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Abstract– The purpose of this research is to study the bending 

behavior of micropolar beams by using an improved first-order 

shear deformation theory. The proposed formulation employs five 

independent variables for the displacement field and a single 

parameter for microrotations. The model considers thickness 

stretching and 3D constitutive parameters. A finite element 

formulation is developed with spectral interpolation functions to 

avoid shear and Poisson locking. Convergence analysis of vertical 

deflections is presented to illustrate the performance of high-order 

elements. Numerical results obtained for cantilever and simply 

supported beams demonstrate the validity of the present approach.  

Keywords—Micropolar elasticity, Micropolar beams, 

Nonclassical continuum. 

I. INTRODUCTION

Due to the fast development in technology, there is a 

growing need in the design and manufacturing of micro and 

nano-electromechanical systems like biosensors, 

microsensors, or microscopes. Specifically, the use of beam-

like elements is general for those systems. This small-scaled 

structure develops size-dependent behaviors that cannot be 

evaluated by classical elasticity theories [1], [2]. For this, 

Shaw [3] has concluded an increasing hardening in 

microbending plates due to their stiffness parameters. 

Cantilever nanowires and polymer nanotubes were 

experimentally tested, resulting in an increase in the elastic 

modulus when smaller samples were analyzed [4]. Lam et al. 

[5], [6] and Mcfarland and Colton [6] concluded that the 

rigidity of microcantilever beams has an inverse dependency 

on the thickness of such elements. These experimental 

researches have led to the further development of theories that 

include intrinsic length scales important to capture nano and 

microscale phenomena. A general overview of these theories 

can be found in reference [7]. 

 In reference [8], Voigt included the effects of moment-

based stresses in classical elasticity theory. Cosserat and 

Cosserat [9] developed a new theory considering three new 

independent rotations, known as microrotations and three 

displacements in every point of the continuum, leading to a 

new concept of non-symmetric elasticity theory.  The 

references [10]–[13] further developed micropolar elasticity. 

Applications of this theory in beams by using the Finite 

Element Method can be found in the literature. Nampally et al. 

[14] developed a non linear micropolar beam solutions using

lattice core beams. In reference [15] a linear micropolar model

was used for the static bending analysis of a cantilever beam.

A dynamic analysis considering a Timoshenko beam model 

was also studied [16]. In reference [17], the micropolar model 

was extended to torsion as well as bending of cantilever and 

simply supported beams and results were obtained through the 

Finite Element Method. Both an static and dynamic analysis 

considering von Kármán nonlinearity was evaluated 

analytically [18].  In reference [19], high-order beam models 

were developed. This theory was also used for the analysis of 

lattice core sandwich beams considering von Kármán 

nonlinearity [14] and a geometrically exact model [20], also 

using the finite element method. From the literature review, it 

is seen that the bending analysis of micropolar beams has been 

widely studied. However, there is limited evidence of the use 

of higher-order models for this kind of studies.  

This research aims to present a computational model for 

the analysis of micropolar beams. The theoretical formulation 

is based on the improved first-order shear deformation theory 

(IFSDT) The adopted beam formulation can be found in [21].

The propos herein used considers five independent variables 

for the approximation of the displacement field and one for the 

microrotation field. This beam formulation will allow the use 

of 3D constitutive equations. A finite element formulation was 

derived using spectral high-order interpolation functions. 

II. THEORETICAL FORMULATION

A. Linear isotropic micropolar theory

Being 𝐯 the displacement and 𝝑 the microrotation field

respectively of a continuum and considering spatial gradients 

are infinitesimal  

𝐯 ≪ 1, 𝑮𝒓𝒂𝒅𝐯 ≪ 1 
( 1 ) 

𝝑 ≪ 1, 𝑮𝒓𝒂𝒅𝝑 ≪ 1, 

the linear stretch tensor 𝜺 and the linear wryness tensor 𝜸, with 

𝐈 as the identity tensor in the undeformed configuration, are 

defined as follows [22] 

𝜺 = Grad𝐯 − 𝝑×𝐈, 𝜸 = 𝑮𝒓𝒂𝒅𝝑. ( 2 ) 

For a linear micropolar isotropic solid, stress-strain 

relations for the stress tensor 𝝈 and the couple stress tensor 𝝌 

are stated as [23] 

𝝈 = 𝜆𝐈tr𝜺 + 𝜇 + 𝜅 𝜺 + 𝜇𝜺𝑻, 
( 3 ) 

𝝌 = 𝛽!𝐈tr𝜸 + 𝛽!𝜸
𝑻
+ 𝛽!𝜸,
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where 𝜇, 𝜆, 𝜅, 𝛽!, 𝛽!, 𝛽! micropolar elastic constants. 

Parameters 𝜇  and 𝜅  relates to the Lamé shear modulus 

𝜇 according to [24]  as 

𝜇 = 𝜇 +
1

2
𝜅, 

( 4 ) 

and 𝜆 is the first Lamé parameter. 

Furthermore, Young’s modulus 𝐸 and Poisson’s ratio υ 

can be defined in terms of these micropolar elastic constants 

by the following equations 

𝐸 =
2𝜇 + 𝜅 3𝜆 + 2𝜇 + 𝜅

2𝜆 + 2𝜇 + 𝜅
, 

( 5 ) 

ν =
𝜆

2𝜆 + 2𝜇 + 𝜅
. 

In 3  tr(∙) represents the trace operation. 

 

B. Beam theory 

Let 𝑥
𝑖  be a set of Cartesian coordinates with 

orthonormal basis 𝐞
𝑖

. The 𝑥1  axis is aligned with the 

horizontal axis of the beam, passing through the centroid of 

the cross-section, 𝑥3  goes through its thickness and 𝑥2 is 

transversal to it. The displacement and microrotation fields are 

assumed to be of the following form (see [21]) 

𝐯 𝑥
!, 𝑥! = 𝐮 𝑥

!
+ 𝑥

!𝛗 𝑥
!
+ 𝑥

! !𝛙 𝑥
! , ( 6 ) 

𝝑 𝑥
𝟏
= 𝛉 𝑥

𝟏
. ( 7 ) 

where 𝐮 = 𝑢!𝐞!  represents the displacement vector of the 

neutral axis, while 𝛗 = 𝜑!𝐞𝒊  and 𝛙 = 𝜓!𝐞! are difference 

vectors with 𝑖 = 1,3. The displacement field contains five 

independent variables and contains one quadratic term 𝛙  to 

avoid poisson locking. The microrotation field contains 

𝛉 = 𝜃!𝐞𝟑 , which represent the microrotation along the 

transversal axis of the beam. 

For the given displacement and microrotation fields 

presented in equations 6  and 7  and by the first equation in 

2 , the linear stretch tensor is defined as 

𝜺 = 𝜺
𝟎
+ 𝒙

𝟑
𝜺
𝟏 , 

( 8 ) 
𝜺
𝒊
= 𝜺

𝟏𝟏

(𝒊)
𝐞
𝟏
⨂𝐞

𝟏
+ 𝜺

𝟐𝟐

(𝒊)
𝐞
𝟐
⨂𝐞

𝟐
 

+𝜺
𝟏𝟐

(𝒊)
𝐞𝟏⨂𝐞𝟐 + 𝜺𝟐𝟏

(𝒊)
𝐞𝟐⨂𝐞𝟏,   

where 𝑖 = 0,1, while the linear wryness tensor is expressed by 

means of the second equation in (2) as 

𝜸 = 𝜸 𝟎 ,	
( 9 ) 

𝜸 𝟎
= 𝜸

𝟏𝟑

(𝟎)
𝐞𝟏⨂𝐞𝟑, 

where high order terms are neglected. 

It is also possible to express equations 8  and 9  in 

indicial notation considering the five components of the 

displacement field and the single component of the 

microrotation field as 

𝜀
!!

!
= 𝑢!,! 𝜀

!!

!
= 𝜑!,!

𝜀
!!

!
= 𝜑! 𝜀

!!

!
= 2𝜓!

𝜀
!"

!
= 𝑢!,! − 𝜃! 𝜀

!"

!
= 𝜑!,!

𝜀
!"

!
= 𝜑! + 𝜃! 𝜀

!"

!
= 0

𝛾
!"

(!)
= 𝜃!,! 𝛾

!"

(!)
= 0

 ( 10 ) 

 

C. Principle of virtual work 

The weak form of the model is constructed by the 

Principle of Virtual Work, in which virtual stress measures are 

work-conjugate to virtual strain measures in the micropolar 

continuum, as stated in [25]. The configuration solution of the 

micropolar beam is defined by the set Φ ≡ 𝐮,𝛗,𝛙,𝛉 . Thus, 

𝒢 Φ, δΦ = 𝒢!"# Φ, δΦ − 𝒢!"# Φ, δΦ , 

( 11 ) 
𝒢 Φ, δΦ = 𝐍

!
∙ δ𝛆

!
+ 𝐍

!
∙ δ𝛆

!

!!

+𝐌
!
∙ δ𝜸 !

𝑑𝑥
! 

+ 𝐩 ∙ δ𝐮 +𝐦 ∙ δ𝛉 𝑑𝑥
!

!!

, 

where δΦ ≡ δ𝐮, δ𝛗, δ𝛙, δ𝛉 . 𝐍 ! are the force stress 

resultants, 𝐌 !  is the micropolar stress resultant, 𝐩 are the 

body forces acting on the beam per unit length and 𝐦 are the 

body moment forces respectively.  

Force stress resultants 𝐍 ! are of the form 

𝐍
!
= 𝔹

!!!

!

!!!

𝜺
! , 𝑖 = 0,1, 

( 12 ) 

while moment stress resultants 𝐌 !   have the form 

𝐌
!
= 𝕄

𝟎
 𝜸 𝟎

. ( 13 ) 

For the definition of 𝐍 !  and 𝐌 !   it is necessary to 

define the material stiffness coefficients 𝔹 and 𝕄 as 

𝔹
!
= 𝑥

! !
ℂ𝑑𝑥

!

!/!

!!/!

, 𝑘 = 0,1,2, 
  ( 14 ) 

𝕄
!
= ℎ𝔻, 

( 15 ) 

where ℎ represents the thickness of the beam. 

The new fourth order micropolar tensors ℂ  and 𝔻  are 

stated by means of the definitions from [23] 

ℂ = 𝜆𝑰⨂𝑰 + 𝜇 + 𝜅 𝐞𝒂⨂𝐞𝒃⨂𝐞𝒂⨂𝐞𝒃 

+𝜇𝐞𝒂⨂𝑰⨂𝐞𝒂, 
( 16 ) 
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𝔻 = 𝛽!𝑰⨂𝑰 + 𝛽!𝐞𝒂⨂𝑰⨂𝐞𝒂 

+𝛽!𝐞𝒂⨂𝐞𝒃⨂𝐞𝒂⨂𝐞𝒃, 
( 17 ) 

where 𝑎, 𝑏 = 1,2,3. 

From equations 11) to (13 , the final expression of the 

virtual work can be stated as 

𝒢 Φ, δΦ = δ𝛆
!
𝔹

!!!

!

!!!

𝜺
!

!

!!!

𝑑𝑥
!

!!

 

+ δ𝜸 !
𝕄

𝟎
 𝜸 𝟎

𝑑𝑥
!

!!

 

− 𝐩 ∙ δ𝐮 +𝐦 ∙ δ𝛉 𝑑𝑥
!

!!

. 

 ( 18 ) 

III. FINITE ELEMENT APPROXIMATION 

Let Ω be the domain of the neutral axis of the beam 

which is discretized into 𝑁 elements such that 

Ω = Ω
!

!

!!!

 
( 19 ) 

Recall that Ω! = −1,1  is a parent domain in 𝜉-space and 

𝑥
! 𝜉 :Ω! ∈ ℝ → Ω

! . The finite element equations are 

obtained by interpolating the components of the field variables 

written in terms of the base vectors. Namely, 

𝐮
!!

𝑥
𝟏
= 𝑢

!

!
𝜙 ! 𝜉

𝒎

!!𝟏

𝐞! , 

𝛗!!(𝑥𝟏) = 𝜑
!

(!)
𝜙(!)(𝜉)

𝒎

!!𝟏

𝐞! ,    

𝛙!!(𝑥𝟏) = 𝜓
!

(!)
𝜙(!)(𝜉)

𝒎

!!𝟏

𝐞! , 

𝛉
!!

𝑥
𝟏
= 𝜃

!

!
𝜙 ! 𝜉

𝒎

!!𝟏

𝐞!, 

𝑘 = 1,2. 

( 20 ) 

The adopted basis functions 𝜙 !  are 𝐶!  interpolant 

polynomials of Gauss–Lobatto-Legendre (GLL) quadrature 

points [26], which are suitable for high-order expansions. 

Explicitly, the one-dimensional basis functions of the order 

𝑝 = 𝑚 − 1  are expressed using the p-order Legendre 

polynomial 𝑃!!!, as shown 

𝜙 ! 𝜉 =
1 − 𝜉! 𝑃′!!! 𝜉

𝑚 𝑚 − 1 𝑃!!! 𝜉! 𝜉 − 𝜉!
 

( 21 ) 

 

 

IV. NUMERICAL RESULTS 

In the following section cantilever and simply supported 

microbeams are evaluated using a 4-element mesh with 𝑃 = 4 

interpolation functions for primary variables to avoid shear 

locking. Nondimensional parameters are used according with 

the following equations: 

𝜇 = 𝜇/𝐸, 𝜅 = 𝜅/𝐸, 

( 22 ) 

𝛽! = 𝛽!/ 𝐸𝐿
! , 

𝛽! = 𝛽!/ 𝐸𝐿
! , 

𝐼! = 𝐼!/ 𝐴𝐿
! , 

𝑅! = 𝐿/ 𝐼!𝐴 , 

𝑓! = 𝑓!/ 𝐸𝐴 , 

𝑚! = 𝑚!/ 𝐸𝐴 , 

𝑈! = 3𝐸𝐼!𝑢! 𝑥
𝟏 / 𝑓!𝐿

! , 

where 𝐼! is the moment of inertia,𝑅!is the slenderness ratio, 𝑓! 

the point load at the free end of the beam, 𝐴 the area of the 

cross-section and 𝐿 the length of the beam 

A. Convergence analysis 

 Preliminary converge analysis was conducted to 

demonstrate the numerical stability of the proposed finite 

element model applied to micropolar elasticity. A cantilever 

beam was analyzed with the nondimensional parameters in 

Table I [17].  

 
TABLE I 

 

Parameter Value 

𝑅! 10 

𝜇 3/8 

𝜅 0.02 

𝛽!
 0 

𝛽! 5×10
!! 

 

Vertical deflection at the free end of the beam was 

calculated for different 𝑃  levels. A normalized vertical 

deflection 𝑢!  is compared for different numbers of nodes 

considering the case with 𝑃 = 8  and 8  elements as the 

reference value, being 𝑢! calculated by the following equation 



18th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Integration, and Alliances for a Sustainable 

Development” “Hemispheric Cooperation for Competitiveness and Prosperity on a Knowledge-Based Economy”, 29-31 July 2020, Buenos Aires, Argentina. 4 

𝑢! =
𝑢!(𝑃,𝑁)

𝑢!(8,8)
. ( 23 ) 

The cantilever beam is loaded with a nondimensional 

point load at its free end 𝑓! = 5×10
!! and a distributed body 

moment 𝑚! = 10
!!. Fig. 1 shows the convergence analysis. 

An excellent rate of convergence is achieved when higher-

order elements are employed. 

Fig. 1 Convergence analysis. 

 

B. Bending analysis of micropolar beams 

	 For the evaluation of the proposed model, results are 

compared against [17]. In the first case, a cantilever beam with 

a squared cross-section is considered. The action of different 

distributed body moments 𝑚! = 0,±0.5×10!!,±1×10!! and 

a point load applied at the free end  𝑓! = 5×10
!!  are 

analysed. The material parameters used in the results are given 

in Table I. The boundary conditions are taken as follows: 

𝑢!(0) = 𝑢!(0) = 0, 

𝜑!(0) = 𝜑!(0) = 0, 

𝜓!(0) = 0. 

( 24 ) 

 Fig. 2 shows the normalized displacement 𝑈! along the 

length of the beam. The advantage of the present formulation 

is that 3D constitutive relations are used. Hence, the inclusion 

of the Poisson ratio leads to more stiff results. For the case 

with a distributed moment of 𝑚! = +1×10
!!, the proposed 

model presents displacements 10.86% smaller in comparison 

with the reference value. The same behaviour is evidenced in 

fig. 2 and fig. 3 with respect to macrorotation 𝜑!  and 

microrotation 𝜃! respectively. 
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Fig 2. Normalized vertical deflection Û2 of the cantilever beam.

Fig 3. Macrorotation φ1 of the cantilever beam.

Fig 4. Microrotation θ3 of the cantilever beam.

 
 Secondly, a simply supported micropolar beam is 

evaluated under the action of a distributed load 𝑝! . The 

magnitude of 𝑝! is selected such that it generates a 

nondimensional vertical deflection of 0.3 at the middle spam 

of the beam based on the Timoshenko bending theory. The 

material parameters are given in Table II. 
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TABLE II 

Parameter Value 

𝑅! 50 

𝜇 3/8 

𝜅 (2×10!, 2×10!!") 

𝛽!
 0 

𝛽! 2×10
!!" 

 

 The boundary conditions are taken as follows: 

𝑢𝟏(0) = 𝑢𝟐(0) = 0, 

𝑢𝟏(𝐿) = 𝑢𝟐(𝐿) = 0, 
( 25 ) 

 The proposed model presents stiffer behavior compared 

with [17]. Fig. 5 shows the results considering the first value 

of micropolar constant 𝜅 presented in Table II. It is observed 

that the macrorotation 𝜑!  and microrotation 𝜃!  coincide for 

the present formulation as it was stated by [17]. Fig. 6 shows 

the results with the second value of micropolar constant 𝜅 

from Table II. It is observed that as the micropolar constant 𝜅 

is reduced, the microrotation 𝜃! decreases in comparison with 

the macrorotation 𝜑!. Also, the microrotation 𝜃! obtained with 

the proposed model coincides with the results from [17]. 
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Fig. 5 Bending deformations of a simply supported beam under a distributed 

load 𝑝! (𝜅 = 2×10
!). 
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Fig. 6 Bending deformations of a simply supported beam under a distributed 

load 𝑝! (𝜅 = 2×10
!!"). 

	

V. CONCLUSIONS 

In the present study, a finite element model based on an 

improved first-order shear deformation theory was obtained 

based on micropolar elasticity theory. The proposed model 

uses six independent variables for the approximation of the 

displacement and microrotation fields. A variational 

formulation has been derived using 3D constitutive relations 

and spectral high-order interpolation functions. A convergence 

study of the vertical deflection of a cantilever beam was 

evaluated, showing the advantages of these spectral high-order 

interpolation functions. Bending results were obtained for 

cantilever and simply supported beams with distributed 

vertical loads and body moments, which were compared 

against the deflections of a micropolar first-order shear 

deformation model. The proposed model developed stiffer 

deflections, macro rotations, and microrotations due to the use 

of 3D constitutive equations.  In the next investigations, the 

authors expect to extend the present research to evaluate 

geometrical nonlinear behavior and functionally graded 

materials considering micropolar elasticity theory. 
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