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The production routing problem (PRP) is a generalization of the inventory routing problem and concerns

the production and distribution of a single product from a production plant to multiple customers using

capacitated vehicles in a discrete and finite time horizon. In this study, we consider the stochastic PRP with

demand uncertainty in two-stage and multi-stage decision processes. The decisions in the first stage include

production setups and customer visit schedules, while the production and delivery quantities are determined

in the subsequent stages. We introduce formulations for the two problems which can be solved by a branch-

and-cut algorithm. To handle a large number of scenarios, we propose a Benders decomposition approach

which is enhanced through lower bound lifting inequalities, scenario group cuts and Pareto-optimal cuts.

For the multi-stage problem, we also use a warm-start procedure that relies on the solution of the simpler

two-stage problem. Finally, we exploit the reoptimization capabilities of Benders decomposition in a sample

average approximation method for the two-stage problem and in a rollout algorithm for the multi-stage

problem. Computational experiments show that instances of realistic size can be solved to optimality for

both the two-stage and multi-stage problems, and that Benders decomposition provides significant speedups

compared to a classical branch-and-cut algorithm.

Key words : Production routing; demand uncertainty; two-stage and multi-stage stochastic programs with

recourse; Benders decomposition.

1. Introduction

Demand uncertainty is a major issue in supply chain management because some of the critical

information required for decision making is often known only approximately in the form of forecasts.

In these conditions, solving a deterministic model using point estimates can lead to wrong and costly

decisions. One should thus explicitly take the uncertainty into account in the decision process. This

paper introduces a novel approach to solve the production routing problem (PRP), a generalization

of the inventory routing problem (IRP), under demand uncertainty. We consider the problem with
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a single product in a discrete and finite time horizon, where the distribution network consists of a

production plant and multiple customers. At the beginning of each period, the plant can perform

a setup and make the product using a limited production capacity. The plant can then dispatch a

given number of capacitated vehicles to deliver the product to the customers. Each customer must

carry sufficient inventory to satisfy its demand in every period and backlogging is not allowed. If

some demand is left unmet at the end of a period, a unit penalty cost has to be paid. This penalty

can be viewed in general as an opportunity cost related to lost sales or as the cost of outsourcing

the production and delivery of the product. The objective of the problem is to minimize production

costs, which consist of fixed setup and unit costs, inventory holding costs at both the plant and

the customers, cost of unmet demand, and routing costs for the dispatched vehicles. Note that the

PRP reduces to the IRP if the production setup and quantity decisions are fixed. Many authors

have addressed the deterministic PRP and IRP. Due to the complexity of these problems, however,

most studies have used heuristics (see, e.g., Adulyasak et al. 2014b). We refer to Andersson et al.

(2010), Coelho et al. (2014b) and Adulyasak et al. (2014c) for recent reviews of algorithms for the

IRP and PRP.

Taking demand uncertainty into account in the PRP or IRP makes the problem very hard to

solve (Hvattum and Løkketangen 2009, Solyalı et al. 2012). To the best of our knowledge, the PRP

with demand uncertainty has not been addressed before. There are, however, a few studies that

have introduced heuristics for the stochastic IRP (SIRP). Federgruen and Zipkin (1984) considered

the SIRP with random demands but in a single-period planning horizon. The authors showed

that their approach could provide 6-7% savings compared to the solution obtained by solving

a deterministic vehicle routing problem (VRP). A different SIRP involving long term planning

horizons was addressed by Jaillet et al. (2002). In this study, a repeated distribution pattern is used

and the problem is solved in a rolling horizon framework by using approximations of the direct

shipment delivery costs. The IRP with a discrete time infinite horizon was addressed in several

studies. Kleywegt et al. (2002a) considered the SIRP with direct deliveries while Kleywegt et al.

(2004) extended the problem to include multiple customers in the same route. Since the state space
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is too large to compute, the authors employed approximate dynamic programming techniques.

Adelman (2004) focused on the same problem and proposed a price-directed approach where the

future costs of current actions are approximated using optimal dual prices. Hvattum et al. (2009)

and Hvattum and Løkketangen (2009) used heuristics based on finite scenario trees to solve the

same problem. For the IRP with a discrete finite planning horizon, Bertazzi et al. (2013) addressed

the stochastic problem with the order-up-to level (OU) policy. They developed a heuristic rollout

algorithm using an approximate cost-to-go and a branch-and-cut algorithm. Solyalı et al. (2012)

addressed the single-vehicle IRP with demand uncertainty in a discrete and finite planning horizon,

where the distribution of demand is unknown and backlogging is allowed. This problem is called the

robust inventory routing problem (RIRP) and is solved using a branch-and-cut algorithm. Finally,

Coelho et al. (2014a) considered a dynamic and stochastic variant of the IRP in which demands are

gradually revealed over time. They proposed a heuristic and assessed the value of demand forecasts

and transshipments between customers.

In this study, we consider the stochastic PRP (SPRP) under demand uncertainty in two-stage

and multi-stage decision processes, where the distribution of the demand is assumed to be known.

In the first stage of both problems, production setup and customer visit decisions, as well as the

assignment of vehicles to customers, must be determined. This is in line with real-world practice,

where some higher level decisions such as those associated to production planning are made in

advance and these plans remain fixed in order to avoid large disruptions (Hopp and Spearman

2000). Planned visits must also be communicated in advance to the customers and to the drivers to

prepare the required workforce, equipment and materials. Routing decisions made in the first stage

consist of constructing a tour for each vehicle to visit the set of customers assigned to it, which can

be done regardless of the demand realizations. The subsequent stages involve production, inventory

and delivery quantity decisions which are made when the demand becomes known. The major

difference between the two-stage and the multi-stage problems is the timing of the actual demand

realizations. In the two-stage problem, the demands for the entire planning horizon become known

once the first-stage decisions are made. In the multi-stage problem, the demands for a given stage
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become known only after the decisions for the previous stage have been made. These two problems

are illustrated in Figure 1. The two-stage SPRP and the multi-stage SPRP will be referred to as

2-SPRP and M-SPRP, respectively.

Figure 1 Illustration of the two-stage and the multi-stage PRP.
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To the best of our knowledge, neither the 2-SPRP nor the M-SPRP has been addressed before.

Our study makes five main contributions. First, we introduce two-stage and multi-stage stochastic

PRP formulations. Second, we compare two strategies to solve these problems: a classical branch-

and-cut algorithm and a Benders decomposition approach. Third, we propose several computational

enhancements for the Benders decomposition algorithm: the use of a single branching tree for

the master problem, lower bound lifting inequalities, and scenario group cuts. Fourth, we develop

an effective rollout heuristic to obtain good feasible solutions to the multi-stage problem. Fifth,

we demonstrate the benefits of the reoptimization capabilities of the Benders decomposition in a

sample average approximation method for the 2-SPRP and in the rollout heuristic for the multi-

stage problem.

The rest of the paper is organized as follows. Section 2 introduces notation and mathematical

formulations for the SPRP. Section 3 then describes the Benders decomposition algorithms. This

is followed by the computational experiments in Sections 4 and 5, and by the conclusion.
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2. Mathematical Formulations

This section first introduces the notation used throughout the paper. It then describes the two-stage

and multi-stage formulations of the SPRP.

2.1. Notation

Let Ω, indexed by ω, denote the finite set of demand scenarios, and let ρω be the probability of

scenario ω ∈Ω. The two-stage SPRP can be defined on a complete undirected graph G= (N,E),

where N = {0, . . . , n} is the set of nodes and E = {(i, j) : i, j ∈N, i < j} is the set of edges. Node

0 represents the plant while Nc = N \ {0} is the set of customers. Let E(S) be the set of edges

(i, j) ∈E such that i, j ∈ S, where S ⊆N is a given set of nodes, and let δ(S) be the set of edges

incident to a node set S, i.e., δ(S) = {(i, j)∈E : i∈ S, j /∈ S or i /∈ S, j ∈ S}. For simplicity, we also

write δ(i) to represent the set δ({i}) of edges incident to node i. We denote by T = {1, . . . , l} the

set of time periods and by ditω the demand of customer i in period t under scenario ω. A unit cost

σi is incurred if some demand of customer i is left unmet at the end of a period. At the beginning

of the planning horizon, an initial inventory Ii0 is available at node i. In each period, a production

capacity of C is available and a unit production cost u and a fixed production setup cost f are

incurred if production takes place. A set K = {1, . . . ,m} of identical vehicles of capacity Q can

be dispatched from the plant and a transportation cost cij applies when a vehicle travels between

nodes i and j. Inventory can be kept at both the plant and customers but the inventory level cannot

exceed Li at node i, and a unit inventory holding cost hi is incurred. Let also Ii0ω = Ii0,∀ω ∈ Ω,

Mtω = min
{
C,
∑l

j=t

∑
i∈Nc

dijω

}
and M ′

itω = min
{
Li,Q,

∑l

j=t dijω

}
.

The following decision variables are used to formulate the SPRP. The variable yt is equal to 1 iff

production takes place in period t and zikt is equal to 1 iff node i is visited by vehicle k in period

t. The variable xijkt represents the number of times vehicle k travels directly between node i and

node j in period t. Finally, we denote by ptω the production quantity in period t under scenario ω,

Iitω the inventory at node i at the end of period t under scenario ω, qiktω the quantity delivered to
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customer i with vehicle k in period t under scenario ω, and eitω the amount of unmet demand at

customer i in period t associated with scenario ω.

2.2. Two-Stage SPRP Formulation

We first present a two-stage SPRP formulation, which is an extension of the formulation for

the deterministic problems studied by Archetti et al. (2007, 2011), Solyalı and Süral (2011) and

Adulyasak et al. (2014a). The SPRP can be formulated as follows:

min
∑
t∈T

fyt +
∑

(i,j)∈E

∑
k∈K

cijxijkt +
∑
ω∈Ω

ρω

(
uptω +

∑
i∈N

hiIitω +
∑
i∈Nc

σieitω

) (1)

s.t. I0,t−1,ω + ptω =
∑
i∈Nc

∑
k∈K

qiktω + I0tω ∀t∈ T,∀ω ∈Ω (2)

Ii,t−1,ω +
∑
k∈K

qiktω + eitω = ditω + Iitω ∀i∈Nc,∀t∈ T,∀ω ∈Ω (3)

I0tω ≤L0 ∀t∈ T,∀ω ∈Ω (4)

Iitω + ditω ≤Li ∀i∈Nc,∀t∈ T,∀ω ∈Ω (5)

ptω ≤Mtωyt ∀t∈ T,∀ω ∈Ω (6)∑
i∈Nc

qiktω ≤Qz0kt ∀k ∈K,∀t∈ T,∀ω ∈Ω (7)

qiktω ≤M ′
itωzikt ∀i∈Nc,∀k ∈K,∀t∈ T,∀ω ∈Ω (8)∑

k∈K

zikt ≤ 1 ∀i∈Nc,∀t∈ T (9)∑
(j,j′)∈δ(i)

xjj′kt = 2zikt ∀i∈N,∀k ∈K,∀t∈ T (10)∑
(i,j)∈E(S)

xijkt ≤
∑
i∈S

zikt− zekt ∀S ⊆Nc : |S|≥ 2,∀e∈ S,∀k ∈K,∀t∈ T (11)

eitω, ptω, Iitω, qiktω ≥ 0 ∀i∈N,∀k ∈K,∀t∈ T,∀ω ∈Ω (12)

yt, zikt ∈ {0,1} ∀i∈N,∀k ∈K,∀t∈ T (13)

xijkt ∈ {0,1} ∀(i, j)∈E : i 6= 0,∀k ∈K,∀t∈ T (14)

x0jkt ∈ {0,1,2} ∀j ∈Nc,∀k ∈K,∀t∈ T. (15)
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The objective function (1) minimizes the cost of the first stage decisions and the expected cost

of the second stage decisions. Constraints (2) and (3) enforce the inventory flow balance for each

scenario at the plant and customers. The maximum inventory level is imposed by constraints (4) and

(5). Constraints (6) allow a positive production quantity only if a setup is made, and this quantity

cannot exceed the minimum of the capacity and the total demand in the remaining periods. The

delivery quantity in each vehicle cannot exceed the vehicle capacity (constraints (7)) and a positive

delivery quantity is allowed only if the customer is visited (constraints (8)). Each customer cannot

be visited more than once per period following constraints (9). Constraints (10) require the number

of incident edges to be 2 if the node is visited and constraints (11) eliminate subtours for each

vehicle. We remark that constraints (5) impose the inventory capacity at customers by assuming

that the delivery is made prior to demand consumption. These constraints can also be written as

Ii,t−1,ω +
∑

k∈K qiktω + eitω ≤Li.

Note that this formulation becomes the vehicle-index formulation for the deterministic PRP in

Adulyasak et al. (2014a) when the number of scenarios is equal to one and the amount of unmet

demand is forced to be zero. To strengthen the routing part, the following inequalities can be added

to the formulation (see Archetti et al. 2007, 2011):

zikt ≤ z0kt ∀i∈Nc,∀k ∈K,∀t∈ T (16)

xijkt ≤ zikt and xijkt ≤ zjkt ∀(i, j)∈E(Nc),∀k ∈K,∀t∈ T. (17)

Constraints (16) allow a vehicle to visit customers only if it is dispatched from the plant and

constraints (17) allow an edge incident to a customer node only if that customer is visited. When

addressing the multi-vehicle aspect, Adulyasak et al. (2014a) showed that the following valid vehicle

symmetry breaking constraints can significantly improve algorithmic performance:

z0kt ≥ z0,k+1,t ∀1≤ k≤m− 1,∀t∈ T (18)

j∑
i=1

2(j−i)zikt ≥
j∑
i=1

2(j−i)zi,k+1,t ∀j ∈Nc,∀1≤ k≤m− 1,∀t∈ T. (19)

Model (1)-(19) will be referred to as the 2-BF.
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2.3. Multi-Stage SPRP Formulation

In the multi-stage problem, one has to make the decisions in stage t without knowing the demand

of future periods. An independent set of possible realizations is thus considered for each time period

and the full set of scenarios can be represented by a scenario tree. Denote by Ωt, indexed by ωt,

the set of possible demand realizations at period t. Each l-period scenario ω can be described by

a path from the root node of the tree in period 1 to a leaf node in period l, i.e., ω = {ω1, ..., ωl}.

Unlike the 2-SPRP where scenarios are independent from each other, some l-period scenarios

in the M-SPRP have common elements in their trajectories from the first period to a certain

period t < l. This requires the introduction of so-called non-anticipativity constraints to ensure the

consistency of production, inventory and delivery quantity decisions between scenarios. Denote by

Ht(ω) the index of the scenario node in the scenario tree at period t associated with scenario ω.

Let also p′t,Ht(ω), I
′
it,Ht(ω), q

′
ikt,Ht(ω) and e′it,Ht(ω) denote the variables p, I, q and e associated with

the scenario node Ht(ω), respectively. The M-SPRP can be formulated by adding the following

non-anticipativity constraints:

ptω = p′t,Ht(ω) ∀t∈ T,∀ω ∈Ω (20)

Iitω = I ′it,Ht(ω) ∀i∈N,∀t∈ T,∀ω ∈Ω (21)

eitω = e′it,Ht(ω) ∀i∈Nc,∀t∈ T,∀ω ∈Ω (22)

qiktω = q′ikt,Ht(ω) ∀i∈Nc,∀k ∈K,∀t∈ T,∀ω ∈Ω. (23)

Model (1)-(23) will be referred to as the M-BF.

3. Benders Decomposition

We now introduce exact algorithms based on Benders decomposition (Benders 1962) to solve the

2-SPRP and the M-SPRP. In Benders decomposition, the original problem is partitioned into a

master problem and a number of subproblems which are typically easier to solve than the original

problem. By using linear programming duality, all the variables that belong to the subproblems are

projected out and the master problem contains the remaining variables and an artificial variable
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representing a lower bound on the total cost of the subproblems. The resulting model is solved by

a cutting plane algorithm in which, at each iteration, the values of the master problem variables

are first determined and the subproblems are solved with these variables fixed. If the subproblems

are feasible and bounded, an optimality cut is added to the master problem, otherwise a feasibility

cut is added. An upper bound can be computed from feasible subproblems and a lower bound

is obtained if the master problem is solved to optimality. The process continues until an optimal

solution is found or the optimality gap is smaller than a given threshold.

3.1. Two-Stage SPRP Benders Reformulation

In the two-stage SPRP, we observe that the integer variables are the first-stage decisions while the

continuous variables belong to the second stage. If the first-stage decisions are fixed, the resulting

subproblem is a network flow problem which can be decomposed by scenario. This follows the

original idea of applying Benders decomposition to stochastic integer programs, also known as the

L-shaped method (see Van Slyke and Wets 1969, Birge and Louveaux 2011).

We let x̄, ȳ and z̄ denote the vectors of fixed xijkt, yt and zikt variables, respectively. The

second-stage decisions are independent of x̄, i.e., independent of the order of the visits in a route.

The expected total cost of the second-stage decisions, denoted by υ(ȳ, z̄), can be calculated as

υ(ȳ, z̄) =
∑

ω∈Ω ρωυω(ȳ, z̄), where υω(ȳ, z̄) is the total second-stage cost of scenario ω, which can

itself be obtained by solving the following primal flow subproblem (PFS):

υω(ȳ, z̄) = min
∑
t∈T

(
uptω +

∑
i∈N

hiIitω +
∑
i∈Nc

σieitω

)
(24)

s.t. (12) and

I0,t−1,ω + ptω =
∑
i∈Nc

∑
k∈K

qiktω + I0tω ∀t∈ T (25)

Ii,t−1,ω +
∑
k∈K

qiktω + eitω = Iitω + ditω ∀i∈Nc,∀t∈ T (26)

I0tω ≤L0 ∀t∈ T (27)

Iitω + ditω ≤Li ∀i∈Nc,∀t∈ T (28)
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ptω ≤Mtωȳt ∀t∈ T (29)∑
i∈Nc

qiktω ≤Qz̄0kt ∀k ∈K,∀t∈ T (30)

qiktω ≤M ′
itωz̄ikt ∀i∈Nc,∀k ∈K,∀t∈ T. (31)

Due to the presence of the variables eitω, the PFS is always feasible because the demand can be

left unmet. Furthermore, since the cost parameters u, hi and σi are finite and due to constraints

(25)-(28), any feasible solution of the PFS must be bounded. As a consequence, the dual of PFS is

feasible and bounded. We let α= (αtω|∀t∈ T,∀ω ∈Ω), β= (βitω|∀i∈Nc,∀t∈ T,∀ω ∈Ω), γ = (γtω ≥

0|∀t ∈ T,∀ω ∈ Ω), θ = (θitω ≥ 0|∀i ∈ Nc,∀t ∈ T,∀ω ∈ Ω), δ = (δtω ≥ 0|∀t ∈ T,∀ω ∈ Ω), κ = (κktω ≥

0|∀k ∈K,∀t ∈ T,∀ω ∈ Ω) and ζ = (ζiktω ≥ 0|∀i ∈Nc,∀k ∈K,∀t ∈ T,∀ω ∈ Ω) denote the vectors of

the dual variables associated with constraints (25)-(31), respectively, and let also αl+1,ω = 0 and

βi,l+1,ω = 0. The dual of the primal subproblem for each scenario ω, called the dual flow subproblem

(DFS), can be formulated as follows:

υω(ȳ, z̄) = max −I00α1ω +
∑
i∈Nc

(di1ω − Ii0)βi1ω +
∑
i∈Nc

l∑
t=2

ditωβitω −
∑
t∈T

L0γtω

−
∑
t∈T

∑
i∈Nc

(Li− ditω)θitω −
∑
t∈T

Mtωȳtδtω −
∑
t∈T

∑
k∈K

Qz̄0ktκktω −
∑
t∈T

∑
k∈K

∑
i∈Nc

M ′
itωz̄iktζiktω (32)

s.t. (α,β,γ,θ,δ,κ,ζ)∈∆ω, (33)

where ∆ω denotes the polyhedron defined by the constraints of the problem.

We define the set ∆ =
⋃
ω∈Ω∆ω and we let P∆ denote the set of extreme points of ∆. To obtain

the Benders master problem, we further define πω(α,β,γ,θ) =−I00α1ω +
∑

i∈Nc
(di1ω − Ii0)βi1ω +∑

i∈Nc

∑l

t=2 ditωβitω −
∑

t∈T L0γtω −
∑

t∈T
∑

i∈Nc
(Li− ditω)θitω and we introduce an extra variable

η representing the expected total flow cost. The model 2-BF can be reformulated as follows:

min
∑
t∈T

fyt +
∑

(i,j)∈E

∑
k∈K

cijxijkt

+ η (34)

s.t. (9)-(11), (13)-(15), (16)-(19) and

∑
ω∈Ω

ρω

(
−
∑
t∈T

Mtωδtωyt−
∑
t∈T

∑
k∈K

Qκktωz0kt−
∑
t∈T

∑
k∈K

∑
i∈Nc

M ′
itωζiktωzikt +πω(α,β,γ,θ)

)
≤ η

∀(α,β,γ,θ,δ,κ,ζ)∈ P∆. (35)
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This formulation will be referred to as 2-BRF.

Observe that 2-BRF contains a large number of Benders cuts (35) as well as the SECs (11).

Thus, a natural solution approach is to start from a relaxed 2-BRF where these constraints are

dropped. Next, violated constraints are detected and iteratively added to the problem. A solution

approach to handle this reformulation will be explained in Section 3.3.

3.2. Multi-Stage SPRP Benders Reformulation

As explained in Section 2.3, the M-SPRP is basically the 2-SPRP with the additional non-

anticipativity constraints. Therefore, one obtains a similar reformulation as for the 2-BRF by

projecting out the continuous variables. We first consider the original model M-BF (1)-(23). Denote

by λptω,λIitω, λeitω and λqiktω the dual variables associated with constraints (20)-(23), respectively.

One obtains the following Benders reformulation:

min
∑
t∈T

fyt +
∑

(i,j)∈E

∑
k∈K

cijxijkt

+ η (36)

s.t. (9)-(11), (13)-(15), (16)-(19) and

(37)

∑
ω ∈Ω

ρω

(
−
∑
t∈T

Mtωδtωyt −
∑
t∈T

∑
k∈K

Qκktωz0kt −
∑
t∈T

∑
k∈K

∑
i∈Nc

M ′
itωζiktωzikt

)
+ π′(α,β,γ,θ,λp,λI ,λe,λq) ≤ η ∀(α,β,γ,θ,δ,κ,ζ,λp,λI ,λe,λq) ∈ Q∆,

where Q∆ denotes the set of extreme points of the polyhedron defined by the constraints of the

resulting multi-period subproblem, and the function π′(α,β,γ,θ,λp,λI ,λe,λq) is the part of the

dual subproblem objective function that does not depend on the first stage variables (x, y, z). This

expression is equivalent to the function πω(α,β,γ,θ) defined in Section 3.1 given that the right-

hand-side of constraints (20)-(23) is equal to 0. This formulation will be referred to as M-BRF.

Note that the subproblem is no longer separable by scenario because of the non-anticipativity

constraints.

3.3. Benders-Based Branch-and-Cut Algorithm

Because Benders cuts can be generated from any master problem solution and not just from an

optimal integer solution (McDaniel and Devine 1977), one can solve the Benders reformulation
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in a standard branch-and-cut framework where the subproblems are solved and Benders cuts are

generated at any node of the branch-and-bound tree for the master problem. This approach is

sometimes called Benders-based branch-and-cut (BBC) (see, e.g., Naoum-Sawaya and Elhedhli

2013). Other implementations of BBC were discussed by Codato and Fischetti (2006), Fortz and

Poss (2009) and de Camargo et al. (2011), among others. In our algorithm, to avoid generating a

large number of Benders cuts, these cuts are added to the master problem only at the root node

and when an incumbent solution of the Benders master problem is found. Our tests showed that

this strategy significantly improves performance compared to adding cuts at every node of the

branch-and-bound tree.

Since our master problem also contains subtour elimination constraints (SECs), a separation

procedure is applied to detect violated SECs at each node of the branch-and-bound tree and these

cuts are added to the problem together with the Benders cuts, if any. We use the minimum s− t

algorithm of the Concorde callable library (Applegate et al. 2011) as the separation algorithm.

3.4. Computational Enhancements

We now describe computational enhancements that help improve the convergence of the algorithm.

3.4.1. Lower Bound Lifting Inequalities. Because parts of the objective function (1)

are projected out in the Benders reformulations, the optimality gap may be large in the initial

stages of the algorithm due to the low quality of the lower bound. A large number of Benders

cuts are thus needed to close the gap. To address this issue, one can lift the lower bound of the

Benders master problem by using initial cuts, called lower bound lifting inequalities (LBL), that

contain some information about the parts of the original objective function that were removed. In

particular, one can add cuts to represent a lower bound on the flow costs, i.e., unit production,

inventory and penalty costs. We observe that, for the periods between two consecutive deliveries

to a customer, the minimum flow cost can be calculated by considering the quantity that must be

supplied between the two visits to satisfy the demand. Figure 2 illustrates the inventory level when

customer i is visited in period 2 and then in period 6, while the demand in each period is equal
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to 40 so that the minimum total quantity required to satisfy the demand between these periods is

equal to 160. Given the maximum inventory capacity Li = 100, this total demand quantity can be

separated into two parts, i.e., the amount A= 100 under Li which can be supplied or can also be

left unmet if this results in a lower cost, and the amount B = 60 which cannot be supplied and has

to be left unmet due to the inventory capacity limit.

Figure 2 Inventory level corresponding to the two consecutive visits in periods 2 and 6.
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We define the periods 0 and l+1 as dummy periods at the beginning and the end of the planning

horizon (used for calculation purposes) and di0ω = di,l+1,ω = 0,∀i∈Nc,∀ω ∈Ω. Let λivt be a binary

variable equal to one if customer i is visited in period v < t and the next visit is in period t, and

the parameter φivt be the minimum possible sum of unit production, inventory and penalty costs

over the period v to t− 1 associated with the variable λivt, calculated as

φivt =
∑
ω∈Ω

ρω

 t−1∑
s=v

min
{
HP
ivsω,H

σ
ivsω

}
+ chivt +σi

(
t−1∑
s=v

disω −ϕiv

)+


where HP
ivsω =


(hi(s− 1) +u)min

{
disω,

(
ϕi0−

∑s−1

w=1 diwω

)+
}

if v= 0

(hi(s− v) +u)min

{
disω,

(
ϕiv −

∑s−1

w=v diwω

)+
}

if v > 0,

Hσ
ivsω = σimin

disω,
(
ϕiv −

s−1∑
w=v

diwω

)+
 ,

ϕiv =

{
Ii0 if v= 0

Li if 0< v < t≤ l+ 1
and chivt =

hi(t− 1)
(
Ii0−

∑t−1

w=1 diwω

)+

if v= 0

hi(t− v)
(
Ii0−

∑t−1

w=1 diwω

)+

if 0< v < t≤ l+ 1.

Note that chivt is the inventory cost at customer i incurred over the period v to t− 1 for the part



Adulyasak, Cordeau, and Jans: PRP under Demand Uncertainty
14 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

of the initial inventory that is not used up at the end of period t− 1. The following cuts can be

added to the master problem:

l+1∑
t=1

t−1∑
v=0

∑
i∈Nc

φivtλivt−u
∑
i∈Nc

Ii0 ≤ η (38)

t−1∑
v=0

λivt =
∑
k∈K

zikt ∀i∈Nc,∀t∈ T (39)

t−1∑
v=0

l+1∑
s=t

λivs = 1 ∀i∈Nc,∀t∈ T ∪{l+ 1} (40)

λivt ∈ {0,1} ∀i∈Nc,∀0≤ v < t≤ l+ 1. (41)

Constraint (38) provides a lower bound for the flow cost. Constraints (39) link the λivt and zikt

variables and constraints (40) enforce that one replenishment plan λivt be selected in each period.

One can observe that when all the zikt variables are fixed, the variables λivt can be easily set by

inspection.

3.4.2. Scenario Group Cuts. In the 2-BRF, the Benders subproblem decomposes into many

independent subproblems. Hence, many Benders cuts, one for each subproblem, can be added at

once to accelerate convergence (Birge and Louveaux 1988). However, adding too many cuts at each

iteration can lead to a worse performance because of the time taken to solve the master problem

(de Camargo et al. 2008). In the SPRP, there is a subproblem for each scenario and the number

of Benders cuts generated at each iteration can be huge. To overcome this issue, one can instead

create groups of scenarios and aggregate the Benders cuts in each group to reduce the size of the

master problem. To create scenario groups, we first define the number of scenario groups nG ≤ |Ω|

and groups of scenarios G(g), indexed by g. The range between the maximum and minimum total

demand among all scenarios is calculated and separated equally into nG groups. Each scenario is

then assigned to a group according to its total demand. Denote by ηg the expected total flow cost

corresponding to group g. The variable η in the objective function (34) is replaced by
∑nG

g=1 ηg and

constraints (35) are replaced by the following constraints:∑
ω∈G(g)

ρω

(
−
∑
t∈T

Mtωδtωyt−
∑
t∈T

∑
k∈K

Qκktωz0kt−
∑
t∈T

∑
k∈K

∑
i∈Nc

M ′
itωζiktωzikt +πω(α,β,γ,θ)

)
≤ ηg

∀1≤ g≤ nG,∀(α,β,γ,θ,δ,ζ,κ)∈ P∆. (42)
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3.4.3. Pareto-Optimal Cuts. The performance of a Benders decomposition algorithm often

depends on the quality of the cuts being generated. This is especially true when the dual subproblem

admits multiple optimal solutions, each providing a potentially different cut. To identify strong

cuts, we employ the approach of Magnanti and Wong (1981) which ensures the generation of

a Pareto-optimal cut whenever there are multiple optimal dual solutions. More details on our

implementation of this approach are provided in the Online Supplement.

3.4.4. Warm Start for the M-BRF. Since the 2-SPRP is a relaxation of the M-SPRP,

one can warm-start the algorithm for the M-BRF by first solving the 2-BRF to generate an initial

set of cuts. These cuts are valid for the M-BRF because the primal subproblem for the 2-BRF

is a relaxation for that of the M-BRF obtained by omitting the non-anticipativity constraints.

Hence, the dual subproblem for the 2-BRF is a restriction of the dual subproblem for the M-BRF

(since the former contains only a subset of the variables of the latter). As a result, a dual solution

identified by solving the 2-BRF subproblem is guaranteed to be feasible for the M-BRF as well.

This solution may not correspond to an extreme point of the polyhedron but it will nonetheless

provide a valid cut. The idea of solving a relaxed primal subproblem to warm-start a Benders

decomposition algorithm was used before, e.g., by Cordeau et al. (2001). Following this observation,

one can solve the 2-BRF to generate cuts using the same set of scenarios as for the M-SPRP but

without the non-anticipativity constraints. Moreover, it is known that the optimal solution of the

2-BRF also provides a valid lower bound for the M-SPRP (Birge and Louveaux 2011). Finally,

since the LBL cuts are valid for 2-BRF, one can add these cuts to the M-BRF before the algorithm

starts.

4. Computational Experiments

We have performed experiments using the PRP instances introduced by Adulyasak et al. (2014a),

which were themselves generated from the instances of Archetti et al. (2011). The test set consists

of instances with n = 5, 10, 15, 20, 25 and 30 customers while the number of periods l is between 3

and 6. For simplicity, we designate by P the set of instances with n≤ 20 for the 2-SPRP and with
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n≤ 15 for the M-SPRP. We have generated scenarios by a Monte-Carlo simulation in which the

demand in each period is independent and varies in the range [d̄it(1− ε), d̄it(1+ ε)], where d̄it is the

demand of the nominal case from the original test set. We assume that the demands are uniformly

distributed. For the M-SPRP, the scenarios for each period Ωt are generated separately and the

set Ω contains all the trajectory paths of the scenarios at the leaf nodes in the scenario tree. The

penalty cost is set to σi = α̂ [u+ f/C + 2c0i/Q], where α̂ is a predefined penalty level. Unless stated

otherwise, we use α̂= 5 for the default setting when solving the instances. In all tables, columns

#Opt, Gap, CPU and B.Cuts show the number of instances solved to optimality, the average

optimality gap (%), the average CPU time in seconds and the average number of generated Benders

cuts, respectively. The experiments were performed on a workstation with an Intel Xeon 2.67GHz

processor and 6GB of RAM under Scientific Linux 6.1 using CPLEX 12.5.1. The algorithms were

coded in C and C# on MonoDevelop 3.0. The maximum CPU time per instance is set to two

hours unless otherwise indicated. To prevent memory problems, we also set the maximum number

of branch-and-bound nodes to 200,000. In all experiments, branching priority was given first to the

y variables and then to z and x variables.

4.1. Impact of the Computational Enhancements

Tables 1 and 2 report the performance of the BBC algorithms when the enhancements of Section

3.4 are applied for the 2-BRF and M-BRF, respectively. The tests were performed on the instances

of set P with three periods, one vehicle and ε= 0.2. For each value of n, we solved four different

instances with different cost parameters and the maximum CPU time per instance is set to one

hour. For the 2-BRF, although we have tested several different choices for the number of groups

in the scenario group cuts, we report results only for b = 5 because a change of b in a small range

(e.g., less than 10) has little impact on performance. Columns None indicate the BBC without

any enhancement and other columns show the results when different computational enhancements

are used. The abbreviations LBL, PO and SG5 correspond to the lower bound lifting inequalities,
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Table 1 Average results of the BBC algorithms using the computational enhancements for the 2-BRF

|T | |Ω| #Ins None LBL LBL\PO LBL\PO\SG5

#Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts

3 100 16 13 0.5 714.3 2683 15 0.0 323.6 2157 16 0.0 115.6 39 16 0.0 50.9 314

3 500 16 13 0.8 530.9 3713 13 0.1 523.9 3266 16 0.0 145.5 38 15 0.0 153.6 361

3 1000 16 12 0.7 961.5 1931 13 0.1 697.1 1897 15 0.0 323.7 37 16 0.0 207.8 424

Total 48 38 0.6 735.5 2776 41 0.0 514.9 2440 47 0.0 194.9 38 47 0.0 137.4 366

Pareto-optimal cuts, and scenario group cuts with 5 groups, respectively. We use WS to indicate

the warm-start process using cuts generated from the 2-BRF.

The results indicate that the LBL significantly reduce the average CPU time. The generation of

Pareto-optimal cuts results in an increase in the computing time per iteration but this is largely

compensated by a reduction in the number of Benders cuts being generated. Finally, choosing an

appropriate number of groups can lead to better performance and combining the scenario group

cuts and Pareto-optimal cuts provides the best overall results compared to the other options. Thus,

we chose the combination of LBL, PO and SG5 as the preferred setting of the BBC in all remaining

experiments for the 2-SPRP.

Table 2 Average results of the BBC algorithms using the computational enhancements for

the M-BRF

|T | |Ωt| |Ω| #Ins None LBL LBL\WS

#Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts

3 6 216 12 7 20.6 1214.7 1847 9 0.8 645.8 1015 9 0.6 767.1 1042

3 8 512 12 5 32.3 2754.4 1794 9 0.9 1420.6 858 10 0.7 1254.1 717

Total 24 12 26.5 1984.6 1820 18 0.9 1033.2 936 19 0.6 1010.6 880

For the M-BRF, the results indicate that the LBL can significantly improve the computational

performance and applying the LBL together with the warm start provides additional improvements.

The average optimality gap decreased from 26.5% to 0.6% while the average CPU was reduced by

approximately 50% with the LBL\WS. We thus used the LBL\WS as the default setting for the

M-BRF.
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4.2. Comparisons with Branch-and-Cut

In this section, we compare the results of the BBC with a branch-and-cut algorithm (BC). To

this end, we adapted the branch-and-cut algorithm for the vehicle-index formulation of Adulyasak

et al. (2014a), which provided the best results for the deterministic problem. This BC algorithm is

applied to solve the formulations 2-BF and M-BF directly. In the BC, the SECs (11) are relaxed and

generated by calling the separation procedure. The results are shown in Tables 3 and 4. Columns

Nodes and N.Cplex show the number of branching nodes and the number of CPLEX cuts generated

in the branch-and-bound tree, respectively. To better illustrate the differences between the two

approaches, we performed the tests on two instance sets: one with 3 periods and 5 to 30 customers,

and the other with 6 time periods and 5 to 20 customers, while setting the number of scenarios |Ω|

equal to 100, 500 or 1000 for the 2-SPRP. For the M-SPRP, we used one instance set with 3 periods

and 5 to 20 customers, and another set with 4 periods and 5 to 15 customers. In both cases, we

set |Ωt| = 5, 6 and 7, which results in |Ω| = 125, 216 and 343 and |Ω| = 625, 1296 and 2401 for

the instances with |T |= 3 and |T |= 4, respectively. The number of vehicles in each instance varies

between 1 and 3 while the sum of vehicle capacities remains constant. Finally, we set ε= 0.2. Note

that the average optimality gap was computed only on the instances where a feasible solution was

found. In addition to these results, we also report the expected value of perfect information (EVPI)

and the value of the stochastic solution (VSS) as a percentage of the best solution cost. Note that

when an instance is not solved to optimality, the calculated values provide a lower bound on the

VSS and an upper bound on the EVPI.

For the 2-SPRP, when the number of scenarios is not large (i.e., |Ω|= 100) the BC algorithm is

superior to the BBC. However, the performance of the BC algorithm deteriorates sharply when

the number of scenarios, the number of periods and the number of vehicles increase. The BBC

algorithm, on the other hand, is less sensitive to these parameters and still provides acceptable gaps

for the most difficult instances tested. For the M-SPRP, the BC algorithm is superior to the BBC

on the instances with 3 periods but the performance deteriorates significantly on instances with
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Table 3 Average results of the BC and the BBC algorithms on 2-SPRP instances

|T | |K| |Ω| #Ins BC BBC %EVPI %VSS

#Opt Gap CPU Nodes N.Cplex #Opt Gap CPU Nodes N.Cplex B.Cuts

3 1 100 6 6 0.0 29.6 8 8109 4[1] 0.7 1577.4 71637 25 1932 0.5% 1.0%

3 2 100 6 6 0.0 171.4 31 11388 4[1] 0.8 2475.3 86963 86 1522 0.6% 0.7%

3 3 100 6 6 0.0 2029.2 270 12615 3 1.2 3734.7 83591 89 2287 0.5%(1) 1.2%

3 1 500 6 6 0.0 427.0 12 37274 4[1] 0.6 1882.1 61211 27 1753 0.5% 1.1%

3 2 500 6 5 16.7 2606.5 28 48654 3[2] 0.8 2815.1 83476 92 1540 0.7% 0.7%

3 3 500 6 2 50.7 5539.7 107 34441 2[1] 1.8 4699.9 78370 70 2448 0.6%(2) 1.1%

3 1 1000 6 6 0.0 1837.7 10 72148 4[1] 0.6 1975.1 70452 27 1373 0.5% 1.2%

3 2 1000 6 3 33.5 5270.1 23 46625 3[2] 1.0 2884.0 88063 77 1362 0.6% 0.9%

3 3 1000 6 1 60.2 6948.6 31 27001 2 2.0 4877.8 72765 75 2088 0.6%(2) 1.0%

Total 54 41 17.9 2762.2 58 33139 29[9] 1.1 2991.3 77392 63 1812 0.6%(5) 1.0%

6 1 100 4 4 0.0 162.7 92 8475 2[1] 0.7 3675.2 95218 14 4600 0.6% 0.6%

6 2 100 4 4 0.0 2301.2 1611 11564 1 2.1 5454.9 79983 83 7938 0.8% 1.3%

6 3 100 4 2 14.0 4580.6 265 15965 1 3.4 7102.5 72114 67 9508 0.4%(3) 2.4%

6 1 500 4 4 0.0 3830.9 91 45367 2 0.8 3881.7 72483 21 4028 0.6% 1.0%

6 2 500 4 0 68.3 7200.0 34 28942 1 2.3 5607.7 46994 103 7145 0.9% 1.1%

6 3 500 4 0 78.6 7200.0 20 15841 0 4.1 7200.0 42926 64 7720 n/a(4) 0.6%

6 1 1000 4 1 45.2 6840.5 31 62624 2 1.0 4158.5 40382 17 3865 0.7% 0.4%

6 2 1000 4 0 94.4 7200.0 0 19720 1 2.5 5846.8 24817 87 6490 0.1%(3) 1.1%

6 3 1000 4 0 100.0 7200.0 0 9771 0 4.5 7200.0 21100 72 5950 n/a(4) 0.9%

Total 36 15 44.5 5168.4 238 24252 10[1] 2.4 5569.7 55113 58 6360 0.5%(14) 1.1%

[a]Number of instances for which the maximum number of brand-and-bound nodes was reached.

(a)Number of instances for which the EVPI could not be computed in 4 hours of CPU time.

4 periods since the number of scenarios in the M-SPRP increases as the number of time periods

increases and BC is very sensitive to this change. It should also be noted that a large number of

CPLEX cuts is generated when solving the BC and the majority of them, approximately 90%,

are flow cover cuts that strengthen the network structure of the problem. The performance of

the algorithms without CPLEX cuts was reported in Adulyasak (2012). Without these cuts, the

performance of the BC algorithm decreases significantly.

4.3. Sensitivity Analyses

In this section, we evaluate the solution quality and the performance of the algorithm when the

parameters and settings are changed. In the first part of the analysis, we use the instances with

different cost parameters as in the setting described by Archetti et al. (2011) and Adulyasak et al.

(2014a). The details of the instance groups are given in Table 5.
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Table 4 Average results of the BC and the BBC algorithms on M-SPRP instances

|T | |K| |Ωt| |Ω| #Ins BC BBC %EVPI %VSS

#Opt Gap CPU Nodes N.Cplex #Opt Gap CPU Nodes N.Cplex B.Cuts

3 1 6 216 4 4 0.0 32.4 23 4977 3 1.7 2088.9 24758 25 1123 1.6% 1.9%

3 1 7 343 4 4 0.0 60.7 28 7597 3 1.7 2419.4 22849 18 1301 1.8% 1.7%

3 1 8 512 4 4 0.0 109.1 20 11075 2 3.4 4337.7 24397 24 1839 1.8% 1.7%

3 2 6 216 4 4 0.0 158.7 70 8219 1 3.4 5471.7 65247 52 2965 1.6% 1.1%

3 2 7 343 4 4 0.0 313.5 83 11490 1 4.5 5509.5 27246 42 2211 1.8% 1.1%

3 2 8 512 4 4 0.0 615.0 74 20022 1 4.3 5642.7 35267 43 2532 1.8% 1.1%

3 3 6 216 4 4 0.0 1741.1 515 10440 2 4.2 4301.9 62287 60 2739 1.6% 2.1%

3 3 7 343 4 3 0.3 3560.6 345 15357 1 4.9 5976.9 63326 62 3033 1.9% 2.1%

3 3 8 512 4 2 1.3 4060.4 201 22196 1 5.1 6210.4 58347 49 2628 2.1% 2.0%

Total 36 33 0.2 1183.5 151 12375 15 3.7 4662.1 42636 42 2263 1.8% 1.7%

4 1 6 1296 3 3 0.0 773.9 48 26321 1 5.9 5800.0 7834 16 993 1.4% 0.7%

4 1 7 2401 3 3 0.0 2571.0 70 50489 1 6.0 5962.5 4523 17 594 1.1% 1.1%

4 1 8 4096 3 2 33.3 5874.6 52 82980 1 6.0 7200.0 2821 19 373 1.1% 0.9%

4 2 6 1296 3 2 23.4 4280.4 155 41392 0 8.1 7200.0 15494 46 1489 1.5% 0.5%

4 2 7 2401 3 0 34.4 7200.0 104 67994 0 8.4 7200.0 6362 31 754 1.6% 0.8%

4 2 8 4096 3 0 61.9 7200.0 1 63486 0 12.2 7200.0 3644 38 372 0.6%(1) 1.2%

4 3 6 1296 3 0 35.3 7200.0 151 41985 0 10.2 7200.0 13982 28 1216 0.9%(1) 1.2%

4 3 7 2401 3 0 83.3 6249.5[1] 5 35585 0 14.6 7200.0 7935 44 612 0.8%(2) 1.3%

4 3 8 4096 3 0 87.5 6910.9[1] 0 26560 0 15.4 7200.0 2816 48 281 0.6%(2) 1.0%

Total 27 10 39.9 5362.1[2] 65 48533 3 9.7 6906.9 7268 32 743 1.1%(6) 1.0%

[a]Number of instances for which CPLEX was terminated due to the memory limit.

(a)Number of instances for which the EVPI could not be computed in 4 hours of CPU time.

Table 5 Descriptions of the four instance groups

No. Descriptions

G1 Standard instance (as used in the previous experiments)

G2 High production unit cost, u(G1)×10

G3 Large transportation costs, coordinates(G1)×5

G4 No customer inventory costs

We solved the instances with the BBC algorithm and chose the instance set P with |T |= 3 and

m= 1 for both the 2-SPRP and M-SPRP. However, since not all the instances of size n= 15 for the

M-SPRP were solved to optimality, we only reported the results of the instances with n= 5,10 for

this problem. The results are shown in Tables 6 and 7. The number of scenarios, penalty factors

and the demand variation levels are shown in the tables.

For the 2-SPRP, one can see that the instance groups G3 and G4 are more difficult to solve than

the standard instances and the stochastic solutions for these instances appear to provide small
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Table 6 Average results on different 2-SPRP instance groups

|Ω| α̂ ε #Ins Solution cost CPU B.Cuts %VSS

G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4

100 5 0.2 4 16979 121682 23777 13539 196.6 68.7 151.8 915.5 254 144 158 10177 1.0% 2.8% 0.2% 0.5%

500 5 0.2 4 16973 121658 23875 13371 235.1 38.2 921.3 926.7 252 150 4230 10219 1.1% 2.8% 0.6% 1.1%

1000 5 0.2 4 16961 121504 23762 13530 326.5 128.0 936.2 937.3 318 136 4255 3017 1.2% 3.0% 0.6% 0.4%

Total 12 16971 121615 23805 13480 252.8 78.3 669.8 926.5 274 143 2881 7804 1.1% 2.9% 0.5% 0.7%

100 10 0.2 4 17213 123677 24362 14051 203.2 24.0 208.2 217.3 243 135 216 308 2.5% 5.4% 0.1% 0.6%

500 10 0.2 4 17198 123606 24360 13700 185.2 55.6 545.5 945.9 160 120 2306 10412 2.6% 5.4% 1.8% 1.6%

1000 10 0.2 4 17220 123568 24064 13676 203.9 112.2 548.6 943.8 194 158 2308 10246 2.5% 5.4% 1.7% 2.8%

Total 12 17211 123617 24262 13809 197.4 63.9 434.1 702.3 199 137 1610 6989 2.5% 5.4% 1.2% 1.7%

100 5 0.4 4 17035 121933 24134 13841 182.9 111.8 281.1 394.6 221 165 231 1342 3.1% 5.6% 0.6% 0.5%

500 5 0.4 4 17061 122167 24148 13931 197.6 132.7 257.3 786.3 236 145 206 6914 3.1% 5.7% 1.1% 0.3%

1000 5 0.4 4 17033 121826 24097 13888 259.7 131.7 222.7 1331.9 290 167 179 8555 3.2% 6.0% 0.2% 0.4%

Total 12 17043 121975 24126 13887 213.4 125.4 253.7 837.6 249 159 205 5604 3.1% 5.8% 0.6% 0.4%

100 10 0.4 4 17277 123770 25346 14372 171.7 125.8 189.8 169.7 220 150 243 311 6.7% 11.2% 0.6% 3.5%

500 10 0.4 4 17264 123791 25359 14314 155.3 68.3 384.3 189.7 206 132 331 404 6.9% 11.5% 0.6% 3.8%

1000 10 0.4 4 17262 123684 25191 14303 187.8 135.0 430.2 635.6 186 163 354 1544 6.8% 11.5% 0.9% 3.7%

Total 12 17268 123748 25299 14330 171.6 109.7 334.8 331.7 204 148 309 753 6.8% 11.4% 0.7% 3.6%

Table 7 Average results on different M-SPRP instance groups

|Ωt| |Ω| α̂ ε #Ins Solution cost CPU B.Cuts %VSS

G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4

6 216 5 0.2 2 12872 95390 18841 10976 1373.1 404.5 28.7 62.1 2623 707 80 144 2.9% 5.7% 0.1% 0.1%

8 512 5 0.2 2 12936 96280 18970 11070 1576.3 732.9 70.3 188.9 1162 546 76 166 2.7% 5.1% 0.0% 0.1%

Total 4 12904 95835 18905 11023 1474.7 568.7 49.5 125.5 1893 626 78 155 2.8% 5.4% 0.1% 0.1%

6 216 10 0.2 2 13473 100635 19970 11936 302.9 489.6 16.9 530.4 562 792 44 1015 5.8% 10.0% 0.1% 1.3%

8 512 10 0.2 2 13520 100997 19925 11946 1077.8 365.3 61.1 1720.4 763 300 74 1096 5.5% 9.4% 0.3% 0.9%

Total 4 13496 100816 19948 11941 690.4 427.4 39.0 1125.4 662 546 59 1055 5.7% 9.7% 0.2% 1.1%

6 216 5 0.4 2 12834 94015 19324 11268 416.8 832.4 25.0 105.7 844 1459 69 1589 7.1% 12.0% 0.1% 1.1%

8 512 5 0.4 2 12902 95520 19474 11839 2116.7 279.1 69.3 12.7 1556 235 73 12 6.9% 10.6% 0.1% 0.1%

Total 4 12868 94767 19399 11554 1266.7 555.7 47.2 59.2 1200 847 71 800 7.0% 11.3% 0.1% 0.6%

6 216 10 0.4 2 13555 100992 21210 12181 328.1 123.3 55.0 182.1 619 232 146 391 12.7% 18.5% 0.1% 6.8%

8 512 10 0.4 2 13673 101905 21050 12334 682.0 838.1 104.6 89.9 528 644 126 109 11.3% 16.7% 0.1% 4.4%

Total 4 13614 101448 21130 12258 505.0 480.7 79.8 136.0 573 438 136 250 12.0% 17.6% 0.1% 5.6%

cost saving compared to solving an expected value problem (as measured by %VSS). The instance

group G2, however, could be solved more efficiently and provide the highest savings among all

instance groups. For the M-SPRP, the instance groups G1 and G4 are the most difficult in general.

The stochastic solutions for the instance group G3, as for the 2-SPRP, provide the smallest cost

savings while those of the instance groups G1 and G2 provide the highest cost savings. We can also
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observe that the %VSS increases when the penalty factor or the demand uncertainty level increase.

In the Online Supplement, we report the results of additional computational experiments to

evaluate the sensitivity of the models.

5. Reoptimization Capabilities of the Benders Decomposition Algorithm for
Two-Stage and Multi-Stage SPRPs

The purpose of this section is to study the reoptimization capabilities offered by the Benders

decomposition algorithm. The general idea is that changes to the customer demands affect only

the right-hand-side of the primal subproblem and, thus, only the objective function of the dual

subproblem. Since the dual subproblem polyhedron is unaffected, extreme points identified when

solving a given problem instance remain valid after demand changes and one can generate cuts

for a new instance directly from these points. A new optimal solution is typically obtained in a

few iterations. If one instead employs a branch-and-cut algorithm, it must start from scratch every

time a change is made, which can be very time consuming. We now discuss how this reoptimization

approach can be used to warm start the algorithm and expedite the solution process in two practical

settings: a sample average approximation for the 2-SPRP and a rollout algorithm for the M-SPRP.

In both cases, the procedure starts by solving the first problem from scratch using the BBC and

keeping the dual solutions generated during the solution process. When the problem is reoptimized,

Benders cuts corresponding to the demand scenarios in the new problem are computed using the

dual solutions that were already generated in the previous replications. These cuts are added to

the Benders master problem before the Benders algorithm starts. To avoid adding too many cuts,

we use a preprocessing step to select the cuts. This process starts by solving the Benders master

without any Benders cuts to obtain an initial solution along with the values of ηg. Then, the cuts

with a non-negative left-hand-side value for the initial solution are used as initial Benders cuts.

The number of initial Benders cuts is limited to 5000. If the number of cuts exceeds the limit, those

with the largest left-hand-side value are selected first.
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5.1. Sample Average Approximation for the 2-SPRP

Sample average approximation (SAA) (Kleywegt et al. 2002b) is a Monte-Carlo simulation-based

sampling method developed to solve problems where the number of scenarios is very large. It can

also be applied to problems with continuous distributions or with an infinite number of scenarios.

Given a large scenario set, denoted by Ω′, which is intractable, the SAA consists of solving a number

M of smaller and tractable problems with a sample of size |Ω|� |Ω′|. In the SAA process, one can

calculate the SAA gap which is the estimated difference between the solution obtained by solving

the M replications of the sample size |Ω| and a statistical lower bound on the optimal value for

the large scenario set Ω′. This gap can be determined by a sample average function. In practice,

one can choose a sample size |Ω| and the number of replications M that are most appropriate

for the problem in terms of solution quality and computing time. In the SPRP, where different

demand scenarios are considered in each replication, one can take advantage of the reoptimization

capabilities of Benders decomposition to solve the problem more efficiently. We provide more details

on the SAA scheme and steps to compute the SAA gap in the Online Supplement.

Tests were performed with sample sizes |Ω| = 100, 200, 500 and 1000 and a number of replications

M = 100, 50, 20 and 10, respectively, which makes the total number of evaluated scenarios equal

to 10,000 for every sample size. We performed the tests on instances with n= 10,15, l = 3 and m

= 1 to avoid excessive computing times. In addition to the uniform distribution, experiments were

also performed using normal and gamma distributions with parameters chosen so that the current

demand range [d̄it(1− ε), d̄it(1 + ε)] corresponds approximately to a 99.5% confidence interval. The

size of the large scenario set was chosen equal to |Ω′| = 10,000 to evaluate the SAA gap.

Scenarios were generated a priori and all the algorithms were tested on the same scenario sets

to ensure a fair comparison. In the first set of experiments, we compared the results provided

by different algorithms. The results are provided in Table 8. The results obtained by the BBC

algorithm with reoptimization are shown in column BBC-ReOpt and the average percentage of the

number of initial Benders cuts in each replication is shown in column %I.Cuts. Column T.CPU
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indicates the average total time spent to solve all replications of the same instance and boldface

is used to indicate the smallest time. Columns CPU, Nodes and B.Cuts are the same as in the

previous section and they show the average results per replication.

Table 8 Performance of the algorithms using the SAA method

Distribution |Ω| M BC BBC BBC-ReOpt

T.CPU CPU Nodes T.CPU CPU Nodes B.Cuts T.CPU CPU Nodes B.Cuts %I.Cuts

Uniform 100 100 2740.4 27.4 35.6 3797.8 38.0 763.3 274.3 2379.0 23.8 332.2 2853.5 97.2

200 50 4361.3 87.2 44.0 3413.3 68.3 771.8 280.3 1633.3 32.7 345.6 2166.2 96.1

500 20 9484.7 474.2 51.4 2969.6 148.5 780.8 282.2 1284.3 64.2 388.7 1147.5 91.5

1000 10 19265.6 1926.6 53.5 2877.3 287.7 814.2 303.7 1332.1 133.2 441.8 793.9 84.2

Average 8963.0 628.9 46.1 3264.5 135.6 782.5 285.1 1657.2 63.5 377.1 1740.3 94.5

Normal 100 100 2706.6 27.1 35.8 3275.3 32.8 670.2 238.3 1960.9 19.6 276.0 2610.8 97.4

200 50 4182.0 83.6 43.4 2949.8 59.0 690.3 245.5 1363.7 27.3 293.6 1866.6 96.3

500 20 9256.3 462.8 55.3 2605.8 130.3 710.9 251.4 1066.5 53.3 324.0 1015.8 91.7

1000 10 18912.6 1891.3 58.5 2405.1 240.5 708.8 259.3 1213.7 121.4 374.7 741.4 84.2

Average 8764.4 616.2 48.2 2809.0 115.6 695.0 248.6 1401.2 55.4 317.1 1558.7 94.6

Gamma 100 100 2838.7 28.4 45.1 3171.5 31.7 694.7 227.6 1997.7 20.0 302.3 2526.5 97.3

200 50 4375.9 87.5 55.4 2892.0 57.8 728.9 237.9 1342.1 26.8 329.7 1736.3 96.1

500 20 9309.3 465.5 64.8 2544.8 127.2 742.1 245.4 1110.1 55.5 364.8 1001.8 91.6

1000 10 19088.2 1908.8 63.4 2453.9 245.4 807.2 264.1 1132.9 113.3 384.0 697.5 84.4

Average 8903.0 622.5 57.2 2765.6 115.5 743.2 243.7 1395.7 53.9 345.2 1490.5 94.5

Total Average 8876.8 622.5 50.5 2946.4 122.3 740.3 259.2 1484.7 57.6 346.4 1596.5 94.5

These results clearly indicate the benefits of reoptimization when solving the SPRP within the

SAA method. The BBC algorithm using reoptimization could reduce the average total computing

time by approximately 50% and 83% compared to the BBC without reoptimization and BC,

respectively. The average number of Benders cuts generated by the BBC-ReOpt is significantly

larger than for the BBC. However, the majority of them (94.5%) are the initial cuts generated from

previous replications and only 5.5% of the number of Benders cuts or 87.7 cuts on average were

newly generated at each replication. To further demonstrate the benefits of reoptimization, Figure

3 shows the average computing time spent in each replication to solve the instances with n = 15,

ε = 0.10, |Ω| = 200 and a uniform distribution. The computing times after the first replication are

significantly reduced when using the BBC-ReOpt.

To evaluate the impact of the sample size, we performed further experiments and compared the
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Figure 3 Computing time spent in each replication in the SAA method.
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solution quality obtained with different sizes using the BBC-ReOpt. These results are provided in

the Online Supplement. We observed that the largest sample size |Ω| = 1000 can provide the best

average SAA gap with the least variation, while the sample size |Ω| = 500 is generally the best in

terms of trade-off between solution quality and computing time.

5.2. Rollout Algorithm for the M-SPRP

Unlike the 2-SPRP where the upper bound of a problem can be computed in a straightforward

manner when the first stage decisions are known, in the M-SPRP one must construct an imple-

mentable and feasible policy to obtain a valid upper bound (Shapiro 2003). More importantly,

in the M-SPRP, since the size of the problem grows exponentially with the number of scenarios

in each stage, this task becomes very challenging for instances involving a large number of time

periods. In this section, we introduce a rollout algorithm (Bertsekas et al. (1997)) that exploits the

reoptimization capability of the Benders decomposition to obtain an upper bound for the M-SPRP.

In a rollout algorithm, decisions are made sequentially by using a heuristic to approximate the

impact of these decisions in a look-ahead mechanism. In our case, this heuristic consists of solving

the two-stage problem on a shortened planning horizon, which serves as an approximation of the

multi-stage problem. Similarly to a rolling horizon approach, our algorithm divides the full planning
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horizon into a series of shorter and overlapping planning intervals. For each interval, we then solve

the 2-SPRP to make the (binary) planning decisions and we solve the resulting M-SPRP subprob-

lem to derive the optimal (continuous) recourse decisions for the multi-stage problem. After fixing

the decisions for the first few periods in this interval, these steps are repeated for the next interval.

We refer to the overall heuristic as a multi-stage rollout algorithm (M-RO). An important aspect

of this heuristic is that one needs to compute the inventory levels that become initial conditions

for the next interval. These initial inventory levels must be passed through the scenario tree of the

M-SPRP during the process. Figure 4 illustates the idea of the rollout algorithm for the M-SPRP

with intervals of two periods and an overlap of one period.

The heuristic consists of two main steps at each iteration. In the first step, we solve a modified

2-BRF model with the scenarios defined at the end of the current interval to determine the first-

stage integer decisions. To expedite this process, we can also apply the reoptimization technique

by using initial Benders cuts generated from the dual solutions in the previous intervals with

the updated demand scenarios and initial inventory levels of the current interval. In the second

step, the multi-stage recourse decisions are determined by solving a M-BRF subproblem. Then the

algorithm continues until the end of the full planning horizon. We denote by τ̂ the length of the

time intervals considered in each problem and by r̂ < τ̂ the number of overlapping time periods.

The M-RO can be described as follows:

1. Compute the numberM=
⌈
|T |−τ̂
τ̂−r̂

⌉
+1 and construct a set of time intervals T 1, ...,TM, each of

size |T m|= τ̂ ,m= 1, ...,M− 1, except the last one whose size is |TM|= |T |−(M− 1) · (τ̂ − r̂).

Create the set Sm of scenarios associated with each interval, create an empty pool of dual

solutions Φ, and set the intial solution cost UB = 0.

2. For m= 1, ...,M, denote by tf and tt the first and the last period at the current iteration m,

and by t′f the first period of the next iteration m+ 1. Do the following:

(a) Determine the first stage decisions:

i. If tt− (tf −1) = τ̂ , retrieve the dual solutions from the pool Φ based on the selection

criteria to create initial Benders cuts.
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ii. Parameterize the unit costs by dividing all the first stage cost parameters by |Ω|/|Sm|.

This ensures that the probability associated with each scenario remains constant,

i.e., ρω = 1
|Ω| ,∀ω ∈ S

m, throughout the process, so that the dual solutions generated

in a given iteration can be used to generate Benders cuts in subsequent iterations.

Figure 4 Illustration of the multi-stage rollout algorithm.
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iii. Solve the 2-SPRP on the set of scenarios Sm for the period tf to tt by using Benders

cuts generated from the retrieved dual solutions to obtain the (ȳ, z̄, x̄). Add the dual

solutions associated with the new Benders cuts to the pool Φ.

(b) Determine the multi-stage recourse decisions: For each scenario node j = 1, ..., |J |

of the first period in T m, do the following:

i. Construct a set of succeeding scenarios associated with j, denoted by Ψj.

ii. Solve the M-SPRPLP (ȳ, z̄, x̄) to obtain the solution vectors (p̄, Ī, q̄, ē).

iii. To update the solution cost, multiply the total cost of the period tf to t′f by |Sm|/|Ω|

and add to the current solution cost UB.

Table 9 shows the results of using the M-RO approach compared to the exact branch-and-cut

algorithm for instances with 5, 10 or 20 customers, 5 or 6 time periods and 2 or 5 scenarios per time

period (which results in the total number of scenarios reported in Column |Ω|). Columns Best show

the best results obtained by the exact algorithms (either the BC or BBC). Columns M-RH (BC),

M-RH (BBC) and M-RH (BBC and reopt) show the results obtained by the M-RH approach when

the 2-SPRP is handled by the BC, BBC and BBC (with reoptimization), respectively. Column Gap

shows the average optimality gap (%) of the heuristic compared to the best lower bound of the exact

algorithms. One can see the BBC with reoptimization has a much improved performance, both in

terms of the upper bound and the average CPU time. Using a larger overlap r̂ also improves the

solution quality. The optimality gap of the upper bound produced by the BBC with reoptimization

with 3 periods and 2 overlapping periods is approximately 6.9%, while the optimality gap of the

best exact procedure is 10.9%. Furthermore, the optimality gap of the heuristic solution is only

0.6% when comparing with the solutions of the 18 instances that were solved to optimality.

6. Conclusions

We have addressed demand uncertainty in the production routing problem within two-stage and

multi-stage decision processes. To solve these problems, we have proposed two different classes

of solution algorithms: branch-and-cut and Benders decomposition. The BBC for the two-stage
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Table 9 Performance of the multi-stage rollout algorithm

n |T | |Ωt| |Ω| Best (BC and BBC) M-RH (BC) M-RH (BBC) M-RH (BBC and reopt)

r̂= 1 r̂= 2 r̂= 1 r̂= 2 r̂= 1 r̂= 2

LB Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU

5 5 2 32 17444 0.0 2.2 0.7 1.2 0.7 1.7 0.7 3.8 0.7 4.8 0.7 4.8 0.7 5.6

5 5 5 3125 17681 0.0 1662.4 0.6 3013.6 0.8 2930.2 0.6 221.4 0.8 210.0 0.6 296.8 0.8 274.3

10 5 2 32 26170 0.0 6.5 0.1 2.6 0.1 3.6 0.1 8.0 0.1 11.4 0.1 8.2 0.1 14.7

10 5 5 3125 26024 1.5 6348.9 2.2 7223.2 2.2 7375.6 2.2 144.3 2.2 278.3 2.2 405.0 2.2 332.3

15 5 2 32 35466 0.0 37.0 0.2 6.4 1.1 11.7 0.2 86.1 1.1 198.3 0.2 152.4 1.1 283.0

15 5 5 3125 33018 10.7 7200.0 46.2 7265.5 56.8 7544.0 9.1 679.4 9.9 3328.0 9.1 879.1 9.9 3038.9

20 5 2 32 41282 0.0 57.6 0.3 11.8 0.3 17.4 0.5 618.9 0.5 1369.4 0.4 503.3 0.4 1118.3

20 5 5 3125 40664 4.0 7200.0 44.1 7268.4 16.0 7726.6 3.7 5819.0 4.0 8980.2 3.3 3122.6 4.0 4971.5

5 6 2 64 22027 0.0 11.1 1.1 1.7 0.7 3.1 1.1 5.4 0.7 12.2 1.1 7.0 0.7 20.5

5 6 5 15625 17072 32.2 7200.0 42.7 10406.7 70.3 11823.2 24.4 1177.0 25.2 1281.0 24.4 599.4 23.9 1387.4

10 6 2 64 30828 0.0 16.5 6.0 5.1 0.1 5.1 6.0 9.4 0.1 24.9 6.0 8.6 0.1 34.7

10 6 5 15625 23720 46.7 7200.0 64.3 14502.8 67.9 21887.4 28.6 605.9 24.9 1673.2 28.6 518.3 25.5 1768.7

15 6 2 64 42636 0.0 67.1 3.7 12.3 2.9 28.5 3.7 32.1 1.2 404.0 3.7 41.3 1.2 258.2

15 6 5 15625 35026 47.7 7200.0 69.1 14529.6 66.9 22152.5 22.3 2911.7 21.2 9279.7 22.3 1136.6 21.2 6391.1

20 6 2 64 48882 0.0 222.4 3.2 17.5 0.3 45.7 3.2 158.8 0.2 1587.3 3.2 94.0 0.1 1189.4

20 6 5 15625 41893 32.1 7200.0 66.3 18281.8 66.3 22650.0 19.5 3803.6 19.1 17215.9 19.5 2524.3 18.2 7582.1

Total 31239 10.9 3227.0 21.9 5159.4 22.1 6512.9 7.9 1017.8 7.0 2866.2 7.8 643.9 6.9 1791.9

problem is further improved by several computational enhancements, namely, lower bound lifting

inequalities, scenario group cuts and Pareto-optimal cuts. These enhancements can be used for

the multi-stage problem which also benefits from a warm start. The computational results show

that, for both the two-stage and the multi-stage problems, the BC is efficient in handling small

instances with a small number of scenarios while the BBC with the enhancements outperforms

the BC on larger instances and particularly on instances with a large number of scenarios. To

handle practical instances, we have further discussed reoptimization capabilities of the Benders

decomposition in the context of the sample average approximation for the two-stage problem and

of a rollout algorithm for the multi-stage problem.
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Adulyasak, Y., J.-F. Cordeau, R. Jans. 2014a. Formulations and branch-and-cut algorithms for multi-vehicle

production and inventory routing problems. INFORMS J. Comput. 26 103–120.

Adulyasak, Y., J.-F. Cordeau, R. Jans. 2014b. Optimization-based adaptive large neighborhood search for

the production routing problem. Transportation Sci. 48 20–45.

Adulyasak, Y., J.-F. Cordeau, R. Jans. 2014c. The production routing problem: A review of formulations

and solution algorithms. Comput. Oper. Res. Forthcoming.

Andersson, H., A. Hoff, M. Christiansen, G. Hasle, A. Løkketangen. 2010. Industrial aspects and literature

survey: Combined inventory management and routing. Comput. Oper. Res. 37 1515–1536.
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