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We study AdS-waves in the three-dimensional new theory of massive gravity recently proposed
by Bergshoeff, Hohm, and Townsend. The general configuration of this type is derived and shown
to exhibit different branches, with different asymptotic behaviors. In particular, for the special fine
tuning m2 = ±1/(2l2), solutions with logarithmic fall-off arise, while in the range m2 > −1/(2l2),
spacetimes with Schrödinger isometry group are admitted as solutions. Spacetimes that are asymp-
totically AdS3, both for the Brown-Henneaux and for the weakened boundary conditions, are also
identified. The metric function that characterizes the profile of the AdS-wave behaves as a massive
excitation on the spacetime, with an effective mass given by m2

eff = m2
− 1/(2l2). For the critical

value m2 = −1/(2l2), the value of the effective mass precisely saturates the Breitenlohner-Freedman
bound for the AdS3 space where the wave is propagating on. The analogies with the AdS-wave so-
lutions of topologically massive gravity are also discussed. Besides, we consider the coupling of both
massive deformations to Einstein gravity and find the exact configurations for the complete theory,
discussing all the different branches exhaustively. One of the effects of introducing the Chern-Simons
gravitational term is that of breaking the degeneracy in the effective mass of the generic modes of
pure New Massive Gravity, producing a fine structure due to parity violation. Another effect is that
the zoo of exact logarithmic specimens becomes considerably enlarged.

PACS numbers:

I. INTRODUCTION

A new theory of massive gravity in three dimensions
has been recently proposed by Bergshoeff, Hohm, and
Townsend [1]. At the linearized level, this theory has
been shown to be equivalent to the three-dimensional
Fierz-Pauli action for a massive spin-2 field, which turns
out to be unitary. In contrast with the Topologically
Massive Gravity [2, 3], this new theory of gravity is par-
ity invariant. Following the authors of [4, 5, 6], we will
refer to this theory as the New Massive Gravity. As it
is the case for Topologically Massive Gravity, the New
Massive Gravity entails higher order modifications to
the three-dimensional General Relativity with the con-
sequence that the graviton excitations of both theories
become massive through similar mechanisms.

This New theory of Massive Gravity has attracted
much attention recently. In Refs. [7, 8] the unitarity of
the model was discussed; in Ref. [4] exact solutions rep-
resenting asymptotically warped-AdS3 black holes were
found; other interesting solutions are analyzed in [9]. In
Refs. [5, 6], the boundary conditions for the theory in
asymptotically AdS3 spaces were studied. In particular,
it was argued in Ref. [6] that, for a particular relation be-
tween the cosmological constant and the mass parameter
of the theory, the concept of asymptotically AdS3 bound-
ary conditions is compatible with a weakened logarithmic
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fall-off at large distance. This amounts to relax the stan-
dard Brown-Henneaux asymptotic conditions for grav-
ity in AdS3 space [10], and it is analogous to what hap-
pens in Topologically Massive Gravity at the chiral point
[11, 12]. In the case of Topologically Massive Gravity,
the feasibility of considering weakened AdS3 boundary
conditions allows to reinterpret some of the AdS-waves
with logarithmic profile found in Refs. [13, 14] as being
asymptotically AdS3 spacetimes. These configurations,
together with those that do not exhibit the logarithmic
decay,1 have been reconsidered recently [17, 18] within
the context of the revived interest in Topologically Mas-
sive Gravity [19, 20, 21, 22, 23].

Here, we will explore the AdS-wave configurations of
the New Massive Gravity. In particular, this will allow
us to study the dynamics of the theory beyond the lin-
earized level and to discuss the different asymptotic be-
haviors; a strategy proved to be useful in Topologically
Massive Gravity [14]. For example, we will find that so-
lutions with logarithmic fall-off arise for certain values
of the parameters. The existence of such solutions to
New Massive Gravity is suggested by the linearized anal-
ysis performed in Ref. [6]. Nevertheless, in this paper
we go beyond the perturbative analysis and find exact
solutions of this kind. More generally, we will exhibit a

1 See Ref. [15] for a preliminary derivation of the no-logarithmic
branch, where it was argued that in order to be supersymmetric
the solutions should not depend on the retarded time. See also
Ref. [16], where the interpretation as AdS-waves was first given
to the final forms of the metric originally derived in Ref. [13].
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whole family of AdS-wave solutions of the New Massive
Gravity; and these solutions are, in some sense, the ana-
logues of those arising in Topologically Massive Gravity
[13, 14, 15, 16, 17, 18]. For a particular range of the pa-
rameters, we will show that the isometry of the solutions
coincides with the Schrödinger symmetry. We will also
analyze similar considerations for a more general theory
given by the coupling between both massive gravity the-
ories.

The paper is organized as follows. In Sec. II, we
provide a brief introduction to AdS-wave configurations.
Section III is devoted to present the New Massive Gravity
of Ref. [1]. The general AdS-wave solutions are derived
and the different branches depending on their asymp-
totic behaviors are analyzed. In Sec. IV, we discuss some
analogies between these configurations and their cousins
arising in Topologically Massive Gravity; we also point
out some differences. Besides, we consider the coupling
between both massive models and derive the correspond-
ing AdS-wave configurations. The nontrivial effects due
to the inclusion of the topological mass term are analyzed
in details in Sec. V.

II. BRIEF INTRODUCTION TO ADS WAVES

AdS waves are a special kind of exact gravitational
waves propagating along AdS space. The first examples
of exact gravitational waves in the presence of a cosmo-
logical constant were studied by Garćıa and Plebański
[24]; see also Refs. [25, 26, 27]. Such solutions were based
on generalizations of some algebraically special solutions
previously found for the case of vanishing cosmological
constant in Refs. [28, 29]. The algebraically special space-
times are defined by the fact that their Weyl tensor has a
multiple principal null direction. In addition, if this null
direction is a Killing vector for the exact wave solutions
then, in the case of a negative cosmological constant,
one recovers the so-called Siklos spacetimes defining the
AdS waves [30]. Siklos spacetimes allow an alternative
characterization as a generalized Kerr-Schild transforma-
tion of AdS, which reinforces their interpretation as exact
gravitational waves propagating on AdS space [31]. This
means that their metrics can be written in terms of the
AdS metric as follows

gµν = gAdS
µν − Fkµkν , (1)

where kµ is a null geodesic field, and F is an arbitrary
function that is only constrained to be independent of
the integral parameter along kµ; see Ref. [14] for a more
detailed discussion.

Now, let us consider the three-dimensional case we are
interested in. The AdS3 metric in Poincaré coordinates
reads

ds2
AdS =

l2

y2

(

−2dudv + dy2
)

, (2)

where l is the radius of AdS characterizing its constant
scalar curvature R = 6Λ = −6/l2. Choosing as null
geodesic field kµ∂µ = (y/l)∂v, the Kerr-Schild transfor-
mation (1) allows to write the metric of the AdS3-waves
as follows

ds2 =
l2

y2

[

−F (u, y)du2 − 2dudv + dy2
]

. (3)

This metric is conformally related to that of a pp-wave.
Nevertheless, it is worth pointing out that AdS-waves and
pp-waves have different geometrical and physical proper-
ties. Let us be reminded of the fact that the term pp-wave
stands for plane fronted gravitational waves with parallel
rays. The fronts of the wave are defined by surfaces
u, v = const. in any number of dimension, and for the
AdS-waves in higher dimensions they are not planes but
hyperboloids, having constant curvature proportional to
−1/l2. Additionally, the null rays are defined by the field
∂v, which is a Killing vector but not a closed 1-form,
and thus the rays fail to be covariantly constant, namely
parallel.

We will explore the existence of AdS waves configura-
tions rigged by the New Massive Gravity of Ref. [1].

III. THE ADS WAVES OF NEW MASSIVE

GRAVITY

The action of the New Massive Gravity is2

S =
1

16πG

∫

d3x
√−g

(

R − 2λ − 1

m2
K

)

, (4)

where the quadratic contribution K = RµνRµν − 3
8R2

introduces the modification to standard gravity with cos-
mological constant λ, being m the mass of the resulting
massive degrees of freedom. The variation of (4) gives
rise to the modified gravity equations of motion

Gµν + λgµν − 1

2m2
Kµν = 0, (5)

where Gµν = Rµν − 1
2gµν is the Einstein tensor and

Kµν = 2�Rµν − 1

2
∇µ∇νR − 1

2
�Rgµν + 4RµανβRαβ

− 3

2
RRµν − Kgµν , (6)

is a symmetric, conserved tensor that satisfies gµνKµν =
K. This condition on Kµν implies that the trace of the
equations of motion is a second order constraint, despite
the fact these are equations of fourth order.

2 We follow the conventions of [6].
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A. AdS-waves solutions

For the New Massive Gravity to admit an AdS3 vac-
uum (2), a special constraint between the AdS3 radius
l, the cosmological constant λ, and the mass parameter
m is needed. This fixes the value of the cosmological
constant to be [1, 6]

λ = − 1

l2

(

1 +
1

4l2m2

)

, (7)

which means the scale of the cosmological constant and
the AdS radius only coincide in the General Relativity
limit m2 → ±∞.

The AdS-wave solutions (3) are meant to describe ex-
act gravitational waves propagating along AdS3 space-
time of radius l, and thus we have to consider the same
election (7) for the cosmological constant. With this
choice for λ, the equations of motion (5) become a single
differential equation for the wave profile F ; namely

[

y4∂4
yF + 2y3∂3

yF

− (1 + 2l2m2)

2

(

y2∂2
yF − y∂yF

)

]

δu
µδu

ν

2l2m2y2
= 0, (8)

This is a fourth order Euler-Fuchs differential equation,
which is easily solved by applying the standard substitu-
tion F = yα. The corresponding fourth-degree charac-
teristic polynomial is

α(α − 2)

(

(α − 1)2 − 1 + 2l2m2

2

)

= 0. (9)

Therefore, the generic solution for the wave profile is

F (u, y) = F+(u)
(y

l

)1+

q

1+2l2m2

2

+F−(u)
(y

l

)1−

q

1+2l2m2

2

,

(10)
where F+ and F− are arbitrary integration functions that
depend only on the retarded time u. Here and in what
follows, we also use the fact that the homogeneous and
quadratic dependence of the wave-front coordinate y can
be eliminated by coordinate transformations, see the de-
tailed discussion in Ref. [14].

In addition to (10), we have to consider the possibility
of having multiplicities in the roots of the characteristic
polynomial (9). In this case, the power-law particular
solutions fail to span the whole space of linearly inde-
pendent solutions, and thus new additional logarithmic
modes appear. Such multiplicities arise for the mass val-
ues m2 = ±1/(2l2). For m2 = −1/(2l2), there exists
double multiplicity; the two roots exhibited in the generic
solution (10) become one. Then, after discarding trivial
behaviors, the wave profile at this point turns out to be
given by

F (u, y) =
y

l

[

F1(u) ln
(y

l

)

+ F2(u)
]

. (11)

On the other hand, for m2 = +1/(2l2) we find double
multiplicity both for α = 0 and for α = 2, because in this
case the roots of the generic solution (10) reduce to these
values. Then, in this case we are left with the following
solution

F (u, y) = ln
(y

l

)

[

F1(u)
(y

l

)2

+ F2(u)

]

. (12)

Finally, for m2 < −1/(2l2) the relevant roots of (9)
take complex values, and the solution becomes

F (u, y) =
y

l

{

F1(u) sin

[

l

√

− 1

2l2
− m2 ln

(y

l

)

]

+ F2(u) cos

[

l

√

− 1

2l2
− m2 ln

(y

l

)

]}

. (13)

The configurations given by (10)-(13) represent the
AdS3-wave solutions to the New theory of Massive Grav-
ity [1]. In Section IV we will discuss the analogy between
these solutions and those arising in the context of the
Topologically Massive Gravity. But, first, let us com-
ment on the asymptotic behavior of the solutions we just
described.

B. The asymptotically AdS3 sector

As mentioned, AdS-waves are Siklos spacetimes [30]
that can be thought of as gravitational wave profiles
propagating on AdS spacetime [31]. Here, we will show
that, in addition, some of these wave solutions of New
Massive Gravity are also asymptotically AdS3.

New Massive Gravity in AdS3 has been recently stud-
ied in [1, 5, 6]. According to AdS3/CFT2 correspondence,
the theory formulated in AdS3 would be dual to a two-
dimensional conformal field theory with central charge
given by

c =
3l

2G

(

1 − 1

2m2l2

)

. (14)

This value for the central charge is easily obtained by
standard means [32]. From this we observe that some-
thing special happens at m2 = 1/(2l2), where c vanishes.
Likely, the unitarity of the theory (when sufficiently re-
laxed boundary conditions are considered) would demand
the bound m2 > 1/(2l2). Let us discuss the different
asymptotic behaviors in relation to this bound.

First, let us take a look at solutions (10). The wave
solution turns out to be an asymptotically AdS3 space-
time if F− = 0 and m2 > 1/(2l2). That is, the solution
is asymptotically AdS3 according to Brown-Henneaux
boundary conditions [10], which, in these coordinates,
are defined by the next-to-leading behavior

gµν = gAdS
µν + hµν , (15)
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where gAdS
µν is given by (2), while the components of the

perturbation hµν are of order huu ∼ huv ∼ hvv ∼ hyy ∼
O(1), and huy ∼ hvy ∼ O(y).

On the other hand, at the critical value m2 = 1/(2l2),
solution (12) turns out to be compatible with the weak-
ened (logarithmic) AdS3 asymptotic behavior discussed
in Refs. [11, 12, 22, 23], which amount to relax bound-
ary conditions as huu ∼ O(ln y) and huy ∼ O(y ln y).
These weakened AdS3 boundary conditions were origi-
nally discussed within the context of Topologically Mas-
sive Gravity, where the analog of solution (12) given in
Refs. [13, 14] is Eq. (45) below, and it was recently argued
that they might play an important role in New Massive
Gravity too [6]. It has been known for a while that, for
certain particular points of the space of parameters of a
given theory, the concept of asymptotically AdS3 space
may be consistently extended to incorporate a larger class
of geometries [33]. This issue has played an important
role in recent discussions on Topologically Massive Grav-
ity [23].

IV. ANALOGIES WITH TOPOLOGICALLY

MASSIVE GRAVITY

It is interesting to notice that all the branches of so-
lutions discussed above, except the complex one (13),
have their counterparts in Topologically Massive Gravity
[13, 14, 15, 16, 17, 18]. In particular, the critical cases
m2 = ±1/(2l2) deserve a particular attention because
these are reminiscent of the chiral values µ = ±1/l of
Topologically Massive Gravity, with µ being the topo-
logical mass. These points of the space of parameters
were shown to be special in what regards to the massive
behavior of AdS3-wave solutions [14]. More recently, the
points µ = ±1/l appeared to be relevant also for the dis-
cussion about the chiral gravity conjecture [19]; see also
[11, 17, 20, 23] and references therein.

The purpose of this section is to discuss this and other
analogies between the AdS-wave solutions of New Mas-
sive Gravity and those of Topologically Massive Gravity.

A. The Schrödinger invariant sector

Recently, a generalization of the AdS/CFT correspon-
dence has been proposed in the context of non-relativistic
conformal field theories. The basic idea is that geometries
whose isometry group agrees with the non-relativistic
conformal group, namely the Schrödinger group, could
represent gravity duals for systems of condensed mat-
ter physics [34, 35]. The Schrödinger group is defined
as the maximal group of symmetries which leave invari-
ant the Schrödinger equation for a free particle [36, 37],
and can be thought of as the semi direct product of
SL(2, R) with the connected static Galilei group. The set
of Schrödinger transformations are given by the standard

Galilei transformations augmented by the time dilatation
and a special conformal transformation.

Because of the holographic applications to non-
relativistic CFTs, the search of theories that admit as so-
lutions Schrödinger-invariant backgrounds has attracted
much attention recently. Moreover, it is worth mention-
ing that the AdS-waves of Topologically Massive Gravity
[14] contains Schrödinger invariant solutions at the spe-
cial point µ = 3/l [38]. These solutions correspond to the
null warped-AdS3 spacetimes of [21]. Here, let us show
that our generic solution (10) of New Massive Gravity
may exhibit the Schrödinger isometry too. In fact, if one
takes one of the arbitrary functions F± to be a constant
and the other one to be zero, then the solution (10) sim-
ply reads

F (y) = F0

(y

l

)−2ν

(16)

where F0 is an arbitrary constant and ν = −α/2 is
called the “dynamical exponent” in this context. Inter-
esting enough, the isometry group of metric (3) for solu-
tion (16) gets enhanced, exhibiting the so-called partial

Schrödinger group, which is the group of all Schrödinger
transformations except the special conformal transforma-
tion. The partial Schrödinger symmetry is realized by the
Killing vectors

H = ∂v, N = ∂u,

D = (1 + ν)v∂v + (1 − ν)u∂u + y∂y.

In addition, the particular election F+ = 0 and F− =
const. allows the special case ν = 1, which corresponds
to

m2 =
17

2l2
, (17)

and the solution exhibits the full Schrödinger symmetry,
i.e. the isometry group is augmented by the Killing vector

C = v2∂v +
1

2
y2∂u + yv∂y.

This critical point (17) is analogous to the point µ =
3/l of the Topologically Massive Gravity (see Eq. (32)
below). This reinforces the resemblance between both
theories.

B. AdS waves as massive scalar modes: log waves

saturate the BF bound

Another interesting property of solutions (10) is that
the profile function F behaves exactly as a massive scalar
mode, as it satisfies the Klein-Gordon equation

�F = m2
effF, (18)

with effective mass given by

m2
eff = m2 − 1

2l2
. (19)
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This shifting of the bare mass m by a term proportional
to the curvature of the AdS3 space is also observed in
the case of AdS3-waves of Topologically Massive Gravity,
where the effective mass is found to be

µ2
eff = µ2 − 1

l2
,

(see Ref. [14] for details). However, the New Massive
Gravity profile (10) describes in fact the superposition
of two scalar modes, in contrast with Topologically Mas-
sive Gravity, for which a single mode arises (see Eq. (32)
later). Actually, at this level it may seem artificial to
make a distinction between the “two modes” appearing
in Eq. (10) since, after all, they have the same effective
mass (19). However, we will see in the next section that
the inclusion of a topologically massive term (i.e. the
Chern-Simons gravitational term) breaks this mass de-
generacy and thus the distinction between the two modes
ultimately makes sense.

In the case of the New Massive Gravity, and for the
special case m2 = −1/(2l2), the profile (11) also describes
the superposition of two exact massive scalar modes, each
one satisfying

�F = − 1

l2
F. (20)

This case does not differ from the generic one (18) since
the effective mass becomes m2

eff = −1/l2 and thus cor-
responds to the mass given by (19). Interesting enough,
we find that this value for the effective mass exactly sat-
urates the Breitenlohner-Freedman bound for the mass
of a scalar field in the AdS3 space where the wave is
propagating on [39, 40].

The result (20) for the case m2 = −1/(2l2) is in con-
trast with what happens in Topologically Massive Grav-
ity, where none of the logarithmic solutions that appear
at µ = ±1/l (see Eqs. (42) and (45) below) satisfy the
Klein-Gordon equation. The analogy with Topologically
Massive Gravity is thus manifested at the other criti-
cal point, m2 = +1/(2l2). At this point, the wave
profile (12) does not satisfy a Klein-Gordon equation,
and, as mentioned before, this is precisely the point of
the space of parameters where the asymptotically AdS3

spaces admit logarithmic branches [6] similar to those ap-
pearing for Topologically Massive Gravity at the chiral
point µ = −1/l, [11, 12]3. Also, it is interesting to no-
tice that the New Massive Gravity profile (12) is exactly
a superposition of the critical profiles (42) and (45) of
Topologically Massive Gravity

F = FTMG|µ=−1/l + FTMG|µ=+1/l . (21)

We remark that, despite the fact the profile function F
in Topologically Massive Gravity at the points µ = ±1/l

3 Our definition of the topological mass is minus the one of those
references, where the chiral point occurs for µ = +1/l.

do not obey the Klein-Gordon equation, it can be used
to generate the following scalar modes,

l

y
FTMG|µ=−1/l , and

y

l
FTMG|µ=+1/l , (22)

which do satisfy the Klein-Gordon equation (20) saturat-
ing the Breitenlohner-Freedman bound. That is, one can
interpret the profile (12) of New Massive Gravity at the
critical point m2 = +1/(2l2) as a local superposition

F =
y

l

[

l

y
F |F2=0

]

+
l

y

[

y

l
F |F1=0

]

, (23)

of exact massive scalar modes (those between brackets)
which saturate the Breitenlohner-Freedman bound.

So far, we have discussed the analogies between New
Massive Gravity and Topologically Massive Gravity.
Now, let us move to analyze what happens when these
two theories are brought together.

V. TURNING ON A TOPOLOGICAL

CONTRIBUTION

In this section, we analyze the effect of turning on the
Chern-Simons topological term in the gravitational ac-
tion (4), and see how it affects the existence and proper-
ties of AdS-wave configurations we discussed so far. The
inclusion of the topologically massive term in the action
amounts to add the Cotton tensor4 [2, 3]

Cµν = ηµαβ∇α

(

R ν
β − 1

4
R δ ν

β

)

, (24)

to the equations of motion (5). The resulting field equa-
tions read [1]

Gµν + λgµν − 1

2m2
Kµν +

1

µ
Cµν = 0, (25)

where the coupling constant µ stands for the topological
mass. It is known that the Cotton tensor vanishes for
constant curvature configurations. Therefore, in order
for the AdS3 metric (2) to be a solution of the generalized
equations (25), the constraint between the cosmological
constant λ, the AdS radius l, and the mass m, must be
exactly the same as in Eq. (7).

For an AdS-wave (3), the only nonvanishing compo-
nent of the Cotton tensor is Cuu, and it is proportional
to the third derivative of the wave profile with respect to
the wave-front coordinate y. The resulting single equa-
tion is again of the Euler-Fuchs type; namely
[

y4∂4
yF +

(

2 − lm2

µ

)

y3∂3
yF

− (1 + 2l2m2)

2

(

y2∂2
yF − y∂yF

)

]

δu
µδu

ν

2l2m2y2
= 0. (26)

4 Here, ηµαβ corresponds to the volume 3-form, with ηuvy =
√
−g

(ηuvy = −1/
√
−g).
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The characteristic polynomial is now given by

α(α − 2)

[

(

α − 1 − lm2

2µ

)2

− 1 + 2l2m2

2
− l2m4

4µ2

]

= 0.

(27)
Below, we will analyze all the possible solutions.

A. Topological mass splitting

According to (27), the generic solution is given by

F (u, y) = F+(u)
(y

l

)1+ lm2

2µ
+

r

1+2l2m2

2
+ l2m4

4µ2

+ F−(u)
(y

l

)1+ lm2

2µ
−

r

1+2l2m2

2
+ l2m4

4µ2

. (28)

This generalizes the generic profile of New Massive grav-
ity (10). It represents the superposition of two exact
scalar modes, both satisfying a Klein-Gordon equation
(18). These modes are given by F− = 0 (resp. F+ = 0)
with effective masses given respectively by

m2
eff± =

(

m2

2µ
±
√

m4

4µ2
+ m2 +

1

2l2

)2

− 1

l2
. (29)

From this we observe that the physical effect of including
the topological term is that of breaking the degeneracy in
the mass spectrum (19) for the two scalar modes of pure

New Massive Gravity (10). In other words, the topolog-
ical term produces the following mass splitting between
the two generic gravitational states

∆m2
eff =

2m2

µ

√

m4

4µ2
+ m2 +

1

2l2
. (30)

It is interesting that one has access to this fine structure
effect beyond the perturbative level.

The spacetime configurations (28) also contain sectors
enjoying the partial Schrödinger isometry as in Eq. (16),
while the full Schrödinger symmetry is exhibited this
time for

m2 =
17µ

2l2 (µ − 3/l)
. (31)

Notice that the generic formulas of Sec. III are ob-
tained from the previous ones in the limit µ → ±∞.
It is also remarkable that the critical value for which the
AdS-waves solutions of Topologically Massive Gravity are
Schrödinger invariant, i.e. µ = 3/l, is also recovered from
the mass (31) in the limit m2 → ±∞. Actually, in this
limit, one of the two modes in Eq. (28) diverges/vanishes
and has no analogue in Topologically Massive Gravity,
while the other mode corresponds precisely to the sin-
gle generic mode that appears in Topologically Massive
Gravity [13, 14]; namely

FTMG(u, y) = F1(u)
(y

l

)1−lµ

. (32)

This two-to-one correspondence between the modes of
both theories is a common feature of this transition and
is easily understood by taking into account that, unlike
in New Massive Gravity, parity is broken in Topologically
Massive Gravity, and this fact forces the latter theory to
select only one of the two modes arising in the former.

B. Logarithmic Branches

Now, let us discuss the cases allowing multiplicities in
the roots of the characteristic polynomial (27). These
cases are those where logarithmic branches arise.

The roots corresponding to the generic solution (28)
reduce to a single one for the two following families of
mass values

m2 = 2µ2

(

−1 ±
√

1 − 1

2l2µ2

)

. (33)

This double multiplicity leads to two new families of so-
lutions; namely

F (u, y) =
(y

l

)1+lµ
h

−1±
√

1−1/(2l2µ2)
i

×
[

F1(u) ln
(y

l

)

+ F2(u)
]

. (34)

For the upper sign, and taking the limit µ → ±∞, the
mass goes like

m2 = − 1

2l2
+ O

(

1

µ2

)

, (35)

and then one recovers the first critical solution (11), stud-
ied in Sec. III. The same limit is divergent for the lower-
sign since

m2 = −4µ2 +
1

2l2
+ O

(

1

µ2

)

, (36)

Actually, this describes the transition to the standard
AdS3 Einstein gravity instead of to pure New Massive
Gravity. It is known that AdS waves are locally trivial
in this context [14], and consequently, one mode vanishes
and the other diverges in the above limit.

For the lower-sign family, and for the topological mass
taking the value µ = 3/(4l) (resp. µ = −3/(4l)), the root
α = 0 (resp. α = 2) becomes triple and then the solutions
in these cases respectively read

F (u, y) = ln
(y

l

) [

F1(u) ln
(y

l

)

+ F2(u)
]

, (37)

and

F (u, y) =
(y

l

)2

ln
(y

l

) [

F1(u) ln
(y

l

)

+ F2(u)
]

. (38)

Another critical value for the mass is given by

m2 =
µ

2l2(µ − 1/l)
, (39)
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where the value α = 0 turns out to be a double root.
The solution, for a generic value of the topological mass
µ 6= 3/(4l),5 is

F (u, y) = F1(u)
(y

l

)(4lµ−3)/[2(lµ−1)]

+ F2(u) ln
(y

l

)

.

(40)
In the limit µ → ±∞, the exponent in the first term
above takes the value 2 and the associated mode can be
eliminated by coordinate transformations. Besides, since
the associated mass (39) behaves like

m2 =
1

2l2
+ O

(

1

µ

)

, (41)

one recovers just one of the two modes of the criti-
cal solution (12). Moreover, from the mass expression
(39), we notice that the Topologically Massive Gravity
limit, m2 → ±∞, is achieved for µ → 1/l. In this
limit, the mode associated to the power law in (40) di-
verges/vanishes and has no analogue in Topologically
Massive Gravity. In contrast, the logarithmic mode sur-
vives and then one recovers the single critical mode of
Topologically Massive Gravity with µ = 1/l [13, 14]

FTMG(u, y)|µ=+1/l = F2(u) ln
(y

l

)

. (42)

The last example for which double multiplicity arises
is the point

m2 =
µ

2l2(µ + 1/l)
, (43)

where the root α = 2 becomes double. The correspond-
ing solution for a generic value of the topological mass,
as long as µ 6= −3/(4l), is expressed by

F (u, y) = F1(u)
(y

l

)2

ln
(y

l

)

+ F2(u)
(y

l

)1/[2(lµ+1)]

.

(44)
In the limit µ → ±∞, the power-law contribution in
the second term of (44) can be eliminated by coordinate
transformations and the associated mass (43) behaves
as in Eq. (41). This limiting case allows to recover the
remaining mode of the critical solution (12) which was
absent in the previous solution. Taking a look at the
Topologically Massive Gravity limit (m2 → ±∞) in (43)
one notices that it is in correspondence with the limit
µ → −1/l. Here again, the mode associated to the power-
law dependence in Eq. (44) diverges/vanishes and has no
analogue in Topologically Massive Gravity. The logarith-
mic mode remains untouched and it becomes exactly the
single critical mode allowed for µ = −1/l [13, 14]; namely

FTMG(u, y)|µ=−1/l = F1(u)
(y

l

)2

ln
(y

l

)

. (45)

5 In what follows we exclude the cases µ = ±3/(4l) since they have
triple multiplicity and were already considered, see Eqs. (37) and
(38).

These cases exhaust all the AdS-wave solutions (3) one
finds for the theory (25).

VI. CONCLUSIONS

In this paper, we have studied AdS-wave configurations
in three-dimensional massive gravities.

The first model we considered was the New Massive
Gravity recently proposed by Bergshoeff, Hohm, and
Townsend, in Ref. [1]. In addition to the cosmological
constant, this model has a mass parameter m, which is
the coupling constant of the higher-curvature terms that
supplement the Einstein-Hilbert action. For this the-
ory, we considered AdS-wave configurations, which corre-
spond to exact solutions that can be thought of as waves
propagating on AdS3 spacetime of radius l. These AdS-
wave solutions are characterized by a function F (u, y),
which describes the profile of the wave, and depends on
the retarded time u and on the front-wave coordinate y.

We have exhaustively explored the space of solutions
of this kind and, in particular, we have shown that spe-
cial features occur at the critical values m2 = ±1/(2l2).
At these points, solutions with logarithmic fall-off in the
Poincaré radial coordinate y arise. This resembles what
happens in the case of Topologically Massive Gravity at
the chiral point µ = ±1/l [14]. At m2 = +1/(2l2), one
finds that asymptotically AdS3 exact solutions obeying
the weakened fall-off proposed in [11, 12] for Topologi-
cally Massive Gravity appear; a fact that is suggested by
the linearized analysis performed in Ref. [6] for New Mas-
sive Gravity. This special mass coincides with the point
of the space of parameters at which the central charge of
the dual CFT2 vanishes. This naturally leads one to the
conjecture that, likely, the New Massive Gravity of [1]
at the point m2 = 1/(2l2) is dual to a two-dimensional
logarithmic conformal field theory if sufficiently weak-
ened AdS3 asymptotic conditions are considered. For the
range of parameters m2 > 1/(2l2), however, asymptoti-
cally AdS3 solutions obeying stronger Brown-Henneaux
boundary conditions arise, and the theory is likely uni-
tary.

We also found solutions whose isometry corresponds
to the Schrödinger symmetry group. These geometries
exist for m2 > 1/(2l2), and are analogous to those
that were recently considered in the context of the non-
relativistic version of the AdS/CFT duality [34, 35]. In
particular, the full Schrödinger symmetry is achieved for
m2 = 17/(2l2).

For all the values m2 6= 1/(2l2) the profile function F
behaves as a massive scalar excitation, as it satisfies the
Klein-Gordon equation with effective mass m2

eff = m2 −
1/(2l2). In fact, the profiles describe two exact scalar
modes sharing the same mass. In particular, for the case
m2 = −1/(2l2) this modes saturates the Breitenlohner-
Freedman bound for a massive particle on the AdS3 space
where the wave is propagating on.

We also considered the New Massive theory of Grav-
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ity coupled to Topologically Massive Gravity. This intro-
duces a second mass scale µ in the theory. For this model,
we have exhaustively explored the space of AdS-wave so-
lutions, and we have shown that different branches with
different asymptotic behaviors arise. We discussed the ef-
fects of turning on the gravitational Chern-Simons term:
This induces a mass splitting that breaks the mass de-
generacy present in the generic modes of the New Mas-
sive Gravity waves. Additionally, several generalization
of the previous results are obtained, for example, full

Schrödinger invariant backgrounds are obtained now for
m2 = 17µ/[2l2(µ − 3/l)]. We also analyze the different
limits both to New Massive Gravity and to Topologi-
cally Massive Gravity obtaining consistent results. The
interplay between the parity preserving and the parity
violating Lagrangians is also discussed.

A recent paper [41] studies the linearized solutions of
New Massive Gravity coupled to Topologically Massive
Gravity in AdS3. The asymptotic behaviors of the exact
solutions we have found here realize some of the linearized
solutions of Ref. [41].
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