterations of the Benders algorithm to obtain an estimation of the location and
transportation costs associated with feasible solutions containing a hub located at a given node.
Using this estimation, we can sometimes determine that the node will not be chosen as a hub.
Let MPt

LP denote the linear relaxation of MPt, v(MP t
LP ) its optimal solution value, and rci the
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reduced cost associated with variable zi. The following result provides a reduction test for closing
a hub node.

Proposition 4. Let UB be an upper bound on the optimal solution value of MP. If zi is a nonbasic
variable in the optimal solution to MPt

LP and v(MP t
LP ) + rci > UB, then zi = 0 in any optimal

solution.

Proof. The results follows from the fact that v(MP t
LP ) + rci is a lower bound on the objective

function value if a hub is located at node i. Therefore, if v(MP t
LP ) + rci >UB, then zi = 0 in any

optimal solution. �
After applying this test, H is updated by removing the eliminated nodes from it. The corre-

sponding node and edge variables are also eliminated from the model.
The second reduction test uses a stronger lower bound that allows checking whether any node in a

set of candidate hub nodes Q⊂H may appear in an optimal solution. By solving a slightly modified
MPt, we can obtain an estimation of the total cost associated to feasible solutions containing at
least one hub located at a node contained in Q. Using this estimation, we can determine whether
zi = 0 for all i ∈ Q in every optimal solution. We define the following modified master problem
MPt(Q):

minimize
∑
i∈H

fizi +
∑
i∈H

ηi

subject to ηi ≥
∑
k∈Ki

αtk−
∑
i∈H

∑
k∈Ki

utikzi ∀i∈H, (α,u)∈ P t
Di (61)∑

i∈Q

zi ≥ 1 (62)

zi ∈ {0,1} ∀ i∈H. (63)

The following result provides the reduction test for closing a set of hub nodes.

Proposition 5. Let UB be an upper bound on the optimal solution value of MP. If v(MP t(Q))>
UB, then zi = 0 for each i∈Q in any optimal solution.

Proof. The result follows from the fact that v(MP t(Q)) is a lower bound on the objective
function value if a hub is located at some node i ∈Q. Therefore, if v(MP t(Q))>UB, then zi = 0
for each i∈Q in any optimal solution. �

For a particular set Q⊂H, the previous test requires the solution of an integer linear program.
Therefore, we must carefully choose a candidate set Q containing the largest possible number of
nodes, while yielding a lower bound strong enough to close the hub nodes. In particular, we want
to exclude nodes associated with good feasible solutions of MPt(Q) having an objective function
value inferior to the upper bound. If we generate a set Q failing the test, we must remove elements
from Q so that the resulting set improves the lower bound and passes the test.

The efficiency of the previous test also relies on the quality of the approximation of MPt. Thus,
we should apply the test once we have constructed a sufficiently good approximation of MP. At
the beginning of the Benders algorithm we set Q = H. Then, at iteration t of the algorithm we
discard from Q the set of open hub nodes from the optimal solution of MPt (i.e., Q is updated to
Q \ {i∈Q : zti = 1}) as well as the nodes that may have been eliminated through the first test.

When we perform the second elimination test with MPt(Q) and it fails, we eliminate from Q
the set of open hub nodes form an optimal solution, denoted by zt(Q), i.e., Q is updated to
Q \ {i : zti(Q) = 1}. We also eliminate from Q the nodes having small reduced costs ĉi associated
to the LP relaxation, denoted by MPt

LP (Q), of MPt(Q). In particular, we eliminate from Q nodes
such that ĉi < ν× cmax, where cmax is the maximum reduced cost associated to nonbasic variables
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and ν is a control parameter such that 0 < ν < 1. These previous nodes are eliminated from Q
only when the gap between the upper bound and the optimal solution value of MPt

LP (Q) exceeds
a theshold ζ. The proposed procedure is summarized in Algorithm 5.

Algorithm 5 Elimination test for Q
terminate← false
Q←H \ {i : zri = 1, r= 1, . . . , t}
while (terminate= false) do

Solve MPt
LP (Q) to obtain ĉi

if ((UB− v(MP t
LP (Q))/UB > ζ) then

cmax←max{ĉi : i∈Q}
Q←Q \ {i : ĉi < ν× cmax}

end if
Solve MPt(Q) to obtain zt(Q)
if (v(MP t(Q))>UB) then
terminate← true

else
Q←Q \ {i : zti(Q) = 1}

end if
end while
H←H \Q

4.4. A Heuristic Procedure for the UHLPMA

In our Benders reformulation, we know that any vector z ∈ Z such that
∑

i∈H zi ≥ 1 is a feasible
solution for the MP and, thus, has at least one optimality cut associated to it. We can apply a
heuristic to produce a diverse set of feasible solutions, yielding optimality cuts that are incorporated
at the beginning of the algorithm. In fact, it is known that the use of an initial approximation of
the Benders reformulation polyhedron has a major impact on the required number of iterations
(see, e.g., Geoffrion and Graves 1974, Cordeau et al. 2000). The heuristic procedure can also yield
good upper bounds that improve the effectiveness of the reduction tests.

Here we present a simple, yet effective heuristic procedure capable of generating high quality
solutions and diverse solutions which may provide useful optimality cuts. The proposed heuristic
is composed of two phases: an estimation phase and an intensification phase. The estimation
phase is an iterative procedure that constructs a set of initial feasible solutions which are used
to construct an interval on the estimated number of open hub facilities in an optimal solution.
The intensification phase is an iterative procedure that generates feasible solutions containing sets
of open hubs whose cardinality lies in the interval obtained in the previous phase. Within each
phase, we use a common constructive procedure that randomly constructs a feasible solution with
a given number of open hub facilities, and improves it by means of a local search procedure. In
what follows, we first explain the constructive procedure and we then present the overall heuristic.

4.4.1. Constructing Solutions. Solutions are represented by pairs of the form s= (H1,H0)
where, as before, H1 denotes the set of open hubs and H0 denotes the set of closed hubs. During
the inner iterations of both phases of the heuristic, a feasible solution sr = (Hr

1 ,H
r
0 ) is constructed

by randomly selecting a component zr ∈Z such that |Hr
1 |= p, where p is a fixed parameter. Once

the set of open hubs is known, the associated flow routing subproblem is solved by using (23), and
the objective value associated to sr can be evaluated. Each generated solution is then improved
by means of a local search procedure which considers three different neighborhoods. The first one
considers a subset of feasible solutions that are obtained from the current one by opening a new hub
facility. Then, Nopen(s) = {s′ = (H ′1,H ′0) : H ′1 = H1 ∪ {k} , k ∈H0}. To explore Nopen(s), all nodes
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k ∈H0 are considered. The second one considers a subset of feasible solutions obtained from the
current one by closing a hub facility. Then, Nclose(s) = {s′ = (H ′1,H ′0) :H ′1 =H1 \ {k} , k ∈H1}. To
explore Nclose(s), all hub nodes k ∈H1 are considered. The last neighborhood examines a subset of
feasible solutions obtained from the current one by opening a new facility and closing an open one.
Thus, Ninter(s) = {s′ = (H ′1,H ′0) :H ′1 =H1 ∪{k1} \ {k2} , k1 ∈H0, k2 ∈H1}. To explore Ninter(s), all
possible combinations of nodes k1 ∈H0 and k2 ∈H1 are considered. The local search procedure is
described in Algorithm 6.

Algorithm 6 Local search procedure
terminate← false
while (terminate= false) do

Explore Nclose

if (solution has not been updated in Nclose) then
Explore Nopen

end if
if (solution has not been updated in Nclose and Nopen) then

Explore Ninter

end if
if (solution has not been updated) then
terminate← true

end if
end while

4.4.2. Heuristic for the UHLPMA. During the estimation phase of the heuristic, we con-
struct a total of rmax feasible solutions, each one obtained by setting p= 2 and randomly generating
a zr vector such that zr ∈ {z : z ∈Z, |Hr

1 |= p}. After the local search has been applied, the resulting
best solution provides an idea of the number of hub facilities that are open in optimal solutions.
Using these solutions, we construct a good interval on the required number of open hubs so that
the intensification phase then focuses on generating solutions such that |Hr

1 | ∈ [pmin, pmax], where
pmin = min{|Hr

1 | : r = 1, . . . , rmax} and pmax = max{|Hr
1 | : r = 1, . . . , rmax}. In particular, for each

p ∈ [pmin, pmax] the intensification phase constructs rmax feasible solutions. The overall heuristic
procedure is depicted in Algorithm 7.

Algorithm 7 Heuristic for the UHLPMA
r← 1, p← 2
while (r < rmax) do

Randomly select zr ∈ {z : z ∈Z, |Hr
1 |= p}

Apply local search
r← r+ 1

end while
pmin←min{|Hr

1 | : r= 1, . . . , rmax}
pmax←max{|Hr

1 | : r= 1, . . . , rmax}
p← pmin
while (p < pmax) do
r← 1
while (r < rmax) do

Randomly select zr ∈ {z : z ∈Z, |Hr
1 |= p}

Apply local search
r← r+ 1

end while
p← p+ 1
end while
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5. Computational Experiments

We now present the results of extensive computational experiments performed to assess the perfor-
mance our algorithm. In the first part of the computational experiments, we focus on a comparison
of different versions of the Benders decomposition algorithm to evaluate the impact of each of the
proposed algorithmic features. The second part of the experiments is mainly devoted to a com-
parison between our exact method and several exact algorithms reported in the literature. In the
third part of the experiments, we test the robustness and limitations of our method on large scale
instances involving up to 500 nodes. All algorithms were coded in C and run on a Dell Studio PC
with an Intel Core 2 Quad processor Q8200 running at 2.33 GHz and 8 GB of RAM under a Linux
environment. The master problems of all versions of the algorithm were solved using the callable
library CPLEX 10.1.

We have used the well-known Australian Post (AP) set of instances to perform the first two parts
of the computational experiments. This data set is the most commonly used in the hub location
literature (mscmga.ms.ic.ac.uk/jeb/orlib/phubinfo.html). It consists of the Euclidean distances cij
between 200 cities in Australia, of a computer code to reduce the size of the set by grouping cities,
and of the values of Wk representing postal flows between pairs of cities. Each instance has a
strictly positive flow between every pair of nodes. Therefore, the number of considered commodities
is given by |K|= |H|2. From this set of instances, we have selected those with |H|= 25, 50, 75,
100, 125, 150, 175 and 200 and with set-up costs of the type loose (L) (see Contreras et al. 2010,
for details). We have varied the required number of open hub nodes in an optimal solution by
increasing the distances of a particular instance as dij = TC×cij for each pair (i, j)∈H×H, where
TC is a scaling parameter for the transportation costs. For each instance size we have generated
nine different instances corresponding to different combinations of values for the inter-hub discount
factor τ ∈ {0.2,0.5,0.8} and the transportation cost scaling factor TC ∈ {2,5,10}. In all these
instances, we have considered χ= 1 and δ= 1.

In preliminary experiments, we have used the AP instances to set the values of the parameters of
the algorithm. The following values were used in all our tests: ψ= 0.5, γ = 0.5, κ= 10, ν = 0.25, ζ =
0.002, rmax = 10, and z0

i = 0.1 for each i∈H. In the first two parts of the experiments, the Benders
decomposition algorithm terminated when one of the following criteria was met: i) the optimality
gap between the upper and lower bounds was below a threshold value ε, i.e. |ub− lb|/ub < ε, ii) the
maximum number of iterations Itermax was reached or, iii) the maximum time limit Timemax was
reached. We set the parameter values as ε= 10−6, Itermax = 1000 and Timemax = 7,200 seconds.

5.1. Analysis of Algorithmic Refinements

The aim of the first part of the computational experiments is to analyze the effectiveness of each
of the algorithmic refinements proposed in Section 4. For presentation purposes, we only include
summarized results of all experiments. The interested reader is referred to the Online Supplement
for the detailed results.

We first focus on analyzing the benefits of using the multicut Benders reformulation over the
standard Benders reformulation. We have implemented two different versions of Algorithm 1. The
first one, called 1-cut, uses the reformulation (16)–(18) in which only one optimality cut is added
per iteration. The second one, called |H|-cut, uses the stronger reformulation (17), (18), (32) in
which |H| optimality cuts are added per iteration. Both algorithms use Algorithm 2 to generate
the optimality cuts at each iteration. The results of the comparison are summarized in Table 1.
The first column gives the number of nodes associated to each group of instances. The next two
columns under the heading Optimal Found give the number of optimal solutions found for 1-cut
and |H|-cut, respectively. The next two columns under the heading Average Time (sec) give the
average CPU time in seconds needed to obtain an optimal solution of the problem by using 1-cut
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Table 1 Comparison of Benders reformulations.

Optimal found Average time (sec) Average iterations
|H| 1-cut |H|-cuts 1-cut |H|-cuts 1-cut |H|-cuts
25 9/9 9/9 8.43 0.67 65.00 9.78
50 9/9 9/9 78.37 4.28 98.11 11.67
75 9/9 9/9 158.37 7.20 87.78 11.11
100 8/9 9/9 1727.41 54.27 171.11 15.67
125 8/9 9/9 950.24 68.64 119.22 13.56
150 8/9 9/9 1040.05 166.83 134.11 15.22
175 7/9 9/9 1885.27 325.66 112.89 12.67
200 7/9 8/9 2069.38 1340.87 118.67 18.56

Average 65/72 71/72 989.69 246.05 113.36 13.53

and |H|-cut, respectively. The last two columns under the heading Average Iterations provide the
required number of iterations for each of the algorithms to converge.

Table 1 shows that both algorithms 1-cut and |H|-cut are able to solve most instances within
two hours. However, the strong multicut reformulation is able to solve 71 out of the 72 considered
instances whereas the standard Benders reformulation can solve only 65. The columns Average time
(sec) indicate that |H|-cut requires on average much less computation time than 1-cut. Moreover,
as can be seen in the Average iterations columns, the convergence of the Benders algorithm is
greatly improved by using |H|-cut. The number of required iterations to converge is reduced by a
factor of 10 on average. Given that algorithm |H|-cut clearly outperforms 1-cut, we only consider
the multicut Benders reformulation in the remainder of the computational experiments.

We next focus on analyzing the effectiveness of generating stronger, possibly undominated, opti-
mality cuts. In particular, we have implemented three different versions of Algorithm 1. The first
version, referred to as NC, uses the optimality cuts obtained from Algorithm 2. The second version,
referred to as POC, uses the Pareto-optimal cuts obtained when solving POt by using the dual
simplex algorithm of CPLEX 10.1. The third version, referred to as SC, uses the strong optimal-
ity cuts obtained from Algorithm 4. The results of the comparison between these algorithms are
summarized in Table 2. The three columns under the heading Optimal found give the number of
optimal solutions found for each of the considered algorithms. The next columns provide computing
times and iterations counts for each version.

Table 2 Comparison of optimality cuts.

Optimal found Average time (sec) Average iterations
|H| NC POC SC NC POC SC NC POC SC
25 9/9 9/9 9/9 0.67 1.13 0.50 9.78 6.78 7.89
50 9/9 9/9 9/9 4.28 9.05 2.10 11.67 7.67 8.00
75 9/9 9/9 9/9 7.20 32.75 5.91 11.11 7.00 7.89
100 9/9 9/9 9/9 54.27 126.78 21.28 15.67 8.22 9.56
125 9/9 9/9 9/9 68.64 366.86 56.72 13.56 9.44 10.67
150 9/9 9/9 9/9 166.83 766.42 123.23 15.22 9.89 11.89
175 9/9 9/9 9/9 325.66 1130.43 254.76 12.67 8.33 9.56
200 8/9 9/9 9/9 1340.87 2275.53 738.05 18.56 10.89 13.78

Average 71/72 72/72 72/72 262.17 588.62 150.32 13.53 8.53 9.90

The results of Table 2 confirm the efficiency of generating stronger optimality cuts. Both the
POC and SC algorithms are able to obtain the optimal solution of all considered instances within
two hours of computation time. However, the larger CPU time needed to solve the POt problems
using POC does not compensate for the improvements in convergence, even for the small size
instances. As can be seen in the Average time (sec) columns, SC is considerably more efficient than
NC and SC. Even though SC generates optimality cuts that are not necessarily Pareto-optimal,
these seem to be stronger than those used in NC. The Average iterations columns also confirm
that the convergence of the Benders algorithm can be improved by using SC, but this version is
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slightly worse than POC. Given that algorithm SC clearly outperforms NC and POC, we only
consider the generation of optimality cuts with Algorithm 4 in the rest of the experiments.

We next focus on analyzing the performance of the heuristic described in Section 4.4 and its
contribution to the convergence of the Benders decomposition algorithm. As mentioned, we can use
the solutions obtained from the heuristic procedure to generate a promising initial set of optimality
cuts and generate a good approximation of the MP. We first use Algorithm 7 to generate a diverse
set of feasible solutions, called I, where potential structural cuts can be selected to generate initial
optimality cuts. Let Ip ⊂ I denote the subset of feasible solutions containing exactly p open hub
nodes, and let pub denote the cardinality of the best solution contained in I. We construct the
initial set of cuts, denoted by P I

D, by selecting solutions from different sets Ip. More specifically,
we select the best solution from each set Ip such that p ∈ {1, pub− r2, . . . , pub, . . . , pub + r2}, where
r2 > 0 is a parameter controlling the range of the selected p values.

We have tested three different version of Algorithm 1. The first version uses no initial cuts at
all, i.e. |P I

D|= 0. The second version uses an initial set P I
D containing only one cut generated from

the best solution obtained from the heuristic. The third version uses an initial set P I
D containing

five different cuts generated by setting r2 = 2. The results of the heuristic procedure as well as the
comparison of three algorithms are summarized in Table 3. The column under the heading Optimal
Found gives the proportion of optimal solutions found by the heuristic procedure for each group
of instances. The column Average % dev. gives the average percent deviation between the best
solution found by the heuristic and the optimal solution, i.e. % dev = 100(UBH −OPT )/(UBH),
where OPT is the optimal value and UBH is the best upper bound obtained with Algorithm 7.
The remaining column headings are self-explanatory.

Table 3 Effects of using the heuristic procedure.

Optimal Average Average time (sec) Average iterations
|H| found % dev. Heur |P I

D|= 0 |P I
D|= 1 |P I

D|= 5 |P I
D|= 0 |P I

D|= 1 |P I
D|= 5

25 9/9 0.00 0.06 0.50 0.24 0.24 7.89 5.22 6.00
50 9/9 0.00 0.44 2.10 1.79 1.77 8.00 5.78 7.00
75 9/9 0.00 1.48 5.91 5.41 5.80 7.89 6.11 7.67
100 9/9 0.00 3.57 21.28 19.62 22.16 9.56 8.44 10.22
125 7/9 0.02 6.11 56.72 52.78 57.01 10.67 9.56 11.22
150 8/9 0.02 14.48 123.23 110.64 115.28 11.89 9.78 11.22
175 9/9 0.00 16.40 254.76 232.30 244.22 9.56 8.33 9.33
200 8/9 0.03 33.44 738.05 679.33 652.30 13.78 12.44 13.44

Average 68/72 0.01 9.50 150.32 137.76 137.35 9.90 8.21 9.51

The results of Table 3 confirm the efficiency of the heuristic procedure. It is able to find the
optimal solution in 68 out of the 72 tested instances. Moreover, for the instances in which the
optimal solution could not be found, the percent deviation never exceeds 0.3%. The fact that
our heuristic is not very sophisticated and yet able to produce very good results, indicates that
the UHLPMA is a problem for which good solutions can be obtained easily. However, proving
optimality remains challenging. The computational time required by the heuristic to produce a
good solution is just a fraction of the time needed for the Benders algorithm to obtain the optimal
solution. The columns Average iterations confirm that the convergence of the Benders algorithm
can be further improved by using good feasible solutions to obtain an initial set of cuts. However,
the best results are obtained when considering only the best solution produced by the heuristic.
Although the improvement in computational time is relatively small for these instances, we will
show later that it becomes more important on the larger size instances. Furthermore, the best upper
bound provided by the heuristic also has a positive effect on the performance of the elimination
tests, as we will show.
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We now analyze the effect of incorporating the elimination tests of Section 4.3 into the Benders
decomposition algorithm. We have implemented four versions of the algorithm. The first two con-
sider the case in which no initial cuts are generated, i.e. |P I

D|= 0, whereas the last two work with
|P I
D|= 1. Moreover, the first and the third versions only execute the first reduction test, denoted as

EI, whereas the second and fourth version execute both the first set EI and the second test, called
EII, performed by applying Algorithm 5. The test EI is applied at every iteration of the Benders
algorithm whereas EII is applied once the relative optimality gap is below 1% and is performed
only once. The results of the elimination tests are summarized in Table 4. The headings of this
table are again self-explanatory.

Table 4 Effects of elimination tests.

Average time (sec) Average iterations
|P I

D|= 0 |P I
D|= 1 |P I

D|= 0 |P I
D|= 1

|H| No tests E I EI + EII E I EI + EII No tests EI EI + EII EI EI + EII
25 0.50 0.35 0.33 0.29 0.31 7.89 7.22 6.89 5.11 5.11
50 2.10 2.12 2.14 2.80 2.94 8.00 7.78 7.89 6.33 6.56
75 5.91 5.29 5.42 7.13 7.08 7.89 7.00 7.11 6.33 6.44
100 21.28 19.52 20.81 22.00 24.52 9.56 9.33 9.44 7.67 8.44
125 56.72 55.05 53.69 54.37 56.25 10.67 10.44 10.22 9.89 9.00
150 123.23 105.54 108.94 107.24 118.24 11.89 10.56 10.11 10.22 8.44
175 254.76 236.17 250.11 243.14 249.27 9.56 9.11 9.33 9.22 8.00
200 738.05 673.49 590.76 632.12 540.32 13.78 13.11 12.11 12.67 10.00

Average 150.32 137.19 129.02 133.64 124.87 9.90 9.32 9.14 8.43 7.75

The columns Average iterations show that for small size instances, the improved convergence
of the algorithms with the elimination tests does not yield much lower CPU times. However, for
the larger 200 node instances, improved convergence translates into shorter computational time,
particularly with |P I

D| = 1 and EI + EII. Observe that the average required CPU time for this
version is 73% of the required CPU time without any reduction tests and initial cuts. In the last
part of the computational experiments, we will perform additional experiments to confirm and
assess the efficiency of the elimination tests and the heuristic on more difficult and larger instances.

5.2. Comparison with Alternative Solution Methods

We now present a comparison between our best version of the Benders decomposition algorithm
and several exact solution methods previously proposed in the literature. In particular, we compare
our exact method with the following five exact algorithms: i) the Benders decomposition algorithm
of Camargo et al. (2008), ii) the dual adjustment procedure developed by Cánovas et al. (2007), iii)
the relax-and-cut algorithm proposed by Maŕın (2005), iv) the solution of a flow-based formulation
using CPLEX as described in Boland et al. (2004), and v) the solution of the strong path-based
formulation presented in Section 2.1, using CPLEX. To provide a fair comparison, we have run all
algorithms on the same computer. The dual adjustment procedure and the relax-and-cut algorithm
were obtained from their respective authors, whereas the remaining algorithms were coded by us.

The detailed results of the comparison between the exact methods using the AP data set are
provided in Table 5. The first three columns give the number of nodes, the discount factor and the
transportation scale factor. The remaining columns give the CPU time in seconds needed to obtain
an optimal solution for each exact algorithm. The Benders column provides the results obtained
with the best version of our Benders decomposition algorithm. Whenever a solution method cannot
optimally solve an instance within two hours of CPU time, we write time in the corresponding
entry of the table. If an algorithm runs out of memory we then write memory.

The results of Table 5 clearly indicate that our exact method outperforms all previously proposed
methods. Observe that our algorithm is able to solve all 72 instances whereas the algorithm of
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Table 5 Comparison of exact methods with AP instances from 25 to 200 nodes.
Total time (sec)

|H| τ TC CPLEX Boland et al. (2004) Maŕın (2005) Cánovas et al. (2007) Camargo et al. (2008) Benders
25 0.2 2 1.69 1.37 5.24 0.30 0.24 0.11

0.2 5 1.36 3.59 2.13 0.19 4.01 0.30
0.2 10 0.80 2.20 3.07 0.28 73.00 0.85
0.5 2 1.12 13.78 2.38 0.11 0.20 0.08
0.5 5 5.29 18.35 3.74 0.29 1.76 0.56
0.5 10 0.82 5.63 1.29 0.10 10.78 0.44
0.8 2 0.99 36.22 2.04 0.09 0.19 0.06
0.8 5 1.04 17.83 1.01 0.06 0.56 0.17
0.8 10 0.93 9.83 1.11 0.11 2.54 0.25

50 0.2 2 874.46 526.70 786.14 21.36 4.18 0.96
0.2 5 159.27 644.38 1292.35 6.39 20.38 1.76
0.2 10 57.70 218.54 80.64 12.34 624.41 11.75
0.5 2 61.62 4982.49 119.75 5.20 2.65 0.85
0.5 5 102.06 4128.70 72.27 5.52 12.04 1.76
0.5 10 54.58 1030.34 50.36 6.20 67.16 3.50
0.8 2 34.34 time 80.91 2.54 2.33 0.80
0.8 5 61.31 6406.17 28.09 1.31 5.35 0.87
0.8 10 166.38 2471.61 39.33 7.87 35.04 2.24

75 0.2 2 memory 6817.61 time 104.31 27.43 4.73
0.2 5 memory 2579.95 time 86.34 73.94 5.80
0.2 10 memory 3045.77 time 61.12 2208.01 19.06
0.5 2 memory time time 40.89 21.40 4.78
0.5 5 memory time time 59.71 53.98 5.83
0.5 10 memory time time 24.14 129.12 7.72
0.8 2 memory time time 35.03 17.02 4.30
0.8 5 memory time time 12.52 50.29 4.43
0.8 10 memory time time 37.82 77.54 7.05

100 0.2 2 memory time time 568.43 210.72 15.14
0.2 5 memory time time 1196.08 1364.60 28.09
0.2 10 memory time time 1244.14 time 58.48
0.5 2 memory time time 182.37 165.75 13.81
0.5 5 memory time time 417.31 787.01 22.61
0.5 10 memory time time 1762.05 4586.82 34.77
0.8 2 memory time time 102.84 126.38 13.68
0.8 5 memory time time 155.74 259.70 15.32
0.8 10 memory time time 415.01 1198.83 18.79

125 0.2 2 memory time memory 2399.08 747.44 47.77
0.2 5 memory time memory 1584.67 2406.95 56.34
0.2 10 memory time memory 2691.29 time 112.20
0.5 2 memory time memory 625.49 503.83 38.23
0.5 5 memory time memory 836.01 2150.63 49.51
0.5 10 memory time memory 3420.10 time 73.52
0.8 2 memory time memory 179.88 459.49 36.78
0.8 5 memory time memory 547.98 1061.16 43.55
0.8 10 memory time memory 1556.03 time 48.36

150 0.2 2 memory time memory memory 2360.82 121.83
0.2 5 memory time memory memory time 123.90
0.2 10 memory time memory memory 2360.82 121.83
0.5 2 memory time memory memory 1814.04 96.16
0.5 5 memory time memory memory time 112.44
0.5 10 memory time memory memory time 135.71
0.8 2 memory time memory memory 1278.42 86.26
0.8 5 memory time memory memory 3816.60 91.66
0.8 10 memory time memory memory 6638.50 105.07

175 0.2 2 memory memory memory memory 2062.87 237.55
0.2 5 memory memory memory memory time 256.08
0.2 10 memory memory memory memory time 525.67
0.5 2 memory memory memory memory 1776.36 196.25
0.5 5 memory memory memory memory 6575.61 206.45
0.5 10 memory memory memory memory time 263.70
0.8 2 memory memory memory memory 1425.14 176.31
0.8 5 memory memory memory memory 3621.65 184.16
0.8 10 memory memory memory memory time 197.27

200 0.2 2 memory memory memory memory time 483.91
0.2 5 memory memory memory memory time 485.47
0.2 10 memory memory memory memory time 1271.34
0.5 2 memory memory memory memory time 393.36
0.5 5 memory memory memory memory time 394.65
0.5 10 memory memory memory memory time 750.23
0.8 2 memory memory memory memory time 338.44
0.8 5 memory memory memory memory time 361.97
0.8 10 memory memory memory memory time 383.49

Camargo et al. (2008) is only able to optimally solve 52 within two hours of CPU time. The dual
adjustment approach by Cánovas et al. (2007) is able to find the optimal solution in 45 out of the
72 instances, and the relax-and-cut approach of Maŕın (2005) can only solve instances with up to 50
nodes. Similar results are obtained when solving the flow-based formulation of Boland et al. (2004)
and the path-based formulation (5)–(9) with CPLEX. This is a clear indication of the limitations
of using a commercial solver to solve the UHLPMA. In the case of the path-based model, eight GB
of memory are not sufficient to load the model into CPLEX when |H|> 50. With the flow-based
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model, larger size instances can be loaded into CPLEX, but their weaker LP bounds do not allow
solving instances with more than 75 nodes within two hours of CPU time. It can be seen that our
algorithm is always at least one order of magnitude faster than the other exact methods, with the
exception of the small instances involving 25 nodes.

5.3. A New Data Set

In the previous experiments, we have shown that the largest size instances of the AP set, containing
200 nodes, can be optimally solved by our algorithm within less than 20 minutes of CPU time.
Given that this set contains the largest size instances currently available, we have generated a set
of larger instances in order to test the robustness and limitations of our Benders decomposition
algorithm.

At this stage, some comments on the structure of flows in the AP set are in order. We have
observed that the amount of flow originating at each node is highly variable in every instance
of this set: all instances have a very small number of nodes for which the outgoing flow is much
larger than for the other nodes. For instance, the 200 nodes instance of the AP set has one node
generating 15% of the total flow of the network, another generating 7%, and the remaining ones
each generating less than 1%. This situation seems to make the solution of these instances rather
easy since very few nodes have a large impact on the overall cost of the network and thus greatly
influence the hub location decisions. As we will show next, instances in which the outgoing flow of
each node is within a narrow range are considerably more difficult to solve.

For this reason, we introduce three different sets of instances with diverse structural character-
istics in the flow network. In particular, we consider different levels of magnitude for the amount
of flow originating at a given node to obtain three different sets of nodes: low-level (LL) nodes,
medium-level (ML) nodes, and high-level (HL) nodes. The total outgoing flow of LL, ML and
HL nodes lies in the interval [1,10], [10,100], and [100,1000], respectively. Using these nodes, we
generate three different classes of instances. In the first set of instances, called Set I, the number
of HL, ML, and LL nodes is 2%, 38% and 60% of the total number of nodes, respectively. In the
second set, called Set II, we construct an instance is such a way that the number of HL, ML, and
LL nodes is 30%, 35% and 35% of the total number of nodes, respectively. Finally, in the third set,
called Set III, the number of HL, ML, and LL nodes is 0%, 1% and 99% of the total number of
nodes, respectively. In Set I we generate instances with |H|= 50, 100, 150, 200, 250, 300, 350, 400,
450 and 500. In Set II and Set III, we generate instances with |H|= 50, 100, 150, and 200. For
each value of n in each set, we randomly generate the (x, y)-coordinates of the nodes from a con-
tinuous uniform distribution in [0,1000]× [0,1000] and define the distance between pairs of nodes
as the Euclidean distance. We generate the fixed costs for the hub facilities as fi = θ×AD, where
θ∼U [0.3,0.8] and AD=

∑
k∈KWk. Finally, for each basic instance we generate nine instances cor-

responding to different combinations of values for the inter-hub discount factor τ ∈ {0.2,0.5,0.8}
and the transportation costs scale factor TC ∈ {2,5,10}. Therefore, Set I contains a total of 90
instances whereas sets Set II and Set III contain 36 instances each.

In these final computational experiments, we further analyze and evaluate the performance of
the algorithmic refinements, especially the heuristic procedure and the elimination tests. To this
end, we consider two different versions of Algorithm 1. The first version, referred to as B1, uses
the multicut reformulation and the strong optimality cuts obtained from Algorithm 4. However, it
does not include the initial cuts nor the elimination tests. The second version, referred to as B2,
uses the multicut reformulation, the strong cuts, an initial cut associated to the best upper bound
found by Algorithm 7, and the two elimination tests. Because of the increase in instance size, we
have extended the CPU time limit to one day, i.e. Timemax = 86,400 seconds.

Computational results are summarized in Tables 6, 7 and 8. The columns Optimal found give
the number of optimal solutions found by the heuristic, B1 and B2. The columns Average % gap
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provide the average percent deviation between the best upper and lower bounds, for the heuristic,
B1 and B2 when the optimal solution cannot be found within the given time limit. That is %
gap= 100(UBT −LBT )/(UBT ), where UBT and LBT are the upper an lower bounds, respectively,
obtained with T = B1,B2. The columns Average time (sec) provide the average CPU time in
seconds needed to obtain an upper bound, in the case of the heuristic, and an optimal solution of
the problem by using B1 and B2, respectively. The columns Average iterations give the average
number of iterations for B1 and B2. The column % Closed hubs gives the average percent of hubs
that were closed by the reduction tests in B2.

Table 6 Summary results of 54 instances of Set I with |H| = 50, 100, 150, 200, 250 and 300.

Optimal found Average % gap Average time (sec) Average iterations % Closed
|H| Heur B1 B2 Heur B1 B2 Heur B1 B2 B1 B2 hubs
50 7/9 9/9 9/9 0.08 0.00 0.00 0.62 1.69 2.11 9.89 8.00 70.89
100 9/9 9/9 9/9 0.00 0.00 0.00 4.52 10.21 12.67 9.33 7.89 79.11
150 9/9 9/9 9/9 0.00 0.00 0.00 21.92 80.44 72.41 14.11 11.33 84.37
200 8/9 9/9 9/9 0.03 0.00 0.00 39.80 321.43 236.49 14.89 11.00 86.06
250 8/9 9/9 9/9 0.00 0.00 0.00 114.58 4976.90 2597.97 24.56 17.33 82.89
300 7/9 8/9 8/9 0.12 0.07 0.07 169.05 15380.02 8832.61 35.67 30.33 74.41

Average 48/54 53/54 53/54 0.04 0.01 0.01 58.41 3461.78 1959.04 18.07 14.31 79.62

Table 6 shows that both B1 and B2 algorithms are able to obtain an optimal solution in all
instances, except one. The relative gap in the remaining instance is 0.67% for B1 and 0.59% for
B2. The heuristic reaches an optimal solution 48 times out of 54. Moreover, the percent deviation
in the instances in which the optimal solution could not be found never exceeds 0.8% and the
total average deviation is 0.04%. Algorithm B2 is clearly faster than B1 on large-scale instances.
On 250-nodes and 300-nodes instances, the average CPU time is reduced by half when using the
reduction tests and the heuristic procedure. Also, from the Average iterations columns we observe
that the convergence of the Benders algorithm can be improved by incorporating these features.
Moreover, column % Closed hubs indicates that a considerable number of candidate hub nodes can
be eliminated by using the elimination tests. The percent of closed hubs ranges from 46% to 98%,
with an average of 79.62%.

Table 7 Summary results of 36 instances of Set II with |H| = 50, 100, 150, and 200.

Optimal found Average % gap Average time (sec) Average iterations % Closed
|H| Heur B1 B2 Heur B1 B2 Heur B1 B2 B1 B2 hubs
50 9/9 9/9 9/9 0.00 0.00 0.00 0.86 3.00 3.81 8.11 7.22 69.33
100 8/9 9/9 9/9 0.06 0.00 0.00 8.20 27.23 21.61 14.44 11.00 74.56
150 7/9 9/9 9/9 0.09 0.00 0.00 24.80 1729.73 601.38 23.89 18.22 78.22
200 6/9 7/9 7/9 0.09 0.08 0.06 71.98 1880.77 861.39 37.78 33.89 71.78

Average 30/36 34/36 34/36 0.06 0.02 0.02 26.46 910.18 372.05 21.06 17.58 73.47

Similar observations can be drawn from Table 7 for Set II instances. We observe that these
instances are more difficult than those of Set I and the largest instances solved contain only 200
nodes. One possible explanation for this behavior is that the instances in Set II do not longer have
the peculiarity that very few nodes generate a large proportion of the total flow of the network
and thus, the decision of where to locate the hubs becomes much more difficult.

Table 8 shows that B2 is still superior to B1 and that the instances of Set III are the most
difficult of the test bed. This translates into a smaller percentage of closed hubs and into much
longer CPU times.

To better analyze the limit of our algorithm, we have run a final series of computational experi-
ments using the 36 instances of Set I with |H|= 350, 400, 450, and 500. Given that algorithm B2
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Table 8 Summary results of 36 instances of Set III with |H| = 50, 100, 150, and 200.

Optimal found Average % gap Average time (sec) Average iterations % Closed
|H| Heur B1 B2 Heur B1 B2 Heur B1 B2 B1 B2 hubs
50 8/9 9/9 9/9 0.06 0.00 0.00 0.85 8.70 8.22 10.89 10.89 61.56
100 7/9 9/9 9/9 0.04 0.00 0.00 8.51 56.60 42.73 16.11 12.00 61.33
150 7/9 9/9 9/9 0.01 0.00 0.00 30.08 5373.33 1226.42 34.89 23.44 63.56
200 7/9 7/9 8/9 0.14 0.09 0.02 70.00 5912.76 2727.85 38.56 34.67 63.67

Average 29/36 34/36 35/36 0.06 0.02 0.00 27.36 2837.85 1001.31 25.11 20.25 62.53

has proven to be the best version of our Benders decomposition algorithm, these experiments were
performed only with this variant.

The results of these experiments are summarized in Table 9. They confirm the efficiency and
robustness of our algorithm on very large-scale instances. We have proved optimality of 26 out of
the 36 considered instances. For the remaining instances, the relative duality gap is below 1%, with
a maximum of 1.5% in one instance. The heuristic was able to obtain the optimal or best known
solution in 25 cases out of 36, and the relative deviation for the remaining instances never exceeds
0.7%, except for one instance with 2.56%. From column % Closed hub we note that the elimination
tests can again close a considerable number of candidate hub nodes. The percent of closed hubs
ranges from 2% to 98%, with an average of 72.02%.

Table 9 Summary results of 36 instances of Set I with |H| = 350, 400, 450, and 500.

Optimal found Average % gap Average time (sec) Average iterations % Closed
|H| Heur B2 Heur B2 Heur B2 B2 hubs
350 6/9 7/9 0.33 0.27 359.24 32141.39 30.33 69.11
400 8/9 8/9 0.04 0.03 610.69 41844.17 31.67 78.89
450 5/9 5/9 0.17 0.23 1100.41 19819.68 33.67 75.38
500 6/9 6/9 0.12 0.23 912.02 31108.20 23.71 64.69

Average 25/36 26/36 0.16 0.19 745.59 31228.36 29.85 72.02

6. Conclusions

We have presented an exact Benders decomposition algorithm for large-scale instances of the
classical Uncapacitated Hub Location Problem with Multiple Assignments. A standard Benders
decomposition was enhanced through the incorporation of several algorithmic features such as a
multicut reformulation, the generation of stronger optimality cuts, the incorporation of reduction
tests, and the use of a heuristic procedure. Extensive computational experiments on a large set of
existing and new instances with up to 500 nodes and 250,000 commodities have clearly confirmed
the efficiency and robustness of the algorithm. To the best of our knowledge, the new instances are
by far the largest and most difficult ever solved for any type of hub location problem.
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Hamacher, H.W., M. Labbé, S. Nickel, T. Sonneborn. 2004. Adapting polyhedral properties from facility to
hub location problems. Discrete Applied Mathematics 145 104–116.

Klincewicz, J.G. 1996. A dual algorithm for the uncapacitated hub location problem. Location Science 4
173–184.

Klincewicz, J.G. 1998. Hub location in backbone/tributary network design: A review. Location Science 6
307–335.

Magnanti, T.L., R.T. Wong. 1981. Accelerating Benders decomposition: Algorithmic enhancement and model
selection criteria. Operations Research 29 464–484.
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Online Supplement
In this Online Supplement we present the detailed computational results of Section 5. In partic-

ular, Tables EC.1 and EC.2 provide the computational results for the comparison of the Benders
reformulations. The results for the comparison of algorithms for generating optimality cuts are
given in Tables EC.3 and EC.4. The results of the heuristic procedure and some variants of the
Benders algorithm containing different sets of initial optimality cuts are provided in Tables EC.5
and EC.6. The results of the elimination tests are given in Tables EC.7 and EC.8. Finally, Tables
EC.9–EC.12 provide the detailed computational results relative to the new set of instances. The
headings of these tables are self-explanatory or have been defined in the paper.

Table EC.1 Comparison of Benders reformulations using 36 instances of AP
set with |H| = 25, 50, 75 and 100.

Total time (sec) Iterations Optimal solution
|H| τ TC 1-cut |H|-cuts 1-cut |H|-cuts Value Set of hubs
25 0.2 2 0.20 0.11 16 5 198152.69 8 18

0.2 5 4.38 0.77 83 11 372917.47 2 8 15 16 18
0.2 10 58.18 1.97 206 17 575514.42 2 4 5 8 11 15 17 18
0.5 2 0.21 0.13 14 5 206559.35 8 18
0.5 5 1.69 1.03 60 15 420252.84 2 8 14 18
0.5 10 8.72 1.18 109 13 695200.36 2 5 8 14 16 18
0.8 2 0.14 0.08 12 5 212227.82 8 18
0.8 5 0.40 0.18 25 7 438906.58 8 18
0.8 10 1.97 0.55 60 10 770835.99 2 8 14 16 18

50 0.2 2 1.94 1.11 28 8 198606.10 15 36
0.2 5 12.02 2.58 90 11 384589.91 6 22 27 35
0.2 10 618.99 15.13 352 20 629478.04 3 9 15 21 28 33 35
0.5 2 1.06 0.82 18 6 206938.91 15 36
0.5 5 4.93 3.12 62 13 425809.79 6 27 35
0.5 10 49.66 6.95 173 16 730413.83 3 9 15 28 32 35
0.8 2 0.91 0.82 15 6 211809.78 15 36
0.8 5 1.72 1.22 30 8 443079.34 15 36
0.8 10 14.09 6.73 115 17 794145.54 3 15 27 32 35

75 0.2 2 7.25 5.20 30 9 195761.92 22 68
0.2 5 18.59 7.00 69 10 377893.29 8 40 47 52
0.2 10 1323.30 16.23 361 16 629153.82 4 7 11 22 47 52 58
0.5 2 4.79 4.47 23 8 204199.76 22 52
0.5 5 8.07 6.99 49 12 419794.51 8 40 47 52
0.5 10 38.82 7.15 116 11 724355.30 4 11 22 47 52 58
0.8 2 3.96 4.50 19 9 208876.08 22 68
0.8 5 6.85 6.08 51 12 442308.85 22 52
0.8 10 13.66 7.19 72 13 787147.05 8 22 47 52 58

100 0.2 2 21.38 14.64 28 7 198620.55 29 73
0.2 5 162.22 69.15 168 23 391144.24 29 44 54 71
0.2 10 time 170.00 500 23 642832.63 5 18 29 52 58 64 70
0.5 2 15.11 13.66 21 7 206992.89 29 73
0.5 5 46.50 38.85 96 20 429862.06 29 54 71
0.5 10 2514.49 113.32 500 24 747284.96 6 18 30 56 64 70
0.8 2 13.27 12.91 17 6 211399.54 29 73
0.8 5 16.45 17.54 34 11 447136.10 29 71
0.8 10 125.05 38.38 176 20 802972.37 29 52 64 70



e-companion to Contreras, Cordeau, and Laporte: Benders Decomposition for Large-Scale Uncapacitated Hub Location ec3

Table EC.2 Comparison of Benders reformulations using 36 instances of AP set
with |H| = 125, 150, 175 and 200.

Total time (sec) Iterations Optimal solution
|H| τ TC 1-cut |H|-cuts 1-cut |H|-cuts Value Set of hubs
125 0.2 2 60.07 47.20 25 10 195896.01 37 86

0.2 5 117.79 52.92 84 12 377694.40 11 47 81 86
0.2 10 time 170.82 383 25 628314.63 7 20 28 37 68 81 86
0.5 2 41.22 36.63 18 6 203742.38 37 86
0.5 5 73.36 53.26 72 16 419899.65 33 47 81 86
0.5 10 806.1 137.54 305 25 732973.18 7 37 68 81 86
0.8 2 36.25 35.70 16 6 208128.33 37 86
0.8 5 43.60 38.06 48 9 441429.82 33 81 90
0.8 10 100.06 45.66 122 13 790675.99 11 60 81 86

150 0.2 2 225.26 138.66 38 12 192280.70 40 100
0.2 5 359.6 143.40 131 16 375646.21 11 80 94 100
0.2 10 time 455.93 427 25 623773.71 7 25 40 62 82 94 100
0.5 2 126.83 91.57 29 6 199546.92 40 99
0.5 5 222.75 155.32 130 22 418433.02 12 80 94 100
0.5 10 783.4 202.96 245 20 726703.57 11 25 40 82 94 100
0.8 2 87.23 82.82 22 5 203945.31 40 99
0.8 5 104.78 107.40 65 15 439397.54 40 100
0.8 10 155.2 123.39 120 16 786644.08 11 40 82 94 100

175 0.2 2 430.36 287.08 21 7 188078.83 44 121
0.2 5 648.64 276.74 102 15 372751.79 46 93 109 121
0.2 10 time 1031.62 255 32 628214.33 8 30 44 93 109 121
0.5 2 244.74 210.40 16 5 196283.17 44 121
0.5 5 308.17 203.82 53 10 411927.96 46 93 109 121
0.5 10 time 391.21 451 24 729241.06 8 30 44 93 109 121
0.8 2 177.27 172.08 13 4 200335.63 44 121
0.8 5 189.4 177.84 31 8 432513.74 46 93 121
0.8 10 226.62 180.13 74 9 781209.12 46 93 108 121

200 0.2 2 1139.49 656.69 21 8 187460.90 53 184
0.2 5 1269.81 463.78 96 12 368847.02 22 77 126 184
0.2 10 time time 207 47 631458.20 13 32 53 97 113 126 184
0.5 2 653.74 419.86 19 6 197011.18 53 184
0.5 5 841.89 408.06 93 16 411477.77 22 104 126 184
0.5 10 time 2436.64 372 39 733190.17 14 32 61 113 126 184
0.8 2 351.28 332.53 14 5 201286.60 53 184
0.8 5 400.77 362.31 47 13 436165.81 57 126 184
0.8 10 761.51 455.65 199 21 787170.71 22 104 126 140
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Table EC.3 Comparison of optimality cuts using 36
instances of AP set with |H| = 25, 50, 75 and 100.

Total time (sec) Iterations
|H| τ TC NC POC SC NC POC SC
25 0.2 2 0.11 0.96 0.11 5 4 4

0.2 5 0.77 1.67 1.19 11 8 12
0.2 10 1.97 1.92 1.16 17 9 12
0.5 2 0.13 0.64 0.13 5 4 4
0.5 5 1.03 1.72 0.56 15 11 11
0.5 10 1.18 1.13 0.75 13 7 11
0.8 2 0.08 0.44 0.09 5 4 4
0.8 5 0.18 0.78 0.19 7 7 6
0.8 10 0.55 0.89 0.29 10 7 7

50 0.2 2 1.11 11.81 1.17 8 6 7
0.2 5 2.58 10.88 1.38 11 6 6
0.2 10 15.13 22.57 8.21 20 13 15
0.5 2 0.82 5.49 0.78 6 5 5
0.5 5 3.12 7.83 1.50 13 8 9
0.5 10 6.95 8.24 1.82 16 8 7
0.8 2 0.82 3.17 0.79 6 5 5
0.8 5 1.22 4.18 1.08 8 7 8
0.8 10 6.73 7.26 2.19 17 11 10

75 0.2 2 5.20 63.09 6.08 9 7 9
0.2 5 7.00 48.18 6.02 10 6 7
0.2 10 16.23 45.53 11.48 16 6 10
0.5 2 4.47 31.99 4.49 8 7 7
0.5 5 6.99 23.10 4.60 12 5 6
0.5 10 7.15 28.66 6.18 11 7 8
0.8 2 4.50 17.42 4.43 9 8 8
0.8 5 6.08 17.45 4.10 12 8 6
0.8 10 7.19 19.30 5.78 13 9 10

100 0.2 2 14.64 209.46 15.55 7 6 6
0.2 5 69.15 254.53 32.89 23 11 15
0.2 10 170.00 207.16 32.77 23 9 12
0.5 2 13.66 79.08 13.59 7 5 5
0.5 5 38.85 136.65 23.83 20 11 13
0.5 10 113.32 123.48 28.16 24 11 13
0.8 2 12.91 34.59 12.97 6 5 5
0.8 5 17.54 44.45 14.74 11 7 7
0.8 10 38.38 51.61 17.02 20 9 10
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Table EC.4 Comparison of optimality cuts using 36
instances of AP set with |H| = 125, 150, 175 and 200.

Total time (sec) Iterations
|H| τ TC NC POC SC NC POC SC
125 0.2 2 47.20 734.78 48.67 10 8 8

0.2 5 52.92 527.13 54.07 12 8 9
0.2 10 170.82 670.35 107.67 25 12 17
0.5 2 36.63 221.91 38.54 6 5 6
0.5 5 53.26 280.32 43.97 16 8 9
0.5 10 137.54 511.92 98.41 25 19 22
0.8 2 35.70 97.19 36.65 6 6 6
0.8 5 38.06 115.43 38.71 9 8 8
0.8 10 45.66 142.71 43.81 13 11 11

150 0.2 2 138.66 1310.32 141.06 12 8 10
0.2 5 143.40 1370.39 154.09 16 11 15
0.2 10 455.93 1157.68 170.20 25 10 15
0.5 2 91.57 582.45 95.22 6 6 6
0.5 5 155.32 970.64 133.45 22 14 17
0.5 10 202.96 674.03 127.31 20 12 13
0.8 2 82.82 190.32 84.28 5 5 5
0.8 5 107.40 355.26 104.40 15 12 14
0.8 10 123.39 286.69 99.07 16 11 12

175 0.2 2 287.08 1675.29 311.86 7 7 7
0.2 5 276.74 1586.16 287.86 15 8 12
0.2 10 1031.62 2614.34 442.48 32 16 19
0.5 2 210.40 864.59 215.48 5 5 5
0.5 5 203.82 983.15 209.37 10 8 8
0.5 10 391.21 1219.99 288.62 24 12 16
0.8 2 172.08 347.30 174.02 4 4 4
0.8 5 177.84 468.69 181.61 8 8 8
0.8 10 180.13 414.40 181.52 9 7 7

200 0.2 2 656.69 2431.71 613.25 8 6 6
0.2 5 463.78 2623.35 485.63 12 8 10
0.2 10 time 6698.61 2541.63 47 21 31
0.5 2 419.86 1495.22 432.01 6 6 6
0.5 5 408.06 1681.55 418.60 16 9 13
0.5 10 2436.64 2755.24 1059.11 39 18 27
0.8 2 332.53 636.47 336.72 5 5 5
0.8 5 362.31 1034.27 365.87 13 11 12
0.8 10 455.65 1123.34 389.65 21 14 14
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Table EC.5 Results of heuristic using 36 instances of AP set with |H| = 25, 50, 75
and 100.

Total time (sec) Iterations
|H| τ TC % Dev Heur |P I

D|= 0 |P I
D|= 1 |P I

D|= 5 |P I
D|= 0 |P I

D|= 1 |P I
D|= 5

25 0.2 2 0.00 0.01 0.11 0.11 0.07 4 3 3
0.2 5 0.00 0.06 1.19 0.23 0.32 12 5 7
0.2 10 0.00 0.2 1.16 0.61 0.53 12 9 9
0.5 2 0.00 0.01 0.13 0.09 0.06 4 2 3
0.5 5 0.00 0.04 0.56 0.5 0.68 11 10 13
0.5 10 0.00 0.12 0.75 0.32 0.25 11 7 7
0.8 2 0.00 0.01 0.09 0.05 0.05 4 2 3
0.8 5 0.00 0.03 0.19 0.13 0.1 6 5 5
0.8 10 0.00 0.06 0.29 0.14 0.07 7 4 4

50 0.2 2 0.00 0.14 1.17 0.85 1.2 7 4 7
0.2 5 0.00 0.5 1.38 1.11 1.34 6 4 6
0.2 10 0.00 1.23 8.21 7.15 6.1 15 10 11
0.5 2 0.00 0.11 0.78 0.73 0.83 5 4 5
0.5 5 0.00 0.28 1.5 1.31 1.22 9 7 7
0.5 10 0.00 0.94 1.82 2.14 2.16 7 7 8
0.8 2 0.00 0.1 0.79 0.71 0.81 5 4 5
0.8 5 0.00 0.14 1.08 0.78 0.8 8 5 6
0.8 10 0.00 0.55 2.19 1.3 1.49 10 7 8

75 0.2 2 0.00 0.38 6.08 5.52 5.6 9 8 8
0.2 5 0.00 1.37 6.02 4.8 5.57 7 4 6
0.2 10 0.00 4.79 11.48 11.73 11.71 10 9 10
0.5 2 0.00 0.39 4.49 4.25 4.58 7 6 7
0.5 5 0.00 1.25 4.6 4.07 4.52 6 4 6
0.5 10 0.00 2.5 6.18 5.42 5.83 8 6 7
0.8 2 0.00 0.39 4.43 3.9 4.41 8 5 8
0.8 5 0.00 0.55 4.1 3.89 4.27 6 5 7
0.8 10 0.00 1.68 5.78 5.12 5.68 10 8 10

100 0.2 2 0.00 1.39 15.55 15.68 15.65 6 6 6
0.2 5 0.00 3.29 32.89 25.83 32.6 15 12 15
0.2 10 0.00 10.26 32.77 30.73 33.25 12 10 11
0.5 2 0.00 0.86 13.59 13.12 14.31 5 4 6
0.5 5 0.00 2.16 23.83 22.78 28.68 13 13 16
0.5 10 0.00 8.2 28.16 24.01 26.51 13 11 12
0.8 2 0.00 0.8 12.97 12.87 14.45 5 4 7
0.8 5 0.00 1.67 14.74 13.25 14.79 7 5 8
0.8 10 0.00 3.46 17.02 18.34 19.23 10 11 11
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Table EC.6 Results of heuristic using 36 instances of AP set with |H| = 125, 150, 175
and 200.

Total time (sec) Iterations
|H| τ TC % Dev Heur |P I

D|= 0 |P I
D|= 1 |P I

D|= 5 |P I
D|= 0 |P I

D|= 1 |P I
D|= 5

125 0.2 2 0.00 2.46 48.67 50.26 50.52 8 8 9
0.2 5 0.00 7.17 54.07 57.12 57.52 9 10 10
0.2 10 0.00 15.64 107.67 102.29 116.97 17 15 15
0.5 2 0.00 1.85 38.54 37.17 41.02 6 5 8
0.5 5 0.00 5.63 43.97 48.28 49.61 9 11 12
0.5 10 0.00 10.09 98.41 64.08 69.27 22 15 16
0.8 2 0.00 1.5 36.65 35.37 36.85 6 4 6
0.8 5 0.13 3.83 38.71 39.66 43.82 8 9 12
0.8 10 0.02 6.85 43.81 40.83 47.5 11 9 13

150 0.2 2 0.00 3.73 141.06 135.96 137.28 10 9 11
0.2 5 0.00 13.89 154.09 118.11 133.07 15 8 12
0.2 10 0.17 50.87 170.2 132.85 146.88 15 11 12
0.5 2 0.00 3.12 95.22 95.4 99.13 6 6 8
0.5 5 0.00 10.58 133.45 129.41 126.03 17 15 16
0.5 10 0.00 26.73 127.31 111 113.88 13 12 13
0.8 2 0.00 2.7 84.28 84.22 86.1 5 5 6
0.8 5 0.00 3.7 104.4 95.36 98.12 14 12 12
0.8 10 0.00 14.97 99.07 93.45 97.05 12 10 11

175 0.2 2 0.00 5.8 311.86 246.19 280.14 7 3 6
0.2 5 0.00 17.55 287.86 264.21 267.17 12 11 11
0.2 10 0.00 47.63 442.48 395.09 421.18 19 18 18
0.5 2 0.00 4.84 215.48 196.53 214.17 5 3 5
0.5 5 0.00 14.71 209.37 195.51 199.22 8 7 8
0.5 10 0.00 27.3 288.62 261.83 281.35 16 15 18
0.8 2 0.00 4.59 174.02 171.71 175.77 4 3 5
0.8 5 0.00 7.65 181.61 180.38 179.16 8 8 7
0.8 10 0.00 17.57 181.52 179.22 179.78 7 7 6

200 0.2 2 0.00 9.44 613.25 548.34 603.02 6 5 7
0.2 5 0.00 29.83 485.63 494.38 535.71 10 9 10
0.2 10 0.00 108.43 2541.63 2274.19 1825.69 31 28 28
0.5 2 0.00 8.06 432.01 420.51 432.78 6 4 6
0.5 5 0.00 17.57 418.6 431.21 444.05 13 13 14
0.5 10 0.28 64.21 1059.11 880.76 948.57 27 26 26
0.8 2 0.00 6.76 336.72 335.9 341.78 5 4 6
0.8 5 0.00 18.47 365.87 356.56 347.28 12 11 9
0.8 10 0.00 38.2 389.65 372.11 391.78 14 12 15
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Table EC.7 Results of elimination tests using 36 instances of AP set with |H| = 25, 50, 75 and 100.

Average time (sec) Average iterations % Closed hubs
|P I

D|= 0 |P I
D|= 1 |P I

D|= 0 |P I
D|= 1 |P I

D|= 0 |P I
D|= 1

|H| τ TC E I EI + EII E I EI + EII EI EI + EII EI EI + EII E I EI + EII E I EI + EII
25 0 2 2 0.11 0.11 0.11 0.11 4 4 3 3 88.00 92.00 44.00 44.00

0 2 5 0.84 0.85 0.30 0.30 11 11 5 5 20.00 28.00 32.00 48.00
0 2 10 0.59 0.35 0.74 0.85 10 7 8 8 8.00 4.00 0.00 4.00
0 5 2 0.08 0.09 0.07 0.08 4 4 2 2 84.00 88.00 0.00 0.00
0 5 5 0.53 0.55 0.55 0.56 11 11 10 10 32.00 36.00 28.00 48.00
0 5 10 0.46 0.48 0.41 0.44 8 8 7 7 4.00 12.00 12.00 16.00
0 8 2 0.08 0.08 0.07 0.06 4 4 2 2 88.00 92.00 0.00 0.00
0 8 5 0.20 0.20 0.17 0.17 6 6 5 5 40.00 56.00 28.00 28.00
0 8 10 0.29 0.30 0.21 0.25 7 7 4 4 4.00 16.00 0.00 32.00

50 0 2 2 0.91 0.89 1.00 0.96 6 6 4 4 88.00 90.00 58.00 58.00
0 2 5 1.43 1.46 1.69 1.76 7 7 4 5 58.00 66.00 38.00 74.00
0 2 10 8.49 8.42 12.72 13.75 13 14 14 14 8.00 32.00 10.00 18.00
0 5 2 0.69 0.71 0.83 0.85 5 5 4 4 90.00 92.00 76.00 92.00
0 5 5 1.59 1.51 1.96 1.76 9 9 8 8 60.00 70.00 50.00 76.00
0 5 10 1.73 1.77 3.16 3.50 7 7 7 7 32.00 42.00 30.00 38.00
0 8 2 0.67 0.68 0.82 0.80 5 5 4 4 92.00 96.00 74.00 92.00
0 8 5 0.96 0.95 0.83 0.87 7 7 4 4 80.00 76.00 80.00 84.00
0 8 10 2.58 2.89 2.18 2.24 11 11 8 9 52.00 54.00 52.00 64.00

75 0 2 2 4.75 4.75 4.74 4.73 7 7 6 6 89.33 88.00 88.00 92.00
0 2 5 5.34 5.28 5.89 5.80 7 7 4 4 77.33 81.33 80.00 90.67
0 2 10 10.51 10.60 20.12 19.06 10 10 11 11 38.67 60.00 36.00 62.67
0 5 2 4.06 4.06 4.65 4.78 7 7 8 8 92.00 93.33 89.33 89.33
0 5 5 4.22 4.24 5.86 5.83 5 5 6 6 76.00 81.33 80.00 86.67
0 5 10 5.57 6.78 7.74 7.72 7 8 5 5 52.00 64.00 53.33 66.67
0 8 2 3.86 3.83 4.20 4.30 6 6 5 5 89.33 92.00 82.67 92.00
0 8 5 4.11 4.09 4.43 4.43 6 6 5 5 82.67 81.33 81.33 92.00
0 8 10 5.15 5.13 6.56 7.05 8 8 7 8 68.00 73.33 66.67 78.67

100 0 2 2 15.15 15.27 15.18 15.14 6 6 5 5 77.00 89.00 76.00 95.00
0 2 5 24.84 24.12 24.22 28.09 13 12 11 13 70.00 67.00 71.00 77.00
0 2 10 32.05 37.35 49.42 58.48 12 13 12 14 51.00 56.00 51.00 61.00
0 5 2 13.28 13.30 13.59 13.81 5 5 4 4 90.00 92.00 74.00 95.00
0 5 5 18.59 20.77 20.09 22.61 12 13 11 12 79.00 80.00 77.00 77.00
0 5 10 27.36 28.66 28.29 34.77 13 12 9 11 49.00 56.00 55.00 60.00
0 8 2 12.91 12.91 13.59 13.68 5 5 4 4 95.00 96.00 74.00 74.00
0 8 5 15.28 15.90 14.87 15.32 8 8 5 6 68.00 70.00 83.00 92.00
0 8 10 16.19 18.98 18.75 18.79 10 11 8 7 76.00 73.00 77.00 71.00
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Table EC.8 Results of elimination tests using 36 instances of AP set with |H| = 125, 150, 175 and 200.

Average time (sec) Average iterations % Closed hubs
|P I

D|= 0 |P I
D|= 1 |P I

D|= 0 |P I
D|= 1 |P I

D|= 0 |P I
D|= 1

|H| τ TC E I EI + EII E I EI + EII EI EI + EII EI EI + EII E I EI + EII E I EI + EII
125 0 2 2 44.42 44.40 44.41 47.77 7 7 7 7 89.60 91.20 89.60 93.60

0 2 5 50.40 50.28 50.34 56.34 9 9 9 8 74.40 81.60 81.60 85.60
0 2 10 119.43 104.19 111.81 112.20 18 17 17 14 40.00 63.20 40.00 64.00
0 5 2 36.47 36.48 36.48 38.23 5 5 5 5 89.60 93.60 89.60 96.80
0 5 5 40.88 41.65 41.27 49.51 9 10 9 9 84.80 85.60 83.20 83.20
0 5 10 88.30 90.90 89.60 73.52 21 20 18 15 44.80 60.00 47.20 59.20
0 8 2 36.01 35.86 35.94 36.78 6 6 6 5 92.80 95.20 93.60 96.80
0 8 5 37.30 37.69 37.50 43.55 8 8 8 9 86.40 86.40 86.40 89.60
0 8 10 42.20 41.72 41.96 48.36 11 10 10 9 64.00 78.40 67.20 81.60

150 0 2 2 109.71 110.40 110.06 121.83 9 9 9 7 93.33 90.00 93.33 94.00
0 2 5 117.21 116.37 116.79 123.90 12 11 11 9 82.00 75.33 84.00 87.33
0 2 10 151.17 169.74 160.46 191.13 14 13 12 12 62.67 65.33 62.67 63.33
0 5 2 89.51 89.95 89.73 96.16 6 6 6 6 92.67 91.33 92.67 93.33
0 5 5 102.15 103.66 102.91 112.44 14 13 14 10 86.00 84.67 78.00 83.33
0 5 10 114.80 121.15 117.98 135.71 13 13 13 10 68.00 72.67 69.33 80.67
0 8 2 83.40 83.65 83.53 86.26 5 5 5 5 89.33 91.33 76.67 78.00
0 8 5 90.04 90.98 90.51 91.66 11 11 11 9 86.67 83.33 86.00 89.33
0 8 10 91.88 94.56 93.22 105.07 11 10 11 8 77.33 72.67 74.67 82.00

175 0 2 2 268.83 268.73 268.78 237.55 7 7 7 3 94.86 96.00 71.43 77.71
0 2 5 254.92 255.49 255.21 256.08 10 10 10 10 77.71 86.86 81.71 85.71
0 2 10 410.31 520.80 465.56 525.67 19 20 20 20 48.57 61.71 55.43 69.14
0 5 2 202.80 202.69 202.75 196.25 5 5 5 3 97.14 98.29 94.29 98.29
0 5 5 200.88 201.97 201.43 206.45 8 8 8 7 90.29 85.71 88.57 95.43
0 5 10 258.70 268.96 263.83 263.70 15 15 15 14 53.14 65.14 56.57 65.71
0 8 2 173.48 173.57 173.53 176.31 4 4 4 3 94.86 97.71 91.43 98.29
0 8 5 177.39 179.25 178.32 184.16 7 8 7 7 82.86 90.86 85.14 96.57
0 8 10 178.23 179.50 178.87 197.27 7 7 7 5 72.00 82.29 75.43 85.71

200 0 2 2 523.96 523.78 523.87 483.91 6 6 6 5 95.50 97.50 86.00 90.00
0 2 5 447.96 448.25 448.11 485.47 10 9 10 7 89.50 80.50 81.50 87.50
0 2 10 2395.21 1603.71 1999.46 1271.34 29 26 28 21 32.50 62.00 34.00 63.50
0 5 2 390.77 392.37 391.57 393.36 6 6 6 4 95.50 97.50 92.50 96.50
0 5 5 383.47 389.44 386.46 394.65 11 11 11 10 92.50 87.50 85.50 89.50
0 5 10 874.78 914.56 894.67 750.23 26 23 26 21 48.00 57.50 46.50 60.00
0 8 2 329.82 332.90 331.36 338.44 5 5 5 4 97.50 98.00 96.50 98.00
0 8 5 342.15 347.76 344.96 361.97 11 11 11 9 92.00 83.50 82.50 92.50
0 8 10 373.31 364.04 368.68 383.49 14 12 11 9 76.50 73.00 71.50 83.50
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Table EC.9 Comparison of Benders algorithm using 54 instances of Set I with |H| = 50, 100, 150, 200, 250 and 300.

% Gap Total time (sec) Iterations % Closed Optimal solution
|H| τ TC Heur B1 B2 Heur B1 B2 B1 B2 hubs Value Set of hubs
50 0.2 2 0.53 0.00 0.00 0.2 1.63 1.17 11 8 80.00 95453.05 17 20 43

0.2 5 0.00 0.00 0.00 1.01 1.76 2.77 10 9 66.00 176755.87 17 19 28 43 50
0.2 10 0.00 0.00 0.00 1.33 3.68 4.12 10 8 54.00 280490.13 3 17 19 28 31 34 47
0.5 2 0.00 0.00 0.00 0.22 0.7 0.7 8 7 86.00 99796.22 43 50
0.5 5 0.00 0.00 0.00 0.5 1.29 1.76 11 9 64.00 199897.39 17 43 47
0.5 10 0.00 0.00 0.00 1.14 4.34 6.17 15 13 46.00 342846.18 17 19 28 43 47
0.8 2 0.17 0.00 0.00 0.21 0.43 0.59 7 7 90.00 101431.59 43 50
0.8 5 0.00 0.00 0.00 0.22 0.69 0.58 9 6 78.00 210616.58 17 43 47
0.8 10 0.00 0.00 0.00 0.71 0.68 1.12 8 5 74.00 375563.34 17 19 28 43 47

100 0.2 2 0.00 0.00 0.00 1.61 6.04 7.26 5 7 94.00 958448.03 47 67
0.2 5 0.00 0.00 0.00 5.27 13.62 13.56 11 8 81.00 1717247.23 19 20 67 87
0.2 10 0.00 0.00 0.00 11.84 21.29 29.9 12 11 78.00 2733587.92 17 19 20 43 67 87
0.5 2 0.00 0.00 0.00 1.29 4.54 4.32 7 5 77.00 1022032.03 50 67
0.5 5 0.00 0.00 0.00 3.28 5.68 9.4 9 10 84.00 2032155.05 19 67 81
0.5 10 0.00 0.00 0.00 9.47 30.72 34.91 19 15 56.00 3479465.06 20 43 67 87 96
0.8 2 0.00 0.00 0.00 1.67 1.56 2.89 4 3 80.00 1022322.83 77
0.8 5 0.00 0.00 0.00 1.91 1.85 3.34 5 4 90.00 2189049.87 50 67
0.8 10 0.00 0.00 0.00 4.34 6.56 8.41 12 8 72.00 3945197.08 19 67 81

150 0.2 2 0.00 0.00 0.00 7.2 91.55 67.02 11 7 94.00 1981357.21 20 66 128
0.2 5 0.00 0.00 0.00 23.64 80.77 76.45 10 9 86.00 3617316.49 20 43 66 137 150
0.2 10 0.00 0.00 0.00 48.66 138.36 177.33 15 15 75.33 5818351.14 19 36 43 103 137 138 141 150
0.5 2 0.00 0.00 0.00 6.13 60.18 38.57 14 11 92.67 2192049.63 66 103 150
0.5 5 0.00 0.00 0.00 18.65 62.4 59.53 15 13 87.33 4370594.00 20 66 96 137
0.5 10 0.00 0.00 0.00 54.64 203.75 145.83 23 18 67.33 7459760.40 19 34 36 103 137 138 150
0.8 2 0.00 0.00 0.00 6.3 15.53 14.42 10 7 95.33 2260991.32 118 150
0.8 5 0.00 0.00 0.00 10.41 19.37 23.33 11 9 86.00 4767506.82 20 66 150
0.8 10 0.00 0.00 0.00 21.65 52.08 49.17 18 13 75.33 8582350.85 19 20 137 138 150

200 0.2 2 0.00 0.00 0.00 16.59 721.55 408.63 12 10 93.00 4581052.59 17 152 180
0.2 5 0.00 0.00 0.00 78.95 529.97 466.82 22 15 84.50 8690186.86 17 43 141 152 180
0.2 10 0.00 0.00 0.00 113.33 434.75 512.53 17 18 68.00 14029111.00 17 42 43 66 97 115 180
0.5 2 0.00 0.00 0.00 16.54 476.25 173.92 18 12 92.50 4882414.46 88 115
0.5 5 0.00 0.00 0.00 26.88 161.05 139.13 10 9 87.00 9987580.92 17 115 118 180
0.5 10 0.00 0.00 0.00 76.55 416.02 266.05 23 15 72.00 17427726.67 17 28 63 115 118 180
0.8 2 0.00 0.00 0.00 14.94 44.64 38.65 10 5 97.00 4983776.59 88 103
0.8 5 0.00 0.00 0.00 17.1 37.44 42.48 9 6 96.50 10614381.69 17 115 180
0.8 10 0.23 0.00 0.00 39.8 71.17 80.18 13 9 84.00 19410105.16 17 81 100 180

250 0.2 2 0.00 0.00 0.00 33.38 3314.85 1423.53 14 10 92.80 3874482.18 88 103
0.2 5 0.00 0.00 0.00 142.65 1755.94 1232.83 22 16 80.40 7282336.18 28 78 88 141 213
0.2 10 0.01 0.00 0.00 346.38 31189.44 17222.68 71 52 69.20 11873568.51 19 28 88 141 164 213 235 237
0.5 2 0.00 0.00 0.00 35.09 1016.14 515.34 10 6 97.20 4062441.10 88 103
0.5 5 0.00 0.00 0.00 108.6 1049.36 544.68 23 13 86.00 8425749.10 88 141 152 201
0.5 10 0.00 0.00 0.00 157.84 5079.08 1660.4 34 25 61.60 14584699.51 24 28 88 141 213 235
0.8 2 0.00 0.00 0.00 29.55 100.17 109.33 7 4 98.00 4146606.99 88 103
0.8 5 0.00 0.00 0.00 51.16 152.9 152.23 13 10 92.40 8941909.55 88 152 201
0.8 10 0.00 0.00 0.00 126.6 1134.23 520.73 27 20 68.40 16327319.27 24 28 66 88 213 235

300 0.2 2 0.00 0.00 0.00 102.57 20624.68 5149.04 24 23 91.67 3928387.32 77 103
0.2 5 0.74 0.00 0.00 168.47 28914.76 17453.65 51 48 66.67 7425734.30 141 150 198 254
0.2 10 0.00 0.67 0.59 496.46 time time 58 54 47.00 12240606.61 28 43 128 141 243 256
0.5 2 0.00 0.00 0.00 57.61 3656.84 1651.73 9 5 98.33 4018433.63 172
0.5 5 0.00 0.00 0.00 115.23 9231.32 3596.2 38 31 71.67 8321461.85 77 152 180
0.5 10 0.00 0.00 0.00 297.21 21107.77 11922.04 45 35 60.00 14339548.71 128 152 254 256 275
0.8 2 0.00 0.00 0.00 42.59 322.7 248.09 6 4 94.33 4018433.63 172
0.8 5 0.36 0.00 0.00 86.4 916.53 435.92 20 15 87.33 8687780.51 77 152 180
0.8 10 0.00 0.00 0.00 154.91 38265.58 30204.22 70 58 52.67 15724133.58 77 128 152 254
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Table EC.10 Comparison of Benders algorithm using 36 instances of Set II with |H| = 50, 100, 150 and 200.

% Gap Total time (sec) Iterations % Closed Optimal solution
|H| τ TC Heur B1 B2 Heur B1 B2 B1 B2 hubs Value Set of hubs
50 0.2 2 0.00 0.00 0.00 0.23 1.86 0.99 10 7 80.00 1068384.96 19 47

0.2 5 0.00 0.00 0.00 1.24 1.93 2.65 9 8 62.00 1982230.84 11 17 19 31 42 47
0.2 10 0.00 0.00 0.00 1.82 16.89 19.16 13 15 28.00 3053193.54 3 11 17 19 22 27 28 31 47
0.5 2 0.00 0.00 0.00 0.18 0.46 0.41 5 4 90.00 1117953.42 19 47
0.5 5 0.00 0.00 0.00 0.82 0.99 1.5 8 7 74.00 2290402.89 11 17 19 43 47
0.5 10 0.00 0.00 0.00 1.92 3.32 7.23 11 11 42.00 3896604.16 3 11 17 19 22 31 47
0.8 2 0.00 0.00 0.00 0.20 0.53 0.37 6 4 92.00 1144745.11 19 47
0.8 5 0.00 0.00 0.00 0.45 0.47 0.6 5 3 94.00 2432686.22 11 19 47
0.8 10 0.00 0.00 0.00 0.86 0.57 1.35 6 6 62.00 4381754.77 11 17 19 43 47

100 0.2 2 0.00 0.00 0.00 2.45 26.34 11.2 15 10 87.00 6475483.69 17 19 28
0.2 5 0.00 0.00 0.00 11.73 43.71 29.36 18 13 74.00 12000667.43 17 28 43 66 79
0.2 10 0.00 0.00 0.00 19.02 24.82 33.63 11 12 80.00 18760244.63 28 43 66 67 75 79 81 88
0.5 2 0.00 0.00 0.00 1.47 11.8 4.85 11 6 84.00 7014709.34 28 88
0.5 5 0.00 0.00 0.00 6.26 43.47 18.65 20 14 76.00 14097698.70 28 34 79 88
0.5 10 0.00 0.00 0.00 17.17 20.87 36.12 14 13 71.00 23962527.74 28 43 66 67 79 81 88
0.8 2 0.00 0.00 0.00 1.41 4.42 2.86 7 4 66.00 7194920.97 28 88
0.8 5 0.51 0.00 0.00 4.42 8.95 6.92 10 7 65.00 15198974.03 19 28 77
0.8 10 0.00 0.00 0.00 9.86 60.68 50.93 24 20 68.00 27446996.05 28 34 79 88

150 0.2 2 0.00 0.00 0.00 9.28 87.73 63.23 8 7 92.67 13840337.13 28 66 128
0.2 5 0.00 0.00 0.00 24.83 405.71 156.2 26 19 75.33 26725935.73 17 20 43 66 128
0.2 10 0.38 0.00 0.00 75.74 8163.97 3588.99 51 43 51.33 44590550.97 19 28 43 47 66 67 137 150
0.5 2 0.00 0.00 0.00 7.40 89.61 41.49 16 13 90.67 15485950.81 66 103 128
0.5 5 0.00 0.00 0.00 18.47 104.44 54.9 17 13 82.00 31169206.40 19 20 66 150
0.5 10 0.00 0.00 0.00 45.15 6445.11 1379.4 50 36 57.33 54965468.04 20 24 66 90 150
0.8 2 0.00 0.00 0.00 4.93 33.35 13.47 11 8 94.67 15969490.54 96 118
0.8 5 0.00 0.00 0.00 13.80 65.17 33.73 16 12 88.00 33599533.73 20 66 128
0.8 10 0.46 0.00 0.00 23.63 172.48 81.02 20 13 72.00 61091408.94 19 20 66 150

200 0.2 2 0.80 0.00 0.00 17.60 870.61 397.49 15 16 93.00 28312270.32 66 103 128
0.2 5 0.00 0.00 0.00 74.05 2208.66 1209.08 37 29 75.00 54925668.74 17 19 66 115
0.2 10 0.00 0.26 0.30 258.48 time time 70 68 41.00 90790523.74 17 19 20 43 66 113 137
0.5 2 0.00 0.00 0.00 14.28 347.62 142.64 16 10 95.50 29883949.79 50 128
0.5 5 0.00 0.00 0.00 60.42 3815.15 1865.61 57 46 66.50 62434123.12 17 66 115 180
0.5 10 0.05 0.49 0.28 105.75 time time 63 75 45.00 109722466.01 17 24 34 113 152
0.8 2 0.00 0.00 0.00 12.79 26.94 42.7 12 8 93.00 30467892.95 50 128
0.8 5 0.00 0.00 0.00 29.56 310.74 143.41 26 18 84.50 65867505.7 47 88 180
0.8 10 0.00 0.00 0.00 74.93 5585.69 2228.77 44 35 52.50 119827042.48 17 19 50 66 103
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Table EC.11 Comparison of Benders algorithm using 36 instances of Set III with |H| = 50, 100, 150 and 200.

% Gap Total time (sec) Iterations % Closed Optimal solution
|H| τ TC Heur B1 B2 Heur B1 B2 B1 B2 hubs Value Set of hubs
50 0.2 2 0.00 0.00 0.00 0.43 1.21 1.12 8 6 84.00 213384.42 17 20 43

0.2 5 0.00 0.00 0.00 1.50 1.87 3.79 9 10 62.00 396277.88 17 19 28 34 43 47
0.2 10 0.00 0.00 0.00 1.70 49.51 27.64 17 16 22.00 637858.99 3 17 19 28 31 34 47
0.5 2 0.00 0.00 0.00 0.21 1.24 0.56 9 5 62.00 229430.34 19 47
0.5 5 0.00 0.00 0.00 0.73 3.16 11.88 16 24 60.00 465625.17 17 19 20 43 50
0.5 10 0.00 0.00 0.00 1.21 2.62 10.08 13 16 40.00 791449.46 17 19 28 34 43 47
0.8 2 0.00 0.00 0.00 0.34 0.58 0.63 7 5 90.00 233796.77 19 47
0.8 5 0.52 0.00 0.00 0.45 1.59 1.34 11 10 72.00 497326.01 4 20 43
0.8 10 0.00 0.00 0.00 1.10 1.23 1.68 8 6 62.00 886675.04 17 19 28 34 43 47

100 0.2 2 0.00 0.00 0.00 2.34 54.25 14.86 21 13 82.00 907379.18 20 43 88
0.2 5 0.00 0.00 0.00 12.15 31.9 26.12 15 10 69.00 1661263.35 17 19 20 43 66
0.2 10 0.00 0.00 0.00 19.93 45.62 35.25 13 9 77.00 2687610.56 19 28 43 47 60 66 67 88
0.5 2 0.00 0.00 0.00 1.44 16.89 6.66 14 9 82.00 961919.22 47 88
0.5 5 0.00 0.00 0.00 7.71 88.08 44.74 24 20 72.00 1964190.84 17 19 20 34 43
0.5 10 0.29 0.00 0.00 16.76 91.82 92.98 21 20 55.00 3378760.50 17 19 28 34 43 47
0.8 2 0.00 0.00 0.00 1.56 4.62 4.00 8 7 91.00 977835.63 47 88
0.8 5 0.10 0.00 0.00 3.76 19.21 9.88 15 10 75.00 2090495.80 19 20 77
0.8 10 0.00 0.00 0.00 10.98 28.26 21.33 14 10 58.00 3762525.47 19 20 34 43 88

150 0.2 2 0.03 0.00 0.00 11.79 266.72 89.07 23 14 85.33 1982556.18 103 118 150
0.2 5 0.00 0.00 0.00 34.96 1530.73 207.36 41 20 73.33 3754614.74 17 19 20 43 141
0.2 10 0.00 0.00 0.00 89.08 8701.56 3011.01 47 36 52.00 6189074.11 19 28 43 47 60 67 141 150
0.5 2 0.00 0.00 0.00 5.90 164.59 46.59 22 16 87.33 2129448.17 88 103
0.5 5 0.00 0.00 0.00 20.08 1405.08 164.85 39 21 76.67 4343129.83 17 19 115 141
0.5 10 0.00 0.00 0.00 59.32 32454.78 5255.47 70 52 48.00 7597481.26 17 24 28 43 47 141
0.8 2 0.00 0.00 0.00 5.47 36.61 16.18 12 9 92.00 2166739.51 88 103
0.8 5 0.00 0.00 0.00 13.04 117.51 33.60 19 12 82.67 4620013.77 103 118 150
0.8 10 0.03 0.00 0.00 31.09 2084.38 615.66 41 31 50.67 8396538.43 19 34 115 150

200 0.2 2 0.00 0.00 0.00 21.02 954.27 364.19 17 12 88.00 3491300.05 103 118 128
0.2 5 0.59 0.00 0.00 79.96 24896.54 10182.09 73 59 56.00 6723977.42 17 19 43 141 152
0.2 10 0.00 0.27 0.00 221.95 time 62960.59 62 73 44.00 11055338.21 19 28 43 75 103 141 164 172
0.5 2 0.00 0.00 0.00 13.48 461.66 155.96 18 12 90.50 3726506.36 50 128
0.5 5 0.00 0.00 0.00 49.19 3457.64 1550.68 46 35 64.00 7650937.45 17 19 103 118
0.5 10 0.00 0.51 0.17 117.28 time time 62 71 41.50 13406864.52 17 24 43 113 141 152
0.8 2 0.00 0.00 0.00 17.68 59.53 48.98 11 8 91.50 3786269.19 88 103
0.8 5 0.66 0.00 0.00 33.52 63.88 103.53 12 11 84.00 8093276.59 34 103 128
0.8 10 0.00 0.00 0.00 75.94 10399.75 5593.50 46 39 47.50 14741708.60 19 88 103 151
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Table EC.12 Computational results of 36 instances of Set I with |H| = 350, 400, 450 and 500.

% Gap Total time (sec) Iterations % Closed Optimal solution
|H| τ TC Heur B2 Heur B2 B2 hubs Value Set of hubs
350 0.2 2 0.00 0.00 149.27 9867.9 14 93.14 4814837.17 103 128 275

0.2 5 0.00 0.00 423.60 42209.42 49 70.00 9266821.81 17 275 323 333 348
0.2 10 0.00 1.55 888.77 time 40 1.71 15414338.11 19 28 43 150 226 235 275
0.5 2 0.00 0.00 145.65 2939.2 10 97.71 5182254.33 34 180
0.5 5 0.37 0.00 293.12 40300 60 67.14 10679368.78 17 103 275 323
0.5 10 0.00 0.88 497.13 time 41 46.57 18668497.14 50 110 156 323 333 348
0.8 2 2.56 0.00 120.15 609.29 8 98.57 5182254.33 34 180
0.8 5 0.00 0.00 156.42 755.06 12 89.71 11332464.07 34 103 128
0.8 10 0.00 0.00 345.46 19791.7 39 57.43 20669490.79 77 103 156 323

400 0.2 2 0.00 0.00 214.92 24506.22 31 85.75 11647182.77 66 235 323
0.2 5 0.00 0.00 655.28 80603.09 56 79.75 21918766.87 11 55 66 235 323 390
0.2 10 0.00 0.29 2008.59 time 32 67.50 34991534.99 28 50 118 271 308 323 336 390
0.5 2 0.00 0.00 210.69 6304.99 14 95.00 12246703.45 118 180
0.5 5 0.00 0.00 382.69 12036.96 34 81.50 25158258.50 17 235 275 323
0.5 10 0.00 0.00 1181.91 83162.59 39 69.00 43348414.05 50 60 275 333 348 390 397
0.8 2 0.00 0.00 98.60 1130.79 9 96.25 12503643.67 118 180
0.8 5 0.00 0.00 221.13 2426.71 25 79.75 26889674.22 180 320 390
0.8 10 0.35 0.00 522.41 80026.2 45 55.50 48694157.48 66 86 103 320 397

450 0.2 2 0.00 0.00 358.53 50970.6 33 88.22 15231788.68 180 226 348
0.2 5 0.70 0.74 825.23 time 35 74.22 28590433.45 17 225 302 320 379
0.2 10 0.00 0.80 2686.16 time 26 51.78 46044048.31 17 103 128 132 225 299 407
0.5 2 0.00 0.00 429.17 15741.29 32 90.67 16434881.90 180 348 390
0.5 5 0.37 0.27 786.33 time 49 77.11 33189201.77 17 225 226 235 254
0.5 10 0.00 0.26 1503.69 time 35 66.44 56769271.61 17 103 128 218 225 226 407
0.8 2 0.00 0.00 231.03 1981.52 19 92.00 16762883.77 103 390
0.8 5 0.46 0.00 442.49 10585.3 29 78.67 35580614.86 180 348 390
0.8 10 0.00 0.00 874.98 85105.27 45 59.33 63935092.11 96 254 353 407 412

500 0.2 2 0.00 0.00 534.15 59474.39 10 87.80 18367424.23 118 235 271
0.2 5 0.00 0.56 1229.15 time 40 69.40 35417722.40 11 43 47 270 291
0.2 10 0.00 0.97 2739.08 time 26 17.80 575116180.16 43 270 271 291 300 348 386 469
0.5 2 0.00 0.00 639.64 26133.4 15 94.40 19828698.61 103 225
0.5 5 0.00 0.00 1062.82 34151.86 41 77.80 40697258.74 118 260 271 477
0.5 10 0.20 0.54 2049.76 time 34 69.20 70787217.57 11 110 242 260 271 291
0.8 2 0.00 0.00 271.06 4053.58 11 97.20 20200841.36 103 225
0.8 5 0.34 0.00 530.23 4170.19 15 89.60 43227344.28 103 180 271
0.8 10 0.28 0.00 1264.02 58665.77 40 66.20 78492890.70 118 226 260 271 477


